2 Al

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

(10) International Publication Number

WO 02/17082 Al

KAGAN, Marty [US/US]; 1400 Floribunda Avenue
#201, Burlingame, CA 94010 (US). LEWIN, Daniel, M.
[US/US]; 37 Monument Square, Cambridge, MA 02129
(US). PARIKH, Jay, Gunvantrai [US/US]; 420 Winfield
Lane, Redwood City, CA 94065 (US). WEIHL, William,
Edward [US/US]; 280 Clipper Street, san Francisco, CA
94114 (US).

Agent: JUDSON, David, H.; Hughes & Luce, L.L.P,
1717 Main Street, Suite 2800, Dallas, TX 75201 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

[Continued on next page]

28 February 2002 (28.02.2002) PCT

(51) International Patent Classification’: GO6F 12/00,
15/00, 15/16

(21) International Application Number: PCT/US01/25966

(22) International Filing Date: 20 August 2001 (20.08.2001)

(25) Filing Language: English

(74)

(26) Publication Language: English

(30) Priority Data: (81)
60/226,817 22 August 2000 (22.08.2000) US

(71) Applicant (for all designated States except US): AKA-
MAI TECHNOLOGIES, INC. [US/US]; 500 Technology
Square, Cambridge, MA 02139 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DAVIS, Andrew,
Thomas [US/US]; 1625 Pierce Street #1, San Francsisco, (84)
CA 94115 (US). GENDLER, Samuel, Dov [US/US];
2916 Washington Street, Alameda, CA 94501 (US).

(54) Title:

NETWORK

DYNAMIC CONTENT ASSEMBLY ON EDGE-OF-NETWORK SERVERS IN A CONTENT DELIVERY

Products asp?eategory=gadgots Stype«handheids

2. Pags is assembled by
AppServer, based on first user
request
4. User requests page 6 u
adgets
andlis direcied to N Wb
elosest Akamai server Lo Berver
Dol Sew ERER (fusva bookng for tha stzssest davice snths
gﬂ Shiscs mlnhes o e P (NGO
*
" ohen S TALEFRE: Ty ierd THLICTRE 113 fs 1t pefeti 2o
&”Q?&?Q* ‘%ﬁ:‘éﬁ % d Gititiens ™
Rep 3525
2
Rlstackbary g i fhesl, AbAmeion EUA N
quick kg gereet havision
*

4, Subsequent requests
for page will bs delivered
fram the edge antil TTL
has expired.

3. Page s sent to edge sarvei(s) and stored
based on TTL as defined inthe Metadata

sonfiguration

R (57) Abstract: The present invention enables a content provider to dynamically assemble content at the edge of the Internet, prefer-
ably on content delivery network (CDN) edge servers. Preferably, the content provider leverages an "edge side include" (ESI) markup
- language that is used to define Web page fragments for dynamic assembly at the edge. Dynamic assembly improves site performance
~~ by catching the objects that comprise dynamically generated pages at the edge of the Internet, close to the end user. The content
provider designs and develops the business logic to form and assemble the pages, for example, by using the ESI language within its
development environment. Instead of being assembled by an application/web server in a centralized data center, the application/web
server sends a page template and content fragments to a CDN edge server where the page is assembled. Each content fragment can
have its own cacheability profile to manage the "freshness" of the content. Once a user requests a page (template), the edge server
examines its cache for the included fragments and assembles the page on-the-fly.

WO 02/17082

A1 IRV T O

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,

TG).

Declarations under Rule 4.17:

of inventorship (Rule 4.17(iv)) for US only
of inventorship (Rule 4.17(iv)) for US only
of inventorship (Rule 4.17(iv)) for US only
of inventorship (Rule 4.17(iv)) for US only

— of inventorship (Rule 4.17(iv)) for US only
— of inventorship (Rule 4.17(iv)) for US only

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 02/17082 PCT/US01/25966

1

DYNAMIC CONTENT ASSEMBLY ON EDGE-OF-NETWORK SERVERS IN A
CONTENT DELIVERY NETWORK

This application is based on and claims priority from Provisional Application

Serial No. 60/226,817, filed August 22, 2000.
BACKGROUND OF THE INVENTION

Technical Field

The present invention relates generally to content delivery over the Internet and,
more specifically, to a dynamic content assembly mechanism that enable a content
provider to cache, distribute and assemble individual content fragments on the edge of
the Internet.
Description of the Related Art

Several years ago, the Web was seen by many companies mainly as a new way to
publish corporate information. As these companies’ Web sites grew, the problem of
managing an increasing amount of dynamic content on these sites grew exponentially,
and the first content management applications emerged. Application servers were also
developed to handle all application operations between Web servers and a company's
back-end business applications, legacy systems and databases. Because these
applications could not process HTTP requests and generate HTML, the application
server worked as a translator, allowing, for example, a customer with a browser to
search an online retailer's database for pricing information. Application servers and
content management systems now occupy a large chunk of computing territory (often
referred to as middleware) between database servers and the end users. This is
illustrated in Figure 1. There are many reasons for having an intermediate layer in this
connection - among other things, a desire to decrease the size and complexity of client
programs, the need to cache and control the data flow for better performance, and a
requirement to provide security for both data and user traffic. Also, an application
server bridges the gap between network protocols (HITP, FTP, etc.) and legacy
systems, and it pulls together separate data/content sets, presenting them atomically to
the end user. |

Businesses that rely on the Internet to streamline their operations face the

challenge of providing increased access to their back-end systems, preferably through

10

15

20

25

30

WO 02/17082 PCT/US01/25966

2

Web-based applications that are accessible by customers, suppliers and partners. The
business processes that must come together to drive this new generation of online
applications, however, are more complex than ever before. Far from the HTML and
static pages of years past, the new breed of applications depends on hundreds, if not
thousands of data sources. The content involved now feeds dynamic, personalized
Web-based applications.

Delivering personalized content, however, is not new. Many Web destinations,
mainly portal sites, use personalization to create a unique user experience. The look
and feel and-content of such a site are determined by an individual’s preferences,
geographic location, gender, and the like. By nature, these sites rely heavily on
application servers and/ or content management systems and the use of well-known
techniques (such as cookies) to create this dynamic and personalized user experience.
The majority of pages on these sites, however, are considered non-cacheable and, as a
consequence, content distribution of such pages from the edge of the Internet has not
been practical.

Consider the example of an online retailer for electronic products. When a user
accesses the site and searches for, say, Handhelds, that request is sent to the application
server. The application server performs a database query and assembles the page based
on the return values and other common page components, such as navigation menu,
logos and advertisement. The user then receives the assembled page containing
product images, product descriptions, and advertising. This is illustrated in Figure 2.
The next time the user (or another user) access that page, the same steps need to
happen, which introduces unnecessary latency in delivery of the content to the end
user. On occasion, the page might be cached within the application server’s internal
cache, in which case the request would still have to be satisfied from the origin server,
requiring a full round-trip from browser to origin server and back and requiring
additional computational processes on the application server, necessitating more CPU
and memory usage.

It would be highly desirable to be able to cache the dynamic page closer to
requesting end users. As is well known, content delivery networks (CDNs) have the

capability of caching frequently requested content closer to end users in servers located

10

15

20

25

30

WO 02/17082 PCT/US01/25966

3

near the “edge” of the Internet. CDNSs provide users with fast and reliable delivery of
Web content, streaming media, and software applications across the Internet. Users
requesting popular Web content may well have those requests served from a location
much closer to them (e.g., a CDN content server located in a local network provider’s
data center), rather than from much farther away at the original Web server. By serving
content requests from a server much closer electronically to the user, a quality CDN can
reduce the likelihood of overloaded Web servers and Internet delays.

