MODEL HELICOPTER ROTOR PITCH CONTROL MECHANISM

Inventors: Makoto Kunii, Kanagawa (JP); Yuji Kamiya, Kanagawa (JP)

Correspondence Address:
NIKON & VANDERHYE, PC
1100 N GLEBE ROAD
8TH FLOOR
ARLINGTON, VA 22201-4714 (US)

Appl. No.: 10/393,370
Filed: Mar. 21, 2003

Publication Classification

Int. Cl. \(\text{F01D} \) 7/00
U.S. Cl. \(416/114 \)

ABSTRACT

A model helicopter rotor pitch control mechanism is provided. The mechanism comprises a seesaw; a stabilizer bar attached to said seesaw; a mixing lever pivotally supported by said stabilizer bar, said mixing lever having a first end and a second end; an upper swash lever to which said first end is connected by way of a rod and a main rotor grip to which said second end is connected by way of said rod.
MODEL HELICOPTER ROTOR PITCH CONTROL MECHANISM

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates to a helicopter model rotor pitch control mechanism, in which the Bell-Hiller control system comprises a stabilizer to improve a flying stability at the time of making a circular flight in fore/aft and left/right directions and a main rotor for providing a helicopter with ascent/descent and thrust and more particularly to a helicopter model rotor pitch control mechanism for controlling pitch angles of the two rotors.

[0003] 2. Description of Related Art

[0004] Hereinafter, the rotor pitch control mechanism in the helicopter model having the conventional Bell-Hiller control system will be explained with reference to FIG. 3.

[0005] The numeral denotes an upper swash plate assembly, which shows a similar action to a lower swash plate in the swash plate when making up/down, left/right and forward/backward movements by means of the aileron servo and the elevator servo and the pitch servo (all not shown).

[0006] Said upper swash plate 1 is inserted into a mast 2, into which a rectangular slide block 3 is inserted vertically movably such that a pair of washout arms 4 are pivotally supported at opposite sides thereof said rectangular slide block 3. Each washout arm 4 has a first end at which a wash arm link 5 is pivoted to a first end thereof and a second end at which a rod 6 is pivotally supported.

[0007] The numeral 7 denotes a center hub secured to the upper end portion of said mast 2 and, further, a yoke 8 is secured at the upper end portion of said center hub 7. Said yoke 8 is rotatably provided with a main rotor grip 9 to which main rotors are to be attached. The numeral 10 denotes a see-saw pivotally supported to surround said center hub 7 having opposite sides at which mixing levers 11 are pivotally supported substantially centrally.

[0008] Said mixing lever 11 has a first end and a second end. Further, there is provided a rod 12 pivoted to the first end of said mixing lever 11. On the other hand, there is provided an arm 13 having a first end and a second end. Said first end of the arm 13 is connected to the main rotor grip 9 while said second end of the arm 13 is pivoted to the second end of said mixing lever 11.

[0009] In a plane in which said see-saw 10 perpendicularly crosses said mixing lever 11, a stabilizer bar 14 having opposite ends attached to respective stabilizer plates 15 and 16 and extending through a frame shaped Hiller control lever 16 and the center hub 7 is secured to said Hiller control lever 16 in such a manner not to rotate. Therefore, the stabilizer bar 14 is allowed to rotate in response to the swing action of the Hiller control lever 16.

[0010] Said frame shaped Hiller control lever 16 is arranged to surround the see-saw 10. As mentioned above, said stabilizer bar 14 is secured to said frame shaped Hiller control lever 16. Said frame shaped Hiller control lever 16 has shaft portions parallel to said stabilize bar 14. Said rod 6 has a first end and a second end, said first end being pivot to said mixing bar 11 while said second end of the rod 6 is pivot to said parallel shaft portion of the stabilizer 14.

[0011] With the thus constructed conventional rotor pitch control mechanism, the mixing lever 11 is pivot by way of the rod 12 in response to vertical movements of the upper swash plate 1 driven by the pitch servo. The pivotal movement causes the main rotor grip 9 by way of the rod 13 to rotate such that the pitch angle of the main rotor is varied to cause the helicopter to ascend and descend.

