PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GO6F 11/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 98/12636

26 March 1998 (26.03.98)

(21) International Application Number: PCT/US97/02345

(22) International Filing Date: 13 February 1997 (13.02.97)

(30) Priority Data:

08/714,938 us

17 September 1996 (17.09.96)

(71)(72) Applicant and Inventor: LETTVIN, Jonathan, D.
[US/US]; 194 Waltham Street, Lexington, MA 02173 (US).

(74) Agents: FRANK, Steven, J. et al.; Cesari and McKenna, LLP,
30 Rowes Wharf, Boston, MA 02110 (US).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY,
CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KG, KP, KR,
KZ, LK, LR, LS, LT, MD, MG, MK, MN, MX, NZ, PL,
RO, RU, SG, SI, SK, TJ, TM, TR, UA, UZ, VN, ARIPO
patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Title: SOFTWARE ANTI-VIRUS FACILITY

(§7) Abstract

A virus-resistant disk has a "hidden parti-
tion" in which anti-virus software is stored; the
hidden partition not only shields the software
from many viruses, but provides storage space
that does not reduce the disk’s formatted or ad-
vertised capacity. The disk includes software to
cause the computer to execute the anti-virus soft-
ware. The invention provides a hidden partition
by utilizing storage space on the disk that is not
reflected in the size and geometry information
stored on the disk, e.g., in the BIOS Parameter

Block.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
1
CcM
CN
Ccu
CcZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing intemational applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Beigium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’lvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
Fi
FR
GA
GB
GE
GH
GN

KR
K7
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LY
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
D
TG
TJ
™
TR
T
UA
UG
Us
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

25

WO 98/12636 PCT/US97/02345

SOFTWARE ANTI-VIRUS FACILITY

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains material which is

subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears
in the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

FIELD OF THE INVENTION

The invention relates to detecting, identifying and removing computer viruses
from components of a computer, and more particularly to a startup (bootstrap) disk
that stores anti-virus software and facilitates the execution of this software at
bootstrap time, i.e., before the computer begins executing an ultimate operating
system (e.g., MS-DOS).

BACKGROUND OF THE INVENTION

A computer virus is software that is executed by a computer without the
knowledge or authorization of the computer’s user and that causes unauthorized and
unwanted changes to components of the computer or to information stored on the
computer. For example, some viruses alter or destroy data stored on disk, scramble
characters on video display screens, display misieading messages to users, and
consume computer or network resources thereby preventing users from performing
desired tasks. A virus usually attempts to propagate itself to other computers by
making copies of itself on any accessible diskettes or hard disks (collectively “disks”)
or other non-volatile memory such as “flash” read-only memory (ROM). A virus
“attack” herein means any change made to a computer component by a virus, such as
a change to stored information or the making of a propagation copy of the virus.

Viruses typically propagate by opportunistically copying themselves to

10

15

WO 98/12636 PCT/US97/02345

virus. If a user transports an infected disk to a second computer and the second
computer executes the virus, the virus then attempts to infect disks on the second
computer, and so on. Viruses generally employ one of two techniques to cause a
subsequent execution of themselves. Some viruses attach themselves to application
programs that are stored on a disk. When a user runs the infected program, the virus
also executes. Most viruses, howe\ier, are “bootstrap-time viruses” that replace the
startup (bootstrap) program located on the infected disk with a program that causes
the computer to execute the virus if the disk is subsequently used as a startup disk on
this or another computer. Once the virus executes, it arranges for itself to remain in
the memory of the computer after bootstrap, but causes the computer to execute the
normal bootstrap program so as to mask its presence. Following completion of
bootstrap, the virus remains stored on the computer and capable of causing further
mischief.

Bootstrap programs execute as part of a bootstrap sequence initiated by the
application of power or a reset signal to a computer. During this sequence, the
computer performs a power-on self-test (‘POST"), then locates a bootstrap program
on a disk and then executes the bootstrap program. The bootstrap program is always
stored at a characteristic, fixed location (the “boot block”) on the disk. Generally, the
bootstrap program readies the computer for normal functioning by causing it to load
and execute an operating system, such as MS-DOS, 0S/2, NetWare, UNIX, or
Windows-NT, although the bootstrap program can also cause the computer to
execute one or more other programs prior to executing the operating system.
Accordingly, as used herein, the term “bootstrap” includes the time and steps taken
between the application of power or reset signal and the execution of the last program
prior to the operating system; and “operating system” is software that manages a
computer’s resources (e.g., disks and memory) and provides low-level services (e.g.,
/O, timer, memory management, interprogram communication) to application
programs. An “application program” is not part of an operating system and can only
execute under the control of an operating system.

To overcome the problems created by viruses, practitioners have developed a
variety of “anti-virus” programs that both detect and remove known viruses. Anti-virus

software searches for “signatures”, including characteristic behaviors, of viruses and

10

15

WO 98/12636 PCT/US97/02345

include Command Software Systems F-PROT, IBM AntiVirus, and Sophos Sweep.
However, and quite problematically, bootstrap-time viruses can interfere with the
operation of prior art anti-virus software. In addition, the presence of an operating
system can obscure the presence of a virus in the memory of a computer.

As noted previously, a bootstrap program is stored at a characteristic disk
location or address. For “addressing” purposes, disks are divided into surfaces,
tracks, and sectors. The “formatted capacity”’, in bytes, of a disk (also known as the
“advertised capacity”) equals the product of the number of: surfaces, tracks per
surface, sectors per track, and bytes per sector of the disk. A hard disk can be further
divided into one or more logical “partitions”, each partition being treated as a separate
disk. Generally, the first sector of a diskette and the first sector of each partition of a
hard disk contains a disk descriptor block which contains size and geometry
information about the disk, such as the number of sectors per track. “BIOS Parameter
Block” herein refers to the area on the disk where this information is characteristicaily
stored. The following Table 1 lists the relevant fields of the BIOS Parameter Block.
“Conventional storage capacity” of a disk herein means the formatted capacity of the

disk as reflected by information in the BIOS Parameter Block of the disk.

