7013155 A1 |00 0 0O

Tg)

e
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

10 February 2005 (10.02.2005)

(10) International Publication Number

WO 2005/013155 A1l

GO6F 17/30

(51) International Patent Classification’:

(21) International Application Number:
PCT/US2004/024451

(22) International Filing Date: 28 July 2004 (28.07.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/492,019
10/831,401

UsS
Us

1 August 2003 (01.08.2003)
23 April 2004 (23.04.2004)

(71) Applicant (for all designated States except US): ORACLE
INTERNATIONAL CORPORATION [US/US]; 500 Or-
acle Parkway, Redwood Shores, CA 94065 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BAMFORD, Roger
[US/US]; 555 Manzanita Way, Woodside, CA 94062 (US).
CHANDRASEKARAN, Sashikanth [IN/US]; 2545 Carl-
mont Drive #9, Belmont, CA 94002 (US). PRUSCINO,
Angelo [IT/US]; 436 Distel Drive, Los Altos, CA 94022
(US).

(74) Agent: HICKMAN, Brian, D.; Hickman Palermo Truong
& Becker LLP, Suite 550, 2055 Gateway Place, San Jose,
CA 95110-1089 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: ONE-PHASE COMMIT IN A SHARED-NOTHING DATABASE SYSTEM

Multi-Node Database System 100

Coordinating Node 110

Log 112

Participating Node 150

Log 152

\ /

Database Clients 120

Database Clients 160

(57) Abstract: Techniques are provided for handling distributed transaction in shared-nothing database system where one or more
of the nodes have access to a shared persistent storage. Rather than coordinate the distributed transaction using a two-phase commit
& protocol, the coordinator of the distributed transaction uses a one-phase commit protocol with those participants that have access to
& the transaction status information maintained by the coordinator. The transaction status information may reside, for example, in the
A redo log of the coordinator. In case that the coordinator fails, those participants can determine the state of the distributed transaction
based on information stored on the shared disk. In addition, the coordinator is able to determine whether it is possible to commit the
distributed transaction based on information that is stored on the shared disk by the participants, without those participants entering

a formal "prepared " state.

WO 2005/013155 A1 I} 010 00000 0000 000000

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations” appearing at the begin-
— before the expiration of the time limit for amending the ning of each regular issue of the PCT Gagzette.

claims and to be republished in the event of receipt of

amendments

WO 2005/013155 PCT/US2004/024451
ONE-PHASE COMMIT IN A SHARED-NOTHING DATABASE SYSTEM

FIELD OF THE INVENTION
[0001] The present invention relates to techniques for managing data in a shared-

nothing database system running on shared disk hardware.

BACKGROUND OF THE INVENTION

[0002] Multi-processing computer systems typically fall into three categories: shared
everything systems, shared disk systems, and shared-nothing systems. In shared
everything systems, processes on all processors have direct access to all volatile memory
devices (hereinafter generally referred to as "memory") and to all non-volatile memory
devices (hereinafter generally referred to as "disks") in the system. Consequently, a high
degree of wiring between the various computer components is required to provide shared
everything functionality. In addition, there are scalability limits to shared everything
architectures.

[0003] In shared disk systems, processors and memories are grouped into nodes.
Each node in a shared disk system may itself constitute a shared everything system that
includes multiple processors and multiple memories. Processes on all processors can
access all disks in the system, but only the processes on processors that belong to a
particular node can directly access the memory within the particular node. Shared disk
systems generally require less wiring than shared everything systems. Shared disk
systems also adapt easily to unbalanced workload conditions because all nodes can access
all data. However, shared disk systems are susceptible to coherence overhead. For
example, if a first node has modified data and a second node wants to read or modify the
same data, then various steps may have to be taken to ensure that the correct version of

the data is provided to the second node.

L}

WO 2005/013155 PCT/US2004/024451

[0004] In shared-nothing systems, all processors, memories and disks are grouped
into nodes. In shared-nothing systems as in shared disk systems, each node may itself
constitute a shared everything system or a shared disk system. Only the processes
running on a particular node can directly access the memories and disks within the
particular node. Of the three general types of multi-processing systems, shared-nothing
systems typically require the least amount of wiring between the various system
components. However, shared-nothing systems are the most susceptible to unbalanced
workload conditions. For example, all of the data to be accessed during a particular task
may reside on the disks of a particular node. Consequently, only processes running
within that node can be used to perform the work granule, even though processes on other
nodes remain idle.

[0005] Databases that run on multi-node systems typically fall into two categories:

shared disk databases and shared-nothing databases.

SHARED DISK DATABASES

[0006] A shared disk database coordinates work based on the assumption that all data
managed by the database system is visible to all processing nodes that are available to the
database system. Consequently, in a shared disk database, the server may assign any
work to a process on any node, regardless of the location of the disk that contains the data
that will be accessed during the work.

[0007] Because all nodes have access to the same data, and each node has its own
private cache, numerous versions of the same data item may reside in the caches of any
number of the many nodes. Unfortunately, this means that when one node requires a
particular version of a particular data item, the node must coordinate with the other nodes

to have the particular version of the data item shipped to the requesting node. Thus,

WO 2005/013155 PCT/US2004/024451

shared disk databases are said to operate on the concept of "data shipping," where data
must be shipped to the node that has been assigned to work on the data.

[0008] Such data shipping requests may result in "pings". Specifically, a ping occurs
when a copy of a data item that is needed by one node resides in the cache of another
node. A ping may require the data item to be written to disk, and then read from disk.
Performance of the disk operations necessitated by pings can significantly reduce the
performance of the database system.

[0010] Shared disk databases may be run on both shared-nothing and shared disk
computer systems. To run a shared disk database on a shared-nothing computer system,
software support may be added to the operating system or additional hardware may be

provided to allow processes to have access to remote disks.

SHARED-NOTHING DATABASES

[0011] A shared-nothing database assumes that a process can only access data if the
data is contained on a disk that belongs to the same node as the process. Consequently, if
a particular node wants an operation to be performed on a data item that is owned by
another node, the particular node must send a request to the other node for the other node
to perform the operation. Thus, instead of shipping the data between nodes, shared-
nothing databases are said to perform "function shipping".

