发明名称
下行解调导频控制信令的通知及接收方法、基站及终端

摘要
本发明公开了一种下行解调导频控制信令的通知及接收方法、基站及终端，来更好地利用导频来实现正交和干扰随机化效果。该通知方法包括基站侧通过以下信息中的至少一种来通知UE：基站侧生成下行导频序列和/或对生成的下行导频序列进行映射时所采用的虚拟信令组索引和/或端口偏移信令组索引；UE专用或者公用的高层信令、DL_Grant 中无效 TB 信令中的新数据指示信息、DL_Grant 中的扰码指示信息；UE 专用或者公用搜索空间中 DL_Grant 的聚合等级以及 UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号等等。本发明更好地利用导频来实现正交和干扰随机化效果，从而提高信道估计的准确性和提高系统的容量。
1. 一种下行解调导频控制信令的通知方法，包括：基站侧通过以下信息中的至少一种，来通知终端（UE）侧基站侧生成下行导频序列和 / 对生成的下行导频序列进行映射时，所采用的虚拟信令组索引和 / 或端口偏移信令组索引：
 UE 专用或者共用的高层信令；
 下行授权控制信息（DL_Grant）的天线指示信息；
 DL_Grant 中无效传输块（TB）信令中的新数据指示信息；
 DL_Grant 中的扰码指示信息；
 UE 专用或者共用搜索空间中 DL_Grant 的聚合等级；
 UE 专用或者共用搜索空间中的 DL_Grant 的第一个控制信道单元在 UE 专用或者共用搜索空间中的相对位置；
 UE 专用或者共用搜索空间中的 DL_Grant 所在的子帧号；以及
 UE 专用或者共用搜索空间中的 DL_Grant 所在的系统帧号。
2. 根据权利要求 1 所述的方法，其中，所述 DL_Grant 的格式包括：
 下行控制消息格 (DCI format1)、DCI format1a、DCI format1b、DCI format2c、DCI format2d、DCI format2e、DCI format2f、DCI format2g 以及 R10 以后版本中的至少一种。
3. 根据权利要求 1 所述的方法，其中，所述 DL_Grant 中的天线指示信息，包括：
 采用下行控制消息格式 (DCI format2b)、DCI format2c 以及 R10 以后版本中的至少一种的 DL_Grant 中的天线端口指示相关信息。
4. 根据权利要求 1 所述的方法，其中，所述 DL_Grant 中无效 TB 信令中的新数据指示信息，包括：
 下行控制消息格式 (DCI format2b)、DCI format2c 以及 R10 以后版本中的至少一种的 DL_Grant 中的新数据指示 (NDI 相关信息。)
5. 根据权利要求 1 所述的方法，其中，所述 DL_Grant 的专有搜索空间和 / 或聚合级别，包括：
 下行控制消息格式 (DCI format1)、DCI format1a、DCI format1b、DCI format2c、DCI format2d、DCI format2e、DCI format2f、DCI format2g 以及 R10 以后版本中的至少一种的 DL_Grant 搜索空间和聚合级别中的至少一种。
6. 根据权利要求 1 所述的方法，其中，所述 UE 专用或者共用搜索空间中的 DL_Grant 所在子帧，包括：
 下行控制消息格式 (DCI format1)、DCI format1a、DCI format1b、DCI format2c、DCI format2d、DCI format2e、DCI format2f、DCI format2g 以及 R10 以后版本中的至少一种的 DL_Grant 所在子帧的至少一种。
7. 根据权利要求 1 所述的方法，其中：
 所述虚拟信令组中虚拟信令参数集合包括一个或者多个虚拟标识 (ID) 和 / 或虚拟扰码指示信息。
8. 根据权利要求 1 所述的方法，其中：
 所述端口偏移信令组包括多个端口偏移信令；
 其中，基站侧先通过高层信令通知终端侧处于某种模式下，这种模式下需要采用高层
或者物理层端口偏移信令来指示相对于偏移端口7或者偏移端口8或者偏移端口9或者偏移端口10的偏移端口数目。

9. 根据权利要求1所述的方法，其中：
所述端口偏移信令组包括多个端口偏移信令；
其中，基站侧先通过物理层信令通知终端侧处于某种模式下，这种模式下需要采用高层或者物理层端口偏移信令来指示相对于偏移端口7或者偏移端口8或者偏移端口9或者偏移端口10的偏移端口数目。

10. 根据权利要求1所述的方法，其中：
所述端口偏移信令组包括多个端口偏移信令；
其中，基站侧先通过下述信息中的至少一种来通知终端侧处于某种模式下，且这种模式下需要采用端口偏移信令来指示相对于偏移端口7或者偏移端口8或者偏移端口9或者偏移端口10的偏移端口数目，这些信息包括：
 DL_Grant 的天线指示信息；
 DL_Grant 中无效 TB 信令中的新数据指示信息；
 DL_Grant 中的扰码指示信息；
 UE 专用或者公用搜索空间中 DL_Grant 的聚合等级；
 UE 专用或者公用搜索空间中的 DL_Grant 的第一个控制信道单元在 UE 专用或者公用搜索空间中的相对位置；
 UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号；
 UE 专用或者公用搜索空间中的 DL_Grant 所在的系统帧号；以及
 UE 专用高层信令。

11. 根据权利要求8至10中任一项权利要求所述的方法，其中，采用端口偏移信令来指示相对于偏移端口7或者偏移端口8或者偏移端口9或者偏移端口10的偏移端口数目的方式包括：
采用高层信令，或者采用物理层信令，或者采用下述信息中的至少一种：
 DL_Grant 的天线指示信息；
 DL_Grant 中无效 TB 信令中的新数据指示信息；
 DL_Grant 中的扰码指示信息；
 UE 专用或者公用搜索空间中 DL_Grant 的聚合等级；
 UE 专用或者公用搜索空间中的 DL_Grant 的第一个控制信道单元在 UE 专用或者公用搜索空间中的相对位置；
 UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号；以及
 UE 专用或者公用搜索空间中的 DL_Grant 所在的系统帧号。

12. 根据权利要求11所述的方法，其中，指示相对于偏移端口7或者偏移端口8或者偏移端口9或者偏移端口10的偏移端口数目，包括 {0, 2, 4, 5, 6, 7} 中至少一种值。

13. 一种下行解调导频控制信令的接收方法，包括：
接收基站侧根据权利要求1至12中任一项权利要求所述的方法的通知，对 UE 专用或者公用的高层信令、下行授权控制信息（DL_Grant）的天线指示信息、DL_Grant 中无效传输块 (TB) 信令中的新数据指示信息、DL_Grant 中的扰码指示信息、UE 专用或者公用搜索空间
中 DL_Grant 的聚合等级、UE 专用或者公用搜索空间中的 DL_Grant 的第一个控制信道单元在 UE 专用或者公用搜索空间中的相对位置、UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号以及 UE 专用或者公用搜索空间中的 DL_Grant 所在的系统帧号这些信息中的至少一种进行盲检，获得下行授权控制信息 (DL_Grant) 中的指示信息；

根据盲检所获得的 DL_Grant 中的指示信息来获得基站侧生成下行导频序列和 / 或对生成的下行导频序列进行映射时，所采用的虚拟信令组索引和 / 或端口偏移信令组索引。

14. 一种基站，包括生成及映射模块、通知模块，其中；

该生成及映射模块，用于生成下行导频序列和 / 或对生成的下行导频序列进行映射；

该通知模块，用于根据权利要求 1 至 12 中任一项权利要求所述的方法，来通知终端 (UE) 侧基站侧生成下行导频序列和 / 或对生成的下行导频序列进行映射时，所采用的虚拟信令组索引和 / 或端口偏移信令组索引；

UE 专用或者公用的高层信令；

下行授权控制信息 (DL_Grant) 的天线指示信息；

DL_Grant 中无效传输块 (TB) 信令中的新数据指示信息；

DL_Grant 中的扰码指示信息；

UE 专用或者公用搜索空间中 DL_Grant 的聚合等级；

UE 专用或者公用搜索空间中的 DL_Grant 的第一个控制信道单元在 UE 专用或者公用搜索空间中的相对位置；

UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号；以及

UE 专用或者公用搜索空间中的 DL_Grant 所在的系统帧号。

15. 一种终端，包括检测模块及选择模块，其中；

该检测模块，用于接收基站侧根据权利要求 1 至 12 中任一项权利要求所述的方法的通知，对 UE 专用或者公用的高层信令、下行授权控制信息 (DL_Grant) 的天线指示信息、DL_Grant 中无效传输块 (TB) 信令中的新数据指示信息、DL_Grant 中的扰码指示信息、UE 专用或者公用搜索空间中 DL_Grant 的聚合等级、UE 专用或者公用搜索空间中的 DL_Grant 的第一个控制信道单元在 UE 专用或者公用搜索空间中的相对位置、UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号以及 UE 专用或者公用搜索空间中的 DL_Grant 所在的系统帧号这些信息中的至少一种进行盲检，获得下行授权控制信息 (DL_Grant) 中的指示信息；

该选择模块，用于根据检测模块获得的 DL_Grant 中的指示信息来获得基站侧生成下行导频序列和 / 或对生成的下行导频序列进行映射时，所采用的虚拟信令组索引和 / 或端口偏移信令组索引。
下行解调导频控制信令的通知及接收方法、基站及终端

