
(12) United States Patent
Michiels et al.

USOO8543835B2

(10) Patent No.: US 8,543,835 B2
(45) Date of Patent: Sep. 24, 2013

(54)

(75)

(73)

(*)

(21)

(22)

(86)

(87)

(65)

(30)

Jul. 12, 2006

(51)

(52)

TAMPER RESISTANCE OF A DIGITAL DATA
PROCESSING UNIT

Wilhelmus Petrus Adrianus Johannus

Michiels, Eindhoven (NL); Paulus
Mathias Hubertus Mechtildis Antonius

Gorissen, Eindhoven (NL)

Inventors:

Assignee: Irdeto B.V. (NL)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 362 days.

Appl. No.: 12/307,931

PCT Fled: Jun. 27, 2007

PCT NO.:

S371 (c)(1),
(2), (4) Date:

PCT/B2007/052496

Jan. 8, 2009

PCT Pub. No.: WO2O08/O1O119

PCT Pub. Date: Jan. 24, 2008

Prior Publication Data

US 2009/0254759 A1 Oct. 8, 2009

Foreign Application Priority Data

(EP) O6117041

Int. C.
G06F2L/00
U.S. C.
USPC 713/189: 726/1: 726/36; 713/190;

713/192; 717/168; 717/169; 717/170; 717/171;
717/172; 717/173

(2013.01)

COMP INSTR

COMPLUT

SEWORD

TRANSFLUT

COMPENSTRANS

IDENT

ARR INSTR

E Q PA R S

(58) Field of Classification Search
USPC 713/189: 726/26: 345/601, 602
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,162,642 B2 * 1/2007 Schumann et al. T13, 189
7, 191342 B1* 3/2007 New et al. T13, 190

(Continued)
FOREIGN PATENT DOCUMENTS

HOT-312593 11, 1995
H10-154976 6, 1998

(Continued)
OTHER PUBLICATIONS

JP
JP

Elizabeth Haubert et al. Tamper-Resistant Storage Techniques for
Multimedia Systems, 2005.*

(Continued)
Primary Examiner — Andy Rao
Assistant Examiner — Shan Elahi
(74) Attorney, Agent, or Firm — Hayes Soloway P.C.
(57) ABSTRACT
A system for increasing a tamper resistance of a digital data
processing unit, comprises a first unit (901) comprising pro
cessing means (906) for processing the received digital data
in dependence on values looked up in at least one look-up
table (916) based on values in the received digital data. The
system further comprises a second unit (902) comprising
means (912) for computing at least one value for inclusion in
the digital data causing the first unit (901) to look up at least
one predetermined value in the look-up table (916) when
processing the digital data. It comprises an inserter (910) for
including the at least one value in the digital data, and an
output (908) for transmitting the digital data to the first unit.

17 Claims, 5 Drawing Sheets

603

604

606

608

60

613

615

US 8,543,835 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

7,243,236 B1* 7/2007 Sibert 713/179
7.590,866 B2 * 9/2009 Hurtado et al 713, 189
7,681,035 B1* 3/2010 Ayars et al. ... 713,165

2004/013934.0 A1* 7/2004 Johnson et al. 713,194
2004/0181671 A1* 9/2004 Brundage et al. 713, 176
2005, 0108.525 A1 5/2005 Nason et al. T13,165
2005, 0138392 A1* 6/2005 Johnson et al. T13, 186
2005/0271203 Al 12/2005 Akiyama et al.
2006/027724.0 A1* 12/2006 Choo et al. 708/5O2
2007/0022305 A1 1/2007 Ikeda 713, 189
2008/0215860 A1*
2009. O158051 A1

FOREIGN PATENT DOCUMENTS

9/2008 Jacob et al. T12/226
6, 2009 Michiels et al.

JP 2005-331656 12/2005
JP 2006-079347 3, 2006
JP 2009-5298.19 8, 2009
WO 9967918 A2 12/1999
WO 2006O46.187 A1 5, 2006
WO 2007105.126 A2 9, 2007

OTHER PUBLICATIONS

Mehmet Utku et al. Hierarchial Watermarking for Secure Image
Authentication with Localization, Jun. 2002.
P. Eisen et al. A White-Box DES Implementation for DRM
Applicatin, Oct. 2002.*
S Chow etal. White-Box Cryptography and an AES Implementation,
Aug. 2002.*

Chow "A White-Box DES Implementation for DRM Application'.
Oct. 2002.
Gorissen et al. Mechanishm for Software Tamper Resistance: An
Application of White-Box Cryptography, Oct. 2007.*
S. Chow etal: "A White-Box DES Implementation for DRM Appli
cations” ACM CCS-9 Workshop DRM 2002, Digital Rights Man
agement, Washington DC, USA, Nov. 18, 2002, pp. 1-16,
XPOO2471830.
S. Chow et al: White-Box Cryptography and an AES Implementa
tion, 9th Annual International Workshop, SAC 2002, Aug. 15-16,
2002.
Japanese Office Action (English translation only) from a counterpart
foreign application, Japanese Applin No. 2009-519016, drafted Sep.
20, 2012, 6 pages.
Hamilton E. Link and William D. Neumann, "Clarifying Obfusca
tion: Improving the Security of White-Box DES'. International Con
ference on Information Technology: Coding and Computing
ITCC2005. (Online), Apr. 4, 2005, vol. 1, p. 679-684, retrieved from
the Internet, URLs.http://ieeexplore.ieee.org/stampfstamp.jsp?tp &
arnumber=1428.542>.
Julien Bringer, Herve Chabanne, Emmanuelle Dottax. “Perturbing
and Protecting a Traceable Block Cipher'. Cryptology ePrint
Archive: Report 2006/064, (online), Feb. 20, 2006, Version:
20060223:223232, p. 1-12; retrieved from htt;://eprintiacr.org/2006/
064.pdf>.
Oliver Billet, Henri Gilbert, and Charaf Ech-Chatbi. “Cryptanalysis
of a White Box AES Implementation', LNCS, Selected Areas in
Cryptography, Aug. 2004, Vo. 3357, pp. 227-240.

* cited by examiner

U.S. Patent Sep. 24, 2013 Sheet 1 of 5 US 8,543,835 B2

10-N-

U.S. Patent Sep. 24, 2013 Sheet 2 of 5 US 8,543,835 B2

FIG. 2

U.S. Patent Sep. 24, 2013 Sheet 3 of 5 US 8,543,835 B2

901 902

904

916

FIG. 3

U.S. Patent Sep. 24, 2013 Sheet 4 of 5

COMP INSTR

COMP LUT

SEL WORD

FIG. 4

603

604

606

608

610

613

615

US 8,543,835 B2

U.S. Patent Sep. 24, 2013 Sheet 5 of 5 US 8,543,835 B2

US 8,543,835 B2
1.