[0012] Because any given piece of data is owned by only one node, only the one node
(the “owner” of the data) will ever have a copy of the data in its cache. Consequently,
there is no need for the type of cache coherency mechanism that is required in shared disk
database systems. Further, shared-nothing systems do not suffer the performance
penalties associated with pings, since a node that owns a data item will not be asked to
save a cached version of the data item to disk so that another node could then load the

data item into its cache.

WO 2005/013155 PCT/US2004/024451

[0013] Shared-nothing databases may be run on both shared disk and shared-nothing
multi-processing systems. To run a shared-nothing database on a shared disk machine, a
mechanism may be provided for partitioning the database, and assigning ownership of
each partition to a particular node.

[0014] The fact that only the owning node may operate on a piece of data means that
the workload in a shared-nothing database may become severely unbalanced. For
example, in a system of ten nodes, 90% of all work requests may involve data that is
owned by one of the nodes. Consequently, the one node is overworked and the
computational resources of the other nodes are underutilized. To "rebalance" the
workload, a shared-nothing database may be taken offline, and the data (and ownership
thereof) may be redistributed among the nodes. However, this process involves moving

potentially huge amounts of data, and may only temporarily solve the workload skew.

DISTRIBUTED TRANSACTIONS IN SHARED NOTHING DATABASE SYSTEMS
[0015] A distributed transaction may specify updates to data items that reside on
different nodes in a shared-nothing database system. For example, a distributed
transaction may specify an update to a first piece of data owned by a first shared-nothing
node, and an update to a second piece of data owned by a second shared-nothing node.
The nodes that own data that is involved in a distributed transaction are referred to herein
as “participating” nodes or simply “participants”.

[0016] To maintain data consistency, the distributed transaction must be either
committed or, in the event of an error, “rolled back”. When a transaction is committed,
all of the changes to data specified by the transaction are made permanent. On the other
hand, when a transaction is rolled back, all of the changes to data specified by the
transaction that have already been made are retracted or undone, as if the changes to the
data were never made. Thus, the database is left in a state that either reflects all of the
changes specified in the transaction, or none of the changes specified in the transaction.

-4-

WO 2005/013155 PCT/US2004/024451

TWO-PHASE COMMIT

[0017] One approach for ensuring data consistency during distributed transactions
involves processing distributed transactions using a two-phase cc;mmit protocol. Two-
phase commit is described in detail, for example, in U.S. Patent No. 6,493,726, entitled
"Performing 2-Phase Commit With Delayed Forget". In general, two-phase commit
requires that the transaction first be "prepared", and then committed. Prior to the
prepared phase, the changes specified by the transaction are made at each of the
participating shared-nothing nodes. When a participating node completes all requested
operations, the participating node forces the changes, and a "prepare" record, to persistent
storage. The participant then reports to the coordinator that the participant is in the
“pfepared" state. If all of the participants successfully enter the prepared state, then the
coordinator forces a commit record to persistent storage. On the other hand, if any errors
occur prior to the prepared state, indicating that at least one of the participating nodes
could not make the changes specified by the transaction, then all of the changes at each of
the participating nodes are retracted, restoring each participating database system to its
state prior to the changes.

[0018] Fig. 1 shows a multi-node shared-nothing database system used to illustrate in
more detail the costs associated with a conventional approach for performing a two-phase
commit. Multi-node database system 100 includes a coordinating node 110 and a
participating node 150. Coordinating node 110 receives requests for data from database
clients 120, which include client 122 and client 124. Such requests may be in the form of,
for example, SQL statements.

[0019] Coordinating node 110 includes a log, such as log 112. The log 112 is used to
record modifications made to the database system, and other events affecting the status of
those modifications, such as commits. Log 112 contains a variety of log records. When

these log records are first created, initially they are stored in volatile memory, and are

WO 2005/013155 PCT/US2004/024451

soon stored permanently to non-volatile storage (e.g. a non-volatile storage device such as
a disk). Once log records are written to non-volatile storage, the modifications and other
events specified by the log records are referred to as being "persistent”. The modifications
and events are "persistent" because the permanently stored log records may be used, in
the event of a system failure, after the failure to replay the modifications and events to
restore the database to its pre-failure state. ’
[0020] Fig. 2 is a flowchart showing the interaction between a coordinator and a
participant according to a conventional approach for performing a two-phase commit. The
transaction states are illustrated using multi-node database system 100 as an example.
‘Transaction states 201 are the transaction states that a transaction goes through within a
coordinating database system (i.é. coordinating node 110), and transaction states 202 are
the transaction states a transaction goes through within a participating database system
(i.e. participating node 150).
[0021] Referring to Fig. 2, inactive states 210, 240, 250, 290 represent the inactive
state of a transaction. In the inactive state, there are no database operations specified by
the transaction that require any further action (e.g. commit, undo, locking or unlocking of
resources needed to perform the operations, such as data blocks). A transaction is initially
in the inactive state (i.e. inactive state 210 and 250), and upon completion transitions back
to the inactive state (i.e. inactive states 240 and 290).
[0022] A transaction transitions from the inactive state to the active state when a
database system receives a "begin transaction" request. For example, client 122 (Fig. 1)
may issue a BEGIN TRANSACTION request to coordinating node 110. Alternatively,
the "begin transaction" command may be implicit. For example, a database server may
begin an active transaction upon receiving a statement that specifies an operation or
change. At step 212, coordinating node 110 receives the begin transaction request and

enters active state 220. Next, coordinating node 110 receives a command to modify data

-6-

WO 2005/013155 PCT/US2004/024451

on participating node 150. In response, at step 221, coordinating node 110 transmits a
request to participating node 150 to begin a transaction. At step 222, coordinating node
110 transmits one or more requests to participating node 150 to modify data on
participating node 150.

[0023] At step 252, participating node 150 receives the request to begin a transaction.
Relative to participating node 150, the transaction enters the active state 260. Afterwards,
participating node 150 receives the request to modify data.