技术领域
[0001] 本发明涉及通信领域，尤其涉及一种下行解调导频控制信令的通知及接收方法，以及一种基站和终端。

背景技术
[0002] 长期演进 (Long Term Evolution, 简称 LTE) 系统的 R10 版本在 R8 和 R9 这两个版本的基础上又增加了许多新的特性，例如 DMRS(Demodulation Reference Signal，解调参考信号)，CSI-RS(Channel State Information Reference Signal，信道状态信息参考信号) 等导频特性，8 天线支持等传输和反馈特性等等，特别是 eICIC(enhanced Inter-Cell Interference Cancellation，小区间干扰抵消增强) 技术在考虑了 R8/9ICIC 的基础之上，进一步考虑小区之间的干扰避免技术。
[0003] 对于解决小区之间干扰问题的技术在 R10 阶段初期主要考虑同构网下的小区干扰避免，其中主流的考虑 eICIC 技术和 CoMP(Coordinated Multi-point, 多点协作) 技术。CoMP 顾名思义就是多个节点协作给一个或者多个终端 (UE) 在相同的时频资源或者不同的时频资源来发送数据。这样技术可以减少小区之间的干扰，提高小区边界的吞吐率，扩大小区覆盖。但是由于在讨论后期考虑了异构网面引入了更多的场景，CoMP 技术的复杂性和 R10 讨论的时间限制，最终决定在 R10 阶段不引入额外的 CoMP 标准化内容，但是在设计 CSI-RS 可以考虑 CoMP 部分的需求来设计，所以 CoMP 技术在 60bis 会议后就没有进行更深一步的讨论。
[0004] LTE 定义了 PDCCH(Physical downlink control channel, 物理下行控制信道) 承载调度分配和其它控制信令，每个 PDCCH 由若干个 CCE(Control Channel Element, 控制信道单元) 组成，每个子帧的 CCE 数目由 PDCCH 的数量和下行带宽决定。
[0005] UE 通过在搜索空间中盲检测得到 PDCCH。搜索空间分为公共搜索空间和 UE 专用搜索空间：公共搜索空间是指所有的 UE 都会搜索到的区域，此空间携带的信息为小区选信信息；专用搜索空间是单个 UE 会搜索到的空间范围，多个 UE 的专用搜索空间有可能重叠，只是一般初始搜索位置不一样。盲检之前，由高层信令通知 UE 工作模式和用于 PDCCH 的循环冗余校验 (Cyclic Redundancy Check, CRC) 加扰的无线网络临时标识 (Radio Network Temporary Identity, RNTI) 类型。
[0006] 搜索空间 S_i^{UL} 与聚合级别 L 及候选 PDCCH 数量 $M(L)$ 间的关系见表 1。聚合等级即 PDCCH 占用的 CCE 个数。在用户专用搜索空间进行盲检测时，终端首先根据用户标识 (UE ID) 和子帧号等计算出盲检初始位置 Y_i，然后在搜索空间中进行检测，直到检测到分给自己 PDCCH 为止。
[0007] 表 2 PDCCH 候选集
说明 书 2/19 页

<table>
<thead>
<tr>
<th>类型</th>
<th>搜索空间 $S_k^{(L)}$</th>
<th>候选 PDCCH 数量 $M_k^{(L)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>用户专用（UE-specific）</td>
<td>聚合级别 L</td>
<td>大小[CCE 个数]</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>公共</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>2</td>
</tr>
</tbody>
</table>

[0009] 聚合级别和 PDCCH 第一个控制信道单元在用户专用搜索空间中的相对位置的对应关系见表 2。

[0010] PDCCH 第一个控制信道单元在用户专用搜索空间中的相对位置, 指 PDCCH 占用的第一个 CCE 索引 nCCE 与盲检初始位置 Y_b 的相对位置, 本文中用 nCCE, offset 表示, nCCE, offset $= nCCE - Y_b$, nCCE, offset 的取值范围为 0 $~$ 6, 8, 10。

[0011] 表 2 聚合级别和第一个 CCE 位置的对应关系

<table>
<thead>
<tr>
<th>聚合级别</th>
<th>第一个 CCE 在用户专用搜索空间中的相对位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>L = 1</td>
<td>nCCE, offset = 0/2/4/1/3/5</td>
</tr>
<tr>
<td>L = 2</td>
<td>nCCE, offset = 0/4/8/10</td>
</tr>
<tr>
<td>L = 3</td>
<td>nCCE, offset = 0/4</td>
</tr>
<tr>
<td>L = 4</td>
<td>nCCE, offset = 0/8</td>
</tr>
</tbody>
</table>

[0013] 在 R11 讨论初期 SI (Study Item, 研究阶段) 阶段, 主要考虑在 Scenario4 中, 由于不同的节点执行相同的小区 ID, 这时如果利用 TM8 或者 TM9 来进行数据传送, 由于传统的 DMRS 序列初始化表达式为:

$$c_{\text{init}} = ((n_{\text{ID}}/2) + 1)(2N_{\text{cell}} + 1)2^{16} + n_{\text{SCID}}$$ (1)

[0014] 从该公式中可以看出 DMRS 序列只与时隙索引 (n_{ID}), 小区 ID (N_{cell}) 和扰码序列指示标识 n_{SCID} 有关, 考虑到同一个小区的各个节点完全同步, 而且 n_{SCID} 的值只能取 0, 1, 不同节点的 UE 采用相同序列来发送 DMRS 时, 会导致不同节点间 DMRS 的强干扰, 这时会限制 Scenario4 下小区的分裂增益。所以考虑引入新的参数来使得不同节点的 DMRS 不同随机化不同节点间 DMRS 的干扰, 从而进一步获得 Scenario4 下的小区分裂增益。

[0016] 再考虑 Scenario3 下, 由于不同的节点具有不同的 Cell ID, 如果存在一个位于两个节点边缘的 UE, 考虑到这个 UE 可以和两个节点下的任何一个 UE 进行多用户多输入多输出
出（MU-MIMO）发送。为了保证两个UE之间的正交性，需要对这个边缘UE进行可配的NDM通知，特别是当这个边缘UE是正在进行DPS（Dynamic point Selection，动态节点选择）的UE。

[0017] 其中通知虚拟ID的方法，一种考虑是利用高层命令通知UE多个虚拟ID的集合，然后通过n_{MIMO}来指示是多个虚拟ID集合中的哪一个虚拟ID，其中每一个虚拟ID可以称其为一套虚拟命令。

[0018] 进一步考虑到当UE在两层进行传输时，由于需要保证MU-MIMO对UE的透明性，所以DMRS最大支持两个DRMS端口的正交，即要保证完全的正交需要两个MU-MIMO的UE最大层数为2层。这样对于两层的传输可以重点关注随机化的效果，但是对于一层的传输可以重点关注正交的效果。考虑到随机化效果，也有技术提出如下表达式：

\[c_{min} = \left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right) \cdot (2X+1) \cdot 2^m + Y \] (2)

[0019] 其中X表示虚拟ID，Y表示虚拟扰码指示信息，X和Y可以通过一个共同的动态或者半静态信令来进行指示，在这种方法中可以称X和Y表示一套虚拟信令。

[0020] 考虑到在异构网场景中为了避免不同节点之间解调扰码之间的干扰，可以考虑使用不同节点的DMRS正交，最大支持4个用户的正交，这时可以通过端口灵活的分配来达到目的。

发明内容

[0022] 本发明所要解决的技术问题是需要提供一种导频控制信令的指示方法，来更好地利用导频来实现正交和干扰随机化效果，从而提高信道估计的准确性和系统的容量。

[0023] 为了解决上述技术问题，本发明提供了一种下行解调导频控制信令的指示方法，包括基站通过以下信息中的至少一种，来通知终端（UE）基站侧生成下行导频序列和/或对生成的下行导频序列进行映射时，所采用的虚拟信令组索引和/或端口偏移信令组索引：

[0024] UE专用或者公有的高层命令；
[0025] 下行授权控制信息（DL_Grant）的天线指示信息；
[0026] DL_Grant中无效传输块（TB）信令中的新数据指示信息；
[0027] DL_Grant中的扰码指示信息；
[0028] UE专用或者公有的搜索空间中DL_Grant的聚合等级；
[0029] UE专用或者公有的搜索空间中的DL_Grant的第一个控制信道单元在UE专用或者公用搜索空间中的相对位置；
[0030] UE专用或者公用搜索空间中的DL_Grant所在的子帧号；以及
[0031] UE专用或者公用搜索空间中的DL_Grant所在的系统帧号。

[0032] 优选地，所述DL_Grant的格式包括：
[0033] 下行控制消息格式（DCI format）1、DCI format1a、DCI format1b、DCI format1c、DCI format1d、DCI format2、DCI format2a、DCI format2b、DCI format2c以及R10以后版本中的至少一种。

[0034] 优选地，所述DL_Grant中的天线指示信息包括：

[0035] 采用下行控制消息格式（DCI format）2b、DCI format2c以及R10以后版本中的至少一种的DL_Grant中的天线端口指示相关信息。
优选地，所述 DL_Grant 中无效 TB 信令中的新数据指示信息，包括：

下行控制消息格式 (DCI format) 2b, DCI format 2c 以及 R10 以后版本中的至少一种的 DL_Grant 中的信令指示信息 (NDI) 相关信息。