Returning back to the example, assume that the content provider assigned the
dynamic page a Time To Live (TTL) of one (1) day, for example, because there are only
infrequent changes to the inventory for Handhelds. The first time a user requests the
page it is assembled by the application server as described in Figure 2. Because the
page has a TTL of one day, it would be highly desirable to be able to store the page on
the CDN edge servers for that time period, so that all subsequent requests for that page
could be served from a server closer to other requesting end users who might want
similar information. This is illustrated in Figure 3. This cached version preferably
would include those product images and description that are common components and
generally do not vary from user to user. Even though the page was originally
assembled for an individual user, it would be desirable to be able to cache given
fragments themselves so that the building blocks of the page can be shared between
users.

The dynamic content assembly mechanism of the present invention provides this
functionality.

BRIEF SUMMARY OF THE INVENTION

The invention provides the ability to dynamically assemble content at the edge of
the Internet, e.g., on CDN edge servers. To provide this capability, preferably the
content provider leverages a server side scripting language (or other server-based
functionality) to define Web page fragments for dynamic assembly at the edge.
Dynamic assembly can improve site performance by caching the objects that comprise
dynamically generated HTML pages at the edge of the Internet, close to the end user.
The content provider designs and develops the business logic to form and assemble the

pages, preferably using an “edge side include” (ESI) language within its development

10

15

20

25

30

WO 02/17082 PCT/US01/25966

4

environment. This business logic is then interpreted by the edge servers to produce a
response for the end user.

Instead of being assembled by an application/web server in a centralized data
center, the application/web server sends a page container (or “template”) and content
fragments to a CDN edge server where the page is assembled. A “content fragment”
typically is some atomic piece of content in a larger piece of content (e.g., the container)
and that, preferably, has its own cacheability and refresh properties. Once a user
requests a page, the edge server examines its cache for the included fragments and
assembles the page markup (e.g.,, HTML) on-the-fly. If a fragment has expired or is not
stored on the edge server, the server contacts the origin server or another edge server,
preferably via an optimized connection, to retrieve the new/missing fragment. The two
main benefits of this process are faster loading pages, because pages are assembled
closer to the end user, instead of on the origin server, and reduced traffic/load on the
application/web server, because more requests can be satisfied on the network edge
and smaller pieces of content are being transmitted between the origin server and edge
server. The present invention thus allows the content provider to separate content
generation and/ or management, which may take place in a centralized location, from
content assembly and delivery, which can take place at the edge of the Internet.

More generally, the dynamic content assembly mechanism of the present
invention provides the base layer of a pluggable architecture from which one or more
processing engines (e.g., text such as HTML, XSLT, Java, PHP, and the like) may be
instantiated and used to process a container and its content fragments. Thus, for
example, a given request received at the edge server is mapped to a given base
processor, preferably by content provider-specific metadata, and one or more additional
processors may then be instantiated to enable content fragments to be assembled into
the container to create an assembled response that is then sent back to the requesting
end user.

The foregoing has outlined some of the pertinent features and advantages of the
present invention. A more complete understanding of the invention is provided in the

following Detailed Description of the Preferred Embodiment.

10

15

20

25

30

WO 02/17082 PCT/US01/25966

5

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a conventional e-business Web site having an application
server and a content management system to assemble and deliver personalized content
from a centralized location;

Figure 2 illustrates how the application server in the Web site of Figure 1
generates a dynamic page in response to an end user request;

Figure 3 illustrates how a dynamic page may be cached on a content delivery
network (CDN) edge server according to a technical advantage of the present invention;

Figure 4 illustrates a representative “container” page having individual content
fragments that may be assigned individual caching profiles and behaviors according to
the present invention;

Figure 5 illustrates a dynamic page that is assembled by the dynamic content
assembly mechanism of the present invention;

Figure 6 is representative ESI markup for the page shown in Figure 5;

Figure 7 is representative HTML returned from the origin server as a result of the
edge server tunneling a request for non-cacheable content;

Figure 8 is a representative edge server that may be used to implement the
dynamic content assembly mechanism;

Figure 9 is a flowchart of HTML container page assembly according to the
present invention;

Figure 10 is a flowchart of XML container page assembly according to the
present invention; ‘

Figure 11 illustrates how the dynamic content assembly mechanism of the
present invention instantiates an associated processor to carry out an edge-based
dynamic content assembly function; and

Figure 12 illustrates how the remote assembly and caching of a page and/ or its
fragments enables a content provider to reduce Web site infrastructure.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The dynamic content assembly mechanism of the present invention leverages

any server side scripting language or other server-based functionality. Ina preferred

embodiment, the functionality is a variant of server side include processing that is

10

15

20

25

WO 02/17082 PCT/US01/25966

6

sometimes referred to as an “edge side include” to emphasize that the processing is
carried out on an edge server. Traditionally, server side include languages use
directives that are placed inJHTML pages and that are evaluated on a server before the
page is served. They provide a way to enable the server to add dynamically-generated
content to an existing HTML page.

According to the invention, ESI is a simple markup language used to define the
business logic for how Web page components are dynamically assembled and delivered
from the edge of the Internet. More specifically, ESI provides a way for a content
provider to express the business logic of how an ICDN should be assembling the
content provider’s pages. Thus, ESI is a common language that the content provider
can use and the CDN service provider can process for content assembly, creation,
management and modification. ESI provides a mechanism for assembling dynamic
content transparently across application server solutions, content management systems
and content delivery networks. It enables a content provider to develop a Web
application once and choose at deployment time where the application should be
assembled, e.g., on a content management system, an application server, or the CDN,
thus reducing complexity, development time and deployment costs. ESI is described in

detail at http:/ /www.edge-delivery.org/spec.html. ESI provides the content

provider/ developer with the following capabilities:

e Inclusion—a central ESI feature is the ability to fetch and include files that
comprise a web page, with each file preferably subject to its own configuration
and control, namely, cacheability properties, refresh properties, and so forth.

An <esi:include> tag or similar construct may be used for this purpose. An
include statement can have a time-to-live (TTL) attribute that specifies a time-to-
live in cache for the included fragment.

¢ Environmental variables —ESI supports use of a subset of standard CGI
environment variables such as cookie information. These variables can be used
inside ESI statements or outside ESI blocks. An <esi:vars> tag or similar

construct may be used for this purpose.

10

15

20

25

30

WO 02/17082 PCT/US01/25966

7

e Conditional inclusion — ESI supports conditional processing based on Boolean
comparisons or environmental variables. An <esi:choose> tag or similar
construct may be used for this purpose.

e Exception and error handling — ESI allows specification of alternative pages and
for default behavior in the event that an origin site or document is not available.
An <esi:try> tag or similar construct may be used to specify such alternative
processing, e.g., when a request fails. Further, it provides an explicit exception-
handling statement set.

ESI provides a number of features that make it easy to build highly dynamic
Web pages: coexistence of cacheable and non-cacheable content on the same page,
separation of page assembly logic and delivery (so that complex logic required to select
the content itself is separated from the delivery of that content), the ability to perform
ESI processing recursively on components themselves, and the ability to perform logic
(e.g., certain personalization and conditional processing) on an edge server. The ESI
language recognizes the fact that many pages have dynamic and often non-cacheable
content. By breaking up Web pages into individual components, each with different
cache policies, ESI makes it easy to speed up the delivery of dynamic pages. Only those
components that are non-cacheable or need updating are requested from the origin
server. This results in a considerable speed improvement over the prior art of
centralized assembly and delivery of dynamic content.