[0024] Once a transaction within a database system enters the active state, the
database system may receive any number of requests to modify data as part of the
transaction. For example, client 122 may issue requests to coordinating node 110 to
modify data on both coordinating node 110 and participating node 150. In response to
receiving the requests to modify data on participating node 150, coordinating node 110
transmits requests to modify data on participating node 150 to participating node 150.
[0025] At step 223, the coordinating database system receives a request from client
122 to commit the transaction. In response, at step 224, coordinating node 110 transmits a
prepare request to participating node 150. At step 262, participating node 150 receives the
request.

[0026] At step 264, participating node 150 flushes log 152 (Fig. 1) to non-volatile
storage. "Flushing the log" refers to causing the log records of the log that are currently
only stored in volatile memory to be stored to non-volatile storage. Thus, flushing the log
renders the modifications for participating node 150 persistent. When the modifications
are rendered persistent, participating node 150 is able to guarantee that it can commit its
portion of the transaction. Consequently, after step 264, the transaction enters the
prepared state. At step 266, pafticipating node 150 records the transition to the prepared
state in log 152 (i.e. stores on disk a log record that records the fact the prepared state has

been reached).

WO 2005/013155 PCT/US2004/024451

[0027] At step 272, participating node 150 transmits a prepared acknowledgment to
the coordinating node 110. A prepared acknowledgment is a message sent by a
participating database system that indicates whether or not the participating database
system is prepared to commit the transaction. A participating database system is prepared
to commit when the transaction is in the prepared state on the participating database
system. At step 226, coordinating node 110 receives the prepared acknowledgment.
[0028] At step 228, coordinating node 110 commits and flushes the log 112.
Specifically, coordinating node 110 creates a log record in log 112 to record the commit.
When coordinating node 110 flushes the log, it renders the commit persistent. When a
commit is persistent, the transaction is in the committed state. Thus, after flushing the log,
coordinating node 110 transitions to committed state 230.

[0029] After the transaction reaches the committed state, at step 232, coordinating
node 110 transmits to participating coordinating node 110 a forget request. Next,
participating node 150 forgets the transaction. A forget request is a message sent to a
participating database system requesting that the participating database system
performing forget processing. "Forget processing" generally refers to the additional
operations needed to transition a transaction from the prepared or committed state to the
inactive state (e.g. commit the transaction, release resources, and render the transaction
inactive).

[0030] At step 274, participating node 150 receives the forget request. At step 276,
participating database system commits (including creating a log record to record the
commit), and then flushes log 152. At this stage, the transaction enters the inactive state
on participating node 150. At step 282, participating node 150 releases any remaining
locks on resources that were locked by participating node 150 on behalf of the

transaction. At step 284, participating node 150 transmits a forget acknowledgement to

WO 2005/013155 PCT/US2004/024451

coordinating node 110. A forget acknowledgement is a message sent by a participating
node acknowledging that forget processing is completed on the i)articipating node.
[0031] At step 234, coordinating node 110 receives the message acknowledging the
completion of forget processing. At step 236, coordinating node 110 can delete state
information maintained by the coordinator on behalf of the transaction. Such state
information may include, for example, a list of the participants in the distributed
transaction. At this stage, the transaction enters the inactive state on coordinating node
110.

[0032] The per transaction cost of the two-phase commit can be measured by the
number of transmitted messages and log flushes that are attributable to performing the
two-phase commit. Because four messages are attributable to the two-phase commit (i.e.
step 221, step 232, step 272, and step 284), the per transaction cost in terms of messages
is 4N, where N equals the number of participating nodes. Because one log flush for the
coordinating node (i.e. step 228) and two log flushes for each participating node are
attributable to the two-phase commit, the cost in terms of log flushes is 2N + 1, where N
is the number of participating nodes.

[0033] Based on the foregoing, it is clearly desirable to provide techniques to reduce
the number messages, handshaking, and log flushes required to complete a transaction

that involves multiple shared-nothing nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

[0034] The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

[0035] FIG. 1 is a block diagram a multi-node database system;

[0036] FIG. 2 is a flowchart illustrating the steps involved in a convention two-phase

commit protocol;

WO 2005/013155 PCT/US2004/024451

[0037] FIG. 3 is a flowchart illustrating the interaction between a coordinator and an
inside participant, according to an embodiment of the invention; and
[0038] FIG. 4 is a block diagram of a computer system upon which embodiments of

the invention may be implemented.

DETAILED DESCRIPTION OF THE INVENTION

[0039] Various techniques are described hereafter for improving the performance of a
shared-nothing database system that includes a shared disk storage system. In the
following description, for the purposes of explanation, numerous specific details are set
forth in order to provide a thorough understanding of the présent invention. It will be
apparent, however, that the present invention may be practiced without these specific
details. In other instances, well-known structures and devices are shown in block

diagram form in order to avoid unnecessarily obscuring the present invention.

FUNCTIONAL OVERVIEW
[0040] Various techniques are described hereafter for improving the performance of a
shared-nothing database system in which at least two of the nodes that are running the
shared-nothing database system have shared access to a disk. As dictated by the shared-
nothing architecture of the database system, each piece of data is still owned by only one
node at any given time. However, the fact that at least some of the nodes that are running
the shared-nothing database system have shared access to a disk is exploited to more
efficiently perform distributed transactions. Specifically, rather than ensure consistency
of distributed transactions through a two-phase commit protocol, a one-phase commit
protocol is used by those participants that have access to the shared disk containing the

redo log of the coordinator process.