优选地，所述 DL_Grant 的专有搜索空间和 / 或聚合级别，包括：

下行控制消息格式 (DCI format) 1, DCI format a, DCI format b, DCI format c, DCI format d, DCI format e, DCI format f, DCI format g, DCI format h, DCI format i, DCI format j, DCI format k, DCI format l, DCI format m, DCI format n, DCI format o, DCI format p, DCI format q, DCI format r, DCI format s, DCI format t, DCI format u, DCI format v, DCI format w, DCI format x, DCI format y, DCI format z, 以及 R10 以后版本中的至少一种的 DL_Grant 所在搜索空间和聚合级别中的至少一种。

优选地，所述 UE 专用或者公用搜索空间中的 DL_Grant 所在子帧，包括：

下行控制消息格式 (DCI format) 1, DCI format a, DCI format b, DCI format c, DCI format d, DCI format e, DCI format f, DCI format g, DCI format h, DCI format i, DCI format j, DCI format k, DCI format l, DCI format m, DCI format n, DCI format o, DCI format p, DCI format q, DCI format r, DCI format s, DCI format t, DCI format u, DCI format v, DCI format w, DCI format x, DCI format y, DCI format z, 以及 R10 以后版本中的至少一种的 DL_Grant 所在子帧的至少一种。

优选地，所述虚拟信令组中虚拟信令参数集合包括一个或者多个虚拟标识 (ID) 和 / 或虚拟扰码指示信息。

优选地，所述端口偏移信令组包括多个端口偏移信令；

其中，基站侧先通过高层信令通知终端侧处于某种模式下，这种模式下需要采用高层或者物理层端口偏移信令来指示相对于偏移端口 7 或者偏移端口 8 或者偏移端口 9 或者偏移端口 10 的偏移端口数目。

优选地，所述端口偏移信令组包括多个端口偏移信令；

其中，基站侧先通过物理层信令通知终端侧处于某种模式下，这种模式下需要采用高层或者物理层端口偏移信令来指示相对于偏移端口 7 或者偏移端口 8 或者偏移端口 9 或者偏移端口 10 的偏移端口数目，这种信息包括：

DL_Grant 的天线指示信息；

DL_Grant 中无效 TB 信令中的新数据指示信息；

DL_Grant 中的扰码指示信息；

UE 专用或者公用搜索空间中 DL_Grant 的聚合等级；

UE 专用或者公用搜索空间中的 DL_Grant 的第一个控制信道单元在 UE 专用或者公用搜索空间中的相对位置；

UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号；

UE 专用或者公用搜索空间中的 DL_Grant 所在的系统帧号；以及

UE 专用高层信令。

优选地，采用端口偏移信令来指示相对于偏移端口 7 或者偏移端口 8 或者偏移端口 9 或者偏移端口 10 的偏移端口数目的方式包括：

采用高层信令，或者采用物理层信令，或者采用下列信息中的至少一种：

DL_Grant 的天线指示信息；

DL_Grant 中无效 TB 信令中的新数据指示信息；
说明书

[0061] DL_Grant 中的扰码指示信息；
[0062] UE 专用或者公用搜索空间中 DL_Grant 的聚合等级；
[0063] UE 专用或者公用搜索空间中的 DL_Grant 的第一个控制信道单元在 UE 专用或者公用搜索空间中的相对位置；
[0064] UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号；以及
[0065] UE 专用或者公用搜索空间中的 DL_Grant 所在的系统帧号。
[0066] 优选地，指示相对于偏移端口 7 或者偏移端口 8 或者偏移端口 9 或者偏移端口 10 的偏移端口数目，包括 [0, 2, 4, 5, 6, 7] 中至少一种值。
[0067] 本发明还提供了一种下行解调频控制信令的接收方法，包括：
[0068] 接收基站侧根据权利要求 1 至 12 中任一项权利要求所述的方法的通知，对 UE 专用或者公用的高层信令、下行授权控制信息 (DL_Grant) 的天线指示信息、DL_Grant 中无效传输块 (TB) 信令中的数据指示信息、DL_Grant 中的扰码指示信息、UE 专用或者公用搜索空间中 DL_Grant 的聚合等级、UE 专用或者公用搜索空间中的 DL_Grant 的第一个控制信道单元在 UE 专用或者公用搜索空间中的相对位置、UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号以及 UE 专用或者公用搜索空间中的 DL_Grant 所在的系统帧号这些信息中的至少一种进行盲检，获得下行授权控制信息 (DL_Grant) 中的指示信息；
[0069] 根据盲检所获得的 DL_Grant 中的指示信息来获得基站侧生成下行导频序列和 / 或对生成的下行导频序列进行映射时，所采用的虚拟信令组索引和 / 或端口偏移信令组索引。
[0070] 本发明还提供了一种基站，包括生成及映射模块、通知模块，其中：
[0071] 该生成及映射模块，用于生成下行导频序列和 / 或对生成的下行导频序列进行映射；
[0072] 该通知模块，用于根据权利要求 1 至 12 中任一项权利要求所述的方法，来通知终端 (UE) 基站侧生成下行导频序列和 / 或对生成的下行导频序列进行映射时，所采用的虚拟信令组索引和 / 或端口偏移信令组索引；
[0073] UE 专用或者公用的高层信令；
[0074] 下行授权控制信息 (DL_Grant) 的天线指示信息；
[0075] DL_Grant 中无效传输块 (TB) 信令中的数据指示信息；
[0076] DL_Grant 中的扰码指示信息；
[0077] UE 专用或者公用搜索空间中 DL_Grant 的聚合等级；
[0078] UE 专用或者公用搜索空间中的 DL_Grant 的第一个控制信道单元在 UE 专用或者公用搜索空间中的相对位置；
[0079] UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号；以及
[0080] UE 专用或者公用搜索空间中的 DL_Grant 所在的系统帧号。
[0081] 本发明还提供了一种终端，包括检测模块及选择模块，其中：
[0082] 该检测模块，用于接收基站侧根据权利要求 1 至 12 中任一项权利要求所述的方法的通知，对 UE 专用或者公用的高层信令、下行授权控制信息 (DL_Grant) 的天线指示信息、DL_Grant 中无效传输块 (TB) 信令中的数据指示信息、DL_Grant 中的扰码指示信息、UE 专用或者公用搜索空间中 DL_Grant 的聚合等级、UE 专用或者公用搜索空间中的 DL_Grant 的
第一个控制信道单元在 UE 专用或者公用搜索空间中的相对位置。UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号以及 UE 专用或者公用搜索空间中的 DL_Grant 所在的系统帧号这些信息中的至少一种进行盲检，获得下行授权控制信息 (DL_Grant) 中的指示信息；

[0083] 该选择模块，用于根据检测模块获得的 DL_Grant 中的指示信息来获得基站侧生成下行导频序列和/或对生成的下行导频序列进行映射时所采用的虚拟信令组索引和/或端口偏移信令组索引。

[0084] 与现有技术相比，本发明的实施例提供的导频控制信令的增强指示方法，基站侧和端点侧可以使用标准化下列信息中的至少一种通知 UE 所采用的虚拟信令组索引，来指示导频控制信令的参数，从而使得基站侧和端点侧达成统一，更好的利用导频来实现正交和干扰随机化效果，从而提高信道估计的准确性和提高系统的容量。

[0085] 上述信息包括：

[0086] (1) UE 专用高层信令；
[0087] (2) DL_Grant 中的天线指示信息；
[0088] (3) DL_Grant 中有效传输块 (TB) 信令中的新数据指示信息；
[0089] (4) UE 专用或者公用搜索空间中的 DL_Grant 的聚合等级；
[0090] (5) UE 专用或者公用搜索空间中的 DL_Grant 的第一个控制信道单元 (Control Channel Element, CCE) 在 UE 专用或者公用搜索空间中的相对位置；
[0091] (6) UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号；以及
[0092] (7) UE 专用或者公用搜索空间中的 DL_Grant 所在的系统帧号。

[0093] 本发明的其它特征和优点将在随后的说明书中阐述，并且，部分地从说明书书中变得显而易见，或通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。

附图说明

[0094] 附图用来提供对本发明技术方案的进一步了解，并且构成说明书的一部分，与本发明的实施例一起用于解释本发明的技术方案，并不构成对本发明技术方案的限制。

[0095] 图 1 为本发明实施例的流程示意图。

具体实施方式

[0096] 以下将结合附图及实施例来详细说明本发明的实施方式，借此对本发明如何应用技术手段来解决技术问题，并达成技术效果的实现过程能充分理解并据以实施。

[0097] 首先，本发明实施例以及实施例中的各个特征在不相冲突前提下的相互结合，均在本发明的保护范围之内。另外，附图的流程图出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行，并且，虽然在流程图中示出了逻辑顺序，但是在某些情况下，可以以不同于此处的顺序执行所示出或描述的步骤。

[0098] 本发明实施例的下行解调导频控制信令的通知方法中，基站侧通过以下信息中的至少一种，来通知 UE 侧基站侧生成下行导频序列和/或对生成的下行导频序列进行映射（映射到时频资源上）时，所采用的虚拟信令组索引和/或端口偏移信令组索引。