Recursive ESI logic may be used to separate page logic from content delivery.
Any ESI fragment can, in turn, contain other fragments, etc.. In particular, a non-
cacheable dynamic fragment can contain include functionality, e.g., an <esi:includes>
tag set, to point to cacheable sub-fragments. Personalization is provided, e.g., using an
<esi:choose> tag, that allows content providers to include different content fragments
based on: user-agent and other header values, cookie values, a user’s location, a user’s
connection speed, and the like. Finally, many different variables (e.g., cookie-based
variables, query-string, accept_language, etc.) can be substituted into the text of the
page, which makes many previously non-cacheable personalized pages easily
deliverable from the edge. These variables can also be used to evaluate conditional

logic.

10

15

20

25

30

WO 02/17082 PCT/US01/25966

8

Figure 4 illustrates the representative “Handhelds” container page described
earlier having individual content fragments that are assigned individual caching
profiles and behaviors according to the present invention. In particular, each fragment
is treated as its own separate object with its own cache entry and corresponding HTTP
headers. Generalizing, a content fragment is a logical sub-piece of a larger piece of
content. As will be described below, preferably a content provider can defines rules for
how an object is served. These rules are provided in the form of object “metadata,” and
preferably there is a metadata file per content provider customer. Metadata may be
provided in many ways, e.g., via HTTP response headers, in a configuration file, or a
request itself. The rules for the object thus are derived from the metadata for that
customer.

According to the invention, a given content fragment may have its own
cacheability and other properties set by way of headers or configuration files, or in
some other manner. Thus, a given container may be cached for several days, while a
particular fragment that contains a story or advertisement may only be cached for
minutes or hours. Particular fragments may be set so they are not cached at all. The
container page may be made non-cacheable, which allows for user-specific data to come
back to the container page and then be included/acted-upon in some include(s) that are
called from the container page. According to the invention, cached templates and
fragments may be shared among multiple users. Thus, for a large number of requests,
preferably the entire page (or most of it) can be assembled using shared components
and delivered from a given server close to requesting end users.

More generally, Figure 5 illustrates a container page 500 from an e-commerce
Web site that contains:

e A personalized greeting 502 generated by a personalization engine

e A targeted advertisement 504 generated by an ad serving technology

e A navigation bar 506 and a footer 508 generated by a content management
system

e Several product recommendations 510 generated by a customer relationship

management (CRM) application.

10

15

20

25

30

WO 02/17082 PCT/US01/25966

9

As can be seen, the navigation bars, links and copyright notice (elements 506,
508) are static content, the personalized greeting 502 is unique for the customer, the
targeted ad 504 depends on the user’s location (e.g., the user’s IP address), and the user
recommendations 510 are made on the basis of complex analysis by the site’s
collaborative filtering engine. Thus, most of the content on this page is personalized
and dynamically generated. Nevertheless, the page can be successfully delivered from
an edge server using ESI. Figure 6 illustrates a representative ESI version of the page.
In this example, the representative ESI markup facilitates the coexistence of cacheable
and uncacheable content on the same page. In particular, blocks (3 and 5) are static, and
blocks (1, 2 and 4) are dynamic. The static blocks make up the template, and dynamic
blocks are included using various ESI commands. In addition, the ESI markup enables
page logic and delivery separation. In particular, consider the block (4)
recommendations. This block is uncacheable and, as a consequence, the request for this
content is tunneled back to the origin server. What is returned, however, is preferably
not the full HTML block, but rather a list of references to the recommended products, as
shown in Figure 7. In this example, it should be noted that each of the product
descriptions is cacheable, and preferably the total number of products recommended to
all the users can be easily cached on the edge. The logic to generate the
recommendations fragment preferably resides at the origin server, but the actual HTML
is cached and delivered from the edge server. Also, because requests for non-cacheable
fragments like recommendations.html preferably are tunneled to the origin server (e.g.,
over a persistent connection), they can be used to update session state information.
Therefore, user recommendations may be caused to depend on previous pages visited.

Returning back to the example in Figure 6, fragments (1) and (2) illustrate how
business logic is incorporated on a page. In fragment (1), the value of cookie
“username” is substituted into the body of the page to produce a personalized greeting.
Fragment (2) illustrates personalization and an ESI conditional for which advertisement
to include, which is dependent on the user’s geographic location. If the user is from the
USA, the us_ad.html fragment is included. If the user is from Canada, then

canada_ad.html is included. Otherwise, a generic ad is shown. The CDN can provide

10

15

20

25

30

WO 02/17082 PCT/US01/25966

10

information about user’s location available to the content providers. Of course,
us_ad.html, canada_ad.html, and generic_ad.html all can be cached on the network.

Thus, even though most of this example Web page is generated dynamically, the
majority of the fragments making up the page are cached and delivered from the edge.
The amount of data that has to be retrieved from the origin site is very small. This
results in a significant performance improvement for the end user and a reduction of
infrastructure required to deliver the site.

The dynamic content assembly mechanism of the invention is now described in
more detail. As will be seen, this mechanism generally is implemenfed as software, i.e.,
as a set of program instructions, in commodity hardware running a given operating
system. In one embodiment, the dynamic content assembly (DCA) mechanism is
implemented in an Internet content delivery network (ICDN). Typically, a
conventional CDN is implemented as a combination of a content delivery
infrastructure, a request-routing mechanism, and a distribution infrastructure. The ‘
content delivery infrastructure usually is comprised of a set of "surrogate" origin
servers that are located at strategic locations (e.g., Internet network access points, and
the like) for delivering copies of content to requesting end users. The request-routing
mechanism allocates servers in the content delivery infrastructure to requesting clients
in a way that, for web content delivery, minimizes a given client’s response time and,
for streaming media delivery, provides for the highest quality. The distribution
infrastructure consists of on-demand or push-based mechanisms that move content
from the origin server to the surrogates. A CDN service provider (CDNSP) may
organize sets of surrogate origin servers as a “region.” In this type of arrangement, an
ICDN region typically comprises a set of one or more content servers that share a
common backend, e.g., a LAN, and that are located at or near an Internet access point.
Thus, for example, a typical ICDN region may be collocated within an Internet Service
Provider (ISP) Point of Presence (PoP). A representative ICDN content server is a
Pentium-based caching appliance running an operating system (e.g., Linux, Windows
NT, Windows 2000) and having suitable RAM and disk storage for ICDN applications
and content delivery network content (e.g., HTTP content, streaming media and

applications). Such content servers are sometimes referred to herein as “edge” servers

10

15

20

25

30

WO 02/17082 PCT/US01/25966

11

as they are located at or near the so-called outer reach or “edges” of the Internet. The
ICDN typically also includes network agents that monitor the network as well as the
server loads. These network agents are typically collocated at third party data centers
and may exist reside in the CDN content servers. Map maker software receives data
generated from the network agents and periodically creates maps that dynamically
associate IP addresses (e.g., the IP addresses of client-side local name servers) with the
ICDN regions. In one type of service offering, known as Akamai FreeFlow, from
Akamai Technologies, Inc. of Cambridge, Massachusetts, requests for content that has
been tagged for delivery from the ICDN are directed to the “best” region and to an edge
server within the region that is not overloaded and that is likely to host the requested
content. Thus, the mapping of end users requests to edge servers is done via DNS that
is dynamically updated based on the maps. While an ICDN of this type is a preferred
environment, the dynamic content assembly mechanism may be incorporated into any
network, machine, server, platform or content delivery architecture or framework
(wWhether global, local, public or private).

