INT. CL.: A 61 K 31/575 (2006.01) A 61 P 11/06 (2006.01) A 61 P 19/02 (2006.01)
A 61 P 21/00 (2006.01)

Oversættelsen bekendtgjort den: 2015-09-28

Dato for Den Europæiske Patentmyndigheds bekendtgørelse om meddelelse af patentet: 2015-09-02

Europæisk ansøgning nr.: 11191434.7

Europæisk indleveringsdag: 2009-05-28

Den europæiske ansøgningens publiceringsdag: 2012-04-25

Prioritet: 2008-05-28 US 56715 P

Stamansøgningsnr: 09767367.7

Designerede stater: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

Patenthaver: ReveraGen BioPharma, Inc., 3910 Warner Street, Kensington, MD 20595, USA

Opfyndere: McCall, John, M, 3910 Warner Street, Kensington, MD Maryland 20895, USA
Hoffman, Eric, 3910 Warner Street, Kensington, MD Maryland 20895, USA
Kanneboyina, Nagaraju, 3910 Warner Street, Kensington, MD Maryland 20895, USA

Fuldægtig i Danmark: PLOUGMANN & VINGTOFT A/S, Rued Langgaards Vej 8, 2300 København S, Danmark

Benævnelse: Ikke-hormonelle steroidmodulatorer af nf-kb til behandling af sygdom

Fremdragne publikationer:
EP-A2-1 236 469
WO-A1-91/19731
WO-A1-99/03503
WO-A1-99/17778
WO-A1-99/32102
WO-A1-99/61030
WO-A1-03/014141
WO-A2-02/43785
GB-A-1 480 763
GB-A-2 131 811
US-A-4 645 763
US-A-5 990 099
US-A-6 011 023
US-A-6 090 794

Fortsættes ...
DESCRIPTION

[0001] Disclosed herein are new non-hormonal steroid compounds and compositions and their application as pharmaceuticals for the treatment of disease.

[0002] Muscular wasting diseases, such as muscular dystrophies, are a group of degenerative diseases that culminate in progressive skeletal muscle wasting leading to muscle weakness, a high incidence of bone fracture, wheelchair dependence, and in some cases death. Of the muscular dystrophies, Duchenne muscular dystrophy is the most severe and most widely recognized. Another muscular wasting disease which shows similar symptoms, although less severe than Duchenne muscular dystrophy, is Becker muscular dystrophy. Even though the defective dystrophin gene causing both Duchenne muscular dystrophy and Becker muscular dystrophy has been known for over 20 years, a cure is still lacking.

[0003] Several catabolic factors that act to destroy host tissues during the cachectic process have been identified. It appears that the oversecretion of inflammatory cytokines, specifically tumor necrosis factor-alpha (TNF-α), is one of the most likely causes of cachexia. Specifically, TNF-α can mimic most of the abnormalities that occur in cachexia such as weight loss, anorexia, increased thermogenesis, changes in lipid metabolism, insulin resistance, and muscle wasting.

[0004] Muscle atrophy can also be induced by the loss of innervation or damage to innervation of the muscle tissue. Diseases such as chronic neuropathy and motor neuron disease can cause damage to innervation. Physical injury to the nerve can also lead to damage to the innervation of the muscle tissue. Alternatively, muscle atrophy can be the result of environmental conditions such as during spaceflight or as a result of aging or extended bed rest. Under these environmental conditions, the muscles do not bear the usual weight load, resulting in muscle atrophy from disuse. Specifically, during muscle disuse, intracellular processes are activated to induce proteolysis, mainly through the ATP dependent ubiquitin proteasome pathway, which regulates the NF-κB pathway.

[0006] Phosphorylation targets IkB for subsequent ubiquitination and degradation. This degradation of IkB reveals the nuclear localization signal on NF-κB, allowing nuclear accumulation of activation, which leads to binding of DNA and control of specific gene expression. Phosphorylation of IkB is therefore an important step in the regulation of NF-κB downstream of many stimuli, although other mechanisms can lead to the activation of functional NF-κB.