[0099] 本发明中所述的虚拟信令或者虚拟信令组或者虚拟信令集合仅仅是为了代表这
种信令的名称，实际也可以称其为信令或者信令组或者信令集合。

[0100] 上述信息包括：
[0101] (1) UE-Specific 的高层信令；
[0102] (2) 下行授权控制信息 (DL_Grant) 的天线指示信息；
[0103] (3) DL_Grant 中无效传输块 (TB) 信令中的新数据指示信息；
[0104] (4) DL_Grant 中的扰码指示信息；
[0105] (5) UE 专用或者公用搜索空间中的 DL_Grant 的聚合等级；
[0106] (6) UE 专用或者公用搜索空间中的 DL_Grant 的第一个控制信道单元 (Control Channel Element, CCE) 在 UE 专用或者公用搜索空间中的相对位置；
[0107] (7) UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号；以及
[0108] (8) UE 专用或者公用搜索空间中的 DL_Grant 所在的系统帧号。
[0109] 其中以上信息是在一个虚拟信令组中可能包含的信息。
[0110] 上述的 DL_Grant 的格式，包括下行控制消息格式 (DCI format)1、DCI format1a、DCI format1b、DCI format2c、DCI format1d、DCI format2、DCI format2a、DCI format2b 以及 DCI format2c 以及 R10 以后版本中的至少一种。
[0111] 上述的 DL_Grant 中的天线指示信息，包括采用 DCI format2b、DCI format2c 以及 R10 以后版本中的至少一种的 DL_Grant 中的天线端口指示相关信息。
[0112] 上述 DL_Grant 中无效 TB 信令中的新数据指示信息，包括 DCI format2b、DCI format2c 以及 R10 以后版本中的至少一种的 DL_Grant 中的新数据指示 (NDI) 相关信息。
[0113] 上述 DL_Grant 的专有搜索空间和 / 或聚合级别，包括 DCI format1、DCI format1a、DCI format1b、DCI format2c、DCI format1d、DCI format2、DCI format2a、DCI format2b、DCI format2c 以及 R10 以后版本中的至少一种的 DL_Grant 搜索空间和聚合级别中的至少一种。
[0114] 上述 UE 专用或者公用搜索空间中的 DL_Grant 所在子帧，包括 DCI format1、DCI format1a、DCI format1b、DCI format2c、DCI format1d、DCI format2、DCI format2a、DCI format2b、DCI format2c 以及 R10 以后版本中的至少一种的 DL_Grant 所在子帧的至少一种。
[0115] 上述虚拟信令组中虚拟信令参数集合包括一个或者多个虚拟 ID 和 / 或虚拟扰码指示信息。
[0116] 上述端口偏移信令组包括多个端口偏移信令。基站侧可以先通过高层信令通知终端侧处于某种模式下，这种模式下需要采用高层或者物理层端口偏移信令来指示相对于偏移端口 7 或者偏移端口 8 或者偏移端口 9 或者偏移端口 10 的偏移端口数目。
[0117] 上述端口偏移信令组包括多个端口偏移信令。基站侧可以先通过物理层信令通知终端侧处于某种模式下，这种模式下需要采用高层或者物理层端口偏移信令来指示相对于偏移端口 7 或者偏移端口 8 或者偏移端口 9 或者偏移端口 10 的偏移端口数目。
[0118] 上述端口偏移信令组包括多个端口偏移信令。基站侧可以通过下述信息中的至少一种来通知终端侧处于某种模式下，且这种模式下需要采用端口偏移信令来指示相对于偏移端口 7 或者偏移端口 8 或者偏移端口 9 或者偏移端口 10 的偏移端口数目。
[0119] 这些信息包括：
(1) DL_Grant 的天线指示信息；
(2) DL_Grant 中无效 TB 信令中的新数据指示信息；
(3) DL_Grant 中的扰码指示信息；
(4) UE 专用或者公用搜索空间中 DL_Grant 的聚合等级；
(5) UE 专用或者公用搜索空间中的 DL_Grant 的第一个控制信道单元 (Control Channel Element, CCE) 在 UE 专用或者公用搜索空间中的相对位置；
(6) UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号；
(7) UE 专用或者公用搜索空间中的 DL_Grant 所在的系统帧号；以及
(8) UE 专用高层信令。
上述内容中，采用端口偏移信令来指示相对于偏移端口 7 或者偏移端口 8 或者偏移端口 9 或者偏移端口 10 的偏移端口数目可以采用高层信令，也可以采用物理层信令，还可以采用下列信息中的至少一种：
(1) DL_Grant 的天线指示信息；
(2) DL_Grant 中无效 TB 信令中的新数据指示信息；
(3) DL_Grant 中的扰码指示信息；
(4) UE 专用或者公用搜索空间中 DL_Grant 的聚合等级；
(5) UE 专用或者公用搜索空间中的 DL_Grant 的第一个控制信道单元在 UE 专用或者公用搜索空间中的相对位置；
(6) UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号；以及
(7) UE 专用或者公用搜索空间中的 DL_Grant 所在的系统帧号。
上述内容中，指示相对于偏移端口 7 或者偏移端口 8 或者偏移端口 9 或者偏移端口 10 的偏移端口数目可以包括 0,2,4,5,6,7 中至少一种值。
在 CoMP 系统或者是 R11 下行多输入多输出 (DL_MIMO) 或者是上行多输入多输出 (UL_MIMO) 中，考虑到正交保证干扰最小化，准正交保证干扰随机化从而提高小区的容量。
为了便于理解本发明，下面结合具体实施例对本发明进行进一步的阐述。对于实施例 12～16，其中偏移端口 7 的偏移端口数目可以为对应值也可以为对应值的索引，例如标准规定偏移值只能为 {0,4} 中的一个值，这时只需要通知 0 代表偏移 0 个端口，通知 4 代表偏移 4 个端口，也可以直接通知其偏移值，如 0 或者 4。
实施例 1
本实施例假定 UE 1 为 R11 的用户。如图 1 所示，本实施例包括如下步骤：
步骤 S110，基站侧通过高层信令配置 UE1 多套下行 DMRS 的虚拟信令组。
步骤 S120，基站侧在需要调度 UE1 的下行任务的子帧上在 PDCCH 或者 EPCDCCH 区域发送下行授权信令 (DL_Grant) 来指示在当前子帧存在 UE1 的下行数据。
步骤 S130，UE1 在该子帧上进行盲检获得 DL_Grant 中的指示信息。
步骤 S140，UE1 通过盲检得到 DCI Format 2C 中的天线端口指示信息，来决定采用基站配置的多套下行 DMRS 虚拟信令组中的哪一套。
例如：
当 UE1 根据盲检得到 DL_Grant 中一层传输且有效 TB 的天线端口为端口 7，且扰码序列指示标识 n_{scid} = 0 时，选择第一个虚拟信令参数集合或者虚拟信令组；
当UE1根据盲检得到DL_Grant中一层传输且有效TB的天线端口为端口8，且扰码序列指示标识指示n_{scID} = 0时，选择第一个虚拟信令参数集合或者虚拟信令组；

当UE1根据盲检得到DL_Grant中一层传输且有效TB的天线端口为端口7，且扰码序列指示标识指示n_{scID} = 1时，选择第二个虚拟信令参数集合或者虚拟信令组；

当UE1根据盲检得到DL_Grant中一层传输且有效TB的天线端口为端口8，且扰码序列指示标识指示n_{scID} = 1时，选择第三个虚拟信令参数集合或者虚拟信令组；

当UE1根据盲检得到DL_Grant中一层传输且有效TB的天线端口为端口8，且扰码序列指示标识指示n_{scID} = 1时，选择第四个虚拟信令参数集合或者虚拟信令组。

实施例2

假定UE1为R11的用户，基站侧通过高层信令配置UE1多套下行DMRS的虚拟信令组，然后在需要调度UE1的下行业务的子帧上在PDCCH或者EPDCCH区域发送DL_Grant来指示在当前子帧存在UE1的下行数据。UE1在该子帧上进行盲检获得DL_Grant中的指示信息。

然后UE1通过盲检得到DCI Format 2C中的无效(Disable)TB中的新数据指示信息，来决定采用基站配置的多套下行DMRS虚拟信令组中的哪一套。

例如：

UE1根据盲检得到DL_Grant中一层传输时且无效TB的新数据指示信息NDI = 0时，选择第一个虚拟信令参数集合或者虚拟信令组；

UE1根据盲检得到DL_Grant中一层传输时且无效TB的新数据指示信息NDI = 1时，选择第二个虚拟信令参数集合或者虚拟信令组。

实施例3

假定UE1为R11的用户，基站侧通过高层信令配置UE1多套下行DMRS的虚拟信令组，然后在需要调度UE1的下行业务的子帧上在PDCCH或者EPDCCH区域发送DL_Grant来指示在当前子帧存在UE1的下行数据。UE1在该子帧上进行盲检获得DL_Grant中的指示信息。

然后UE1通过盲检得到DCI Format 2C中的Disable TB中的新数据指示信息和天线端口指示信息，来决定采用基站配置的多套下行DMRS虚拟信令组中的哪一套。

例如：

UE1根据盲检得到DL_Grant中一层传输时且无效TB的新数据指示信息NDI = 0且有效TB的天线端口为端口7时，选择第一个虚拟信令参数集合或者虚拟信令组；

UE1根据盲检得到DL_Grant中一层传输时且无效TB的新数据指示信息NDI = 0且有效TB的天线端口为端口8时，选择第二个虚拟信令参数集合或者虚拟信令组；

UE1根据盲检得到DL_Grant中一层传输时且无效TB的新数据指示信息NDI = 1且有效TB的天线端口为端口7时，选择第三个虚拟信令参数集合或者虚拟信令组；

UE1根据盲检得到DL_Grant中一层传输时且无效TB的新数据指示信息NDI = 1且有效TB的天线端口为端口8时，选择第四个虚拟信令参数集合或者虚拟信令组。

实施例4

假定UE1为R11的用户，基站侧通过高层信令配置UE1多套下行DMRS的虚拟信令组，然后在需要调度UE1的下行业务的子帧上在PDCCH或者EPDCCH区域发送DL_Grant来指示在当前子帧存在UE1的下行数据，UE1在该子帧上进行盲检获得DL_Grant中的指示信息。
然后 UE1 通过盲检得到 DCI Format 2C 中的 Disable TB 中的新数据指示信息和扰码序列指示标识 nSCID 来决定采用基站配置的多套下行 DMRS 虚拟信令组中的哪一套。