-10-

WO 2005/013155 PCT/US2004/024451

REDO LOGS
[0041] When, as part of a transaction, a database server updates a data item in volatile
memory, the database server generates a redo record that contains information about the
update. Before the transaction commits, the redo record of the update is typically stored
in aredo log on disk. Storing the redo record on disk before the transaction commits
ensures that the database will be able to reflect the update even if the database crashes
before the updated data item is itself written to disk. Redo records and redo logs are
described, for example, in U.S. Patent Number 5,903,898, entitled "Method And
Apparatus For User Selectable Logging".
[0042] The redo records generated by a node are typically stored in a redo log that is
private to that node. Thus, a shared-nothing database system with three nodes will
typically have three redo logs, each of which corresponds to one of the three nodes. The
redo log that is associated with a shared-nothing node may only contain redo for the
changes made by that node. However, when the redo log is stored on a shared disk to
which the other nodes have access, it is possible for the other nodes to inspect the
contents of the redo log.
[0043] As shall be described in greater detail hereafter, techniques are provided to
allow certain distributed transactions, or portions of distributed transactions, to be
performed using a one-phase commit protocol by taking advantage of the ability of
shared-nothing nodes to inspect the information maintained by other shared-nothing
nodes. For example, techniques are described that take advantage of the fact that some
participants in a distributed transaction may be able to read the information, maintained
by the coordinator process of the distributed transaction, that indicates the state of the
distributed transaction. Such state information may be maintained on a shared disk, for
example, in the redo logs of the coordinator process. Alternatively, a separate structure

3

such as table, a set or blocks, or some persistent indexed structure may be used to store

-11-

WO 2005/013155 PCT/US2004/024451

the distributed transaction state information. As shall be explained hereafter, during
commit of the distributed transaction, the coordinator forces the change to the transaction
state to the shared disk so that the state information may be inspected by other
participants to determine the outcome, in case the coordinator dies before sending

messages to the other participants about the commit.

INSIDE PARTICIPANTS AND OUTSIDE PARTICIPANTS
[0044] According to one embodiment, the protocol used in the interaction between
the coordinator node and a participant in a distributed transaction within a shared-nothing
database system hinges on whether the participant is able to inspect the distributed
transaction state information maintained by the coordinator. The participants that are able
to inspect the distributed transaction state information are referred to herein as "inside
participants”, while the participants that are not able to inspect the distributed transaction

state information are referred to as "outside participants".

TWO-PHASE COMMIT FOR OUTSIDE PARTICIPANTS
[0045] According to one embodiment, outside participants in a distributed transaction
in a shared-nothing database system interact with the coordinator process according to a
two-phase commit protocol. For example, an outside participant may transition through
the states and steps illustrated in FIG. 2. Specifically, the outside participant first receives
from the coordinator a request to begin a transaction as part of the larger distributed
transaction. The outside participant then initiates a transaction and performs the
requested operations as part of the transaction.
[0046] If the changes made by the distributed transaction are intended to be
permanent, then the outside participant will eventually receive a request to "prepare”. In

response to the prepare request, the outside participant flushes the redo records to disk,

-12-

WO 2005/013155 PCT/US2004/024451

flushes a "prepared" record to disk, and sends a prepared acknowledgement back to the
coordinator node.

[0047] Assuming that all participants are able to prepare successfully, the outside
participant will receive a request to forget. In response to the request to forget, the
outside participant forces to disk a commit record. The participant then sends a forget

acknowledgement to the coordinator node.

ONE-PHASE COMMIT FOR INSIDE PARTICIPANTS
[0048] In one embodiment, an inside participant does not use the two-phase commit
protocol during the distributed transaction. Specifically, after successfully performing
their tasks associated with the distributed transaction, the inside participants do not have
to log a pfepare record indicating that they are prepared. Rather, after performing the
requested work and flushing any changes made thereby to persistent storage, an inside
participant merely waits for a commit request from the coordinator. When the commit
request arrives, the inside participant commits the changes and sends a commit
acknowledge message back to the coordinator.
[0049] Referring to FIG. 3, it is a flowchart that illustrates the interaction between a
coordinator and an inside participant during a distributed transaction, according to an
embodiment of the invention. For the purpose of illustration, it shall be assumed that the
coordinator node and the inside participant are two shared-nothing nodes of a shared-
nothing database, and that the distributed transaction requires one or more operations that
involve data owned by the inside participant.
[0050] At step 302, the coordinator receives a request to begin the distributed
transaction, and at step 304, the coordinator begins the distributed transaction. At step
306 the coordinator sends a request to the inside participant to begin a child transaction to

perform operations that are part of the distributed transaction.

13-

WO 2005/013155 PCT/US2004/024451

[0051] At step 350, the inside participant receives the request to begin a child
transaction, and at step 352 the inside participant starts the child transaction. At step 308
the coordinator sends a request for the inside participant to perform work, and at step 354
the inside participant receives the request and performs the work. While the inside
participant performs the work, the inside participant generates redo records that reflect the
changes being made by the inside participant. Such redo records may be periodically
stored on disk, as indicated at step 356. Alternatively, the redo records may be retained in
volatile memory until some flush-triggering conditions are satisfied. Such flush-
triggering conditions may include, for example, the need to free up volatile memory for
other uses, or the receipt of a flush request.

[0052] At step 310, the coordinator node receives a commit request. In response to
the commit request, the coordinator determines whether all of the participants have stored
to disk the redo for all of the changes that were performed as part of the distributed
transaction. Various techniques ﬁay be used for the coordinator to make this
determination. Examples of such techniques shall be given in greater detail hereafter.
[0053] If all of the participants have stored to disk the redo for all of the changes that
were performed as part of the distributed transaction, then control passes to step 314.
Otherwise, control passes to step 322. At step 322, the coordinator node waits until all
participants have logged their changes to disk. To expedite the completion of the
transaction, the coordinator may optionally send a flush request to those participants that
have not yet logged all of their changes to disk. In response to such a request, the
participants flush to disk all of the redo associated with changes made as part of the
distributed transaction.

[0054] At step 314, the coordinator flushes to disk any redo, for the transaction, that
has not yet been flushed to disk. The coordinator also forces to disk a commit record to

indicate that the distributed transaction has committed. The coordinator then sends a

-14-

WO 2005/013155 PCT/US2004/024451

commit request to the participants, and waits (steps 316 and 324) for the participants to
acknowledge that they have committed their changes. It should be noted that, while the
coordinator still sends commit requests to the inside participants, the commit requests
may be sent after the distributed transaction is actually committed. Thus, the
transmission of such messages, and the receipt of subsequent acknowledgements, are not
on the "critical path" of the distributed transaction.