TAMPER RESISTANCE OF A DIGITAL DATA
PROCESSING UNIT

FIELD OF THE INVENTION

The invention relates to increasing a tamper resistance of a
digital data processing unit.

BACKGROUND OF THE INVENTION

The Internet provides users with convenient and ubiquitous
access to digital content. Because of the potential of the
Internet as a powerful distribution channel, many consumer
electronics (CE) products strive to directly access the Internet
or to interoperate with the PC platform the predominant
portal to the Internet. The CE products include, but are not
limited to, digital set top boxes, digital TVs, game consoles,
PCs and, increasingly, hand-held devices such as PDAs,
mobile phones, and mobile storage and rendering devices,
such as Apple's iPod. The use of the Internet as a distribution
medium for copyrighted content creates the compelling chal
lenge to secure the interests of the content provider. In par
ticular it is required to warrant the copyrights and business
models of the content providers. Increasingly, CE platforms
are operated using a processor loaded with Suitable Software.
Such software may include the main part of functionality for
rendering (playback) of digital content, Such as audio and/or
video. Control of the playback software is one way to enforce
the interests of the content owner including the terms and
conditions under which the content may be used. Where
traditionally many CE platforms (with the exception of a PC
and PDA) used to be closed, nowadays more and more plat
forms at least partially are open. In particular for the PC
platform, some users may be assumed to have complete con
trol over the hardware and software that provides access to the
content and a large amount of time and resources to attack and
bypass any content protection mechanisms. As a conse
quence, content providers must deliver content to legitimate
users across a hostile network to a community where not all
users or devices can be trusted.

Typically, digital rights management systems use an
encryption technique based on block ciphers that process the
data stream in blocks using a sequence of encryption/decryp
tion steps, referred to as rounds. During each round, a round
specific function is performed. The round-specific function
may be based on a same round function that is executed under
control of a round-specific Sub-key. For many encryption
systems, the round function can be specified using mapping
tables or look-up tables. Even if no explicit tables were used,
nevertheless frequently tables are used for different parts of
the function for efficient execution in software of encryption/
decryption functions. The computer code accesses or com
bines table values into the range value of the function. Instead
of distributing keys, that may be user-specific, it becomes
more interesting to distribute userspecific algorithms instead
of keys for encryption or decryption algorithms. These algo
rithms, most often functions (mappings), have to be obfus
cated (hidden) in order to prevent redesign or prohibit the
re-computation of elements that are key-like. On computers,
tables accompanied with some computer code often represent
these functions.

Content providers must deliver content to legitimate users
across a hostile network to a community where not all users or
devices can be trusted. In particular for the PC platform, the
user must be assumed to have complete control of the hard
ware and Software that provides access to the content, and an
unlimited amount of time and resources to attack and bypass

10

15

25

30

35

40

45

50

55

60

65

2
any content protection mechanisms. The software code that
enforces the terms and conditions under which the content
may be used must not be tampered with. The general
approach in digital rights management for protected content
distributed to PCs is to encrypt the digital content, for instance
DES (Data Encryption Standard), AES (Advanced Encryp
tion Standard), or using the method disclosed in WO9967918,
and to use decryption keys.
The two main areas of Vulnerability of digital rights man

agement relying on encryption are the Software plug-ins
which enforce the terms and conditions under which the
content may be used, and the key distribution and handling.

Typically, the plug-in enforces the terms and conditions
under which the content is to be used. An attacker aiming to
remove these terms and conditions may attempt to achieve
this through tampering of the program code comprised in the
Software plug-in.

In relation to key handling, for playback a media player has
to retrieve a decryption key from a license database. It then
has to store this decryption key somewhere in memory for the
decryption of the encrypted content. This leaves an attacker
two options for an attack on the key. Firstly, reverse engineer
ing of the license database access function could result in
black box software (i.e., the attacker does not have to under
stand the internal workings of the software function), allow
ing the attacker to retrieve asset keys from all license data
bases. Secondly, by observation of the accesses to memory
during content decryption, it is possible to retrieve the asset
key. In both cases the key is considered to be compromised.

Tamper-resistant Software is so called because goal-di
rected tampering with the Software is complicated. Various
techniques for increasing the tamper resistance of software
applications exist. Most of these techniques are based on
hiding the embedded knowledge of the application by adding
a veil of randomness and complexity in both the control and
the data path of the software application. The idea behind this
is that it becomes more difficult to extract information merely
by code inspection. It is therefore more difficult to find the
code that, for example, handles access and permission control
of the application, and consequently to change it.

“White-Box Cryptography and an AES Implementation'.
by Stanley Chow, Philip Eisen, Harold Johnson, and Paul C.
Van Oorschot, in Selected Areas in Cryptography: 9th Annual
International Workshop, SAC 2002, St. John's, Newfound
land, Canada, Aug. 15-16, 2002, referred to hereinafter as
“Chow 1’, and “A White-Box DES Implementation for DRM
Applications', by Stanley Chow, Phil Eisen, Harold Johnson,
and Paul C. van Oorschot, in Digital Rights Management:
ACM CCS-9 Workshop, DRM 2002, Washington, D.C.,
USA, Nov. 18, 2002, referred to hereinafter as “Chow 2,
disclose methods with the intend to hide the key by a combi
nation of encoding its tables with random bijections repre
senting compositions rather than individual steps, and
extending the cryptographic boundary by pushing it out fur
ther into the containing application.
WO 2006/046.187 discloses how in a system, a server pro

vides a cryptographic function F to an execution device in an
obfuscated form. The function F composes output of a plu
rality of the mapping tables T, (0sisn; nel) using an Abe
lian group operator (&). A processor chooses tables O and C
such that Cx (&Ox=0, WixelD, and creates tables T.
Osism; insms n+1, where for Osism, each table T, repre
sents the respective corresponding table T, and at least one
table T. Ososn, being formed through an Abelian com
position of T and O, and at least one table T. Oscism, c.
zo being formed through an Abelian composition that
includes C. Means are used for providing the tables T', to the

US 8,543,835 B2
3

executing device. The executing device includes means for
receiving the tables and a processor for forming a function F"
that is functionally equivalent to the cryptographic function F
by an Abelian composition of the tables T.

SUMMARY OF THE INVENTION

It would be advantageous to have an improved system for
increasing a tamper resistance of a digital data processing
unit. To better address this concern, in a first aspect of the
invention a system is presented that comprises:
a first unit (901) comprising:

an input (904) for receiving the digital data, and
processing means (906) for processing the received digital

data independence on values looked up in at least one look-up
table (916) based on values in the received digital data; and
a second unit (902) comprising

means (912) for computing at least one value for inclusion
in the digital data causing the first unit to look up at least one
predetermined value in the look-up table when processing the
digital data,

an inserter (910) for including the at least one value in the
digital data, and

an output (908) for transmitting the digital data to the first
unit.