Figure 8 illustrates a typical machine configuration for a CDN content edge
server on which the inventive DCA mechanism is implemented. Typically, the content
server 800 is a caching appliance running an operating system kefnel 802, a file system
cache 804, TCP connection manager 806, and disk storage 808. File system cache 804
and TCP connection manager 806 comprise CDN global host (sometimes referred to as
“GHost") software 808, which, among other things, is used to create and manage a
“hot” object cache 812 for popular objects being served by the CDN. In operation, the
content server 800 receives end user requests for content, determines whether the
requested object is present in the hot object cache or the disk storage, serves the
requested object via HTTP (if it is present) or establishes a connection to another edge
server or an origin server to attempt to retrieve the requested object upon a cache miss.

For purposes of illustration only, GHost software 808 includes a dynamic content
assembly base layer 814, and an application programming interface 816 that enables the
base layer to instantiate and use one or more of a set of processors 818a-n.

Generalizing, a “processor” is any mechanism that algorithmically processes a formal

language to generate output that differs from the input. Each processor is designed to

10

15

20

25

30

WO 02/17082 PCT/US01/25966

12

process a given type of content, and a given container may include “mixed” content,
namely, content fragments of varying type. An example would be an HTML page that
uses an <esi:include> tag for a fragment that needs to be first processed by XSLT, as
more particularly described below. Thus, in the pluggable architecture illustrated in
Figure 8, a given processor 818 may be a so-called “ESI” processor for parsing text (such
as HTML), an XML-based processor (e.g., Apache Xalan, Mozilla TransforMiix, IBM
WebSphere XML4]J, or the like) for parsing XML and XSL, a Java-based processor
including a Java Virtual Machine (JVM) for processing servlets, .jsp files, and other J2EE
web applications, a PHP processor for processing PHP, which is a known server-side,
cross-platform, HTML embedded scripting language, a processor for processing content
(e.g., ASP.NET pages) written to conform to Microsoft’s .NET initiative, a processor
dedicated to processing a given binary file, a processor dedicated to converting a given
file format to another file format, a processor dedicated to modifying given content in
some predetermined manner, and other processor(s) as desired to parse/process
content written to conform to other native execution environment(s) and that can
leverage an underlying server side scripting language (such as ESI) or other server side
functionality.

A particular advantage of the present invention is the ability to handle multiple
types of content using an integrated pluggable architecture having an underlying
dynamic content assembly mechanism. Multiple processors (for processing different
content types) can be instantiated to handle a specific request for a given container
page, as will be seen. In particular, preferably a given content request received at the
edge server is mapped, e.g., by content provider-specific metadata, to instantiate a
given base processor, and one or more additional processors may then be instantiated
as necessary to assemble given content fragments into the container to produce an
assembled document that is then returned to the requesting end user. Multiple
processors may also be daisy-chained together to sequentially process a request (e.g.,
ESI — XSLT — WML).

Figure 9 is a flowchart illustrating the dynamic content assembly process of the
present invention for an HTML page. Instep (1), an end user enters a URL into his or

her browser, e.g., http:/ /www.cp.com/index.html. The browser makes a DNS request

10

15

20

25

30

WO 02/17082 PCT/US01/25966
13

to resolve www.cp.com and gets sent back an IP address for a given “edge” server in
the ICDN. This process is described generally in U.S. Serial No. xx/xxx,yyy, filed April
17, 2001, titled “HTML Delivery From Edge-Of-Network Servers In A Content Delivery
Network,” by Leighton et al., which is incorporated herein by reference. The browser
requests the HTML document (e.g.,my.xyz.com) from the identified server. If the
HTML document (a “container”) is not already cached on the server, the server requests
the document from the origin server (namely, the content provider). (Or, if the
document is cached but need to be refreshed, the edge server sends an If-Modified-
Since HTTP request to the origin server or other GHost machine that is known to have
the content). The content provider origin server delivers the HTML page to the CDN
edge s.erver if necessary (not shown). At step (2), the edge server parses the HTML
page looking for tags that specify dynamic assembly instructions including, without
limitation, URLs for HTML chunks to be incorporated in the final HTML page. The
DCA tags are preferably specified according to ESL, or some other server side scripting
language, as has been described generally above.

Returning to Figure 9, if the additional HTML chunks are not already cached on
the edge server, the server requests the document(s) from the origin server. (Likewise,
if the chunks are cached but need to be refreshed, the edge server sends If-Modified-
Since HTTP request(s) to the origin server or another edge server). This is step (3). At
step (4), the origin server delivers the HTML chunk(s) to the edge server. At step (5),
the edge server assembles the final HTML page from the container page and HTML
chunks/fragments. The final HTML page is then sent to the requesting end user. The
HTML page may contain URLs or other CDN-modified resource locators to other
embedded page objects such as .gif, .jpg, or the media-rich content, which is then
requested from the CDN. The CDN delivers this content to complete the HTML page
delivery process. Even though the page is being dynamically assembled, it may be

~ useful to cache the generated result for some period of time. Thus, for example, if a

finance page is assembled from fragments that include the current values of the DJIA,
NASDAQ, etc., the page can be cached for a given time, e.g., 30 seconds or even a few
minutes. Therefore, if the page gets hit again during that time, it does not need to be

reassembled.

10

15

20

25

30

WO 02/17082 PCT/US01/25966
14

Figure 10 illustrates the dynamic content assembly process for an XML container
that requires an XSL transformation after the edge server has been selected. At step (1),
the end user request for the XML container (e.g., .../my.xyz.xml) is directed to the
optimal server for the user. The XML object associated with the request may already
be cached at the edge server. If the XML source is not cached, it is fetched from the
origin server and then cached. This is step (2). The edge server then parses through the
XML page. The XML page typically includes an XSL style sheet. At step (3), the server
checks to see if the XSL style sheet is already cached. If not, the server fetches the XSL
object from its referenced location and, if appropriate, caches it. At step (4), the server
transforms the XML per the instructions in the XSL, creating a page that the server then
delivers to the end user. An example of this page is set forth below:

<?xml version="1.0"?>
<?xml-style sheet type="text/xsl” href="identity.xsl”?>
<I-- this is a test document -->
<document>
<I-- test comment -->
<x name="x">x</x>
<y name="y">y</y>
<z name="z">z</z>
</document>.

The above example points out an important advantage of the present in
invention. In particular, XSLT allows the content provider to separate data from
presentation logic very effectively. In XSLT, the XML file is often the data that is user-
specific or uncacheable, and the XSL style sheet is the presentation logic for how to
process the data (which is XML) and generate some output. Edge-based assembly
according to the present invention allows the content provider to do the “presenting” at
the edge, while still maintaining control over the data and defining the presentation
logic that the edge server interprets.