[0007] The identification and characterization of kinases that phosphorylate IkB has led to a better understanding of signaling pathways involving NF-κB activation. Several different subsets of IKK have been identified thus far. IkKα was initially identified as an IkB kinase induced by TNF-α stimulation in HeLa cells (DiDonato et al., (1997) Nature 388, 548-554). Another IkB kinase homologous to IkKα was identified, termed IkKβ, and determined to be the major IkB kinase induced following TNFα stimulation (Takeda et al., (1999) Science 284, 313-318; U.S. Pat. No. 6,030,834, issued to Pots et al. (2000); U.S. Pat. No. 5,939,302, issued to Woronicz et al. (1999)). IkKα and IkKβ have an overall homology of 52% and a 65% homology in the kinase domain (Zandi et al., (1997) Cell 91, 243-252).

[0008] IkB protein kinases (IKKs) phosphorylate IkB at specific serine residues. Specifically, they phosphorylate serines 32 and 36 of IkBα (Traenckner et al., (1995) EMBO J. 14, 2876-2883; DiDonato et al., (1996) Mol. Cell. Biol. 16, 1295-1304). Phosphorylation of both sites is required to efficiently target IkB for degradation. Furthermore, activation of IkKα and IkKβ is usually in response to NF-κB activating agents including phorbol 12-myristate 13-acetate (PMA), lipopolysaccharide (LPS), interleukin-1 (IL-1), TNF-α, reactive oxygen species, and DNA damaging agents. Mutant IkKα and IkKβ, which are catalytically inactive, can be used to block NF-κB stimulation. IkB kinases are therefore essential in the regulation of NF-κB activation processes downstream of inflammatory stimuli. In other pathways, IkB kinases may not be important.

[0009] IkKα and IkKβ have distinct structural motifs including an amino terminal serine-threonine kinase domain separated from a carboxyl proximal helix-loop-helix domain by a leucine zipper domain. These structural characteristics are unlike other kinases, and the non-catalytic domains are thought to be involved in protein-protein interactions. As such, proteins which bind to IKKs should be capable of regulating the activity of NF-κB and potentially regulating downstream events such as induction of NF-κB.
For instance, NEMO (NF-κB Essential Modulator) is a protein which has been identified to bind to IKKs and facilitate kinase activity (Yamaoka et al., (1998) Cell 93,1231-1240; Rothwarf et al., (1998) Nature 395, 287-300).

In vivo studies have shown that chronic NF-κB activation is associated with muscular wasting diseases such as Duchenne muscular dystrophy, and is further illustrated in US 2007/0225315 (March, 15, 2007). Specifically, muscle wasting was largely prevented in subjects that were heterozygous for the p65/RelA NF-κB subunit. An injection of an NF-κB activation inhibitor peptide was found to inhibit the dystrophic phenotype in affected mice subjects. Without being bound by a particular theory, it appears that chronic activation of NF-κB is required for the muscle wasting symptoms of Duchenne muscular dystrophy. As such, a drug-based therapy targeting NF-κB can be an effective strategy to treat Duchenne muscular dystrophy, as well as other forms of muscular wasting diseases.

McNatt L et al, Journal of Ocular Pharmacology and Therapeutics, vol. 15, no. 5, 1 January 1999, pages 413-423 discloses compounds having angiostatic activities which may be used for treating age-related macular degeneration, diabetic retinopathy, corneal neovascularisation and glaucoma.

WO99/32102 discloses tablet forms of 8-deoxycortisol and its use in treating glaucoma.

US4645763 discloses compounds and pharmaceutical compositions useful for the treatment of contact dermatitis, eczema, neurodermatoses, erythroderma, burns, pruritis vulvae et ani, rosacea, erythematodes autaneous, psoriasis, lichen ruber planus and verrucosus.

WO02/43785 discloses the use of ancocortave acetate for treating autoimmune diseases.

WO09/03503 discloses the use of corticosteroid acetate in tablet form for use in treating glaucoma.