The processing performed by the first unit may comprise a
rendering of the data. The data may comprise encoded audio
and/or video content. The first unit comprises one or more
look-up tables (916), and the processing of the digital data is
performed at least partly by performing a number of table
look-ups. In many systems, the data and/or a pseudo-random
process determine which look-up table entries are being used
for the decoding. On Such systems it may happen that certain
look-up table entries are not used or only used after having
decoded already a relatively large part of the data. This aspect
of the invention allows a second unit to specify at least one
predetermined value in the look-up table that will be accessed
when processing the data. The second unit can specify this by
including at least one value in the data, where the at least one
value is selected such that it will cause the predetermined
value to be accessed and used in the processing. If the prede
termined value in the look-up table has been changed by an
attacker, the processing fails because Successful processing
requires the use of the unchanged value.
The first unit may be for example a user terminal, a com

puter, a set-top box or television. The second unit may be for
example a content provider or a server. The first and second
unit may also be part of a single physical device.

According to an aspect of the invention, the second unit
comprises encryption means for including encrypted content
in the digital data; the inserter is arranged for including the at
least one value in the encrypted content; and the processing
means is arranged for decrypting the encrypted content based
on the look-up operations.

Decryption and encryption can be efficiently implemented
using look-up tables. By inserting the values in the encrypted
content, the decoder will access the predetermined look-up
table entries without being able to distinguish the inserted
values as Such from any other values appearing in the
encrypted data. After decrypting, the decrypted data may
contain labels identifying the decryption result of the inserted
value, which will allow the means for processing to discard
the decryption result of the inserted value.

According to an aspect of the invention, the system com
prises verification means for comparing an output of the
processing means with a reference value.

10

15

25

30

35

40

45

50

55

60

65

4
The verification means may be included in the first unit, the

second unit or in a third unit and receives an outcome of the
processing. The verification means compares the outcome of
the processing with a value that is believed to be the correct
outcome. If the predetermined value in the look-up table does
not contain the value it should contain, then the comparison
fails and the verification unit detects a tampering.

According to an aspect of the invention, the processing
means is arranged for processing the digital data in a prede
termined order, where the values looked up influence a pro
cessing result of data whose processing starts after the look
up operation.

This aspect has the advantage that a relatively large portion
of the data will not be processed correctly if the look-up table
value has been tampered with. A lot of data after the inserted
value will be processed incorrectly in case of such a tamper
ing.

According to an aspect of the invention, the inserter is
arranged for positioning the at least one value in the digital
data to cause the means for decoding to lookup the at least one
predetermined value in the look-up table before processing a
predetermined block of the digital data.

This is to make sure that the predetermined block of digital
content is well protected against being processed on a system
that has been tampered with.

According to an aspect of the invention,
the first unit comprises a memory for storing a bit represen
tation of software to be executed by the first unit, and at least
part of the bit representation of the software is used as at least
part of the look-up table by the processing means; and
the at least one predetermined value in the look-up table
occurs in the at least part of the bit representation of the
software.
The fact that memory locations are used for two indepen

dent purposes makes it more difficult to tamper with the
memory location, because if a change is made to achieve a
goal related to the first use of the memory location, this
change will also affect the second use of the memory location
in a way that may be difficult to overcome.
It is noted that co-pending patent application EP06116693.0
(attorney docket PH005600) discloses a method of increasing
tamper resistance of a software system, comprising the steps
of:
composing a plurality of computer executable instructions for
processing digital databased on a plurality of parameters;
identifying in a bit representation of the parameters a part
equal to a bit representation of computer executable code that
is readable during the processing:
arranging the instructions for, during an execution of the
instructions, using at least one memory address holding the
bit representation of the code for reading the equal part of the
bit representation of the parameters by reference.

According to an aspect of the invention, the at least part of
the bit representation of the software contains instructions
executed as part of an operation of the processing means.
The instructions executed as part of the processing means

as well as the look-up tables are protected by unifying them
and storing a single copy in memory. The processing means
again may comprise a decryption means, encryption means,
or (de)compression means.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects of the invention will be elucidated
hereinafter with reference to the drawings, wherein

FIG. 1 is a diagram illustrating operations in a round of
AES;

US 8,543,835 B2
5

FIG. 2 is a diagram illustrating an example of obfuscating
tables;

FIG. 3 is a diagram illustrating an embodiment;
FIG. 4 is a flowchart illustrating processing steps;
FIG. 5 is a diagram illustrating an embodiment.

DETAILED DESCRIPTION OF EMBODIMENTS

FIG. 3 illustrates an embodiment of the invention. The
Figure shows a first unit 901 and a second unit 902. The first
unit 901 uses input 904 to receive data from the second unit
902 via output 908. Input 904 may comprise a network input
with for example TCP/IP support or a unit for reading data
from removable storage media (e.g. DVD, CD, tape). Output
908 correspondingly comprises network output or for
example disc mastering equipment. The arrow connecting
output 908 and input 904 represents the distribution channel
for transmitting data from output 908 to input 904. The sec
ond unit 902 further comprises a data storage or data genera
tor 914. The data 914 may be encoded in any particular format
such as ZIP, MPEG, MP3, and may also be encrypted. The
second unit also comprises an inserter 910 for inserting spe
cific values into the data stream. The inserter 910 may have
Some intelligence built in to make Sure that the data including
the inserted value is compliant with the format of the original
data 914. If the data is generated on the fly, the inserter may
cooperate with the data generator to properly accommodate
the inserted values in the data format. Also, the inserted values
may be labeled such that they can be recognized as Such. This
is to prevent the first unit to treat the inserted values wrongly.
However, the labeling may only become apparent after some
processing has been done.
The first unit 901 further comprises a processing means

906 and one or more look-up tables 916. The processing
means processes the incoming data. It may interpret the for
mat in which the data is presented (ZIP, MPEG, MP3, encryp
tion, etc). For example ZIP format means the processing
comprises decompression. The processing means may also be
arranged for decoding MPEG, MP3, or other formats. As a
final example, the processing means may be arranged for
decrypting or encrypting the incoming data. The processing
means 906 performs the processing at least in part by looking
up values derived from the data in one of the look-up tables
916. The values looked up may be used for further processing,
for example for defining a next table lookup, or they may
represent output data. The look-up tables play as Such an
important role in the processing of the data. If a look-up table
entry is changed by an attacker, and that look-up table entry is
used in relation to the data, the processing means may pro
duce wrongly processed data. This makes it more difficult for
the attacker to make Successful changes.

Suppose a party has some interest in the integrity of the first
unit 901. That party can use the second unit 902 to verify the
integrity of the first unit 901. Of course, the integrity may be
checked continuously by look-ups as derived from the input
data. However, the second unit 902 can be used to check for
the presence of a particular predefined value. To that end,
inserter 910 inserts specially computed values into the data
stream. The second unit 902 further comprises a means 912
for computing the value for inclusion in the digital data. The
value is computed in Such a way that the processing means
906 that is part of the first unit 901 will look up the particular
predefined value when it is processing the data. To that end,
the means 912 for computing the value has some knowledge
of the processing means 906 and/or look-up tables 916.