The dynamic content assembly processes illustrated above are implemented by a
dynamic content assembly (DCA) mechanism in cooperation with GHost operative in
an edge server. Figure 11 illustrates the basic processing. When the GHost software
1100 initializes, it starts a DCA worker tﬁead 1102, which then loops, looking for work
that may be performed by the mechanism. As described above, it is assumed that

GHost receives requests for page resources, typically DCA container documents (e.g.,

10

15

20

25

30

WO 02/17082 PCT/US01/25966
15

index.html, index.xml, index.jsp, etc.) that may contain ESI-based or other server side
scripting markup. (XML and JSP pages typically may not have ESI tags in them but
still may use other “include” functionality that permits combining fragments and
containers). Although not part of the present invention, the GHost software preferably
includes the ability to process a given request according to content provider-specified
“metadata” that may be provided to GHost in the request directly, in a request header,
or via an out-of-band delivery mechanism (e.g., using the CDN). Thus, a given request
received by GHost preferably is processed against content provider (CP) metadata to
determine how the request is to be processed by GHost. As an example, given CP
metadata may simply state that any request ending with an .xml extension is processed
with the XSLT processor. More generally, metadata can be used to control the choice of
processor, irrespective on content type or filename extension.

The metadata-processed request is placed in DCA queue 1104. The DCA queue
and the DCA worker thread correspond generélly to the API 816 illustrated in Figure 8.
The DCA worker thread takes the entry off the queue and parses the client request
headers. The DCA worker thread then parses the response by splitting it into HTTP
response headers and a request body to form a data object, sometimes called a
BufferStack. Once this processing is done, the DCA worker thread instantiates the
appropriate processor 1110 based on the metadata for the specific request (which may
be a request for the container or some fragment in the container). Processor 1110
parses the body and creates a given representation, preferably a “parse tree” of the ESI
code in the document and the surrounding body, which is typically HTML.

Generalizing, processor 1110 parses the data object by scanning the data and
applying appropriate grammar rules to create a tree representation of the data. By way
of brief background, it is well known that HTML is limited because style and logic
components of an HTML document are hardcoded. XML provides a way for an author
to create a custom markup language to suit a particular kind of document. In XML,
each document is an object, and each element of the document is an object. The logical
structure of the document typically is specified in a Document Type Definition (DTD).
A DTD comprises a set of elements and their attributes, as well as a specification of the

relationship of each element to other elements. Once an element is defined, it may then

10

15

20

25

30

WO 02/17082 PCT/US01/25966
16

be associated with a style sheet, a script, HTML code or the like. Thus, with XML, an
author may define his or her own tags and attributes to identify structural elements of a
document, which may then be validated automatically. An XML document’s internal
data structure representation is a Document Object Model (DOM). The DOM makes it
possible to address a given XML page element as a programmable object. Basically, it is
basically a tree of all the nodes in an XML file. This is the tree representation described
above.

Preferably the tree representation is cloned and then cached in the ghost’s cache.
This step is not required but provides certain performance advantages, as will be
described below. Tﬂe processor then processes or “walks” the tree, moving from top to
bottom and left to right. Depending on the ESI markup, this processing evaluates
expressions, performs variable substitution, fires include(s), and the like. If there is an
include tag, the worker thread links the include to its parent (so that the include can be
resolved to its parent later), forms a request for the include, and places the requestona
GHost queue 1112. Preferably, GHost includes a worker thread 1114 that continually
scans the GHost work queue 1112 for work. The request is then picked up by GHost,
which processes it, for example, by retrieving the object from cache (disk or memory)
or, if necessary, from the origin server (or another GHost machine). Once retrieved, the
fragment is placed on the DCA queue, and the process as described above basically
starts over. In particular, the response headers are parsed, although the request
headers do not need to be parsed again because they are the same as in the parent
document. After the include is processed, the child process notifies the parent with
data and, if appropriate, an error code.

The processor then “serializes” the results generated by processing the content
directives by concatenating the results according to the tree representation. The
content directives typically are asynchronous operations and, as a consequence, the
results may be generated in an asynchronous manner. The serialization process may
concatenate results as those results become available to optimize processing. When
finally completed, the processor places the BufferStack back onto the GHost queue 1112,
from where it is retrieved by GHost worker thread 1114. GHost then returns the

requested page (viz., the container processed according to the dynamic content

10

15

20

25

30

WO 02/17082 PCT/US01/25966

17

directives) to the requesting end user to complete the page delivery process. The
processor used to process the request is then extinguished, and the DCA worker thread
moves on processing other items in the DCA queue.

As described above, preferably the tree representation is cloned and cached in
the GHost object cache. Caching the parse tree obviates the scanning and parsing
operations, which may add significant latency to the overall DCA process and that are
often unnecessary across multiple requests for the same object. When the tree
representation is cached and is appropriate for the then-current resource request, the
dynamic content assembly page directives are carried out immediately upon receipt of
the parse tree.

The following describes how the inventive dynamic content assembly
mechanism processes an HTML page having a fragment that needs to be processed by
XSLT. Figure 12 illustrates the overall architecture of a CDN having edge servers that
support dynamic content assembly of a container document having content fragments.
This example illustrates how the DCA mechanism provides a pluggable architecture for
multiple content types that use ESI directives. Assume that the sample container page
(foo.html) has the following markup and that the XML page bar.xml has an associated
stylesheet:

T e e e e T

<htmlI>

<body>

<esi:include src="bar.xml"/>
</body>

</html>

B e)

Preferably, the XSLT processor processes the XML file before being included in the
HTML container page:

The overall processing of the container is carried out as follows. First, a request
is received at CDN edge server for the foo.html container. It may be assumed that the
request was directed to that server through a CDN request routing mechanism,
although this is not a requirement. Because of customer metadata, GHost software in
the CDN edge server is directed to process the request before responding to the end

user. To this end, GHost first places the request on the DCA queue, as previously

10

15

20

25

30

WO 02/17082 PCT/US01/25966

18

described. The DCA worker thread (which was initialized on startup of GHost) takes
the entry off the DCA queue. The DCA worker thread parses the request headers (i.e.,
client request headers). It then parses the response by splitting it into HTTI> response
headers and the respective body. Once this processing is done, the worker thread,
based on metadéta, instantiates the appropriate processor to process the request. In this
example, an ESI processor is instantiated to process foo.html. The ESI processor parses
the body of the foo.html and creates a parse tree. The processor then processes the tree.
As noted above, this includes evaluating expressions, performing variable substitution
and, most importantly, firing includes. In this example, there is an XML include, which
is then instantiated as a “child” and processed as follows.

In particular, the processor links the include to its parent (foo.html) so that the
parent-child relationship can be maintained in subsequent processing. In a preferred
embodiment, this is achieved by storing the link as a state object as part of the processor
handling the request. The linking operation ensures that the include is a component of
foo.html and not its own separate request. The request manager then forms a request
for the include and places this request on the GHost queue. This request may take the
form of a URL that is sent to GHost. Thus, to GHost, this request looks like a normal
end user browser connection. As described above, the GHost software continually
reads the GHost queue for work that the DCA mechanism requests. When the GHost
worker thread sees the new request, it retrieves the object, bar.xml, either from cache
(disk or memory) or, if necessary (because the object is not there or has expired) goes
forward to the origin server (or another GHost machine) to retrieve it. Preferably,
GHost tunnels back to the origin server overa persistent TCP connection to retrieve the
object. A persistent connection obviates the normal three-way TCP handshake used to
set up a connection. The connection may also be secure. Once retrieved (either from
cache or from the origin server), GHost puts the fragment back on the DCA queue.
Upon receipt of this fragment, the process starts over for the most part. In particular,
the response headers are parsed (as there is no need to parse the request headers again
because they are the same as on the container page). The appropriate processor type is
then instantiated, e.g., based on metadata. For this include, an XSLT processor is

created, and this processor is a child of the ESI processor that was created for foo.html.