Size (bytes) Field
2 Number of bytes per sector
2 Total number of sectors in volume (logical partition)
2 Number of sectors per track
2 Number of surfaces (heads)
2 Number of entries in root directory

Table 1 - Selected Fields of the BIOS Parameter Block

20 Computers can include storage devices other than conventional disks.
For reasons of design or in an emergency, the computer can be booted from a
non-disk device such as a flash ROM, removable bubble random-access
memory (RAM), an optical storage device such as a CD-ROM, or a tape drive.

These devices, too, can be infected with viruses.

10

15

WO 98/12636 PCT/US97/02345

It is therefore an objective of the invention to provide a startup storage
medium that causes the computer to automatically execute anti-virus software
each time the computer starts from the storage medium, i.e., during bootstrap,
so as to detect bootstrap-time viruses before or after they have executed and
implanted themselves in the system.

It is a further objective to provide a storage medium that stores the anti-
virus software without reducing the amount of conventional storage capacity of
the storage medium.

It is a further objective to provide a storage medium that stores the anti-
virus software so as to make it inaccessible to many viruses.

It is a further objective to provide a mechanism to detect and repair virus-
inflicted damage to the anti-virus software.

It is a yet further objective to provide a virus-tolerant storage medium that
can withstand an attack by a virus without incurring damage to information
stored thereon.

Other objectives will, in part, be obvious and will, in part, appear
hereinafter. The invention accordingly comprises an article of manufacture
possessing the features and properties exemplified in the constructions
described herein and the several steps and the relation of one or more of such
steps with respect to the others and the apparatus embodying the features of
construction, combination of elements and the arrangement of parts which are
adapted to effect such steps, all as exemplified in the following detailed

description, and the scope of the invention will be indicate'd in the claims.

SUMMARY OF THE INVENTION

The invention provides a storage medium on which is stored anti-virus
software and/or software designed to detect and repair damage to stored
information, as well as instructions to cause a computer to execute the software
whenever the disk is used to start the computer. The invention may be broadly

applied to a variety of storage media amenable to selective actuation by a

10

15

WO 98/12636 PCT/US97/02345

user—that is, designation by the user as a temporary or permanent “system”
device from which the computer can boot. Most commonly, computers boot from
a disk: the permanently installed hard drive or a selectably introduced diskette,
either of which contains the necessary bootstrap program. A user may,
however, designate a non-disk device such as a flash ROM, removable bubble
RAM, an optical storage device such as a CD-ROM, or a tape drive as the
system device that the computer accesses during startup. Another alternative is
a non-local storage medium, i.e., one not intimately associated with the
computer, such as a network disk configured to operate as a shared resource
among the computers connected to the network (where the network may be a
local-area network, a wide-area network or even the Internet). Any of these
storage devices may be selected or designated by a user in the sense of
configuring the computer to look to this device for the bootstrap program.

Alternatively, the invention provides a storage medium having a “hidden
partition” in which the anti-virus and/or repair software is stored: the hidden
partition not only shields the software from many viruses, but provides storage
space that does not reduce the medium'’s formatted or advertised capacity.
Once again, the concept of a partition is not confined to disks, but applies to the
various storage media discussed above. The storage medium of the present
invention preferably also includes software to cause the computer to execute the
anti-virus software. The invention provides a hidden partition by utilizing space
on the storage medium that is not reflected in the size and geometry information
stored on the medium, e.g., in the BIOS Parameter Block. Heretofore, no reason
existed for a virus to assume storage space existed on a disk beyond that
reflected by the BIOS Parameter Block or to access such space because the
BIOS Parameter Block is the standard mechanism for identifying the
configuration and storage capacity of a disk.

A “conventional program” herein means a program that either relies on
the accuracy of the BIOS Parameter Block to access the storage medium or
accesses the medium via an operating system that so relies. Most viruses are

conventional programs. Advantageously, the invention utilizes the hidden

10

15

WO 98/12636 PCT/US97/02345

partition to make programs and information stored in the hidden partition
inaccessible to most existing viruses. In addition, storing programs and
information in the hidden partition does not reduce the amount of available
space on the storage medium, as reflected by the BIOS Parameter Block.

The invention provides the hidden partition by taking advantage of
unutilized storage capacity on the storage medium. For example, diskettes
commonly have gaps between the sectors of a track. In one embodiment, the
invention provides a diskette in which at least some of the gaps have been
reduced in size, thereby bringing closer together the sectors of the track and
leaving enough room for one or more additional sectors on the track. Not all
tracks need have the same number of additional sectors. The additional sectors
on all the tracks collectively form the hidden partition. Information in the BIOS
Parameter Block does not reflect the existence of the additional sectors.

Hard disks generally have unutilized storage capacity in the form of spare
sectors and/or spare tracks, the existence of which is not reflected by
information in the BIOS Parameter Block. A hard disk lacking such spares
generally can be formatted to contain them.

The invention provides a storage medium on which a special bootstrap
program is stored in the boot block and, if the storage medium functions at
startup, the normal bootstrap program is stored elsewhere on the medium. The
special bootstrap program causes the computer to execute the software stored
in the hidden partition and then, upon completion of that software (and if the
storage medium functions at startup), to execute the normal bootstrap program,
which causes the computer to execute the operating system. A source listing of
an exemplary special bootstrap program appears later in this specification.

Alternatively, the storage medium also contains a bootstrap-time
operating system ("BTOS") and the special bootstrap program causes the
computer to execute the BTOS. The BTOS causes the computer to execute one
or more anti-virus, disk-maintenance (described below), and/or other programs
stored in the hidden partition and then, upon completion of the programs (and if

the storage medium functions during startup), to execute the normal bootstrap

10

15

25

WO 98/12636 PCT/US97/02345

program. The normal bootstrap program causes the computer to perform an
otherwise-normal startup, including executing the operating system (e.g., MS-
DOS) with which the user can interact and which provides services to
application programs. The operating system invoked by the normal bootstrap
program is herein referred to as the “ultimate operating system” to distinguish it
from the BTOS. “Post-bootstrap” herein means the time and steps taken after
execution of the normal bootstrap program.