In some cases, the inserted value should not be used in the
processed data, as it is included solely to check the look-up

10

15

25

30

35

40

45

50

55

60

65

6
table entry. To that end, the inserter 910 may be arranged to
include a marker in the data to identify the inserted value.
Preferably, the marker only becomes visible after processing
the data by processing means 906, because otherwise an
attacker might tamper with processing means 906 to skip the
inserted value. Additionally, the encoding is usually Such that
the inserted value also influences some of the data around the
inserted value. This will render the data around the inserted
value unusable if the look-up table entry has been changed,
which is exactly what is desired. Also it is possible that the
second unit 902 requires the first unit 901 to return (part of)
the processed data to the second unit 902. The second unit 902
may then verify the processed data and thereby find out if the
predefined look-up table entry was changed or not.

In the following, it is explained how an implementation of
an algorithm can be made more tamper resistant by using
obfuscated look-up tables. Also, unification of code with
table values is explained. The examples of AES and DES are
given. However, the method can be applied to many different
kinds of algorithms, especially algorithms that can be imple
mented using one or more look-up tables.
Obfuscating Look-Up Tables
The approach of adding a Veil of randomness and complex

ity in the control and the data path of the software application
does not prevent the Software from being Subject to tamper
ing, but only makes it more difficult to determine what
changes would need to be made in order to achieve the tam
perer's aim. General principles behind tamper-resistance can
be outlined as follows. A program P can be represented as a
composite of access control and/or permissions X and with
functionality Y. An attacker may wish to tamper with the
program such that the access control or permissions are
removed without affecting the functionality. The tampered
program could then be run without access controls or permis
sions at all, or at least run Such that these controls are ignored.
The invention will be explained mainly for the case that Y
comprises a processing functionality. This functionality may
include encryption, decryption, compression, decompres
Sion, rendering, validation, authentication. The invention
applies to any kind of functionality Y.

Ideally, for a tamper-proof program, tampering with X
should immediately result in the loss of Y, no matter how
small the tampering is. In other words, X and Y should be
inseparable, or at least only separable with great difficulty.
One way of implementing inseparability would be to create a
relationship between X and Y such that any intended alter
ation to X results in an unintended alteration to Y, which
would remove the functionality from Y. In order to reinstate
the functionality of Y, a further alteration to Y would be
needed. As the functionality and control elements of the pro
gram have been made inseparable, an attack becomes much
more difficult. If such an inseparability is created over the
code of a program, the program may be made tamper-resis
tant without the need for the program code to necessarily be
veiled. Tamper-resistant software is software in which it is
complicated to perform goal-directed tampering.
AES is a block cipher with a block size of 128 bits or 16

bytes. The plaintext is divided in blocks of 16 bytes which
form the initial state of the encoding algorithm, and the final
state of the encoding algorithm is the ciphertext. To concep
tually explain AES, the bytes of the state are organized as a
matrix of 4x4 bytes. AES consists of a number of rounds.
Each round is composed of similar processing steps operating
on bytes, rows, or columns of the state matrix, each round
using a different round key in these processing steps.

FIG. 1 illustrates some main processing steps of a basic
round of AES. The processing steps include:

US 8,543,835 B2
7

AddRoundKey 2 each byte of the state is XOR'ed with a
byte of the round key.

SubBytes 4-A byte-to-byte permutation using a lookup
table.

ShiftRows 6 Each row of the state is rotated a fixed number
of bytes.

MixColumns 8 Each column is processed using a modulo
multiplication in GF(2).
The steps SubBytes 4, ShiftRows 6, and MixColumns 8 are

independent of the particular key used. The key is applied in
the step AddRoundKey 2. Except for the step ShiftRows 6, the
processing steps can be performed on each column of the 4x4
state matrix without knowledge of the other columns. There
fore, they can be regarded as 32-bit operations as each column
consists of 48-bit values. Dashed line 10 indicates that the
process is repeated until the required number of rounds has
been performed.

Each of these steps or a combination of steps may be
represented by a lookup table or by a network of lookup tables
(S-boxes). It is also possible to replace a full round of AES by
a network of lookup tables. For example, the AddRoundKey
step can be implemented by simply XORing with the round
key, while the SubEytes, ShiftRows, and MixColumns steps
are implemented using table lookups. However, this means
that the key is still visible to the attacker in the white-box
attack context. The AddRoundKey step can also be embedded
in the lookup tables, which makes it less obvious to find out
the key. The order of steps 2, 4, 6, and 8 as shown is usually
used for encryption. For decryption, the steps are performed
in the reverse order. However, it is possible to restate the
decryption process such that it uses the order of steps 2, 4, 6,
and 8 as shown in the Figure.

FIG. 2 illustrates a way to make it even more difficult to
extract the key. Let X and Y be two functions. Consider an
operation YoX(c)=Y(X(c)), illustrated as diagram 12, where
c is an input value, for example a 4-byte state column. How
ever, the approach applies to any type of input value c. Map
pings X and Y can be implemented as look-up tables which
can be stored in memory, however, when they are stored in
memory the values can be read by an attacker. Diagram 14
illustrates how the contents of the look-up tables can be
obfuscated by using an input encoding Fandan output encod
ing H. Look-up tables corresponding to XoF' and HoY are
stored as illustrated instead of X and Y, making it more diffi
cult to extract X and Y. Diagram 16 shows how to add an
additional, for example random, bijective function G. Such
that the intermediate result of the two tables is also encoded.
In this case, two tables are stored in memory: X-GoXoF'
and Y-HoYoG'. This is illustrated once more in diagram
18:

where o denotes function composition as usual (i.e., for any
two functions f(X) and g(x), fog(x)=f(g(x)) by definition), X
and Y are functions suitable for implementation by means of
look-up tables. Likewise a network consisting of more than
two functions can be encoded. The actual tables encoding X
and Y are obfuscated by combining HoYo G' in a single
look-up table and combining GoXoF' in a single look-up
table. As long as F, G, and/or H remain unknown, the attacker
cannot extract information about X and/orY from the look-up
tables, and hence the attacker cannot extract the key that is the
basis for X and/or Y. Other cryptographic algorithms, includ
ing DES and Rijndael (of which AES is a particular instan
tiation), may also be encoded as a (cascade or network of)
look-up tables that may be obfuscated in a way similar to the