例如：

UE1 根据盲检得到 DL_Grant 中一层传输时且无效 TB 的新数据指示信息 NDI = 0 且有效 TB 的 nSCID = 0 时，选择第一个虚拟信令参数集合或者虚拟信令组；

UE1 根据盲检得到 DL_Grant 中一层传输时且无效 TB 的新数据指示信息 NDI = 0 且有效 TB 的 nSCID = 1 时，选择第二个虚拟信令参数集合或者虚拟信令组；

UE1 根据盲检得到 DL_Grant 中一层传输时且无效 TB 的新数据指示信息 NDI = 1 且有效 TB 的 nSCID = 0 时，选择第三个虚拟信令参数集合或者虚拟信令组；

UE1 根据盲检得到 DL_Grant 中一层传输时且无效 TB 的新数据指示信息 NDI = 1 且有效 TB 的 nSCID = 1 时，选择第四个虚拟信令参数集合或者虚拟信令组。

实施例 5

假定 UE1 为 R11 的用户，基站侧通过高层信令配置 UE1 多套下行 DMRS 的虚拟信令组，然后在需要调度 UE1 的下行业务的子帧上在 PDCCH 或者 EPDCCH 区域发送 DL_Grant 来指示在当前子帧存在 UE1 的下行数据，UE1 在该子帧上进行盲检获得 DL_Grant 中的指示信息。

然后 UE1 通过盲检得到 DCI Format 2C 中的 Disable TB 中的新数据指示信息、天线端口指示信息和扰码序列指示标识 nSCID 来决定采用基站配置的多套下行 DMRS 虚拟信令组中的哪一套。

例如：

UE1 根据盲检得到 DL_Grant 中一层传输时且无效 TB 的新数据指示信息 NDI = 0、有效 TB 的 nSCID = 0 且有效 TB 的天线端口为端口 7 时，选择第一个虚拟信令参数集合或者虚拟信令组；

UE1 根据盲检得到 DL_Grant 中一层传输时且无效 TB 的新数据指示信息 NDI = 0、有效 TB 的 nSCID = 1 且有效 TB 的天线端口为端口 7 时，选择第二个虚拟信令参数集合或者虚拟信令组；

UE1 根据盲检得到 DL_Grant 中一层传输时且无效 TB 的新数据指示信息 NDI = 1、有效 TB 的 nSCID = 0 且有效 TB 的天线端口为端口 8 时，选择第三个虚拟信令参数集合或者虚拟信令组；

UE1 根据盲检得到 DL_Grant 中一层传输时且无效 TB 的新数据指示信息 NDI = 1、有效 TB 的 nSCID = 1 且有效 TB 的天线端口为端口 8 时，选择第四个虚拟信令参数集合或者虚拟信令组。

实施例 6

假定 UE1 为 R11 的用户，基站侧通过高层信令配置 UE1 多套下行 DMRS 的虚拟信令组，然后在需要调度 UE1 的下行业务的子帧上在 PDCCH 或者 EPDCCH 区域发送 DL_Grant 来指示在当前子帧存在 UE1 的下行数据，UE1 在该子帧上进行盲检获得 DL_Grant 中的指示信息。

然后 UE1 根据盲检得到配置该 DL_Grant 的起始 CCE 的位置来决定采用基站配置的多套下行 DMRS 虚拟信令组中的哪一套。
例如：
当 UE1 检测出 DL_Grant 的聚合级别 L = 1 且起始 CCE 的位置 nCCE, offset = 0/2/4, 或 L = 2 且 nCCE, offset = 0/4/8, 或 L = 4 且 nCCE, offset = 0, 或 L = 8 且 nCCE, offset = 0，选择第一个虚拟信令参数集合或者虚拟信令组；
当 UE1 检测出 DL_Grant 的聚合级别 L = 1 且 nCCE, offset = 1/3/5, 或 L = 2 且 nCCE, offset = 2/6/10, 或 L = 4 且 nCCE, offset = 4, 或 L = 8 且 nCCE, offset = 8，选择第二个虚拟信令参数集合或者虚拟信令组。

实施例 7
假定 UE1 为 R11 的用户，基站侧通过高层信令配置 UE1 多套下行 DMRS 的虚拟信令组，然后在需要调度 UE1 的下行业务的子帧上在 PDCCH 或者 EPDCCH 区域发送 DL_Grant 来指示在当前子帧存在 UE1 的下行数据，UE1 在该子帧上进行盲检获得 DL_Grant 中的指示信息。

然后 UE1 根据盲检得到放置该 DL_Grant 的起始 CCE 的位置和聚合级别来决定采用基站配置的多套下行 DMRS 虚拟信令组中的哪一套。

例如：
当 UE1 检测出 DL_Grant 的聚合级别 L = 1 且起始 CCE 的位置 nCCE, offset = 0/2/4, 或 L = 2 且 nCCE, offset = 0/4/8，选择第一个虚拟信令参数集合或者虚拟信令组；
当 UE1 检测出 DL_Grant 的聚合级别 L = 4 且起始 CCE 的位置 nCCE, offset = 0, 或 L = 8 且 nCCE, offset = 0，选择第二个虚拟信令参数集合或者虚拟信令组；
当 UE1 检测出 DL_Grant 的聚合级别 L = 1 且起始 CCE 的位置 nCCE, offset = 1/3/5, 或 L = 2 且 nCCE, offset = 2/6/10，选择第三个虚拟信令参数集合或者虚拟信令组；
当 UE1 检测出 DL_Grant 的聚合级别 L = 4 且起始 CCE 的位置 nCCE, offset = 4, 或 L = 8 且 nCCE, offset = 8，选择第四个虚拟信令参数集合或者虚拟信令组。

实施例 8
假定 UE1 为 R11 的用户，基站侧通过高层信令配置 UE1 多套下行 DMRS 的虚拟信令组，然后在需要调度 UE1 的下行业务的子帧上在 PDCCH 或者 EPDCCH 区域发送 DL_Grant 来指示在当前子帧存在 UE1 的下行数据，UE1 在该子帧上进行盲检获得 DL_Grant 中的指示信息。

然后 UE1 根据盲检得到放置该 DL_Grant 的起始 CCE 的位置和扰码序列指示标示 n_SCDI 来决定采用基站配置的多套下行 DMRS 虚拟信令组中的哪一套。

例如：
当 UE1 检测出 DL_Grant 的聚合级别 L = 1 且起始 CCE 的位置 nCCE, offset = 0/2/4, 或 L = 2 且 nCCE, offset = 0/4/8, 或 L = 4 且 nCCE, offset = 0, 或 L = 8 且 nCCE, offset = 0，且检测出的 DL_Grant 的扰码序列指示标示 n_SCDI = 0 时，选择第一个虚拟信令参数集合或者虚拟信令组；
当 UE1 检测出 DL_Grant 的聚合级别 L = 1 且起始 CCE 的位置 nCCE, offset = 1/3/5, 或 L = 2 且 nCCE, offset = 2/6/10, 或 L = 4 且 nCCE, offset = 4, 或 L = 8 且 nCCE, offset = 8，且检测出的 DL_Grant 的扰码序列指示标示 n_SCDI = 0 时，选择第二个虚拟信令参数集合或者虚拟信令组；
当 UE1 检测出 DL_Grant 的聚合级别 \(L = 1 \) 且起始 CCE 的位置 \(n_{CCE} \), offset = 0/2/4 时，或 \(L = 2 \) 且 nCCE, offset = 0/4/8, 或 \(L = 4 \) 且 nCCE, offset = 0, 或 \(L = 8 \) 且 nCCE, offset = 0, 且检测出的 DL_Grant 的扰码序列指示标识 \(n_{SCID} = 1 \) 时，选择第四个虚拟信令参数集合或者虚拟信令组；

当 UE1 检测出 DL_Grant 的聚合级别 \(L = 1 \) 且起始 CCE 的位置 nCCE, offset = 1/3/5, 或 \(L = 2 \) 且 nCCE, offset = 2/6/10, 或 \(L = 4 \) 且 nCCE, offset = 4, 或 \(L = 8 \) 且 nCCE, offset = 8, 且检测出的 DL_Grant 的扰码序列指示标识 \(n_{SCID} = 1 \) 时，选择第四个虚拟信令参数集合或者虚拟信令组。

信令示例 9

假定 UE1 为 R11 的用户，基站侧通过高层信令配置 UE1 多套下行 DMRS 的虚拟信令组，然后在需要调度 UE1 的下行业务的子帧上在 PDCCH 或者 EPDCCH 区域发送 DL_Grant 来指示在当前子帧存在 UE1 的下行数据，UE1 在该子帧上进行盲检获得 DL_Grant 中的指示信息。

然后 UE1 根据盲检得到放置该 DL_Grant 的起始 CCE 的位置、聚合级别和扰码序列指示标识 \(n_{SCID} \) 来决定采用基站配置的多套下行 DMRS 虚拟信令组中的哪一套。