In general, muscular wasting diseases may be treated in accordance with the present disclosure with a direct or indirect modulator of NF-κB. Indirect modulators of NF-κB include, for example, inhibitors of κB kinases (IKKs) such as IKKα inhibitors and IKKβ inhibitors, and inhibitors functioning directly upstream from IKKs in the signaling pathway such as inhibitors of phosphoinositide dependent kinase (PDK) and inhibitors of Akt (also referred to as PKB).

As noted above, one suitable approach for modulating the NF-κB pathway is by binding to one of the κB protein kinases (IKKs). By binding the IKKs, phosphorylation of κBs is blocked and NF-κB cannot be activated. In one embodiment, direct inhibiting compounds of IKK catalytic activity can be administered for the purpose of blocking the NF-κB pathway and inhibiting a muscular wasting disease. Specifically, inhibitors of IKKα can be administered to the subject for the purpose of inhibiting a muscular wasting disease.

Novel compounds and pharmaceutical compositions, certain of which have been found to modulate NF-κB have been discovered, together with methods of synthesizing and using the compounds including uses of the compound in methods for the treatment of NF-κB-mediated diseases in a patient by administering the compounds.

The present invention provides a compound for use in a method of treatment of a disease selected from the group consisting of Crohn’s disease, colitis, inflammatory bowel disease, and multiple sclerosis, wherein said compound has the structural formula:

![Structural Formula](image)

The compound used in the present invention possesses useful NF-κB modulating activity, and may be used in the treatment or prophylaxis of a disease or condition in which NF-κB plays an active role. Thus compounds used in the present invention may treat NF-κB-mediated disorder in a patient in need of such treatment, comprising administering to said patient a therapeutically effective amount of the compound.

In certain embodiments, said NF-κB-mediated disease is selected from the group consisting of crohn’s disease, colitis, inflammatory bowel disease, multiple sclerosis.
When ranges of values are disclosed, and the notation "from n₁ to n₂" is used, where n₁ and n₂ are the numbers, then unless otherwise specified, this notation is intended to include the numbers themselves and the range between them. This range may be integral or continuous between including the end values. By way of example, the range "from 2 to 6 carbons" is intended to include two, three, four, five, and six carbons, since carbons come in integer units. Compare, by way of example, the range "from 1 to 3 µM (micromolar)," which is intended to include 1 µM, 3 µM, and everything in between to any number of significant figures (e.g., 1.255 µM, 2.1 µM, 2.9999 µM, etc.).

The term "acyl," as used herein, alone or in combination, refers to a carbonyl attached to an alkenyl, alkyl, ary1, cycloalkyl, heteroaroy1, heterocycle, or any other moiety were the atom attached to the carbonyl is carbon. An "acetyl" group refers to a -COCH₃ group. An "alkanoyl" or "alkanoyl" group refers to an alkyl group attached to the parent molecular moiety through a carbonyl group. Examples of such groups include methylcarbonyl and ethylcarbonyl. Examples of acyl groups include formyl, alkanoyl and aroyl.

The term "alkenyl," as used herein, alone or in combination, refers to a straight-chain or branched-chain hydrocarbon group having one or more double bonds and containing from 2 to 20 carbon atoms. In certain embodiments, said alkenyl will comprise from 2 to 6 carbon atoms. The term "alkenylene" refers to a carbon-carbon double bond system attached at two or more positions such as ethynylene [(C≡C=CH₂).-C≡C-]. Examples of suitable alkenyl groups include ethynyl, propynyl, 2-methylpropynyl, 1,4-butadienyl and the like. Unless otherwise specified, the term "alkenyl" may include "alkenylene" groups.

The term "alkoxy," as used herein, alone or in combination, refers to an alkyl ether group, wherein the term alkyl is as defined below. Examples of suitable alkyl ether groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, and the like.

The term "alkyl," as used herein, alone or in combination, refers to a straight-chain or branched-chain alkyl group containing from 1 to 20 carbon atoms. In certain embodiments, said alkyl will comprise from 1 to 6 carbon atoms. Alkyl groups may be optionally substituted as defined herein. Examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl, octyl, noyl and the like. The term "alkylene," as used herein, alone or in combination, refers to a saturated aliphatic group derived from a straight or branched chain saturated hydrocarbon attached at two or more positions, such as methylene (-CH₂-). Unless otherwise specified, the term "alkyl" may include "alkylene" groups.