10

15

25

30

35

40

45

50

55

60

65

8
above. The invention is not limited to the exemplary crypto
graphic algorithms mentioned.
Chow 1 discloses a method with the intend to hide the key

by encoding its tables with random bijections representing
compositions rather than individual steps. Preventing secret
key extraction has the advantage that an attacker is prevented
from extracting keying material which would allow software
protection goals to be bypassed on other machines, or from
publishing keying material effectively creating global
cracks which defeat security measures across large user
bases of installed software. It provides an increased degree of
protection given the constraints of a Software-only solution
and the hostile-host reality. In the approach of Chow 1, the
key is hidden by (1) using tables for compositions rather than
individual steps; (2) encoding these tables with random bijec
tions; and (3) extending the cryptographic boundary beyond
the crypto algorithm itself further out into the containing
application, forcing attackers (reverse engineers) to under
stand significantly larger code segments to achieve their
goals. Chow 1 discusses a fixed key approach: the key(s) are
embedded in the implementation by partial evaluation with
respect to the key(s), so that key input is unnecessary. Partial
evaluation means that expressions involving the key are
evaluated as much as reasonably possible, and the resultisput
in the code rather than the full expressions. The attacker could
extract a key-specific implementation and use it instead of the
key, however cryptography is typically a component of a
larger containing system that can provide the input to the
cryptographic component in a manipulated or encoded form,
for which the component is designed, but which an adversary
will find difficult to remove. Referring to the step of encoding
tables, since encodings are arbitrary, results are meaningful
only if the output encoding of one step matches the input
encoding of the next. For example, if step X is followed by
step Y (resulting in computation of YoX), the computation
could be encoded as

This way, YoX is properly computed albeit that the input
needs to be encoded with F and the output needs to be
decoded with H'. The steps are separately represented as
tables corresponding to Y and X', so that F, G, and H are
hidden as well as X and Y. Apart from Such confusion steps,
Chow 1 uses diffusion steps by means of linear (bijective)
transformations to further disguise the underlying operations.
The term mixing bijection is used to describe such a linear
transformation. The implementation of Chow 1 takes input in
a manipulated form, and produces output in a differently
manipulated form, thereby making the white-box attack con
text (WBAC) resistant AES difficult to separate from its con
taining application.
Chow 2 discusses a cryptographic implementation of DES

designed to withstand the white-box attack context with the
objective to prevent the extraction of secret keys from the
program. The techniques discussed in this paper about obfus
cating look-up table networks applies for a large part also to
other cryptographic algorithm including AES and others.
While an attacker controlling the execution environment can
clearly make use of the software itself (e.g. for decryption)
without explicitly extracting the key, forcing an attacker to
use the installed instance at hand is often of value to digital
rights management (DRM) systems providers. In general, the
approach in Chow 2 is to work towards an implementation
consisting entirely of Substitution boxes, none of which
implement affine transformations. A number of techniques
are described in Chow 2 that are needed to support the general
approach. Some of these techniques are I/O-blocked encod

US 8,543,835 B2

ing, combined function encoding, by-pass encoding, split
path encoding, and output splitting.

Partial evaluation means that expressions based on values
(partially) known at the time of implementation are pre-evalu
ated. In a simplified example, when the key is 5’, and the
original implementation contains the expression 2*key,
then rather than incorporating 2*5’ in the implementation,
the pre-evaluated expression 10 is put in the implementa
tion. This way, the key 5’ is not directly present in the code.
In the case of DES with a fixed key, this involves replacing
standard S-boxes (computed from the key at run-time) with
key-specific pre-evaluated S-boxes (computed from the key
at or before compilation time). A mixing bijection according
to Chow 2 is a bijective affine transformation designed such
that each output bit depends on a large number of input bits.
I/O-blocked encoding is an encoding method for handling
large numbers of input and output bits. In this case, the encod
ing/decoding can be formed as a concatenation of encodings,
where each encoding deals with a Subset of the input/output
bits. Combined function encoding means that if two or more
operations can be processed in parallel, a single encoding
function is applied to the concatenation of the inputs (respec
tively outputs) of the parallel operations. It is more or less the
opposite of I/O-blocked encoding. By-pass encoding means
that the encoding transformation adds a number of Superflu
ous bits of entropy to the input and/or output of the transform
to be obfuscated, and redesign the transform to be obfuscated
to “by-pass” the Superfluous bits such that they do not effect
the final output of the procedure. Split-path encoding means
that a function is modified to provide additional output bits for
obfuscating the essential information bits. Output splitting
means that the output of a function is distributed over several
partial functions, where the output of all partial functions
must be combined in a non-obvious way in order to obtain the
original output of the function.
Chow 2 proposes building encoded networks to construct

S-boxes with wide input of, say, 32 bits or even 96 bits. Such
a wide-input S-box representing an affine transformation is
divided into a network of S-boxes each having a more narrow
input and output; each of the S-boxes is encoded by incorpo
rating an encoding function in the S-box. The inverse of the
encoding function is incorporated in the S-box processing the
output of the S-box.
Unifying Code with Look-Up Table Values

In an aspect of the invention, a method for enabling tamper
resistant distribution of digital data is provided. The data
needs to be processed by computer code comprising instruc
tions available to a receiver of the digital data. Purpose of the
processing may be a rendering of audio/video signals repre
sented by the data. The processing may comprise encrypting,
decrypting, compression, decompression, or other process
ing. The method comprises composing a plurality of instruc
tions comprising an implementation of a processing algo
rithm for processing the digital data. The plurality of
instructions form a computer program, for example a plug-in
or media player needed on a user terminal for Successful
playback of the distributed content. The processing algorithm
is based on parameters. In case of decryption, the parameters
may represent a cryptographic key. The distributed data may
be (partly) encrypted using a corresponding encryption key.
A part of the parameters is identified that is equal to a part

of the processor instructions. More particularly, a part of a bit
representation of the parameters is equal to a part of a bit
representation of the instructions. A remaining part of the
parameters may be different from any processor instructions.
The identified parameters may be equal to the processor
instructions contained in the implementation of the process

10

15

25

30

35

40

45

50

55

60

65

10
ing algorithm. However, the identified parameters may also
be equal to a bit representation of processor instructions
appearing elsewhere in the system. For example, they may be
equal to some particular string of bits appearing in the kernel
of the operating system, or bits appearing in Some driver of
the system such as a TCP/IP communication stack.
The processor instructions are arranged such, that during

execution the equal part of the parameters is read (for example
for use in the decryption process) by referencing a memory
location of the part of the bit representation of the processor
instructions. The equal part of the parameters is not stored
separately in memory, as the required bit representation is
already present at the memory addresses holding the coincid
ing processor instructions. Effectively a same memory
address is used in two ways: as a storage location of a param
eter to a decryption algorithm, and at the same time as a
storage location for a processor instruction to be executed.
Typically the instruction reading the memory location as a
parameter is itself stored at a different memory location, and
accesses the memory location holding the parameter by ref
erence. The instructions form program code. The instructions
are compliant with the execution environment where the pro
gram code is executed. For example they are processor
instructions or pseudo code instructions such as virtual
machine instructions (e.g. java bytecode).