The BTOS facilitates the development and use of programs that must be
executed before an ultimate operating system is executed. Executing before the
ultimate operating system provides advantages to anti-virus software because
the software can take advantage of conditions within the computer that only exist
during bootstrap and do not exist after the computer begins executing the
ultimate operating system. For example, an “interrupt vector’ contains the
address of a routine that is associated with the vector and that handles requests
for service from a program or device. Whenever the program or device (e.g., a
hard disk) requests service (“generates an interrupt”), the computer uses the
address in the vector to pass control to the service routine. During bootstrap,
the disk vector initially points to a well-known routine within the Basic
Input/Output System (BIOS), but the ultimate operating system changes the
vector to point to a routine within itself. Many viruses modify the disk vector to
point to themselves, but it is difficult for an anti-virus application program to
distinguish a disk vector that points to a virus from one that points to a routine
within an ultimate operating system,; thus it is easier for anti-virus software to
detect the presence of a virus by examining the disk vector before the computer
begins executing an ultimate operating system. The BTOS provides additional
advantages in that developers of programs that must be executed before an
ultimate operating system are relieved of developing special mechanisms that
alter normal startup operations in order to invoke the programs; in addition, the
BTOS provides low-level services to the programs and so simplifies them, and
relieves users from concerning themselves with the details of invoking

potentially several bootstrap-time programs.

10

15

WO 98/12636 PCT/US97/02345

Software that accesses the hidden partition is written with the knowledge
that the additional sectors exist. The software accesses the additional sectors
via program calls to the BIOS or BTOS rather than to the ultimate operating
system because the BIOS and BTOS allow access to arbitrary addresses on the
disk regardless of the contents of the BIOS Parameter Block and the ultimate
operating system does not.

Alternatively, the storage medium also contains an application program
that causes the computer to execute the anti-virus, disk-maintenance and/or
other software that is stored in the hidden partition. This application program is
not a conventional program because it is capable of accessing the hidden
partition without relying on the BIOS Parameter Block or using an operating
system that so relies. Such a program allows the user to run the anti-virus
software even if a virus has attacked the special startup program and thereby
prevented execution of the anti-virus software at bootstrap time. The anti-virus
program examines the special startup program located in the boot block and
repairs any damage done to it so it will function properly on subsequent
bootstraps.

In case a virus attacks a storage medium having the anti-virus capabilities
described above, the invention enables the disk to withstand the attack without
incurring damage to files stored on the medium. The invention provides a virus-
tolerant storage medium that prevents an operating system from placing files in
sectors that are known to be attacked by several viruses, thereby shielding the
files from attack by the viruses. An operating system uses a file system to
manage storage space on a storage medium (typically a disk) and create,
delete, catalog and facilitate access to files on the storage medium. On a disk,
storage space is allocated in units of “clusters” (contiguous groups of sectors).
All clusters on a disk contain the same number of sectors and each cluster has a
“cluster number” and a corresponding entry in a file system allocation table, e.g.,
the File Allocation Table or “FAT" in MS-DOS. The file system “chains” together
clusters to allocate space to a file. Each FAT entry records whether the

corresponding cluster is available, bad, or in use by afile. If it is in use, the

10

15

WO 98/12636 PCT/US97/02345

entry contains the cluster number of the next cluster in the chain for the file or, if
it is the last cluster of the file, a “last-cluster” flag. The following Table 2 lists the
relevant field of a FAT entry. A “directory” catalogs files stored on a disk. For
each file, a directory stores the file's attributes, e.g., read-only, and correlates
the file’s name and extension to its first cluster number. Directories can be
organized into a hierarchy starting at a “root” directory. The following Table 3
lists the relevant fields of a directory entry. Disk-maintenance software, such as
CHKDSK, SCANDISK and SpinRite, uses well-known techniques to detect and
repair damage to information, such as the FAT and directory, stored by the file
system and to overcome recording errors, such as signals that are recorded off-
center on a track. The invention provides a storage medium having entries in its
file system allocation table that prevent the allocation to any file of sectors that
are known to be attacked by viruses. For example, the entries can mark the

sectors as being “bad” or already in use.

Size Field

3 nibbles (for 12-bit FAT) Next cluster number or flag
2 bytes (for 16-bit FAT)
4 bytes (for 32-bit FAT)

Table 2 - Selected Field of a FAT (File Allocation Table) Entry

Size (bytes) Field
8 File Name
3 File Extension
1 File Attributes (e.g. read-only)
2 (4 for 32-bit FAT) First Cluster Number

Table 3 - Selected Fields of a Directory Entry

10

15

WO 98/12636 PCT/US97/02345

10

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing discussion will be understood more readily from the
following detailed description of the invention, when taken in conjunction with
the accompanying drawings, in which:

Fig. 1 is a diagram of the sectors of one surface of a diskette that has a

hidden partition according to the invention:

Fig. 2 is a diagram of the sectors of one surface of a hard disk having a

hidden partition according to the invention; and

Fig. 3 is a flowchart illustrating a bootstrap sequence involving a disk

provided by the invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The following discussion illustrates application of the invention to a
storage medium in the form of a disk or diskette, it being understood that other
storage media (e.g., flash ROM, removable bubble RAM, an optical storage
device such as a CD-ROM, or a tape drive) may be substituted therefor and are
considered within the scope of the invention. Refer first to F ig. 1, which shows
generally at 100 a surface of a diskette according to the invention, with
representative tracks 102a-d and 104a-c. Each track has sectors, such as
sector 106. On a prior art high-density 1.44 MB (formatted capacity) diskette,
each track contains 18 sectors (numbered 1-18). Tracks 102a-d each contain
18 sectors, as in the prior art. As a diskette spins, the gaps between sectors
provide an opportunity for circuitry within the diskette drive to synchronize itself
with the carrier and data signals recorded on the diskette. The size of the gap
between the sectors of tracks 102a-d is represented by angle 108. The size of
the gap, represented by angle 110, between the sectors of tracks 104a-c is
smaller than the size of the gap 108 between the sectors of tracks 102a-d,
leaving room for, preferably, two additional sectors per track without negatively
impacting the ability of the circuitry to synchronize itself. The gap can be further

reduced, leaving room for three additional sectors per track, but with current

10

15

WO 98/12636 PCT/US97/02345

11

technology such small gaps negatively impact the ability of the circuitry to
synchronize itself. The additional sectors in track 104c¢ are sector number “19”
(112a in Fig. 1) and sector number “20” (112b in Fig. 1). Collectively, all the
additional sectors on the diskette, such as sectors 112a-f, make up the hidden
partition 114. (Fig. 1 assumes that only tracks 104a-c have additional sectors.)