[0055] At step 358, the inside participant receives the commit request, and at step 360
commits the child transaction that included the work for the distributed transaction. After
committing the child transaction, the inside participant sends a commit acknowledge
message back to the coordinator (step 362).

[0056] The coordinator persistently retains data that indicates the state of the
distributed transaction until the coordinator receives commit acknowledge messages from
all of the participants. Once the coordinator receives commit acknowledge messages
from all of the participants, the coordinator process no long needs to retain the state

information about the distributed transaction (step 320).

DETERMINING WHETHER PARTICIPANT REDO HAS BEEN WRITTEN TO DISK
[0057] As mentioned above, when a node makes changes, the node generates redo
records that correspond to the changes. The changes performed by each node are
typically assigned a sequence number by the node. Such sequence numbers are referred
to herein as "log-sequence-numbers".

[0058] According to one embodiment, when an inside participant performs work that
is part of a distributed transaction, the inside participant communicates to the coordinator
of the distributed transaction the highest log-sequence-number that corresponds to work
done by the inside participant for the transaction. For example, assume that an inside

participant performs three changes as part of a distributed transaction. Assume further

-15-

WO 2005/013155 PCT/US2004/024451

that the redo records for those changes are assigned the log-sequence-numbers 5, 7 and 9.
In this example, upon completion of the changes, the inside participant would
communicate the log-sequence-number of 9 to the coordinator.

[0059] According to one embodiment, the coordinator uses the log-sequence numbers
received from the inside participants to determine whether the inside participants have
logged to disk all of the changes made as part of the distributed transaction. For example,
assume that the highest log-sequence-number that has been communicated to the
coordinator by a particular inside participant is 9. Under these circumstances, if the
inside participant's persistent log includes all redo records associated with log-sequence-
numbers 9 and less, then the coordinator knows that the inside participant has logged to
disk the changes associated with the distributed transaction.

[0060] A variety of techniques may be used for the coordinator to determine which
redo records have been flushed to disk by the inside participants. For example, the redo
log of the inside participants may be on a shared disk directly accessible to the
coordinator. The coordinator may therefore simply inspect the inside participant's redo
log and/or any metadata maintained for the redo log, to determine whether the necessary
redo information has been stored on disk. Alternatively, the various nodes in the shared-
nothing database system may communicate to each other the current boundary
("checkpoint") of their respective redo logs (where all redo at or below the checkpoint
have been logged to disk). Such communications may be made in response to requests

for the information, or may be proactively communicated on a periodic basis.

PIGGYBACKED MESSAGES
[0061] It is common for many messages to be traveling back and forth between the
shared-nothing nodes of a shared-nothing database system. According to one

embodiment, some or all of the information communicated between a coordinator node

-16-

WO 2005/013155 PCT/US2004/024451

and an inside participant are communicated by "piggybacking" the information on
messages that are otherwise being sent between the nodes.

[0062] For example, at step 322, the coordinator may send a "force redo" message to
an inside participant by piggybacking the message on another message that is being sent
to the node of the inside participant. Similarly, inside participants can send the highest
log-sequence-numbers and commit acknowledge messages to the coordinator process by
piggybacking the information on messages that are otherwise being sent to the

coordinator.

RECOVERY OF CRASHED PARTICIPANTS
[0063] As mentioned above, the coordinator commits the distributed transaction (step
314) after the coordinator determines that all of the participants have logged the redo
associated with the changes made as part of the distributed transaction. It is possible for a
participant in the distributed transaction to crash, either before or after writing the
necessary redo to disk. Under these circumstances, the recovery of the crashed
participant will involve determining whether to commit or roll back the changes that were
made as part of the distributed transaction.
[0064] If the crashed participant was an outside participant, then the participant's own
redo log will have a prepare record associated with the distributed transaction if the
outside participant prepared the changes prior to the crash. Upon detecting the prepare
record, the recovery process will know to not automatically roll back the changes
associated with the distributed transaction. On the other hand, if the redo log of an
outside participant does not have a prepare record, then the recovery process
automatically rolls back the changes.
[0065] If the crashed participant was an inside participant, then the participant's own

redo log will not have a prepare record, even if the crashed participant had logged to disk

-17-

WO 2005/013155 PCT/US2004/024451

enough redo information prior to the crash. However, rather than automatically roll back
the changes associated with the distributed transaction, the recovery process asks the
coordinator node whether the distributed transaction has been committed.

[0066] If the coordinator is alive and responds by indicating that the distributed
transaction committed, then the changes made by the crashed node are made permanent
as part of the recovery of the crashed node.

[0067] If the coordinator node is alive and responds by indicating that the distributed
transaction was rolled back, then the changes made by the crashed node are rolled back as
part of the recovery of the crashed node.

[0068] If the coordinator node had crashed, and another node is recovering the
coordinator node, then the process that is recovering the coordinator node may be able to
provide the necessary information to the recovery process of the crashed participant.
However, if the coordinator node had crashed, and no recovery process is available to
provide the status of the distributed transaction, then the recovery process for the inside
participant can obtain the necessary information by directly accessing the distributed
transaction state information maintained by the coordinator node.

[0069] Specifically, in an embodiment where the inside participants have access to
the redo log of the coordinator, the recovery process for the crashed inside participant
may inspect the redo log of the coordinator to see if there is a commit record for the
distributed transaction. If the redo log of the coordinator process includes a commit
record for the distributed transaction, then the recovery process commits the changes that
were made by the crashed participant. On the other hand, if the redo log of the
coordinator does not contain a commit record for the distributed transaction, then the

recovery process rolls back the changes made by the crashed participant.