In another aspect of the invention, the parameters are cho
Sen Such that they contain a relatively large equal part. A
single memory address may hold data that can be used in two
seemingly unrelated ways: as a processor instruction and as a
parameter value. This has the effect that if an attacker changes
the processor instruction, the parameters may become
invalid, and Vice versa, if an attacker changes the parameters,
the processor instruction becomes invalid. It may thus
become more difficult for an attacker to perform goal directed
tampering.

FIG. 4 shows the steps of composing an implementation
603, identifying a coinciding part of the parameters 613, and
arranging the implementation 615. The parameters may
include one or more look-up tables, for example forming a
network of look-up tables. Such a network of look-up tables
can be computed (step 604) for example from a cryptographic
key. A word of the bit representation of the processor instruc
tions is selected (in step 606) for inclusion in at least one of the
look-up tables in the network. The inclusion of the word is
realized by applying (in step 608) a transformation to ele
ments of the look-up table. This transformation is compen
sated for by applying (in step 610) a compensating transfor
mation inverting an effect of the transformation to elements of
at least one of the other look-up tables. Usually the at least two
transformed look-up tables are connected via the network of
look-up tables. The transformed network of look-up tables
are used as the parameters of the cryptographic algorithm
rather than the original network of look-up tables.
An embodiment comprises selecting a plurality of words of

the bit representation of the instructions and creating a look
up table that contains this bit representation of the instruc
tions to form a code-containing look-up table. The code
containing look-up table is included in a network of look-up
tables forming parameters to a data processing program. USu
ally the effect of the code-containing look-up table is com
pensated for by including properly chosen look-up tables in
the network of look-up tables. The instructions forming the
program code are arranged Such that the memory addresses
holding the instructions appearing in the code-containing
look-up table are also used for reading the values of the
code-containing look-up table.

US 8,543,835 B2
11

Enforced Table Look-Ups
In an embodiment, returning to FIG.3, the second unit 902

comprises encryption means for including encrypted content
in the digital data 914. The inserter 910 includes the computed
value in the encrypted data stream for decryption by process
ing means 906. Processing means 906 comprises decryption
means for decrypting the encrypted content including the
inserted values. The decryption means uses the look-up tables
916 in one of the ways set forth. Preferably a white box
implementation of a decryption algorithm is used. This could
be the AES or DES implementations similar to Chow 1 and
Chow 2, however, any other implementation or decryption
scheme is equally usable.

In an embodiment, the processing means is arranged for
decoding the digital data in a predetermined order. Data is
processed independence on earlier processed data. One of the
possibilities to implement this is in an encryption method. It
applies for example to streaming ciphers. It also applies to
decoding schemes using a cipher-block-chaining (CBC)
mode in which a dependency is created with the plaintext
instead of (or in addition to) the ciphertext.
The inserter may be arranged to position the value that tests

the predefined look-up table entry before an important block
of data, so that a positive result of the test is required for
proper processing of the important block of data. For
example, a series of values, each testing a different predeter
mined look-up table entry, are inserted at the beginning of a
data stream. This way, a change to any of the tested entries
renders the complete data stream unusable.

Unification of key and code in memory may be done for
increasing the tamper resistance. The data to be processed in
general determines which look-up table entries will be used in
the processing. So even after tampering with the code, it could
happen that a relatively large portion of the processing is
performed Successfully because the tampered memory values
are not needed for processing the data. For example, if one
byte is changed in an 8-bit tok-bit look-up table (for any k>0),
and only one 8-bit value is needed for processing a block of
code, and each of the 256 8-bit values have equal probability
of occurring, then the probability that the changed byte is
used in the processing, is /256, or 0.4%. It would be desirable
to increase this probability, i.e., to increase the probability
that the processing will fail and/or to ensure that the process
ing fails for a larger part of the data after a change of one or
more bytes of the code. It will be appreciated that it may also
be desirable to access predefined look-up table entries that are
not unified with code but that may have some other special
meaning. Also if it is suspected that a certain value may have
been changed, it would be desirable to check that value.

Let X be a (possibly empty) stream of data blocks that has
to be processed (for example encrypted or decrypted) by a
white-box implementation. It is possible to insert in X a
number of blocks B. B. B. that are chosen in Such a
way that they access particular look-up table entries (i.e.,
particular parts of the key) in the white-box implementation.
It is also possible to precede Xby the blocks B, B, ..., B.
An approach to increase the probability that the processing

fails for a larger part of the data after a change of one or more
bytes of the code is the following. A block cipher mode can be
chosen in which an incorrect decryption propagates through
the further decryptions. In comparison, in the “electronic
cookbook” (ECB) mode in which each ciphertext block can
be decrypted independent of the other ciphertextblocks, each
block has an independent probability (0.4% in the example
above) of accessing a tampered look-up table entry. The
incorrect decryption can be made to propagate further to the
next decryptions, for example by making the decryption pro

10

15

25

30

35

40

45

50

55

60

65

12
cess of a block dependent on the decryption result of the block
decrypted previously. After the first block of data for which
the decryption result is wrong, all following blocks will also
be decrypted wrongly. This makes that a much larger portion
of the data cannot be processed correctly if the tested portion
of the code has been tampered with.

In an embodiment, a white-box implementation is used in
Some kind of a mode that propagates an error (for the reason
discussed above). For instance, the variant of the cipher
block-chaining (CBC) mode is used in which a dependency is
created with the plaintext instead of the ciphertext. For
example, in the “normal CBC mode, a data block i is
encrypted after XOR-ing it with the encrypted data blocki-1.
In the “proposed variant, a data block i is encrypted after
XOR-ing it with the unencrypted (plaintext) data block i-1.
The “normal CBC mode makes the data stream more ran
dom. The “proposed variant makes that a single decryption
error is propagated to all Subsequent data blocks. A stream S
with content to be encrypted is preceded by a number of
blocks that aim for accessing specific look-up table entries, in
particular the entries containing code. If one or more bits in
the unified code are changed, then none of the blocks of S will
be decrypted correctly. It is also possible to combine the
“normal” CBC mode with the “proposed” CBC mode by
creating a dependency (e.g. XOR-ing) with both the plaintext
and the ciphertext of a previous block. This way, the possible
advantages of both modes (randomness and error propaga
tion) are combined.

Data blocks can be computed Such that a particular look-up
table entry is accessed during the decryption process (or
during the encryption process, as applicable). Consider a
standard (non-white-box) implementation of an AES decryp
tion (or encryption) algorithm using look-up tables. Further
more, consider the following problem for this implementa
tion: Given is a round rand an input I to this round. Find an
input I to the first round of the decryption algorithm, Such
that the input to round r is I. It will be apparent that with a
Solution for this problem, a skilled person is able to design
data blocks Such that particular look-up table entries are
accessed by a predefined non-white-box implementation of a
decryption algorithm. Let f, be the function computed in
round i of standard (non-white-box) AES, i.e., f(I) is the
output of roundiifits input is given by I. It is easy to compute
the inverse f' of a round f, because all steps in the compu
tation off (AddRoundKey, SubEytes, ShiftRows, MixCol
umns) are easily invertible. As a result, I can be computed as
I=f'of,'o... of "(I).