Not all tracks need contain additional sectors, thus making it difficult for a
vims to detect the existence of the hidden partition 114 and the location of the
tracks 104a-c that contain additional sectors. The manufacturer of diskettes can
vary, from diskette to diskette, which tracks have additional sectors. Preferably,
all tracks contain two additional sectors, providing a total of 160KB in the
hidden partition of an 80-track diskette. Advantageously, these two additional
sectors at the end of each track provide a rotational delay between the last
conventional sector (e.g., sector number “18”) of a track and the first sector of
the next track. This delay allows the diskette drive enough time to reposition the
head on the next track before the first sector of the next track passes under the
head, thereby speeding up access to data on the diskette. Without this delay,
the first sector of the next track would pass under the head before the diskette
drive could reposition the head and, once the drive repositions the head, the
drive would incur a time penaity of nearly one revolution before it could read the
first sector in the next track.

Table 1 lists the fields of the BIOS Parameter Block that are relevant to
the invention. The BIOS Parameter Biock located on diskette contains the value
“18” in the “Number of sectors per track” field. The “Total number of sectors in
volume (logical partition)” field contains the product of 18, the number of tracks
per surface and the number of surfaces on the diskette. Thus, the BIOS
Parameter Block located on the diskette hides the additional sectors 112a-f,
therefore making the hidden partition 114 inaccessible to conventional
programs.

Fig. 2 shows generally at 200 a surface of a hard disk according to the
invention, including representative tracks 202a-e and representative sectors,

such as sector 204. If the hard disk does not have spare sectors and/or spare

10

15

WO 98/12636 PCT/US97/02345

12

tracks, or if it is not desirable to utilize these spares to form a hidden partition,
the hard disk can be formatted so that the BIOS Parameter Block on the disk
does not reflect the existence of selected sectors. For example, by reducing the
“Number of sectors per track” field in the BIOS Parameter Block by two and
reducing the “Total number of sectors in volume (logical partition)” field by the
product of two, the number of tracks per surface and the number of surfaces on
the disk, sector number “681” and sector number “682" in each track 202a-e,
i.e., sectors 206a-j, become part of the hidden partition 208, and therefore
inaccessible to conventional programs. However, | prefer to create a hidden
partition on the last sectors of a disk by simply reducing the “Total number of
sectors in volume (logical partition)” field in the BIOS Parameter Block because
this enables the creation of a hidden partition of arbitrary size.

Fig. 3 is a flowchart illustrating a bootstrap sequence involving a disk
provided by the invention. Upon application of power or a reset signal, the
computer starts at step 300 performs a power-on self-test (‘POST") at step 301
and executes the special bootstrap program at step 302.

At decision step 304, the special bootstrap program ascertains whether
the computer was started from a diskette or from a hard disk. If the computer
was started from a diskette, at step 306 the special startup program warns the
user of the risk of propagating a virus inherent in starting the computer from a
diskette. The risk exists because a diskette that was previously inserted in
another computer may have been infected by a virus running on the other
computer, even if the diskette was not used to start the other computer.

At step 308 the special startup program performs an integrity test on itself
to ascertain whether it has been damaged, e.g., by a virus attack, and
announces the results of the self-test.

At step 310 the special startup program causes the computer to execute
the BTOS, which is stored in the hidden partition 114 or 208. At step 312 the
BTOS checks for indication of the existence of viruses in the computer and
announces the results of the check. For example, the BTOS examines the disk

vector, as described earlier. At step 314 the BTOS then causes the computer to

10

15

25

WO 98/12636 PCT/US97/02345

13

load and execute virus removal and integrity check software, which is stored in
the hidden partition 114 or 208.

At decision step 315, if all detected viruses have been removed, the
software checks at decision step 316 whether the special bootstrap program in
the boot block had been attacked. If so, at step 317 the software copies one of
several backup copies of the special bootstrap program, which are stored in the
hidden partition 114 or 208, to the boot block.

In addition to being capable of detecting the existence of viruses in the
computer, the BTOS is an operating system and can provide services to
application programs (“compliant programs”) written to make program calls to it.
At step 318 the BTOS causes the computer to search the hidden partition for
compliant programs, such as third-party anti-virus, disk-maintenance or other
software, and to load and execute any such programs it finds. Alternatively, the
BTOS can search for compliant programs on portions of the disk in addition to
the hidden partition, but | prefer to store all such software on the hidden partition
so it does not reduce the conventional storage capacity of the disk and to make
it inaccessible to conventional viruses.

At step 320 the BTOS restores the memory and registers of the computer
to an “initialization” state, i.e., substantially the state that existed immediately
after the POST. This state is well known, particularly to practitioners who write
BIOS programs, and the step is necessary to enable the normal bootstrap
program to execute correctly. For example, when a virus modifies the disk
vector, the virus stores within itself the original contents of the vector so the
virus can pass control to the disk handling routine after performing its mischief.
When the anti-virus software detects such a modified vector, it examines the
virus, retrieves the original contents of the vector and restores the vector's
original contents. The location at which a virus stores the original contents can
be ascertained by “disassembling” the virus. Disassembly is a well-known
process of converting object code to source code.

As a second example, the anti-virus software recovers memory utilized by

a virus when it removes the virus. Viruses often mask their presence by

10

15

WO 98/12636 PCT/US97/02345

14

reducing the apparent amount of memory on the computer by an amount equal
to their size (including buffers, etc.), e.g., by reducing a field in the BIOS Data
Area that contains the number of kilobytes of memory that exist below memory
address 640KB. Generally, an ultimate operating system examines the BIOS
Data Area when it begins executing and configures itself accordingly.
Application program anti-virus software removes a virus after the ultimate
operating system begins executing, thus after the ultimate operating system has
examined the BIOS Data Area, so despite having removed the virus the
application program anti-virus software does not enable the ultimate operating
*system to utilize the memory previously utilized by the virus. Anti-virus software
provided by the invention executes before the ultimate operating system so,
after removing a virus, it increases the field in the BIOS Data Area by the
amount of memory recovered, thereby enabling the ultimate operating system to
utilize the recovered memory.

At step 322 the BTOS causes the computer to execute the normal
bootstrap program and then finishes at step 324. The normal bootstrap program
causes the computer to execute the ultimate operating system.