10

15

20

25

30

WO 02/17082 PCT/US01/25966

19

As noted above, the XML document requires an XSL style sheet. Thus,
preferably the XML processor parses the XML file first and creates a DOM tree. It then
fires a request for the XSL document (the XSL include will be a child of the XML
include). As before, this operation generates a request that is put on the ghost work
queue for retrieval. When a response comes back to DCA, the XSL file is parsed and a
DOM created for this file. In the final step, both DOM trees (XML and XSL) are sent
into the XSLT processing engine. The engine performs the transformation and hands
back a result. Once the child has completed processing, it notifies its parent (foo.html)
that the processing is complete. Upon receiving notification, the parent takes the
resultant data from the fragment (that was generated by the XSLT engine) and inserts it
into its respective position in the container page. In this example, the '<esi:include
src="bar.xml"/>' is thus replaced with the result of the XSL transformation.

Finally, because there are no more child processor(s) outstanding, the parent
processor (in this case, the ESI processor) serializes its output and places the final
results (the BufferStack, as processed by DCA) on the GHost work queue. As described
above, the GHost worker thread retrieves this object from the queue and returns it to
the end user browser, Where it is rendered in the usual manner. This completes the
processing.

The following describes representative processing of a servlet or .jsp object.
Familiarity with Java is presumed. The request that requires Java processing is first
mapped, e.g., by CP-metadata, to the DCA work queue. As described above, the DCA
worker thread takes the request off the DCA queue and instantiates a processor to
process the request. The processor is a JavaProcessor object. The JavaProcessor
forwards this initial user request to an embedded JVM instance that was invoked as
part of system initialization using Java Native Interface (JNI) invocation interfaces. JNI
allows Java code that runs within a Java Virtual Machine to operate with applications
and libraries written in other languages, such as C, C++, and assembly. Preferably, -
communications between the JavaProcessor objects and Java objects in the JVM go
through an ESI-Java interface that uses the JNI to access Java objects, and to map data

types. This native object reference is passed back on all calls through the ESI-Java

10

15

20

25

30

WO 02/17082 PCT/US01/25966

20

interface from Java objects to native objects to properly identify the native+ object being
called.

Continuing with the example, the request is forwarded to a Java object in the
JVM called a Connector, and it includes a pointer to the JavaProcessor native object.
The Connector Java object manages a pool of objects called Processors, each of which is
associated with a Java Thread object. Each Processor object has a request object, which
has an associated InputStream object. Upon instantiation, the InputStream object makes
a native call through the ESI-Java interface, passing the native object reference from the
JavaProcessor native object associated with the request. The implementation of this
native call uses this reference to contact the appropriate JavaProcessor object and obtain
the request data in BufferStack form. A JNImethod then converts this data to a Java
byte array data type, thus copying this data into the InputStream Java object.

As processing continues, additional data may be needed (e.g., from GHost) to
complete Java processing of the initial request. This additional data may include Java
class files, JSP source files, static HTML files, XML configuration files, or the like.

These requests are sent over the ESI-Java interface using a native method call. The
implementation of this native method makes a call to the JavaProcessor object for the
data. The JavaProcessor object creates a child JavaProcessor object and puts the request
for this additional data on the GHost work queue. When GHost puts the requested
data back on the DCA queue, a notification is sent to the Java object that requested the
data. This Java object is notified through the ESI-Java interface using the JNI to call a
notify method on that Java object, and then converting the BufferStack to a Java byte
array.

From the above examples, which are merely representative, one of ordinary skill
will appreciate that the present invention provides a highly-efficient, yet generalized
framework that permits combination of content fragments and containers of a plurality
of different types in essentially arbitrary ways. The mechanism enables content
providers to carry out dynamic content assembly, content generation and content
modification, all from the network edge.

In particular, although most of an example page is generated dynamically, the

majority of the fragments making up the page are and/or can be cached and delivered

10

15

20

25

30

WO 02/17082 PCT/US01/25966

21

from the edge server. The amount of data that has to be retrieved from the origin
server (following assembly and delivery of the page in the first instance) thus is very
small. This results in a significant performance improvement for the end user and a
reduction of infrastructure (viz., hardware, software, bandwidth, etc.) required to
deliver the content provider site. In particular, it is well-known that a typical data
center environment for a managed Web site comprises a large number of expensive
components including routers, reverse proxy caches, switches, local load balancers,
domain name service (DNS) servers, Web servers, application servers, database servers
and storage, firewalls, and access lines. Indeed, the typical architecture of a hosted E-
business infrastructure is best depicted in tiers. A content generation tier is typically
centrally maintained in an enterprise data center or a hosting facility. Its primary
function is for application coordination and communication to generate the information
that is to be presented to the end-user based on a set of business rules. It typically
includes application servers, directory and policy servers, data servers, transaction
servers, storage management systems, and other legacy systems. Between the
application tier and the content delivery infrastructure is a simple integration layer that
provides HTTP-based connectivity between the e-business applications of the content
generation tier and the content delivery tier. In the distributed architecture, this tier
consists of a single or few Web servers serving as HTTP communication gateways. The
content delivery tier includes those machines such as Web servers and routers that are
used to deliver the content to the requesting end user. As one of ordinary skill in the
art will appreciate, the dynamic content assembly mechanism of the present invention
enables a portion of the middle tier and potentially all of the content delivery tier to be
moved to the CDN. Figure 12 illustrates a data center that has been provisioned to use
the present invention. As can be seen, the content delivery tier, namely, the routers,
reverse proxy caches, switches, local load balancers, domain name service (DNS)
servers, Web servers, and the like, are omitted, as they are not necessary for this
particular content provider. Inaddition, much of the dynamic assembly that is done by
the application server occurs on the edge servers as well (at least after the page is
assembled for the first time). The cost savings to the content provider in terms of

facilities, equipment, services, bandwidth, processing, and labor are manifest.

10

15

20

25

30

WO 02/17082 PCT/US01/25966

22

The present invention enhances the reliability, performance and scalability of
sites that rely heavily on dynamically generated content and personalization. The
performance of Web applications that run in a distributed architecture increase
substantially. The content delivery system avoids performance problems introduced
by the Internet by locating and caching content near the end-users. Also, moving
dynamic content assembly to the plurality of servers (wWhich may number in the
thousands) at the edge of the network eliminates the central performance bottleneck of
the application server’s page assembly engines personalizing content for all users. The
edge network significantly reduces the load on the originating site by serving static and
dynamic content. Caching frequently requested content at the edge of the network
decreases bandwidth requirements at the origin site. In particular, the content
provider no longer needs to maintain a possibly over-provisioned site just for peak
loads. In addition, the global content delivery network allows the content provider to
extend that centralized application infrastructure into new locations by offering a
uniform platform for new devices and applications. The CDN enabled with the DCA
mechanism provides, in effect, unbounded scalability and reliability.

A CDN that includes the dynamic content assembly mechanism of the present
invention preferably leverages any convenient server side scripting language or server-
based functionality to enable the content provider to cache, distribute and assemble
individual content fragments on the edge of the Internet. Web sites with a lot of highly
dynamic content that may seem non-cacheable are really simply combinations of
cacheable céntent. By utilizing the DCA mechanism and an appropriate server-based
functionality (such as ESI), e-businesses can dynamically assemble personalized and
dynamic content on the edge of the Internet just as they do in their own data center.