-18-

WO 2005/013155 PCT/US2004/024451

CRASHED COORDINATOR
[0070] It is possible for the coordinator to crash before sending commit requests to
the participants in the distributed transaction. Under these circumstances, the outside
participants will know the status of the distributed transaction based on the
communications they had received from the coordinator prior to the crash. Specifically,
an outside participant will know whether it had received a request to prepare and/or a
request to forget.
[0071] Inside participants, on the other hand, may have to access the shared disk to
inspect the transaction state information that was written to disk by the coordinator prior
to the crash. According to one embodiment, when an inside participant needs to know the
transaction state of the coordinator, the inside participant requests the state information
from the coordinator node or, if the coordinator node is being recovered, from the
recovery process that is recovering the coordinator node. If the coordinator node is
crashed and is not yet being recovered, then the inside participant retrieves the distributed
transaction state information that was maintained by the coordinator. For example, in one
embodiment, the inside participant obtains this information by inspecting the
coordinator's redo logs. If the transaction status indicates that the coordinator had
committed the distributed transaction, then the inside participant commits the changes
that the inside participant had made as part of the distributed transaction. If the
coordinator process had not committed the distributed transaction at the time of the crash,
then the inside: participant rolls back the changes that the inside participant made as part
of the distributed transaction.
[0072] To ensure that all of the inside participants eventually learn final state of the
distributed transaction, the coordinator node prevents the transaction state information of
the distributed transaction from being deleted or overwritten until all subordinates

acknowledge that their corresponding child transactions have been committed or aborted.

-19-

WO 2005/013155 PCT/US2004/024451

Thus, even if an inside participant crashes after the distributed transaction is committed,
and before receiving the commit request, the inside participant will eventually learn that
that distributed transaction was committed, and will therefore eventually commit its

corresponding child transaction.

HARDWARE OVERVIEW
[0073] Figure 4 is a block diagram that illustrates a computer system 400 upon which
an embodiment of the invention may be implemented. Computer system 400 includes a
bus 402 or other communication mechanism for communicating information, and a
processor 404 coupled with bus 402 for processing information. Computer system 400
also includes a main memory 406, such as a random access memory (RAM) or other
dynamic storage device, coupled to bus 402 for storing information and instructions to be
executed by processor 404. Main memory 406 also may be used for storing temporary
variables or other intermediate information during execution of instructions to be
executed by processor 404. Computer system 400 further includes a read only memory
(ROM) 408 or other static storage device coupled to bus 402 for storing static information
and instructions for processor 404. A storage device 410, such as a magnetic disk or
optical disk, is provided and coupled to bus 402 for storing information and instructions.
[0074] Computer system 400 may be coupled via bus 402 to a display 412, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device
414, including alphanumeric and other keys, is coupled to bus 402 for communicating
information and command selections to processor 404. Another type of user input device
is cursor control 416, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 404 and for
controlling cursor movement on display 412. This input device typically has two degrees
of freedom in two axes, a first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

-20-

WO 2005/013155 PCT/US2004/024451

[0075] The invention is related to the use of computer system 400 for implementing
the techniques described herein. According to one embodiment of the invention, those
techniques are performed by computer system 400 in response to processor 404 executing
one or more sequences of one or more instructions contained in main memory 406. Such
instructions may be read into main memory 406 from another computer-readable
medium, such as storage device 410. Execution of the sequences of instructions
contained in main memory 406 causes processor 404 to perform the process steps
described herein. In alternative embodiments, hard-wired circuitry may be used in place
of or in combination with software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific combination of hardware
circuitry and software.

[0076] The term “computer-readable medium” as used herein refers to any medium
that participates in providing instructions to processor 404 for execution. Such a medium
may take many forms, including but not limited to, non-volatile media, volatile media,
and transmission media. Non-volatile media includes, for example, optical or magnetic
disks, such as storage device 410. Volatile media includes dynamic memory, such as
main memory 406. Transmission media includes coaxial cables, copper wire and fiber
optics, including the wires that comprise bus 402. Transmission media can also take the
form of acoustic or light waves, such as those generated during radio-wave and infra-red
data communications.

[0077] Common forms of computer-readable media include, for example, a floppy
disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-
ROM, any other optical medium, punchcards, papertape, any other physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory
chip or cartridge, a carrier wave as described hereinafter, or any other medium from

which a computer can read.

21-

WO 2005/013155 PCT/US2004/024451

[0078] Various forms of computer readable media may be involved in carrying one or
more sequences of one or more instructions to processor 404 for execution. For example,
the instructions may initially be carried on a magnetic disk of a remote computer. The
remote computer can load the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem local to computer system
400 can receive the data on the telephone line and use an infra-red transmitter to convert
the data to an infra-red signal. An infra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data on bus 402. Bus 402 carries
the data to main memory 406, from which processor 404 retrieves and executes the
instructions. The instructions received by main memory 406 may optionally be stored on
storage device 410 either before or after execution by processor 404.

[0079] Computer system 400 also includes a communication interface 418 coupled to
bus 402. Communication interface 418 provides a two-way data communication coupling
to a network link 420 that is connected to a local network 422. For example,
communication interface 418 may be an integrated services digital network (ISDN) card
or amodem to provide a data communication connection to a corresponding type of
telephone line. As another example, communication interface 418 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN.
Wireless links may also be implemented. In any such implementation, communication
interface 418 sends and receives electrical, electromagnetic or optical signals that carry
digital data streams representing various types of information.

[0080] Network link 420 typically provides data communication through one or more
networks to other data devices. For example, network link 420 may provide a connection
through local network 422 to a host computer 424 or to data equipment operated by an
Internet Service Provider (ISP) 426. ISP 426 in turn provides data communication

services through the world wide packet data communication network now commonly

22

WO 2005/013155 PCT/US2004/024451

referred to as the “Internet” 428. Local network 422 and Internet 428 both use electrical,
electromagnetic or optical signals that carry digital data streams. The signals through the
various networks and the signals on network link 420 and through communication
interface 418, which carry the digital data to and from computer system 400, are
exemplary forms of carrier waves transporting the information.