Several viruses are known to attack certain sectors and certain clusters of
a disk. In case a virus attacks a disk having the anti-virus capabilities just
described, these sectors and clusters are preferably aliocated to a “dummy” file,
thereby preventing their being allocated to any other files or used by directories,
thus preventing these viruses from inflicting any damage on the files or
directories. Some viruses attacked the two sectors of a disk that generally
contain the last two sectors of the root directory. Reducing the size of the root
directory by two sectors (see Table 1, “Number of entries in root directory” field
of the BIOS Parameter Block) prevents this type of attack on the root directory.
Preferably, the dummy file includes the first two sectors removed from the root
directory, i.e., the first two clusters on the disk after the root directory, and the
cluster comprising the last track on the last surface. (Assuming the cluster size
is equal to one.) The dummy file, named “ViToler8.(c)", has an entry in the

directory and entries, corresponding to the above-listed sectors and clusters, in

10

15

WO 98/12636 PCT/US97/02345

15

the FAT. The directory entry marks the file as “hidden” in the MS-DOS sense.
MS-DOS does not list hidden files when it provides a directory listing of files, so
users will not generally know the file exists. While users can remove the hidden
attribute from the file, marking the file hidden reduces the possibility that a user
will delete the file and thereby make the virus-targeted clusters and sectors
available for allocation to other files.

While | prefer to use a hidden partition to store the anti-virus, disk-
maintenance and other software and the BTOS, it is also possible to utilize a
disk with no hidden partition and store any of these within the conventional
storage capacity of the disk. In such a case, the special bootstrap program
causes the computer to execute the anti-virus software or BTOS and then, if the
disk is a startup disk, to execute the normal bootstrap program. When the anti-
virus, disk-maintenance, or other software or the BTOS is stored within the
conventional storage capacity of the disk, its files should be marked as hidden in
the MS-DOS sense to reduce the possibility that a user will delete them or that a
virus will attack them.

It will therefore be seen that | have developed a virus-tolerant and virus-resistant
disk and method of executing software prior to an ultimate operating system,
which can be utilized with a variety of anti-virus, disk-maintenance, and other
software to address a range of computer viruses. The terms and expressions
employed herein are used as terms of description and not of limitation, and there
is no intention, in the use of such terms and expressions, of excluding any
equivalents of the features shown and described or portions thereof, but it is
recognized that various modifications are possible within the scope of the
invention claimed.

PROGRAM-LISTING APPENDIX

sk g d dokokododok ok ko ok ok ok k k&

* FILE TUNING.INC *

[EEEEEEEREEEEEEE LSS

; TUNING.INC CREATED BY MAKEFILE
DQSector EQU 016H
DQCylinder EQU 002H

RETRY EQU O05H

WO 98/12636 PCT/US97/02345

16

d de de de ke kg Kk ke dkokook ok ok ok ok

* FILE BOOT.INC *

de de e ok kv ok A d ke de Kok e kb ke

;CORE.INC (tm)

FARFUN MACRO n

n&_ funptr LABEL DWORD
n&_offset LABEL WORD
DW OFFSET n
DW 0
ENDM

; The SLACK macro calculates the space used up by the

program
; relative to the space it is permitted to use up.
Ideally
; this should be of size 0.
TELLSIZE MACRO 'COUNT,RELATIVE,MAX,MSG
IFDEF MODULENAME
OUT % (MODULENAME) &COUNT (dec) RELATIVE than MAX (hex)
MSG
ELSE
30UT CODE &COUNT (dec) RELATIVE than MAX (hex) MSG
ENDIF

ENDM

SLACK MACRO COUNT,MAX,MSG, MN
LOCAL diff

IF2 :
IF (&COUNT LT O) OR (&COUNT GT MAX)
diff EQU (65535 - &COUNT + 1)
TELLSIZE % (diff), larger,MAX,MSG
.ERR
ELSE
TELLSIZE COUNT, smaller,MAX,MSG
ENDIF
ENDIF

ENDM

de ke ke de de ok ok g ok ok koo e

* FILE: BOOT.ASM *

Jeode deode ok ok ke ke d ok ok ok ok ok ok ko

;BOOT (tm)

WO 98/12636 PCT/US97/02345

17

14

;MODULENAME EQU "BOOT"

INCLUDE BOOT.INC
INCLUDE TUNING.INC

STACK SEGMENT PARA stack 'STACK'

STACK ENDS

BOOT SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:BOOT

ORG 0
begin: :

JMP SHORT simple

NOP

DB "OverByte" ; OEM
BPB DW 200H ; Bytes per sector

DB 1 ; Sectors per cluster

DW 1 ; Reserved sectors

DB 2 ; Number of FATs

DW OEQH ; Number of ROOT DIR
entries ‘ ,

DW OB40H ; Number of sectors on
diskette .

DB OFOH ; Media Descriptor Byte

DW 9 ; Number of sectors per
FAT

DW 12H ; Number of sectors per
track

DW 2 ; Number of heads

DD 0 ; Number of hidden
sectors
EBPB DD 0

DB 0

DB 0

DB 0

DD 0

DB "OverBoot tm" ; Volume label

DB "FAT12 " ; File system type

DW 0 ; Leave 2 bytes unused

; 64 BYTE mark
simple: MOV BX,CS ; BOOT is always loaded
at

; CS:7C00

ADD BX, 780H ; Where at least 1K is
free
; to be used

MOV SS,BX ; at CS:7800 through
CS:7C00

MOV SP, 400H ; Because the stack will

be put

WO 98/12636 PCT/US97/02345

18
ADD BX, 40H ; directly underneath
Cs:7C00 ,
PUSH BX ; and execution will
proceed at
MOV BX,OFFSET sevenc; (CS+7C0):0
PUSH BX
RETF
sevenc: PUSH CS ; Operational DATA is in
this
; segment
POP DS
ASSUME DS:BOOT
MOV myCS, CS ; Adjust segment so DATA
starts
; at OFFSET 0
SUB myCS, 7COH
MOV SI,OFFSET worry ; Message asking wait
while
; DisQuick loads
CALL show
CALL fast ; Load DisQuick
MOV SI,OFFSET message
Jc badness ; If load failed, show
Invalid
MOV SI,OFFSET diskok; Otherwise show OK
badness:CALL show
XOR AX,AX
INT 16H ; Wait for a key
MOV AX,CS:myCS
OR AX, AX ; Check for segment
value
JZ reboot
MOV AX, 4CO1H ; If run from DOS, don't
; reboot, but EXIT
INT 21H
INT 20H
reboot: MOV ES,AX
MOV WORD PTR ES:[472H}],0
‘DB OEAH, 0, 0, OFFH, OFFH
worry DB 0dh, Oah, "DisQuick (tm) diskette load"
DB 0dh, Oah, "Please wait.",0
message DB 0dh, Oah, "Invalid "
diskok DB "DisQuick (tm) diskette"
DB 0dh, Oah, "Press any key",0
nomem DB 0dh, Oah, "RAM too small",0
nodsk DB Odh, Oah, "DISK failed", 0
noapp DB Odh, 0ah, "Bad DisQuick",0
nyNO DB OFFH
myCX DW (DQSector + (DQCylinder SHL 8))
myDX DW 0
myIP DW 0
myES DW 0