[0012] It is to be noted that because the slide lock 3 is connected to the upper swash plate 1 by way of the washout link 5, the slide lock 3 also ascend and descend in response to the vertical movements of the upper swash plate 1 without influencing the change in the main rotor pitch angle.

[0013] Next, when the upper swash plate 1 is swung left/right and fore/aft directions by driving the aileron or elevator servo, the washout arm 4 is swung in response to the rotation of the upper swash plate 1, thus causing the Hiller control lever 16 to be swung about the stabilizer bar 14 by way of the rod 6.

[0014] With the swing action of said Hiller control lever 16, the pitch angle of the stabilizer blade 15 attached to the stabilizer bar 14 secured to said Hiller control lever 16 varies in response to the rotation of the upper swash plate 1 such that the see-saw 10 pivot to the center hub 7 is caused to be swing in accordance with the change in the lift balance of the stabilizer blade 15 to cause the mixing lever 11 pivot to the see-saw 10 to swing about the second end of the rod 12 pivot to the upper swash plate 1. Then, the rod 13 pivot to the second end of the mixing lever 11 conveys the change in the lift balance to the main rotor grip 9 such that the pitch angle of the main rotor 18 varies with the result that the helicopter makes a circular flight in left/right directions when the aileron servo is driven and the helicopter makes a fore/aft flight when the elevator servo is driven.

[0015] In this way, the above-mentioned conventional model helicopter rotor pitch control mechanism is constructed in such a way that the stabilizer 14, stabilizer blade 15, the see-saw 10, the mixing lever 11 and the main rotor 18 of the pitch angle of the main rotor grip 9 is changed by way of the Hiller control lever. Therefore, said prior art mechanism has a problem that the structure becomes too complex, requires too many man hours for assembly work, involves too many parts, and becomes too costly. In addition, the area of the see-saw becomes too large, making the entire structure heavy-duty.

SUMMARY OF THE INVENTION

[0016] The invention is made to solve the above mentioned problems and its object is to provide a model helicopter rotor pitch control mechanism capable of making a substantial cost reduction while downsizing models as well as improving the mixing lever ration freedom which determines the helicopter flight characteristics due to the advantageous sea-saw fixing position to meet extensive user needs.
[0017] The object of the model helicopter rotor pitch control mechanism of the present invention is to realize the above mentioned object and its means comprises a seesaw; a stabilizer bar attached to said seesaw; a mixing lever pivotally supported by said stabilizer bar, said mixing lever having a first end and a second end; an upper swash lever to which said first end is connected by way of a rod and a main rotor grip to which said second end is connected by way of said rod.

[0018] Further, said means comprises an upper swash plate; a washout arm link having a first end and a second end, said first end pivoted in facing relation to said upper swash plate, said upper swash plate perpendicularly crossing said washout arm link at a predetermined position; a washout arm having a first end and a second end, said first end being pivoted to said second end of the washout arm link; a mast; a slide block having an intermediate portion vertically movable relative to said mast, said washout arm being pivoted to said slide block; a center hub; a sea-saw swingably provided in said center hub; a stabilizer bar having opposite ends; a stabilizer blade attached to said opposite ends of the stabilizer blade; a Hiller control lever having a first end and a second end, said first end being connected to said stabilizer bar and said second end being connected to said washout arm link by way of the rod; a mixing lever having a first end, an intermediate end and a second end, said first end being swingably connected to said predetermined position, said intermediate position being rotatably pivoted to said stabilizer bar; and a main rotor grip attached to the said end of said mixing lever by way of the rod swingably relative to said yoke.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 is an exploded perspective view of the model helicopter rotor pitch control mechanism of the present invention;

[0020] FIG. 2 is a perspective view of said control mechanism being assembled; and

[0021] FIG. 3 is an exploded perspective view of the conventional rotor pitch control mechanism.

DESCRIPTION OF PREFERRED EMBODIMENTS

[0022] Hereinafter, the structure of the model helicopter rotor pitch control mechanism of the present invention will be explained with reference to FIG. 1 and FIG. 2. It is to be noted in this connection that the similar numerals used in FIG. 3 will be omitted.