The term "alkylamino," as used herein, alone or in combination, refers to an alkyl group attached to the parent molecular moiety through an amino group. Suitable alkylamino groups may be mono- or dialkylated, forming groups such as, for example, N-methylamino, N-ethylamino, N,N-dimethylamino, N,N-ethylethylenamino and the like.

The term "alkylidene," as used herein, alone or in combination, refers to an alkenyl group in which one carbon atom of the carbon-carbon double bond belongs to the moiety to which the alkenyl group is attached.

The term "alkylthio," as used herein, alone or in combination, refers to an alkyl thioether (R-S-) group wherein the term alkyl is as defined above and wherein the sulfur may be singly or doubly oxidized. Examples of suitable alkyl thioether groups include methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, iso-butylthio, sec-butylthio, tert-butylthio, methanesulfinyl, ethanesulfinyl, and the like.

The term "alkynyl," as used herein, alone or in combination, refers to a straight-chain or branched chain hydrocarbon group having one or more triple bonds and containing from 2 to 20 carbon atoms. In certain embodiments, said alkynyl comprises from 2 to 6 carbon atoms. In further embodiments, said alkynyl comprises from 2 to 4 carbon atoms. The term "alkynylene" refers to a carbon-carbon triple bond attached at two positions such as ethynylene (-C≡C-). Examples of alkynyl groups include ethynyl, propynyl, hydroxypropynyl, butyn-1-yl, butyn-2-yl, pentyn-1-yl, 3-methylbutyn-1-yl, hexyn-2-yl, and the like. Unless otherwise specified, the term "alkynyl" may include "alkynylene" groups.

The terms "amido" and "carbamoyl," as used herein, alone or in combination, refer to an amino group as described below attached to the parent molecular moiety through a carbonyl group, or vice versa. The term "C-amido" as used herein, alone or in combination, refers to a -C(=O)-NR₂ group with R as defined herein. The term "N-amido" as used herein, alone or in combination, refers to a R(=O)NH⁺ group, with R as defined herein. The term "acylamino" as used herein, alone or in combination, embraces an acyl group attached to the parent moiety through an amino group. An example of an "acylamino" group is acetylamino (CH₃C(=N)-NH⁺).
[0032] The term "amino," as used herein, alone or in combination, refers to -NRR', wherein R and R' are independently selected from the group consisting of hydrogen, alkyl, acyl, heteroalkyl, aryl, cycloalkyl, heteroaryl, and heterocy cloalkyl, any of which may themselves be optionally substituted. Additionally, R and R' may combine to form heterocycloalkyl, either of which may be optionally substituted.

[0033] The term "aryl," as used herein, alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such polycyclic ring systems are fused together. The term "arylated" embraces aromatic groups such as phenyl, naphthyl, anthracenyl, and phenanthryl.

[0034] The term "arylalkenyI" or "aralkenyI," as used herein, alone or in combination, refers to an aryl group attached to the parent molecular moiety through an alkenyl group.

[0035] The term "arylalkoxy" or "aralkoxy," as used herein, alone or in combination, refers to an aryl group attached to the parent molecular moiety through an alkoxy group.

[0036] The term "arylalkyl" or "aralkyl," as used herein, alone or in combination, refers to an aryl group attached to the parent molecular moiety through an alkyl group.

[0037] The term "arylalkynyl" or "aralkynyl," as used herein, alone or in combination, refers to an aryl group attached to the parent molecular moiety through an alkynyl group.

[0038] The term "arylalkanoyI" or "aralkanoyI" or "aroacyl," as used herein, alone or in combination, refers to an acyl group derived from an aryl-substituted alkanecarboxylic acid such as benzoyle, naphthoyl, phenylacetyl, 3-phenylpropionyl (hydrocinnamoyl), 4-phenylbutyl, (2-naphthyl)acetyl, 4-chlorohydrocinnamoyl, and the like.