[0081] Computer system 400 can send messages and receive data, including program
code, through the network(s), network link 420 and communication interface 418. In the
Internet example, a server 430 might transmit a requested code for an application program
through Internet 428, ISP 426, local network 422 and communication interface 418.
[0082] The received code may be executed by processor 404 as it is received, and/or
stored in storage device 410, or other non-volatile storage for later execution. In this
manner, computer system 400 may obtain application code in the form of a carrier wave.
[0083] In the foregoing specification, embodiments of the invention have been
described with reference to numerous specific details that may vary from implementation
to implementation. Thus, the sole and exclusive indicator of what is the invention, and is
intended by the applicants to be the invention, is the set of claims that issue from this
application, in the specific form in which such claims issue, including any subsequent
correction. Any definitions expressly set forth herein for terms contained in such claims
shall govern the meaning of such terms as used in the claims. Hence, no limitation,
element, property, feature, advantage or attribute that is not expressly recited in a claim
should limit the scope of such claim in any way. The specification and drawings are,

accordingly, to be regarded in an illustrative rather than a restrictive sense.

223

2

10

11

12

13

WO 2005/013155 PCT/US2004/024451

CLAIMS

What is claimed is:

1. A method for performing a distributed transaction in a shared-nothing database
system, the method comprising:
on a first shared-nothing node of said shared-nothing database system, causing a
coordinator that is coordinating the distributed transaction to store
information that indicates status of said distributed transaction on a
persistent storage device;
wherein the persistent storage device is accessible to a participant that is to
perform one or more operations as part of said distributed transaction;
wherein the participant resides on a second shared-nothing node of said shared-
nothing database system; and
on the second shared-nothing node of said shared-nothing database system,
causing the participant to determine the status of said distributed

transaction by reading the information from the persistent storage device.

2. The method of Claim 1 wherein:
the participant is a first participant of a plurality of participants in said distributed
transaction;
the plurality of participants includes a second participant that does not have access
to said persistent storage device; and
the method further comprises the step of the coordinator interacting with the

second participant according to a two-phase commit protocol.

3. The method of Claim 1 further comprising the steps of:

the coordinator committing the distributed transaction;

-24.-

WO 2005/013155 PCT/US2004/024451

5.

after the coordinator commits the distributed transaction, the coordinator sending
a commit message to the participant; and

preventing the information that indicates the status of the distributed transaction
from being overwritten or deleted until a set of conditions is satisfied,
wherein one condition in said set of conditions is that the coordinator

receives a commit acknowledge message from said participant.

The method of Claim 1 further comprising the steps of:

the participant sending a first piece of information to the coordinator, wherein the
first piece of information is associated with work performed by said
participant as part of said distributed transaction; and

the coordinator performing a comparison between the first piece of information
and information associated with a redo log of said second shared-nothing
node; and

the coordinator determining whether to commit the transaction based, at least in

part, on said comparison.

The method of Claim 4 wherein piece of information includes a log-sequence-

number of the latest change made by the participant as part of the distributed transaction.

7.

The method of Claim 5 wherein the step of sending includes the steps of:
the participant identifying a message that is being sent to said first shared-nothing
node for a purpose unrelated to the distributed transaction; and

piggybacking the log-sequence number on said message.

A method for performing a distributed transaction in a shared-nothing database

system, the method comprising:

225

10

11

12

13

14

15

16

17

18

19

20

21

22

WO 2005/013155 PCT/US2004/024451

assigning a participant to perform one or more operations as part of said
distributed transaction;

wherein the participant resides on a first shared-nothing node of said shared-
nothing system;

causing said participant to store, on a persistent storage device, status information
that indicates changes made by the participant during performance of said
one or more operations;

wherein the persistent storage device is accessible to a coordinator that is
responsible for coordinating said distributed transaction;

wherein the coordinator resides on a second shared-nothing node of said shared-
nothing database system,; |

on said second shared-nothing node of said shared-nothing database system,
causing said coordinator to determine, based on the status information on
said persistent storage device, whether the participant has written to
persistent storage changes produced by performance of the one or more
operations; and

the coordinator process determining whether the distributed transaction can be
committed based, at least in part, on whether the participant has written to
persistent storage changes produced by performance of the one or more

operations.

26-

10

11

12

13

WO 2005/013155 PCT/US2004/024451

8. The method of Claim 7 wherein:
the step of causing said participant to store, on a persistent storage device, status
information that indicates changes made by the participant during
performance of said one or more operations includes
causing said participant to store redo information in a redo log on said
persistent storage device; and
the step of causing said coordinator to determine, based on the status information
on said persistent storage device, whether the participant has written to
persistent storage changes produced by performance of the one or more
operations includes
inspecting the redo log of the participant to determine whether the redo
information for said changes have been written to said persistent

storage.

0. The method of Claim 7 wherein:
the participant is a first participant of a plurality of participants in said distributed
transaction;
the plurality of participants includes a second participant that stores status
information on a second persistent storage device that is not accessible by
said coordinator; and
the method further comprises the step of the coordinator interacting with the

second participant according to a two-phase commit protocol.

27-

10

11

12

WO 2005/013155 PCT/US2004/024451

10. The method of Claim 7 wherein:
the information on said persistent storage device indicates that the participant has
not written to persistent storage changes produced by performance of the
one or more operations; and
the method further comprises the coordinator sending a force redo message to the
participant to cause the participant to write to persistent storage the

changes produced by performance of the one or more operations.

11. The method of Claim 10 wherein the step of sending a force redo message
includes the steps of:
identifying a message that is being sent to said first shared-nothing node for a
purpose unrelated to the distributed transaction; and

piggybacking the force redo message on said message.

12. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 1.

13. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 2.

14. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 3.

15. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to
perform the method recited in Claim 4.

8-

WO 2005/013155 PCT/US2004/024451

16. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 5.

17. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 6.

18. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 7.

19. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 8.

20. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 9.

21. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 10.

22. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 11.