[0023] First of all, the similar structure to those in FIG. 3 is that one end of the washout arm 4 is pivoted to opposite sides of the upper swash plate 1 by way of the washout arm link 5, said washout arm 4 having an intermediate portion pivoted to the slide block 3, a first end of the rod 6 being pivoted to a second end of said washout arm 4, said the other end of the rod 6 being pivoted to one end of L-shaped Hiller control lever 17.

[0024] Further, the stabilizer bar 14 has an intermediate portion pivoted to the mixing lever 11. Said mixing lever 11 has a first end connected to the main rotor grip 9 by way of the rod 13 to attach the main rotor 18 thereto. On the other hand, said mixing lever also has a second end pivoted to the tip end of the rod 12 having a first end pivoted to the position where the upper swash plate 1 perpendicularly crosses said washout arm link 5.

[0025] With the thus constructed rotor pitch control mechanism of the present invention, the mixing lever 11 is swung by way of the rod 12 when the pitch servo is driven to cause the upper swash plate 1 to be vertically moved. Said swing action further causes the main rotor grip 9 to swing about the yoke 8 by way of the rod 13 such that the pitch angle of the main rotor 18 is varied to cause the helicopter ascend and descend.

[0026] Next, the washout arm 4 is swung in response to the rotation of the upper swash plate 1 by way of the washout arm link 5 when the aileron or elevator servo is driven to cause the upper swash plate 1 to swing left/right or fore/aft directions. Then, the Hiller control lever 17 is swung by way of the rod 6.

[0027] As a result, the stabilizer bar 14 rotatably pivoted to the see-saw 10 is swung such that the pitch angle of the stabilizer blade 15 varies in response to the revolution of the swash plate 1, thus creating a change in the lift balance to cause the see-saw 10 pivoted to the center hub 7 to rotate such that the mixing lever 11 pivoted to said see-saw is caused to swing about the second end of the rod 12 pivoted to the upper swash plate 11. Therefore, the rod 13 pivoted to the second end of the mixing lever 11 conveys the change in the lift balance to the main rotor grip 9 to change the pitch angle of the main rotor 18.

[0028] Consequently, the helicopter make a circular flight in the left/right directions when the aileron servo is driven while the helicopter makes fore/aft flights when the elevator servo is driven.

[0029] As described in the foregoing, the present invention is characterized in that the first end of the mixing lever pivoted to the stabilizer attached to the see-saw is connected to the upper swash plate while the second end thereof is connected to the main rotor grip by way of the rod such that the change in the lift balance is, when generated, conveyed to the main rotor grip to change the pitch angle of the main rotor, thus improving the flight stability of the helicopter.

[0030] Further, the mixing lever is pivoted to the stabilizer bar without being attached to the see-saw as in the prior art, easily downsizing the see-saw as well as simplifying the production process by virtue of simple structure, reducing the number of parts, and cutting costs.

What is claimed is:

1. A model helicopter rotor pitch control mechanism comprising a seesaw; a stabilizer bar attached to said seesaw; a mixing lever pivoted to said stabilizer bar, said mixing lever having a first end and a second end; an upper swash lever to which said first end is connected by way of a rod and a main rotor grip to which said second end is connected by way of said rod.

2. A model helicopter rotor pitch control mechanism comprising an upper swash plate;

 a washout arm link having a first end and a second end, said first end pivoted in facing relation to said upper swash plate, said upper swash plate perpendicularly crossing said washout arm link at a predetermined position;
a washout arm having a first end and a second end, said first end being pivoted to said second end of the washout arm link;

a mast;

a slide block having an intermediate portion vertically movable relative to said mast, said washout arm being pivoted to said slide block;

a center hub;

a sea-saw swingably provided in said center hub;

a stabilizer bar having opposite ends;

a stabilizer blade attached to said opposite ends of the stabilizer blade;

a Hiller control lever having a first end and a second end, said first end being connected to said stabilizer bar and said second end being connected to said washout arm by way of the rod;

a mixing lever having a first end, an intermediate end and a second end, said first end being swingably connected to said predetermined position, said intermediate position being rotatably pivoted to said stabilizer bar; and

a main rotor grip attached to the second end of said mixing lever by way of the rod swingably relative to said yoke.

* * * * *