Even serving truly non-cacheable content through the CDN is generally faster
and more reliable than having customers go direct from their browser to the content
provider’s origin servers. The origin server preferably maintains persistent connections
to a finite number of CDN edge servers, rather than trying to do this with huge
numbers (perhaps millions) of individual end user browsers. A persistently-
maintained connection between the origin server and the CDN speeds up requests,

make the origin server generally more reliable and less variable in performance, and it

10

15

20

25

30

WO 02/17082 PCT/US01/25966

23

offloads from the origin server a significant amount of CPU processing and memory.
Performance improvements result from keeping the connection open between the edge
and the origin server with data flowing through it, avoiding the overhead associated
with setting up a separate connection for every browser request.

The integration of ESI into content management systems and application servers
affords the content provider great flexibility in choosing the best deployment model for
an application. Web applications that use ESI can be deployed in an intranet
environment where the content is being assembled on the local application server or it
can be scaled to a global audience on an extranet or the Internet by simply using an
Internet CDN. Because both the application server and the CDN server understand the
ESI language and content management protocol, applications can be deployed in a
flexible and transparent manner, without requiring any changes to the application itself
and with the benefits of reduced complexity and infrastructure costs.

Many variants are within the scope of the invention. Thus, for example, the
CDN can use data compression to reduce the amount of traffic between the origin
server and edge server even more. If the requesting browser supports compression, the
CDN edge server will send compressed content to the user. In the event that the
browser does not support compression, the edge server will decompress the content
and send it to the browser uncompressed. CDN edge servers can also forward or
process most commonly used technologies employed for pérsonalization, such as User-
agents, cookies and geographic location.

Although the invention has been described as leveraging what has been
described as ES, this is not a requirement of the invention. Any convenient server side
scripting language or other server-based functionality may be used to fire include(s)
identified in a given container or content fragment, to evaluate conditional expressions,
to perform variable substitutions, and the like. Generalizing, the mechanism of the
present invention may be used with any generalized server-based functionality
including, without limitation, ESI, SSI, XSS, JSP, ASP, PHP, Zope, ASP.NET, Perl, and
many others. In addition, while the output content types illustrated above are HTML
and XML, this is not a limitation of the invention either. Other convenient output

formats include, without limitation, text (other than HTML and XML), .pdf, other

10

WO 02/17082 PCT/US01/25966

24

binaries, .gif files, .jpg files, and the like. Generalizing, any content that includes server-
based embedded scripting functionality (e.g., ESI tags) can be processed by the
inventive mechanism. ESI is desirable as it is a scripting language that can be
embedded in any content irrespective of mime-type, but the invention is not limited to
use with ESI. Further, as noted above, the inventive framework may be used to provide
dynamic content generation and/or modification, not just content assembly. This
includes conversion of one file format to another (e.g., HTML to WAP, .gif to .jpg),
compression, decompression, translation, transcoding, and the like.

Having thus described our invention, what we now claim is set forth below.

10

15

20

25

30

WO 02/17082 PCT/US01/25966

25

CLAIMS

1. A method, operative at a network server, for processing a request for a
container, wherein the container comprises markup identifying one or more content
fragments and the container and each content fragment may have a distinct cache
profile, comprising:

determining if the container is cached at the server or needs to be refreshed;

if the container is not cached at the server or needs to be refreshed, contacting an
origin server or another network server to obtain the container;

instantiating a given processor selected based on a content type of the container;

processing the container to identify page assembly instructions and markup for a
given content fragment;

determining if the given content fragment identified by the markup is cached at
the server or needs to be refreshed; and

if the given content fragment identified by the markup is not cached at the server
or needs to be refreshed, contacting an origin server or another network server to obtain

the given content fragment;

assembling the given content fragment into the container according to the page

assembly instructions; and

delivering the container having the given content fragment assembled therein as

a response to the request.

2. The method as described in Claim 1 the container comprises a first content

type and the given content fragment comprises a second content type.

3. The method as described in Claim 2 wherein the first content type differs

from the second content type.

4. The method as described in Claim 2 wherein the first content type is the

same as the second content type.

5. The method as described in Claim 1 wherein the processing step includes:

10

15

20

25

30

WO 02/17082 PCT/US01/25966

26

parsing the container to generate a given representation; and

processing the given representation to identify the page assembly instructions.

6. The method as described in Claim 5 wherein the given representation is a

parse tree.

7. The method as described in Claim 5 further including the step of caching
the given representation of the container to obviate the step of parsing the container

upon receipt at the server of a subsequent request for the container.

8. The method as described in Claim 1 wherein the network server is a

content server in a content delivery network (CDN).

9. The method as described in Claim 1 wherein the server communicates

with the origin server or the other network server over a persistent connection.

10. A mechanism operative on a network server for assembling content
fragments into a container, wherein the container comprises markup identifying one or
more content fragments and the container and each content fragment may have a
distinct cacheability and access profile, comprising:

a set of one or more processors, wherein a given processor is associated with a
given content type; P

an application programming interface (API) responsive to a request for the
container or a given content fragment for (a) parsing markup and generating a
representation of the markup, and (b) for instantiating a given processor to process the
request depending on the given content type in the markup;

wherein the given processor serializes given data generated during the

processing of the request according to the representation to generate a response.

11. The mechanism as described in Claim 10 wherein the processor is an

HTML processor.

10

15

20

25

30

WO 02/17082 PCT/US01/25966

27

12. The mechanism as described in Claim 10 wherein the processor is an

XSLT processor.

13. The mechanism as described in Claim 10 wherein the processor is a Java

processor.

14. The mechanism as described in Claim 10 wherein the processor is a PHP

processor.

15. The mechanism as described in Claim 10 wherein the network server is a
content delivery network (CDN) surrogate origin server having an object cache.
16. The mechanism as described in Claim 10 wherein one or more processors

are instantiated by the application programming interface to process a given request.

17. The mechanism as described in Claim 16 wherein a first processor is a text
processor that processes the container and a second processor is an XSL.T processor that

processes an XML content fragment.

18. The mechanism as described in Claim 10 wherein a first processor is
instantiated by the application programming interface as a parent processor and,
thereafter, a second processor is instantiated by the application programming interface

as a child processor.

19. The mechanism as described in Claim 10 wherein the given representation
is a parse tree.

20. Anapparatus operating as a surrogate origin server in a content delivery
network for receiving end user requests for a container, wherein the container
comprises markup identifying one or more content fragments, comprising:

a cache;

10

WO 02/17082 PCT/US01/25966

28

a set of one or more processors, wherein a given processor is associated with a
given content type; and

code responsive to a request for a container (a) for instantiating a base processor
according to content provider-specific metadata, and (b) for instantiating one or more
additional processors as needed by the base processor to thereby assemble given
content fragments into the container to produce an assembled document;

wherein the container and each content fragment may each have a distinct

cacheability and/ or refresh profile.