-29-

PCT/US2004/024451

WO 2005/013155

E

091 sjusIiD sseqeled

0cl sjusI) eseqeled

/

\

1/4

26} 6o

0G] 8poN Bunedionied

2Ll BoT

0L} @poN Bupeupioo)

001 weisAs eseqejeq 8poN-HINiA

WO 2005/013155 PCT/US2004/024451
2/4

201 202

@

Receive begin trans. request |212

252~ Receive request fo begin trans.
Active
260
| 221
Transmit begin request to participants 262
v 299 " Receive request to prepare to commit
Transmit request fo modify data |~ 264 : 'l'_
v Flush log to persistent storage
Receive request to commit from user [~ 223 v
d 7 266+ Record transition to the prepared state
Transmit request to prepare to commit |~ 224
v Prepared
270
Receive prepared acknowledgement 226
v 272\)
Commit and flush log to persistent storage 228 ransmit prepared acknowladgement
v
274
“NReceive request to forget
Committed 276 , > .
230 Commit and flush log to persistent storage
Transmit forget request 232 Inactive
7 280
Receive forget acknowledgement 234 282
7 {Release resources
: - 236 7
Release state information 24~ Transmit forget acknowledgement
Inactive

240 FIG. 2

WO 2005/013155 PCT/US2004/024451

3/4
COORDINATOR
NODE INSIDE PARTICIPANT
302
RECEIVE TXN REQUEST
L > 350
: RECEIVE TXN REQUEST
304 ;
BEGIN TRANSACTION . ¢
Y ? 352
306 BEGIN TXN
TRANSMIT REQUEST TQ f-===x-n==ssssenes :
PARTICIPANTS #
Yy 354
308 . > PERFORM WORK
TRANSMIT WORKTQ fr====-s-mmmememmannnen ’ ¢
PARTICIPANTS
v 356
PERIODICALLY LOG
310 REDO
RECEIVE COMMIT
REQUEST L
358
S EERRALREEES »| RECEIVE COMMIT
; REQUEST
312 i
HAVE ALL !
PARTICIPANTS :
LOGGED ; 360
CHANGES? ! COMMIT TXN
322 '
WAITORSENDLOG [! ¢
REQUEST :
; i 362
314 - : SEND COMMIT ACK
comwmr, L ! ;
FLUSH LOG, ,
SEND COMMIT REQUESTS 1
316
COMMIT ACK RECEIVED 324
FROM ALL WAIT FOR COMMIT ACKS
PARTICIPANTS?

DELETE TXN STSA?r?E INFORMATION FIG . 3

PCT/US2004/024451

WO 2005/013155

4/4

o0

AHOMLAN

JANHEINI

8¢v

(057

BTN EN

5157
TOHINOD
d0sdnod

]
NI RES —
” FOV-RAELNI 7
_ NOLLYOINNIAIOD OSSO0
|
I
|
|
I
o
_ snd
I
|
_
!
|
| o 307 907
| F0IA30 AHONIN
.| Fowdols NOY NIV

1754
J0IA3A LNdNI

s

[45%
AV1dSId

¥ "Old

INTERNATIONAL SEARCH REPORT

Interi al Application No

PCT/US2004/024451

CLA%SIFICATION OF SUBJECT MATTER

A.
IPC GO6F17/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X SAMARAS G ET AL: "Two-phase commit
optimizations and tradeoffs in the
commercial environment”

PROCEEDINGS OF THE INTERNATIONAL
CONFERENCE ON DATA ENGINEERING. VIENNA,
APR. 19 - 23, 1993, LOS ALAMITOS, IEEE
COMP. SOC. PRESS, US,

vol. CONF. 9, 19 April 1993 (1993-04-19),
pages 520-529, XP010095489

ISBN: 0-8186-3570-3

the whole document

1-22

Further documents are listed in the continuation of box C.

D Patent family members are listed in annex.

° Special categories of cited documents :

A document defining the general state of the art which is not
considered to be of particular relevance

'E' earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

0 document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date ctaimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory undetlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered 1o
involve an inventive step when the document is taken alone

'Y* document of particular relevance; the claimed invention
cannot be considered 1o involve an inventive siep when the
document is combined with one or more other such docu-—
_m?;:ts, ﬁuch combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the international search

19 November 2004

Date of mailing of the international search report

29/11/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL ~ 2280 HV Rijswijk

Tel (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

DE CASTRO PALOMARES

Form PCT/ISA/210 (second sheet) (January 2004)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inter; nal Application No
PCT/.l;SZOO4/024451

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ©

Citation of document, with indication, where appropriate, of the relevant passages

Relevant o claim No.

X

INSEON LEE ET AL: ™A single phase
distributed commit protocol for main
memory database systems"

PARALLEL AND DISTRIBUTED PROCESSING
SYMPOSIUM., PROCEEDINGS INTERNATIONAL,
IPDPS 2002, ABSTRACTS AND CD-ROM FT.
LAUDERDALE, FL, USA 15-19 APRIL 2002, LOS
ALAMITOS, CA, USA,IEEE COMPUT. SOC, US,

15 April 2002 (2002-04-15), pages 124-131,
XP010591025

ISBN: 0-7695-1573-8

the whole document

ABDALLAH M ET AL: "One-phase commit: does
it make sense?"

PARALLEL AND DISTRIBUTED SYSTEMS, 1998.
PROCEEDINGS. 1998 INTERNATIONAL CONFERENCE
ON TAINAN, TAIWAN 14-16 DEC. 1998, LOS
ALAMITOS, CA, USA,IEEE COMPUT. SOC, US,

14 December 1998 (1998-12-14), pages
182-192, XP010318727

ISBN: 0-8186-8603-0

the whole document

CHANDRASEKARAN S ET AL INSTITUTE OF
ELECTRICAL AND ELECTRONICS ENGINEERS:
"Shared cache - the future of parallel
databases”

PROCEEDINGS 19TH. INTERNATIONAL CONFERENCE
ON DATA ENGINEERING. (ICDE’2003).
BANGALORE, INDIA, MARCH 5 - 8, 2003,
INTERNATIONAL CONFERENCE ON DATA
ENGINEERING. (ICDE), NEW YORK, NY : IEEE,
us,

vol. CONF. 19, 5 March 2003 (2003-03-05),
pages 840-850, XP010678892

ISBN: 0-7803-7665-X

the whole document

1-22

1-22

1,7

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

page 2 of 2

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