WO 98/12636

myCS
show

more:

messages

done:
show

fast

this PC

two

not

memok:

next 1K

next:
again:

DW

PROC
CLD
LODSB
OR

JZ
MOV

MOV
INT

19

0

NEAR

AL,AL
done

PCT/US97/02345

AH,0EH ; Use TTY output in BIOS to show

BL, 0
10H

JMP SHORT more

RET
ENDP

PROC
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH

MOV
MOV
MOV
MOV

CMP

JAE
MOV

CALL
JMP

MOV
ADD
AND
ADD
MOV

ASSUME

MOV

MOV
PUSH

NEAR
AX
BX
CX
DX
BP
SI
DI
ES

BX, 40H

ES, BX
BX,13H
BX,ES: [BX]

BX, 1EAH

memok
SI,OFFSET nomem

show
ignore

AX,CS

AX, 0003FH
AX, OFFCOH
AX, 40H
ES,AX

ES:NOTHING
nmyES, ES

CX, RETRY
CX

-
’

Ask BIOS how much RAM

has
512K minus a virus or

Can't load DisQuick if

enough RAM

align load area at

boundary

WO 98/12636 PCT/US97/02345

20
MOV DX, myDX ; Using location of
current
; chunk to load
MOV CX, myCX
XOR BX, BX
MOV AX,202H ; Keep loading 1K chunks
from
; hidden partition
INT 13H
POP CcX
JNC good
PUSH CX
XOR AX, AX
XOR DX, DX
INT 13H
POP CX
LOOP again ; Until all of DisQuick
is
; loaded
MOV SI,OFFSET nodsk
CALL show
JMP SHORT ignore
good: MOV DL, myNO
CMP DL, OFFH
JNE count
PUSH BX
XOR BX, BX
MOV DX,ES: [BX+2] ; This will be Kilobytes
in APP
use: POP BX
MOV myNO, DL
count: MOV DX, myDX ; Adjust to location of
next
; chunk to load
MOV CX, myCX
INC DH
AND DH, 1
JNZ head
INC CH
head:
MOV myCX, CX
MOV myDX, DX
MOV AX,ES
ADD AX, 40H
MOV ES,AX

ASSUME ES:NOTHING

DEC myNOQO
MOV AL, myNO
OR AL, AL

WO 98/12636

launch:

ignore:
success:

fast
codeend:

bootend:

IF O

BOOTSIZE EQU {

PCT/US97/02345
21
JNZ next ; Go fetch the next chunk
; Launch
LES BX,DWORD PTR myIP
CMP WORD PTR ES: [BX], 002EBH
JE launch
MOV SI,OFFSET noapp
CALL show
JE ignore
PUSH nyCS
CALL DWORD PTR myIP ; Execute DisQuick
ADD Sp, 2
PUSH Cs
POP DS
ASSUME DS:BOOT
CLC
JMP SHORT success
STC
POP ES
POP DI
POP SI
POP BP
POP DX
POP CX
POP BX
POP AX
RET
ENDP
ORG 1FEH
DW OAAS55H
(OFFSET CS:bootend) - (OFFSET

CS:codeend)
SLACK % (BOOTSIZE), 0200H,"from end of BOOT code to AASS"

ENDIF

BOOT

ENDS
END

)

begin

WO 98/12636

PCT/US97/02345

22

CLAIMS

A virus-resistant storage medium for use with a computer, the starage

medium being selectably actuable by a user and comprising:

(@) anti-virus software stored on the storage medium and
configured to cause the computer to detect and remove from a
component thereof at least one virus; and

(b) means for causing the computer to execute the anti-virus
software upon startup of the computer but before the computer

executes an ultimate operating system.

The virus-resistant storage medium of claim 1 wherein the medium is
a flash ROM.

The virus-resistant storage medium of claim 1 wherein the medium is
a bubble RAM.

The virus-resistant storage medium of claim 1 wherein the medium is

an optical storage device.

The virus-resistant storage medium of claim 1 wherein the medium is

a tape drive.

The virus-resistant storage medium of claim 1 wherein the medium is
a disk.

The virus-resistant storage medium of claim 1, wherein the execution-
causing means comprises bootstrap software stored on the medium,
execution of the bootstrap software causing the computer to execute
the anti-virus software prior to post-bootstrap operatibns, the

bootstrap software being executed upon startup of the computer.

WO 98/12636 PCT/US97/02345

23
1 8. The virus-resistant storage medium of claim 1, wherein:
2 (a) the computer comprises memory and registers;
3 (b) the computer has an initialization state in which the memory
4 and registers of the computer accurately reflect the amount of
5 memory on the computer and no interrupt vector in the
6 computer contains an address of a routine within a virus; and
7 (c) the anti-virus software is configured to cause the computer,
8 after detecting and remeving a virus, to enter the initialization
9 state.
1 9. A virus-resistant storage medium for use with a computer, the storage
2 medium having a conventional storage capacity and comprising:
3 (a) a hidden partition comprising storage space inaccessible to
4 conventional programs and not reducing the conventional
5 storage capacity,
6 (b) means for describing the conventional storage capacity but not
7 describing the hidden partition, thereby making the hidden
8 partition inaccessible to conventional programs;
9 (c) anti-virus software stored in the hidden partition and
10 configured to cause the computer to detect and remove from a
11 component thereof at least one virus; and
12 (d) means for causing the computer to execute the anti-virus
13 software.