例如：

当 UE1 检测出 DL_Grant 的聚合级别 \(L = 1 \) 且放置该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 0/2/4, 或 \(L = 2 \) 且 nCCE, offset = 0/4/8, 且检测出的 DL_Grant 的扰码序列指示标识 \(n_{SCID} = 0 \) 时，选择第一个虚拟信令参数集合或者虚拟信令组；

当 UE1 检测出 DL_Grant 的聚合级别 \(L = 4 \) 且放置该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 0, 或 \(L = 8 \) 且 nCCE, offset = 0, 且检测出的 DL_Grant 的扰码序列指示标识 \(n_{SCID} = 0 \) 时，选择第二个虚拟信令参数集合或者虚拟信令组；

当 UE1 检测出 DL_Grant 的聚合级别 \(L = 1 \) 且放置该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 1/3/5, 或 \(L = 2 \) 且 nCCE, offset = 2/6/10, 且检测出的 DL_Grant 的扰码序列指示标识 \(n_{SCID} = 0 \) 时，选择第三个虚拟信令参数集合或者虚拟信令组；

当 UE1 检测出 DL_Grant 的聚合级别 \(L = 4 \) 且放置该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 4, 或 \(L = 8 \) 且 nCCE, offset = 8, 且检测出的 DL_Grant 的扰码序列指示标识 \(n_{SCID} = 0 \) 时，选择第四个虚拟信令参数集合或者虚拟信令组；

当 UE1 检测出 DL_Grant 的聚合级别 \(L = 1 \) 且放置该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 0/2/4, 或 \(L = 2 \) 且 nCCE, offset = 0/4/8, 且检测出的 DL_Grant 的扰码序列指示标识 \(n_{SCID} = 1 \) 时，选择第五个虚拟信令参数集合或者虚拟信令组；

当 UE1 检测出 DL_Grant 的聚合级别 \(L = 4 \) 且放置该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 0, 或 \(L = 8 \) 且 nCCE, offset = 0, 且检测出的 DL_Grant 的扰码序列指示标识 \(n_{SCID} = 1 \) 时，选择第四个虚拟信令参数集合或者虚拟信令组；

当 UE1 检测出 DL_Grant 的聚合级别 \(L = 1 \) 且放置该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 1/3/5, 或 \(L = 2 \) 且 nCCE, offset = 2/6/10, 且检测出的 DL_Grant 的扰码序列指示标识 \(n_{SCID} = 1 \) 时，选择第七个虚拟信令参数集合或者虚拟信令组；

当 UE1 检测出 DL_Grant 的聚合级别 \(L = 4 \) 且放置该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 4, 或 \(L = 8 \) 且 nCCE, offset = 8, 且检测出的 DL_Grant 的扰码序列指示标
识 $n_{SCID} = 1$ 时，选择第8个虚拟信令参数集合或者虚拟信令组。

[0214] 实施例10

[0215] 假定UE1为R11的用户，基站侧通过高层信令配置UE1多套下行DMRS的虚拟信令组，然后在需要调度UE1的下行业务的子帧上在PDCCH或者EPDCCH区域发送DL_Grant来指示在当前子帧存在UE1的下行数据，UE1在该子帧上进行盲检获得DL_Grant中的指示信息。

[0216] 然后UE1根据盲检得到放置该DL_Grant的起始CCE的位置和无效TB信令中的新数据指示信息NDI来决定采用基站配置的多套下行DMRS虚拟信令组中的哪一套。

[0217] 例如：

[0218] 当UE1检测出DL_Grant的聚合级别 $L = 1$ 且放置该DL_Grant的起始CCE的位置n_{CCE}，offset = 0/2/4时，或 $L = 2$ 且n_{CCE}，offset = 0/4/8，或 $L = 4$ 且n_{CCE}，offset = 0，或 $L = 8$ 且n_{CCE}，offset = 0，且检测出的DL_Grant的有效TB信令中的新数据指示信息NDI = 0时，选择第一个虚拟信令参数集合或者虚拟信令组；

[0219] 当UE1检测出DL_Grant的聚合级别 $L = 1$ 且放置该DL_Grant的起始CCE的位置n_{CCE}，offset = 1/3/5，或 $L = 2$ 且n_{CCE}，offset = 2/6/10，或 $L = 4$ 且n_{CCE}，offset = 4，或 $L = 8$ 且n_{CCE}，offset = 8，且检测出的DL_Grant的有效TB信令中的新数据指示信息NDI = 0时，选择第二个虚拟信令参数集合或者虚拟信令组；

[0220] 当UE1检测出DL_Grant的聚合级别 $L = 1$ 且放置该DL_Grant的起始CCE的位置n_{CCE}，offset = 0/2/4时，或 $L = 2$ 且n_{CCE}，offset = 0/4/8，或 $L = 4$ 且n_{CCE}，offset = 0，或 $L = 8$ 且n_{CCE}，offset = 0，且检测出的DL_Grant的有效TB信令中的新数据指示信息NDI = 1时，选择第三个虚拟信令参数集合或者虚拟信令组；

[0221] 当UE1检测出DL_Grant的聚合级别 $L = 1$ 且放置该DL_Grant的起始CCE的位置n_{CCE}，offset = 1/3/5，或 $L = 2$ 且n_{CCE}，offset = 2/6/10，或 $L = 4$ 且n_{CCE}，offset = 4，或 $L = 8$ 且n_{CCE}，offset = 8，且检测出的DL_Grant的有效TB信令中的新数据指示信息NDI = 1时，选择第四个虚拟信令参数集合或者虚拟信令组。

[0222] 实施例11

[0223] 假定UE1为R11的用户，基站侧通过高层信令配置UE1多套下行DMRS的虚拟信令组，然后在需要调度UE1的下行业务的子帧上在PDCCH或者EPDCCH区域发送DL_Grant来指示在当前子帧存在UE1的下行数据，UE1在该子帧上进行盲检获得DL_Grant中的指示信息。

[0224] 然后UE1根据盲检得到放置该DL_Grant的起始CCE的位置、聚合级别和无效TB信令中的新数据指示信息NDI来决定采用基站配置的多套下行DMRS虚拟信令组中的哪一套。

[0225] 例如：

[0226] 当UE1检测出DL_Grant的聚合级别 $L = 1$ 且放置该DL_Grant的起始CCE的位置n_{CCE}，offset = 0/2/4，或 $L = 2$ 且n_{CCE}，offset = 0/4/8，且检测出的DL_Grant的有效TB信令中的新数据指示信息NDI = 0时，选择第一个虚拟信令参数集合或者虚拟信令组；

[0227] 当UE1检测出DL_Grant的聚合级别 $L = 4$ 且放置该DL_Grant的起始CCE的位置n_{CCE}，offset = 0，或 $L = 8$ 且n_{CCE}，offset = 0，且检测出的DL_Grant的扰码序列指示标
识 $n_{SCID} = 0$ 时，选择第二个虚拟信令参数集合或者虚拟信令组；

[0228] 当 UE1 检测出 DL_Grant 的聚合级别 $L = 1$ 且放置该 DL_Grant 的起始 CCE 的位置
nCCE, offset = 1/3/5, 或 $L = 2$ 且 nCCE, offset = 2/6/10, 且检测出的 DL_Grant 的无效
TB 信令中的新数据指示信息 NDI = 0 时，选择第三个虚拟信令参数集合或者虚拟信令组；

[0229] 当 UE1 检测出 DL_Grant 的聚合级别 $L = 4$ 且放置该 DL_Grant 的起始 CCE 的位置
nCCE, offset = 4, 或 $L = 8$ 且 nCCE, offset = 8, 且检测出的 DL_Grant 的无效 TB 信令中
的新数据指示信息 NDI = 0 时，选择第四个虚拟信令参数集合或者虚拟信令组；

[0230] 当 UE1 检测出 DL_Grant 的聚合级别 $L = 1$ 且放置该 DL_Grant 的起始 CCE 的位置
nCCE, offset = 0/2/4, 或 $L = 2$ 且 nCCE, offset = 0/4/8, 且检测出的 DL_Grant 的无效 TB 信
令中的新数据指示信息 NDI = 1 时，选择第五个虚拟信令参数集合或者虚拟信令组；

[0231] 当 UE1 检测出 DL_Grant 的聚合级别 $L = 4$ 且放置该 DL_Grant 的起始 CCE 的位置
nCCE, offset = 0, 或 $L = 8$ 且 nCCE, offset = 0, 且检测出的 DL_Grant 的无效 TB 信
令中的新数据指示信息 NDI = 1 时，选择第六个虚拟信令参数集合或者虚拟信令组；

[0232] 当 UE1 检测出 DL_Grant 的聚合级别 $L = 1$ 且放置该 DL_Grant 的起始 CCE 的位置
nCCE, offset = 1/3/5, 或 $L = 2$ 且 nCCE, offset = 2/6/10, 且检测出的 DL_Grant 的无效
TB 信令中的新数据指示信息 NDI = 1 时，选择第七个虚拟信令参数集合或者虚拟信令组；

[0233] 当 UE1 检测出 DL_Grant 的聚合级别 $L = 4$ 且放置该 DL_Grant 的起始 CCE 的位置
nCCE, offset = 4, 或 $L = 8$ 且 nCCE, offset = 8, 且检测出的 DL_Grant 的无效 TB 信
令中的新数据指示信息 NDI = 1 时，选择第八个虚拟信令参数集合或者虚拟信令组；