WO 02/17082

Bit

ff’ataba&e A
o, b

1. User requests page

3. Page is sent to user's browser

1. Userrequests page
and s dirested fo
closest Akamai server

4. Subsequant requests
for page will be delivered
frot the sdge antil TTL
has expied,

1/6

B Jm—

Figure 1

Produsts.asp?eategory=gadgets&type=handhelds

Internet

7

Gadgets

Handhelds Fraduct Dascriplion

o WIETEE s ityoute looking fortho alsekostdaiice s the)
3% fagtherthan e Patm Mdtifompanzor

phramICIAERS The minGTALKFRS 112-2is the peree) 2way
4335 Ahsenbae | zaduforthe guifacry
g %59&&

‘fl’hk RS
oH

‘thewendt Hghtost, fufbfanetion FDAwim
Quickisuchstreen navigation,

ob:

E b3
1M Slaciberry ©
E@;’ wiess g

&

Figure 2

PCT/US01/25966

Client
Browsers

2. Page Is assembled by AppServer

Application
Server

tnages

¥ Product

. Database
o

A Engine

s

* E-Commerce

; Engine

Products ssp?eategory=gadgats Mypechandhelds -

2. Page is wssembled by
AppServer, based on fivstuser
retjuest
Gadgets
Handheld Product Web Application
?Z",",\gf',’{f L. tauriel “ Server Server

Krgiorins twdes o2
nofuriherthan e Prm(itannier

‘ga sifede!
4

SR B A

vf}_s tadin fot e sutéoen
G

RiMBlackbany” oy, P
o I ot ecs o TR @ serakd's Sohisl, AllAingion FRwilf
] R ks sreennadigalon

3. Page is sent fo edge server(s)and stored
based on TTL as detined in the Mefadate
sonfiguration

Figure 3

Tib t0lproTALK FRE 113-7 is Rk parfes) 2wi

WO 02/17082 PCT/US01/25966
2/6

Produsts.asp?eategory=gadgetsStype=handhelds

-

Gadgets

Handhelds Frotluct Deseriglion
W/EREE

; ‘??a'}“am 1 Radog
q
The AOTALIFRS 1404 13 lie perfect 2 way }

T b iensit \ Content Fragments with individual caching
OPLTHISRY o eme anenrs / prafiles and behaviowrs
(Rt Blackben. [She e ost fullfuncion FOARIN

feadtelooksplorine slaskestdous ea el
13 ferbes thain the Pals Y IRIoanger

: guickiauch-seeon havigation,
#

Figure 4

(1) Greeting “Hello, (2) Targeted Ad 504
John Smith” 502
3) (4) Recommendations for John Smith: 510
Naviga-
tion Bar
506 Product A

Product B

Product C

Product D
(5) Other links, copyright notice, etc. 508

Figure 5

WO 02/17082

3/6

PCT/US01/25966

<htm[>

<body>

<!—personalized greeting (1) -->
Hello $(HTTP_COOKIE {“username”}

<!—targeted ad (2) >

<esi:choose>

<esi:when test="$(GEO{country _code}) == ‘US’ >
<esi:include src=us_ad.html/>

</esi:when>

- <esi:when test="$(GEO{country_code}) == ‘Canada’ >

<esizinclude src=canada_ad.html/>
</esi:when>
<esi:otherwise>

<esi:include src=generic_ad.html/>
</esi:otherwise>
</esi:choose>

<!— Static navigation bar (3) -->

<!— Personalized recommendations (4) -->
<esi:include sre=recommendations.html/>

<!—Static links, copyright, etc (5) -->

Copyright 2001, etc.

</body>

</html>

Figure 6

Figure 7

<esi:include src="products/A.html” />
<esi:include src="products/B.html” />
<esi:include src="products/C.html” />
<esi:include src="products/D.html” />

WO 02/17082 PCT/US01/25966

4/6

CDN Edge Server Disk Storage 808
Hardware, I/O, etc...
TCP File System Cache 804
Connec-
tion
Manager Hot Obiect Cache 812
806

DCA Base Laver 814

API 816

Processor(s) 8§18a-n
Operating System Kernel 802

Figure 8

1. User request for myayz.comis 2. EdgeSuite parses the template, whidh
diracted 1o optimal Akamai server, may be cached alieady, looking for tags
and instructions o assemble the page 3. 1f necessary, EdgeSutte calls ayzcom over
and send individulized content touser, persislent TCP connection fo ablain new or
uncached HTML fragments,

“,gw“xﬂmuwu“ e
*

5. EgeSuite ussembles end [4. xyzcom responds by sending objects to EdgeSuite
delivers page. Fach HTAL object has 1t won togs, response headers
or configuration dufa,

Figure 9

WO 02/17082 PCT/US01/25966
5/6

1. User request for my.syzxml is 2. The requested XHLfile moy dlready be cothed. If
directed 1o optimal Akamoi server, = yot, EdyeSulte requests It from the orlgin.

The request coukd come from
another service, such as ESI. o

‘”“nuuu Wakray, -
*

%”'““n RV b
3. EdgeSuite parses the XAAL and finds the reference fo

the YSL stylesheet—which itself may already be cached.
IF 's not cached, ElgsSuite fetches it.

“”““I: aunu",““
*

*"““nl POPRPRPPETT L

4. EdyeSuite transforms the XKL per the XSLinstrucions, weating the result
and delivering it fo the end user of to anather service such as ESL

Figure 10
DCA
» Q,.I:,Im Worker _ Processor
Software 1100 | ——» Thread BufferStack 1110
1102

DCA Queue

GHost .

SZAEREL 1104

Worker —

Thread - GHost Queue
1114 1112

Figure 11

WO 02/17082 PCT/US01/25966

6/6
Data Center Internet
//
4
yd Client
3n, Local Assembly e Browser
and Caching of Paye /

" 4a. User requests
Web Cache <Freon - prasessed on the edge
7 of the data center
/ 3b,Remote Assembly
and Caching of Page
Client
Browser

i
J
T i
Legs AR S S {
0 . 3 P 1
1. [of Temy uf et N i 4b. User requests
2. Creation of Fragment F W 1 processed on the
<Fragrentr—fmm—p 7 ‘] EdgeSuite edge of the Intemet
1

Figure 12

INTERNATIONAL SEARCH REPORT International application No.

PCT/US01/25966
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) ¢ GO6F 12/00, 15/00, 15/16
USCL : T11/122, 118; 707/513; 709/03

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 711/122, 118; 707/513; 709/03

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X.P US 6,249,844 Bl (SCHLOSS et al) 19 June 2001, Abstract; Figs 2-5; col..2, line 8 - 1-9
-—- col.3, line 31; col.6, line 57 - col.7, line 23; col.11, lines 19 - 23. P—
Y,P . 10-20
Y US 6,026,413 A (CHALLENGER et al.) 15 Feb. 2000, Abstract; Figs.1C, 12a, 12b; 10-20

col. 10, lines 5-35; col. 14, line 65 - col. 16, line 37.

D Further documents are listedh the continnation of Box C. D See patent family annex.

* Special categories of cited dofifrents: [later dc t published after the i ional filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the general state o2 art which is not considered to be principle or theory underlying the invention
of particular relevance
X" document of particular relevance; the claimed invention cannot be
“B» earlier application or patent publishédfi or after the intemnational filing date coasidered novel or cannot be coasidered to involve an inventive step
when the document is taken alone
“L” document which may throw doubts capjority claim(s) or which is cited to
establish the publication date of anothiE#sitation or other special reason (as “yn document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such dc ts, such combination
«0» document referring to an oral disclostws, use, exhibition or other means being obvious to a person skilled in the art
“p» document published prior to the intemational filing date but later than the “&" document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report

04 November 2001 (04.11.2001) a0 NNV 201

Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks
Box PCT Meng-Ai An 6%‘—\ HW ‘

Washington, D.C. 20231
Facsimile No. (703)305-3230 Telephone No. (703)305-3900

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