1 10. The virus-resistant storage medium of claim 9, wherein the execution-

2 causing means comprises bootstrap software stored on the medium,
3 execution of the bootstrap software upon startup of the computer
4 causing the computer to execute the anti-virus software prior to post-

5 bootstrap operations.

WO 98/12636 PCT/US97/02345

24

1 11. The virus-resistant storage medium of claim 9, wherein the anti-virus

2 software comprises at least one anti-virus program and the execution-
3 causing means comprises:

4 (d1) bootstrap software stored on the storage medium; and

5 (d2) a bootstrap-time operating system stored in the hidden

6 partition for causing the computer, upon startup, to

7 automatically execute the bootstrap software, said bootstrap-

8 software execution causing the computer to execute the

9 bootstrap-time operating system, said operating-system

10 execution causing the computer to execute the at least one

11 anti-virus program prior to post-bootstrap operations.

112, The virus-resistant storage medium of claim 11 further comprising:

2 (e) maintenance software stored in the hidden partition for causing
3 the computer to detect and repair damage to information

4 stored on a component thereof; and wherein

5 i) the bootstrap-time operating system causes the computer to

6 execute the maintenance software prior to post-bootstrap

7 operations.

1 13. The virus-resistant medium defined in claim 9, wherein the execution-
2 causing means comprises an application program stored on the

3 medium.

1 14, The virus-resistant medium defined in claim 9, wherein the medium
2 has a plurality of tracks on each of at least one surface and the

3 hidden partition comprises storage space on fewer than all the tracks.

WO 98/12636

1 16.

1 17.

1 18.

PCT/US97/02345

25

The virus-resistant medium defined in claim 9, wherein the disk has a
plurality of tracks on each of at least one surface and the hidden

partition comprises storage space on all the tracks.

The virus-resistant medium defined in claim 9, wherein:

(@) the computer comprises memory and registers:

(b) the computer has an initialization state in which the memory
and registers of the computer accurately reflect the amount of
memory on the computer and no interrupt vector in the
computer contains an address of a routine within a virus; and

(c) the anti-virus software is configured to cause the computer,
after detecting and removing a virus, to enter the initialization

state.

A storage medium for use with a computer, the storage medium being

selectably actuable by a user and comprising:

(a) maintenance software for causing the computer to detect and
repair damage to information stored on a component thereof:
and

(b) means for causing the computer to execute the software upon
startup of the computer but before the computer executes an

ultimate operating system.

A storage medium for use with a computer, the storage medium

having a conventional storage capacity and comprising:

(@) ahidden partition comprising storage space inaccessible to
conventional programs and not reducing the conventional
storage capacity;

(b) means for describing the conventional storage capacity but not
describing the hidden partition, thereby making the hidden

partition inaccessible to conventional programs:

WO 98/12636

PCT/US97/02345
26
9 (c) maintenance software stored in the hidden partition for causing
10 the computer to detect and repair damage to information
1 stored on a cdmponent thereof; and
12 (d) means for causing the computer to execute the software.

1 19. A method of operating a computer to avoid virus infection, the method

2 comprising:

3 (a) providing a storage medium selectably actuable by a user;

4 (b) storing, on the storage medium, anti-virus software configured
5 to cause the computer to detect and remove from a component
6 thereof at least one virus; and

7 (c) for causing the computer to execute the anti-virus software

8 upon startup of the computer but before the computer executes
9 an ultimate operating system.

1 20. The method of claim 21 wherein the medium is a flash ROM.
1 21. The method of claim 21 wherein the medium is a bubble RAM.

1 22. The method of claim 21 wherein the medium is an optical storage

2 device.
1 23. The method of claim 21 wherein the medium is a tape drive.
1 24. The method of claim 21 wherein the medium is a network disk.

1 25. A method of causing a computer to execute at least one program

2 upon startup of the computer but before the computer executes an
3 ultimate operating system, the method comprising the steps:

4 (@) providing a startup disk comprising a hidden partition

5 comprising storage space inaccessible to conventional

6 programs and not reducing conventional storage capacity of
7 the disk;

8 (b) providing a bootstrap-time operating system stored in the

9 hidden partition,;

WO 98/12636 PCT/US97/02345

27
10 (c) causing the computer to execute the bootstrap-time operating
11 system upon startup of the computer but before the computer
12 executes the ultimate operating system;
13 (d) causing the computer to execute the at least one program
14 under the control of the bootstrap-time operating system; and
15 (e) upon completion of the at least one program, executing the

16 ultimate operating system.

+ 26. The method defined in claim 25, wherein the at least one program is

2 anti-virus software stored in the hidden partition and configured to
3 cause the computer to detect and remove from a component thereof
4 at least one virus.

1+ 27. The method defined in claim 26, wherein:

2 (a) the computer comprises memory and registers;

3 (b) the computer has an initialization state in which the memory

4 and registers of the computer accurately reflect the amount of
5 memory on the computer and no interrupt vector in the

6 computer contains an address of a routine within a virus; and
7 (c) the anti-virus software is configured to cause the computer,

8 after detecting and removing a virus, enter the initialization

9 state.

1 28. The method defined in claim 27, wherein the at least one program is

2 disk-maintenance software stored in the hidden partition and
3 configured to cause the computer to detect and repair damage to
4 information stored on a component thereof.

. 20 A virus-tolerant disk having sectors and a file system allocation table

2 for allocating the sectors to files, the virus-tolerant disk comprising:
3 (a) a predetermined subset of the sectors, comprising sectors
4 attacked by at least one virus; and

5 (b) entries, corresponding to the predetermined sectors, in the file

WO 98/12636

PCT/US97/02345
28
6 system allocation table for making the predetermined sectors
7 unavailable for allocation to any file, the entries being made
8 prior to an attack by a virus.

1 30. Avirus-resistant storage medium for use with a computer, the storage

2 medium having a conventional storage capacity and comprising:

3 (@) ahidden partition comprising storage space inaccessible to

4 conventional programs and not reducing the conventional

5 storage capacity;

6 (b) means for describing the conventional storage capacity but not
7 describing the hidden partition, thereby making the hidden

8 partition inaccessible to conventional programs;

9 (c) anti-virus software stored in the hidden partition and

10 configured to cause the computer to detect and remove from a
11 component thereof at least one virus; and

12 (d) means for causing the computer to execute the anti-virus

13 software.