This algorithm can be modified to derive a data block that
enforces a white-box decryption algorithm to access a par
ticular row I in, for example, a Type II table T. The modified
algorithm starts with deriving an (encoded) input to the round
containing table T Such that row 1 is accessed. The encoding
is removed from this input, to obtain an input to a round of a
(non-white-box) implementation of AES. The algorithm out
lined in the previous paragraph can now be utilized to derive
a data block for which the white-box implementation
accesses row 1. In general, encodings can be removed from an
encoded input to a particular look-up table in a network of
look-up tables that causes an access to a row 1 of that particu
lar look-up table, and the processing may be inverted using a
version of the processing algorithm without encodings. The
processing steps without encodings may be easier to invert
than the encoded look-up tables of the white-box implemen
tation. The encodings can only be removed by a person or
system that has knowledge of the encodings, not by an
attacker who does not have this knowledge.

US 8,543,835 B2
13

It is noted that, instead of deriving a data block that
accesses one particular row 1 of one particular table in the
network, a data block can be derived that causes the program
to access predetermined entries in each of a plurality of
respective look-up tables in the network of look-up tables. A
reason for this is that the input bits of a block are distributed
over a plurality of tables, therefore it is possible to choose the
plurality of bits distributed to each table to access a respective
predetermined look-up table entry.

It is also noted that the data blocks that are defined to access
particular rows in a round r also access rows in other rounds,
as the rounds are part of the network of look-up tables. Some
of these additionally accessed rows may also be unified with
code. As a result, fewer blocks need to be included to achieve
that a certain number of bytes unified with code are accessed
by the algorithm.

Besides the CBC modes discussed, a counter (CTR) mode
can also be used. In such a mode, the counter (for example a
pseudo-random sequence of values) may be encrypted rather
than the data itself. The data is XOR'ed with the encrypted
counter stream. For this mode, the freedom in choosing
counter values can be used to include the desired values
(corresponding to the predetermined table look-ups) in the
counter stream. For example, a set of counter values may be
made to occur near the beginning of the data stream, which
will cause a large portion of the unified table entries to be
accessed. If the encryption of the counter stream is again
performed in the “proposed CBC mode, then a change in the
unified code will be fatal to a processing of a large portion of
the data stream. An advantage of using CTR mode here is that
there are no Superfluous decryptions/encryptions, as the
encryption result of the chosen counter values is XOR'ed
with encrypted data to obtain valid plaintext.

The method can also be used for validation of a binary
image. By quickly accessing all entries in look-up tables, it is
quickly verified if the values in the look-up tables are correct.
It is not necessary to process real data in addition. First a set
of data blocks is derived that enforce that all S-box entries are
accessed. This can be done with the algorithm described.
Next, for all the data blocks in this set it is tested whether the
look-up tables give the correct answer. If this is the case, the
binary image is probably correct. When using a cipher-block
chaining mode as explained above, only the last result needs
to be verified because it is only correct if all previous opera
tions were correct.

FIG. 5 illustrates an embodiment of the invention. The
Figure shows a communication port 95 Such as a connection
to the Internet for connecting with a provider of digital con
tent. The content can also be obtained from medium 96 such
as a DVD or CD. Digital content on the PC is typically
rendered using media players being executed by processor 92
using memory 91. Such players can execute, for a specific
content format, a respective plug-in for performing the for
mat-specific decoding corresponding to content obtained via
communication port 95 and/or medium 96. Those content
formats may include AVI, DV, Motion JPEG, MPEG-1,
MPEG-2, MPEG-4, WMV. Audio CD, MP3, WMA, WAV,
AIFF/AIFC, AU, etc. For digital rights management pur
poses, a secure plug-in may be used that not only decodes the
content but also decrypts the content. This plug-in comprises
processor instructions and parameters (such as obfuscated
look-up tables) stored in memory 91. The processor instruc
tions and parameters may be overlapping as set forth; in that
case, Some memory locations in memory 91 contain a value
representing both processor instruction and parameter value
during execution of the plug-in. In the content, data blocks are
inserted to make Sure that some predefined memory locations

5

10

15

25

30

35

40

45

50

55

60

65

14
are used as look-up table entries during their decoding/de
crypting. For example the memory locations representing
both processor instruction and parameter value may be
addressed. A user input 94 may be provided to obtain com
mands from a user to indicate content to be rendered, and
display 93 and/or speakers are provided for rendering the
decoded and/or decrypted content.

It will be appreciated that the invention also extends to
computer programs, particularly computer programs on or in
a carrier, adapted for putting the invention into practice. The
program may be in the form of source code, object code, a
code intermediate source and object code such as partially
compiled form, or in any other form suitable for use in the
implementation of the method according to the invention. The
carrier may be any entity or device capable of carrying the
program. For example, the carrier may include a storage
medium, such as a ROM, for example a CD ROM or a semi
conductor memory, or a magnetic recording medium, for
example a floppy disc or hard disk. Further the carrier may be
a transmissible carrier Such as an electrical or optical signal,
which may be conveyed via electrical or optical cable or by
radio or other means. When the program is embodied in such
a signal, the carrier may be constituted by Such cable or other
device or means. Alternatively, the carrier may be an inte
grated circuit in which the program is embedded, the inte
grated circuit being adapted for performing, or for use in the
performance of, the relevant method.

It should be noted that the above-mentioned embodiments
illustrate rather than limit the invention, and that those skilled
in the art will be able to design many alternative embodiments
without departing from the scope of the appended claims. In
the claims, any reference signs placed between parentheses
shall not be construed as limiting the claim. Use of the verb
“comprise' and its conjugations does not exclude the pres
ence of elements or steps other than those stated in a claim.
The article “a” or “an preceding an element does not exclude
the presence of a plurality of such elements. The invention
may be implemented by means of hardware comprising sev
eral distinct elements, and by means of a suitably pro
grammed computer. In the device claim enumerating several
means, several of these means may be embodied by one and
the same item of hardware. The mere fact that certain mea
sures are recited in mutually different dependent claims does
not indicate that a combination of these measures cannot be
used to advantage.
The invention claimed is:
1. A system for increasing a tamper resistance of a digital

data processing device, comprising:
a first processor comprising:
means for cryptographically processing incoming first

digital data using one or more first values looked up in
at least one look-up table of look-up tables in a look
up table network, the look-up tables operatively cou
pling each other,

a second processor comprising:
means for computing at least one second value;
means for inserting the at least one second value into

second digital data to from the first digital data, the at
least one second value causing the means for crypto
graphically processing incoming first digital data to
look up a predefined entry of the at least one look-up
table when processing the first digital data having the
at least one second value, and

a transmitter for transmitting the first digital data having
the at least one second value to the first processor, and

means for Verifying the at least one look-up table in the
look-up table network of the look-up tables based on the

US 8,543,835 B2
15

at least one second value inserted into the second digital
data by enforcing the means for cryptographically pro
cessing incoming first digital data to look up the pre
defined entry of the at least one look-up table based on
the at least one second value inserted into the second
digital data and comparing an output of the means for
cryptographically processing incoming first digital data
with a reference value.