[0234] 实施例 12

[0235] 假定 UE1 为 R11 的用户，基站侧通过高层信令配置 UE1 处于某种工作模式下，或者
配置 UE1 采用正交实效 OCC 长度等于 4 的方式来信道估计 DMRS，且高层配置多个端口偏
置值的选择或者标准中固定端口置的范围。然后在需要调度 UE1 的下行业务的子帧上
在 PDCCH 或者 EPDCCH 区域发送 DL_Grant 来指示在当前子帧存在 UE1 的下行数据，UE1 在
该子帧上进行盲检获得 DL_Grant 中的指示信息。

[0236] 然后 UE1 通过盲检得到 DCI Format 2C 中的 Disable TB 中的新数据指示信息来
决定采用基站配置的下行 DMRS 端口偏置值。

[0237] 例如：

[0238] UE1 根据盲检得到 DL_Grant 中一层传输且无效 TB 的新数据指示信息 NDI = 0 时，
选择第一个下行 DMRS 端口偏置值；

[0239] UE1 根据盲检得到 DL_Grant 中一层传输且无效 TB 的新数据指示信息 NDI = 1 时，
选择第二个下行 DMRS 端口偏置值。

[0240] 假定配置的第二个下行 DMRS 端口偏置值为 4，这时 UE 在 DL_Grant 中如果检测出
配置的端口为一层 7 端口发送，这时 UE 需要在端口 7+4 = 11 端口上利用 OCC = 4 的方
式进行对 DMRS 的信道估计。

[0241] 如果配置的端口为两个端口，这时按照第一个端口的端口号的偏置值指示进行两
个端口的偏置。

[0242] 其中端口偏置值可以从高层信令配置的多个值中选择，或者从标准中对定的多个
值中进行选择。
[0243] 实施例 13
[0244] 假定 UE1 为 R11 的用户，基站侧通过高层信令配置 UE1 处于某种工作模式下，或者配置 UE1 采用 OCC 长度等于 4 的方式来信道估计 DMRS。然后在需要调度 UE1 的下行业务的子帧上在 PDCCH 或者 EPDCCH 区域发送 DL_Grant 来指示在当前子帧存在 UE1 的下行数据，UE1 在该子帧上进行盲检获得 DL_Grant 中的指示信息。
[0245] 然后 UE1 根据盲检得到放置该 DL_Grant 的起始 CCE 的位置来决定采用基站配置的下行 DMRS 端口偏置值和 / 或 UE1 检测 DMRS 时采用 OCC 长度。
[0246] 例如：
[0247] 当 UE1 检测出 DL_Grant 的聚合级别 L = 1 且放置该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 0/2/4, 或 L = 2 且 nCCE, offset = 0/4/8, 或 L = 4 且 nCCE, offset = 0, 或 L = 8 且 nCCE, offset = 0, 选择第一个下行 DMRS 端口偏置值和 / 或 UE1 检测 DMRS 时采用 OCC 长度；
[0248] 当 UE1 检测出 DL_Grant 的聚合级别 L = 1 且放置该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 1/3/5, 或 L = 2 且 nCCE, offset = 2/6/10, 或 L = 4 且 nCCE, offset = 4, 或 L = 8 且 nCCE, offset = 8, 选择第二个下行 DMRS 端口偏置值和 / 或 UE1 检测 DMRS 时采用 OCC 长度。
[0249] 假定配置的偏置为 4，这时 UE 在 DL_Grant 中如果检测出配置的端口为一层 7 端口发送，这时 UE 需要在端口 7+4 = 11 端口上利用 OCC = 4 的方式来进行对 DMRS 的信道估计。
[0250] 如果配置的端口为两个端口，这时按照第一个端口的端口号进行两个端口的偏置。
[0251] 其中端口偏置值可以从业层信令配置的多个值中选择，或者从标准中对定的多个值中进行选择。
[0252] 实施例 14
[0253] 假定 UE1 为 R11 的用户，基站侧通过高层信令配置 UE1 处于某种工作模式下，或者配置 UE1 采用 OCC 长度等于 4 的方式来信道估计 DMRS。然后在需要调度 UE1 的下行业务的子帧上在 PDCCH 或者 EPDCCH 区域发送 DL_Grant 来指示在当前子帧存在 UE1 的下行数据，UE1 在该子帧上进行盲检获得 DL_Grant 中的指示信息。
[0254] 然后 UE1 根据盲检得到放置该 DL_Grant 的起始 CCE 的位置和聚合级别来决定采用基站配置的下行 DMRS 端口偏置值和 / 或 UE1 检测 DMRS 时采用 OCC 长度。
[0255] 例如：
[0256] 当 UE1 检测出 DL_Grant 的聚合级别 L = 1 且放置该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 0/2/4, 或 L = 2 且 nCCE, offset = 0/4/8, 选择第一个下行 DMRS 端口偏置值和 / 或 UE1 检测 DMRS 时采用 OCC 长度；
[0257] 当 UE1 检测出 DL_Grant 的聚合级别 L = 4 且放置该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 0, 或 L = 8 且 nCCE, offset = 0, 选择第二个下行 DMRS 端口偏置值和 / 或 UE1 检测 DMRS 时采用 OCC 长度；
[0258] 当 UE1 检测出 DL_Grant 的聚合级别 L = 1 且放置该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 1/3/5, 或 L = 2 且 nCCE, offset = 2/6/10, 选择第三个下行 DMRS 端口偏置值和 / 或 UE1 检测 DMRS 时采用 OCC 长度；
[0259] 当 UE1 检测出 DL_Grant 的聚合级别 \(L = 4 \) 且在该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 4, 或 \(L = 8 \) 且 nCCE, offset = 8, 选择第四个下行 DMRS 端口偏置值和 / 或 UE1 检测 DMRS 时采用 OCC 长度。

[0260] 假定配置的偏置为 4, 这时 UE 在 DL_Grant 中如果检测出配置的端口为一层 7 端口发送, 这时 UE 需要在端口 7+4 = 11 端口上利用 OCC = 4 的方式进行对 DMRS 的信道估计。

[0261] 如果配置的端口为两个端口, 这时按照第一个端口的端口号进行两个端口的偏置。

[0262] 其中端口偏置值可以按高层信令配置的多个值中选择, 或者从标准中定义的多个值中进行选择。

[0263] 实施例 15

[0264] 假定 UE1 为 R11 的用户, 基站侧通过高层信令配置 UE1 处于某种工作模式下, 或者配置 UE1 采用 OCC 长度等于 4 的方式来信道估计 DMRS。然后在需要调度 UE1 的下行业务的子帧上在 PDCCH 或 EPDCCH 区域发送 DL_Grant 来指示在当前子帧存在 UE1 的下行数据, UE1 在该子帧上进行盲检获得 DL_Grant 中的指示信息。

[0265] 然后 UE1 根据盲检得到配置该 DL_Grant 的起始 CCE 的位置和无效 TB 信令中的新数据指示信息 NDI 来决定采用基站配置的下行 DMRS 端口偏置值和 / 或 UE1 检测 DMRS 时采用 OCC 长度。

[0266] 例如:

[0267] 当 UE1 检测出 DL_Grant 的聚合级别 \(L = 1 \) 且在该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 0/2/4 时, 或 \(L = 2 \) 且 nCCE, offset = 0/4/8, 或 \(L = 4 \) 且 nCCE, offset = 0, 或 \(L = 8 \) 且 nCCE, offset = 0, 且检测出的 DL_Grant 的无效 TB 信令中的新数据指示信息 NDI = 0 时, 选择第一个下行 DMRS 端口偏置值和 / 或 UE1 检测 DMRS 时采用 OCC 长度；

[0268] 当 UE1 检测出 DL_Grant 的聚合级别 \(L = 1 \) 且在该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 1/3/5, 或 \(L = 2 \) 且 nCCE, offset = 2/6/10, 或 \(L = 4 \) 且 nCCE, offset = 4, 或 \(L = 8 \) 且 nCCE, offset = 8, 且检测出的 DL_Grant 的无效 TB 信令中的新数据指示信息 NDI = 0 时, 选择第二个下行 DMRS 端口偏置值和 / 或 UE1 检测 DMRS 时采用 OCC 长度；

[0269] 当 UE1 检测出 DL_Grant 的聚合级别 \(L = 1 \) 且在该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 0/2/4 时, 或 \(L = 2 \) 且 nCCE, offset = 0/4/8, 或 \(L = 4 \) 且 nCCE, offset = 0, 或 \(L = 8 \) 且 nCCE, offset = 0, 且检测出的 DL_Grant 的无效 TB 信令中的新数据指示信息 NDI = 1 时, 选择第三个下行 DMRS 端口偏置值和 / 或 UE1 检测 DMRS 时采用 OCC 长度；

[0270] 当 UE1 检测出 DL_Grant 的聚合级别 \(L = 1 \) 且在该 DL_Grant 的起始 CCE 的位置 nCCE, offset = 1/3/5, 或 \(L = 2 \) 且 nCCE, offset = 2/6/10, 或 \(L = 4 \) 且 nCCE, offset = 4, 或 \(L = 8 \) 且 nCCE, offset = 8, 且检测出的 DL_Grant 的无效 TB 信令中的新数据指示信息 NDI = 1 时, 选择第四个下行 DMRS 端口偏置值和 / 或 UE1 检测 DMRS 时采用 OCC 长度。