1 31. The virus-resistant storage medium of claim 30, wherein the

2 execution-causing means comprises bootstrap software stored on the
3 disk, execution of the bootstrap software upon startup of the

4 computer causing the computer to execute the anti-virus software

5 prior to po§t~bootstrap operations.

1 32. The virus-resistant storage medium of claim 30, wherein the anti-virus

2 software comprises at least one anti-virus program and the execution-
3 causing means comprises:

4 (d1) bootstrap software stored on the storage medium:; and

5 (d2) a bootstrap-time operating system stored in the hidden

6 partition for causing the computer, upon startup, to

7 automatically execute the bootstrap software, said bootstrap-

8 software execution causing the computer to execute the

9 bootstrap-time operating system, said operating-system

WO 98/12636 PCT/US97/02345

29
10 execution causing the computer to execute the at least one
11 anti-virus program prior to post-bootstrap operations.

1 33. The virus-resistant storage medium of claim 32 further comprising:

2 (e) maintenance software stored in the hidden partition for

3 causing the computer to detect and repair damage to

4 information stored on a component thereof, and wherein

5) the bootstrap-time operating system causes the computer to
6 execute the maintenance software prior to post-bootstrap

7 operations.

WO 98/12636 PCT/US97/02345

1/3

FIG. 1

‘WO 98/12636 PCT/US97/02345

2/3

N\ v

J 206e> 206ha 0 1\\

— |
< ,206g> 682
6% Nl | N
/s

-—-—-
-- = - -

- -
- -

R L T
e ~ -

-
-

-
-’
- —-

FIG. 2

WO 98/12636

PERFORM
POWER-ON
SELF-TEST
(POST)

301

EXECUTE
SPECIAL
BOOTSTRAP
PROGRAM

302

STARTED
FROM
DISKETTE

PCT/US97/02345

3/3

N‘

¢

PERFORM

INTEGRITY

SELF-TEST
AND ANNOUNCE
RESULTS

308

EXECUTE
BOOTSTRAP-
TIME
OPERATING
SYSTEM

310

CHECK SYSTEM
AND ANNOUNCE
RESULTS

312

EXECUTE VIRUS

314 REMOVAL AND
INTEGRITY

CHECK SOFTWARE

316

REMOVED BOOTSTRAP

ALL
BLOCK
DETECTED
VIRUSES A”ASKED
? 4

COPY BACKUP SPECIAL
BOOTSTRAP PROGRAM
TO BOOTSTRAP BLOCK

317

<
-}

hJ

EXECUTE ANY COMPLIANT
ANTI-VIRUS,
DISK-MAINTENANCE,
OR OTHER SOFTWARE

318

SET MEMORY
AND REGISTERS
TO INITIALIZATION STATE

320

EXECUTE NORMAL

322
BOOTSTRAP PROGRAM

324 FINISH

FIG. 3

INTERNATIONAL SEARCH REPORT International application No.
PCT/US97/02345

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GO6F 11/00

US CL :395/186
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/185.01, 186, 364/286.4, 286.5; 380/4,25

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Super Mater (Uscr's Manual)

Eiectronic data base consulted during the international scarch (name of data base and, where practicable, search terms used)

APS, DIALOG

C. DOCUMENTS CONSIDERED TO BE RELEVANT

abstract; figure 3; col. 7, line 35 and et seq.

Y US 5,398,196 A (CHAMBERS) 14 March 1995, col. 1, line| 1-33
65 to col. 4, line 14

Y US 5,440,723 A (ARNOLD et al.) 08 August 1995, see the| 1-33
abstract; col. 2, line 44 to col. 3, line 12

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X HITECH BUSINESS SOFTWARE INC (1992}, selected section| 1,7, 8, 17,19,

Chapter 3 and 7 29

y] e 2.
6,20-24

Y US 5,359,659 A (ROSENTHAL) 25 October 1994, see| 1-33

Further documents arc listed in the continuation of Box C. D Sce patent family annex.

. Special gones of cited doc : T later documeat published aficr the international filing date or priority
L. . L . date and not in conflict with the application but cited to undertand the
A documenldcfmmg the gencral state of the art which s not considered principle or theory underlying the mvention
to be of particular reicvance
oyoe 'X* document of particular relevance; the clatmed mvention cannot be
E carlicr document published on or afier the intemational filing date considerad novel or . be considered to mvolve an inveative step
L document which may throw doubts on priority claim{s) or which is when the documcnt is taken alonc
cited 1o establish the publication date of anoth or other L .
special reason (as w,rd) Y document of particular r : the ion be
conidered to involve an inveative step when the document is
0 document referring to an orl disclosure, use, exhibition or other combined with one or more other such d such bi
means being obvious 10 a person skilled in the art
Y dacument published prior 10 the intcrnational filing date but later than = g* document member of the same patcat family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the g?auonal scarch report
10 APRIL 1997 02 JUN
Name and mailing address of the ISA/US Authonl.ed'.?ﬂ'lc
Commissioner of Patents and Trademarks
Box PCT T DECADY
Washington, D.C. 20231 ALBER
Facsimile No. (703) 305-3230 Telephone No. (703) 308-3900

Form PCT/ISA/210 (second sheet)(July 1992)«

INTERNATIONAL SEARCH REPORT International application No.

PCT/US97/02345

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

to col. 2, line 17

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5,421,006 A (JABLON et al.) 30 May 1995, see the abstract; {1-33
see figures 9 and 10; also col. 7, line 55 to col. 9, line 54
Y US 4,975,950 A (LENTZ) 04 December 1990, see the abstract; 1-33
also figures land 2
X US 5,086,502 A (MALCOLM) 04 February 1992, see the 29
abstract; tables1-.4 |
Y 1-28, 30-33
Y US 5,121,345 A (LENTZ) 09 June 1992, see the abstract; also 1-33
figures 1 and 2; col. 2, lines 46-58
A US 5,414,833 A (HERSHEY et al.) 09 May 1995, see the abstract |1-33
A US 5,483,649°A (KUZNETSOV et al.) 09 January 1996, see the 1-33
abstract; figure 8
A US 5,144,660 A (ROSE) 01 September 1992, see col. 1, line 55 1-33

Form PCT/ISA/210 (continuation of second sheet)(July 1992)»

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