2. The system according to claim 1, wherein:
the means for inserting the at least one second value is

arranged for inserting the at least one second value into
encrypted content of the second digital data to form the
first digital data; and

the means for cryptographically processing incoming first
digital data is arranged for decrypting the encrypted
content using the one or more first values looked up in
the at least one look-up table in the look-up table net
work based on the at least one second value inserted into
the encrypted content.

3. The system according to claim 1, wherein the means for
cryptographically processing incoming first digital data is
arranged for performing key-based encryption or decryption
on the first digital data in a predetermined order, where the
one or more first values looked up in the at least one look-up
table for the encryption or decryption influence a processing
result of data whose processing starts after the look-up opera
tion.

4. The system according to claim 1, wherein the means for
inserting the at least one second value is arranged for posi
tioning the at least one second value in the first digital data to
cause the means for cryptographically processing incoming
first digital data to look up the predefined entry of the at least
one look-up table for encryption or decryption before pro
cessing a predetermined block of the first digital data.

5. A system for increasing a tamper resistance of a digital
data processing device, comprising:

a first processor comprising:
means for cryptographically processing incoming first

digital data using one or more first values looked up in
at least one look-up table;

a second processor comprising:
means for computing at least one second value,
means for inserting the at least one second value into

second digital data to form the first digital data, the at
least one second value causing the means for crypto
graphically processing incoming first digital data to
look up at least one predetermined first value in the at
least one lookup table when processing the first digital
data having the at least one second value, and

a transmitter for transmitting the first digital data having
the at least one second value to the first processor,

wherein:
the first processor comprises a memory for storing a bit

representation of software to be executed by the first
processor at a memory address, the memory address
being shared by at least part of the bit representation
of the software and the at least one predetermined first
value in the at least one look-up table used by the
means for cryptographically processing incoming
first digital data such that the at least part of the bit
representation of the Software is equal to the at least
one predetermined first value.

6. The system according to claim 5, wherein the at least part
of the bit representation of the software contains instructions
executed as part of an operation of the means for crypto
graphically processing incoming first digital data.

10

15

25

30

35

40

45

50

55

60

65

16
7. A system for increasing a tamper resistance of a digital

data processing device for cryptographically processing,
comprising:
means for computing at least one first value,
means for inserting the at least one first value into first

digital data to form second digital data, the at least one
first value for verifying a look-up table of look-up tables
in a look-up table network, the look-up tables opera
tively coupling each other, the at least one first value
causing the processing device to look up a predefined
entry of the at least one look-up table when processing
the second digital data having the at least one first value,
and

a transmitter for distributing the second digital data having
the at least one first value to the processing device to
verify the at least one look-up table in the look-up table
network of the look-up tables by enforcing the process
ing device to look up the predefined entry of the at least
one look-up table based on the at least one first value
inserted in the first digital data and comparing an output
of the processing device with a reference value.

8. A method of increasing a tamper resistance of a digital
data processing, comprising:

in a first processor:
cryptographically processing incoming first digital data

using one or more first values looked up in at least one
look-up table of look-up tables in a look-up table
network, the look-up tables operatively coupling each
other;

in a second processor:
computing at least one second value,
inserting the at least one second value into second digital

data to form the first digital data, the at least one
second value causing the first processor to look up a
predefined entry of the at least one look-up table when
processing the first digital data having the at least one
second value, and

transmitting the first digital data having the at least one
second value to the first processor, and

verifying the at least one look-up table in the look-up table
network of the look-up tables based on the at least one
second value, including:
enforcing the first processor to look up the predefined

entry of the at least one look-up table based on the at
;east one second value inserted into the second digital
data, and

comparing an output of the processing of the incoming
first digital data with a reference value.

9. A system for increasing a tamper resistance of a digital
data processing device, comprising:
means for cryptographically processing first digital data

using one or more first values looked up in at least one
look-up table;

a memory for storing a bit representation of software to be
executed by the means for cryptographically processing
first digital data at a memory address, the memory
address being shared by at least part of the bit represen
tation of the software and at least part of the at least one
look-up table used by the means for cryptographically
processing first digital data Such that the at least part of
the bit representation of the software is equal to the at
least part of the at least one look-up table:

where the first digital data contains at least one second
value for verifying the at least one look-up table, the at
least one second value causing the means for crypto
graphically processing first digital data to look up a

US 8,543,835 B2
17

predefined entry of the at least one look-up table when
processing the first digital data.

10. A method for increasing a tamper resistance of a digital
data processing device, comprising:

cryptographically processing, by a processor, incoming
first digital data using one or more first values looked up
in at least one look-up table based on at least one second
value in the first digital data;

storing in a memory a bit representation of Software to be
executed by the processor at a memory address, the
memory address being shared by at least part of the bit
representation of the software and at least part of the at
least one look-up table used by the processor Such that
the at least part of the bit representation of the software
is equal to the at least part of the at least one look-up
table;

where the first digital data contains at least one second
value for verifying the at least one look-up table, the at
least one second value causing the processor to look up
a predefined entry of the at least one look-up table when
processing the first digital data.

11. The system according to claim 1, wherein the at least
one look-up table contains at least part of a bit representation
of software to be executed by the processor.

12. The system according to claim 1, wherein the at least
one second value is computed so the white-box implementa
tion accesses a selected row in the at least one look-up table.

10

15

25

18
13. The method according to claim 10, comprising:
selecting the at least part of the bit representation of the

Software and creating the at least one look-up table con
taining the selected at least part of the bit representation
of the software.

14. The method according to claim 10, comprising:
deriving the at least one second value for which white-box

implementation accesses a selected row in the at least
one look-up table.

15. The method according to claim 8, comprising:
storing a bit representation of software to be executed by

the first processor at a memory address in a memory, the
memory address being shared by at least part of the bit
representation of the Software and the at least one pre
defined entry of the at least one look-up table such that
the at least part of the bit representation of the software
is equal to the bit representation of the at least one
predefined entry of the at least one look-up table.

16. The method according to claim 10, wherein the at least
part of the bit representation of the Software comprises string

20 of bits in an operating system or a driver of the system.
17. The method according to claim 10, comprising:
inserting the at least one second value into second digital

data to form the first digital data to be processed in the
processor, and

enforcing the processing device to look up the predefined
entry of the at least one look-up table based on the at
least one second value in the first digital data and com
paring an output of the processor with a reference value.

k k k k k