[0271] 假定配置的偏置为 4, 这时 UE 在 DL_Grant 中如果检测出配置的端口为一层 7 端口发送, 这时 UE 需要在端口 7+4 = 11 端口上利用 OCC = 4 的方式进行对 DMRS 的信道估计。

[0272] 如果配置的端口为两个端口, 这时按照第一个端口的端口号进行两个端口的偏置。

[0273] 其中端口偏置值可以从高层信令配置的多个值中选择, 或者从标准中定义的多个
值中进行选择。

[0274] 实施例 16

[0275] 假定 UE1 为 R11 的用户，基站侧通过高层信令配置 UE1 处于某种工作模式下，或者配置 UE1 采用 OCC 长度等于 4 的方式来信道估计 DMRS，并且基站侧通过高层信令或者物理层信令中新增加 N 比特 (N > 0) 来指示 UE 侧信道估计所要采用的端口偏置值和 / 或 UE1 检测 DMRS 时采用 OCC 长度。

[0276] 假定配置的偏置值为 4，这时 UE 在 DL_Grant 中如果检测出配置的端口为一层 7 端口发送，这时 UE 需要在端口 7+4 = 11 端口上利用 OCC = 4 的方式进行对 DMRS 的信道估计。

[0277] 如果配置的端口为两个端口，这时按照第一个端口的端口号进行两个端口的偏置。

[0278] 其中端口偏置值可以只从高层信令配置的多个值中选择，或者从标准中对定的多个值中进行选择。

[0279] 实施例 17

[0280] 假定 UE1 为 R11 的用户，基站侧通过高层信令配置 UE1 处于某种工作模式下，或者配置 UE1 采用 OCC 长度等于 4 的方式来信道估计 DMRS，并且基站侧通过高层信令或者物理层信令中新增加 N 比特 (N > 0) 来指示 UE 侧信道估计所要采用的端口偏置值和 / 或 UE1 检测 DMRS 时采用 OCC 长度，其中所述 N 的取值可以如表 3 所示。

[0281] 假定配置的偏置值为 11，这时 UE 在 DL_Grant 中如果检测出配置的端口为一层 7 端口发送，这时 UE 需要在端口 11 端口上利用 OCC = 4 的方式进行对 DMRS 的信道估计。

[0282] 表 3 端口偏置指示比特和端口号对应关系

<table>
<thead>
<tr>
<th>指示比特 (N)</th>
<th>端口号</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>7</td>
</tr>
<tr>
<td>01</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
</tr>
</tbody>
</table>

[0283] 其中端口偏置值可以从高层信令配置的多个值中选择，或者从标准中对定的多个值中进行选择。

[0284] 实施例 18

[0285] 假定 UE1 为 R11 的用户，基站侧通过高层信令配置 UE1 处于某种工作模式下，或者配置 UE1 采用 OCC 长度等于 4 的方式来信道估计 DMRS，并且基站侧通过高层信令或者物理层信令中新增加 N 比特 (N > 0) 来指示 UE 侧信道估计所要采用的端口偏置值和 / 或 UE1 检测 DMRS 时采用 OCC 长度，其中所述 N 的取值可以如表 4 所示。

[0286] 假定配置的偏置值为 100，这时 UE 在 DL_Grant 中如果检测出配置的端口为一层 7 端口发送，这时 UE 需要在端口 11 端口上利用 OCC = 4 的方式进行对 DMRS 的信道估计。

[0287] 如果配置的端口为两个端口，这时按照第一个端口的端口号进行两个端口的偏
置。

<table>
<thead>
<tr>
<th>指示比特 (N)</th>
<th>端口号</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>7 或者 9 OCC 长度 = 2</td>
</tr>
<tr>
<td>001</td>
<td>8 或者 10 OCC 长度 = 2</td>
</tr>
<tr>
<td>010</td>
<td>7 或者 9 OCC 长度 = 4</td>
</tr>
<tr>
<td>011</td>
<td>8 或者 10 OCC 长度 = 4</td>
</tr>
<tr>
<td>100</td>
<td>11 或者 12 OCC 长度 = 4</td>
</tr>
<tr>
<td>101</td>
<td>13 或者 14 OCC 长度 = 4</td>
</tr>
<tr>
<td>110</td>
<td>9 OCC 长度 = 2</td>
</tr>
<tr>
<td>111</td>
<td>10 OCC 长度 = 2</td>
</tr>
</tbody>
</table>

其中端口偏置值可以从高层信令配置的多个值中选择，或者从标准中对定的多个值中进行选择。

实施例 19

假定 UE1 为 R11 的用户，基站通过高层信令配置 UE1 处于某种工作模式下，而且通过高层信令来通知端口映射偏置值，其中这个偏置值可以采用直接值进行通知或者预定一范围用范围内的值索引进行通知或者通过表格索引的方式进行通知。

假定基站侧利用表格通知的配置的偏置为 100，这时 UE 在 DL_Grant 中如果检测出配置的端口为一层 7 端口发送，这时 UE 需要在端口 11 端口上利用 OCC = 4 的方式进行对 DMRS 的信道估计。

其中端口偏置值可以从高层信令配置的多个值中选择，或者从标准中对定的多个值中进行选择。

本发明提供的下行解调导频控制信令的接收方法，其主要包括：

对 UE 专用或者公用的高层信令、下行授权控制信息 (DL_Grant) 的天线指示信息、DL_Grant 中无效传输块 (TB) 信令中的新数据指示信息、DL_Grant 中的扰码指示信息、UE 专用或者公用搜索空间中 DL_Grant 的聚合等级、UE 专用或者公用搜索空间中的 DL_Grant 的第一个控制信道单元在 UE 专用或者公用搜索空间中的相对位置、UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号以及 UE 专用或者公用搜索空间中的 DL_Grant 所在的系统帧号这些信息中的至少一种进行盲检，获得下行授权控制信息 (DL_Grant) 中的指示信息；

根据盲检所获得的 DL_Grant 中的指示信息来获得基站侧生成下行导频序列和 / 或对生成的下行导频序列进行映射时，所采用的虚拟信令组索引和 / 或端口偏移信令组索引。
本发明实施例的基站，主要包括生成及映射模块和通知模块；

生成及映射模块，用于生成下行导频序列和 / 或对生成的下行导频序列进行映射；

通知模块用于通知终端（UE）侧基站侧生成下行导频序列和 / 或对生成的下行导频序列进行映射时，所采用的虚拟信令组索引和 / 或端口偏移信令组索引；

（1）UE 专用或者公用的高层信令通知多套虚拟信令组；
（2）下行授权控制信息（DL_Grant）的天线指示信息；
（3）DL_Grant 中无效传输块（TB）信令中的新数据指示信息；
（4）DL_Grant 中的扰码指示信息；
（5）UE 专用或者公用搜索空间中 DL_Grant 的聚合等级；
（6）UE 专用或者公用搜索空间中的物理下行控制信道（PDCCH）或者 DL_Grant 的第一个控制信道单元在 UE 专用或者公用搜索空间中的相对位置；
（7）UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号；以及
（8）UE 专用或者公用搜索空间中的 DL_Grant 所在的系统号。

本发明实施例的终端，主要包括检测模块及选择模块，其中：

该检测模块，用于对 UE 专用或者公用的高层信令、下行授权控制信息（DL_Grant）的天线指示信息、DL_Grant 中无效传输块（TB）信令中的新数据指示信息、DL_Grant 中的扰码指示信息、UE 专用或者公用搜索空间中 DL_Grant 的聚合等级、UE 专用或者公用搜索空间中的 DL_Grant 的第一个控制信道单元在 UE 专用或者公用搜索空间中的相对位置、UE 专用或者公用搜索空间中的 DL_Grant 所在的子帧号以及 UE 专用或者公用搜索空间中的 DL_Grant 所在的系统号这些信息中的至少一种进行盲检获得下行授权控制信息（DL_Grant）中的指示信息；

该选择模块，用于根据检测模块获得的 DL_Grant 中的指示信息来获得基站侧生成下行导频序列和 / 或对生成的下行导频序列进行映射时，所采用的虚拟信令组索引和 / 或端口偏移信令组索引。

本领域的技术人员应该明白，上述的本发明实施例所提供的装置和 / 或系统的各组成部分，以及方法中的各步骤，可以用通用的计算装置来实现，它们可以集中在单个的计算装置上，或者分布在多个计算装置所组成的网络上，可选地，它们可以用计算装置可执行的程序代码来实现，而且，可以将它们存储在存储装置中由计算装置来执行，或者将它们分别制作成各个集成电路模块，或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样，本发明不限制于任何特定的硬件和软件结合。

虽然本发明所揭露的实施方式如上，但所述的内容只是为了便于理解本发明而采用的实施方式，并非用以限定本发明。任何本发明所属技术领域内的技术人员，在不脱离本发明所揭露的精神和范围的前提下，可以在实施的形式上及细节上作任何的修改与变化，但本发明的专利保护范围，仍须以所附的权利要求书所界定的范围为准。
基站侧通过高层信令配置UE1多套下行DMRS的虚拟信令组

S110

基站侧在需要调度UE1的下行业务的子帧上在PDCCH或者EPDCCH区域发送DL_Grant来指示在当前子帧存在UE1的下行数据

S120

UE1在该子帧上进行盲检获得DL_Grant中的指示信息

S130

UE1通过盲检得到DCI Format 2C中的天线端口指示信息，来决定采用基站配置的多套下行DMRS虚拟信令组中的哪一套

S140