[0039] The term arylaloxo as used herein, alone or in combination, refers to an aryl group attached to the parent molecular moiety through an oxo.

[0040] The terms "benzo" and "benz," as used herein, alone or in combination, refer to the divalent group C6H4= derived from benzene. Examples include benzothiophene and benzimidazole.

[0041] The term "carbamate," as used herein, alone or in combination, refers to an ester of carboxylic acid (-NHC00-) which may be attached to the parent molecular moiety from either the nitrogen or acid end, and which may be optionally substituted as defined herein.

[0042] The term "O-carbamyl" as used herein, alone or in combination, refers to a -OC(O)NRR', group with R and R' as defined herein.

[0043] The term "N-carbamyl" as used herein, alone or in combination, refers to a ROC(O)NR' group with R and R' as defined herein.

[0044] The term "carbonyl," as used herein, when alone includes formyl [-C(O)H] and in combination is a -C(O)- group.

[0045] The term "carboxy" or "carboxy," as used herein, refers to -C(O)OH or the corresponding "carboxylate" anion, such as is in a carboxylic acid salt. An "O-carboxy" group refers to a ROC(O)O-group, where R is as defined herein. A "C-carboxy" group refers to a C(O)OR groups where R is as defined herein.

[0046] The term "cyano," as used herein, alone or in combination, refers to -CN.

[0047] The term "cycloalkyl," or, alternatively, "cyclobcyle," as used herein, alone or in combination, refers to a saturated or partially saturated monocyclic, bicyclic or tricyclic alkyI group wherein each cyclic moiety contains from 3 to 12 carbon atom ring members and which may optionally be a benzo fused ring system which is optionally substituted as defined herein. In certain embodiments, said cycloalkyl will comprise from 3 to 7 carbon atoms. In certain embodiments, said cycloalkyl will comprise from 5 to 7 carbon atoms. Examples of such cycloalkyl groups include cyclopentyl, cyclobutyl, cyclopropyl, cyclohexyl, cycloheptyl, tetrahydrofuranphyl, indanyl, octahydroanthryl, 2,3-dihydro-1H-indenyl, adamantyl and the like. "Bicyclic" and "tricyclic" as used herein are intended to include both fused ring systems, such as decahydrocphenalene, octahydroanthracene as well as the multicyclic (multicoentered) saturated or partially unsaturated type. The latter type of isomer is exemplified in general by,
The term "ester," as used herein, alone or in combination, refers to a carboxy group bridging two moieties linked at carbon atoms.

The term "ether," as used herein, alone or in combination, refers to an oxy group bridging two moieties linked at carbon atoms.

The term "halo," or "halogen," as used herein, alone or in combination, refers to fluorine, chlorine, bromine, or iodine.

The term "haloalkoxy," as used herein, alone or in combination, refers to a haloalkyl group attached to the parent molecular moiety through an oxygen atom.

The term "haloalkyl," as used herein, alone or in combination, refers to an alkyl group having the meaning as defined above wherein one or more hydrogens are replaced with a halogen. Specifically embraced are monohaloalkyl, dihaloalkyl and polyhaloalkyl groups. A monohaloalkyl group, for one example, may have an iodo, bromo, chloro or fluoro atom within the group. Dihalo and polyhaloalkyl groups may have two or more of the same halo atoms or a combination of different halo groups. Examples of haloalkyl groups include fluoroethyl, difluoroethyl, trifluoroethyl, chloroethyl, dichloroethyl, trichloroethyl, pentfluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl and dichloropropyl. *Haloalkylene* refers to a haloalkyl group attached at two or more positions. Examples include fluoromethylene (-CFH₂), difluoromethylene (-CF₂F), chloromethylene (-CH₂F) and the like.

The term "heteroalkyl," as used herein, alone or in combination, refers to a stable straight or branched chain, or cyclic hydrocarbon group, or combinations thereof, fully saturated or containing from 1 to 3 degrees of unsaturation, consisting of the stated number of carbon atoms and from one to three heteroatoms selected from the group consisting of O, N, and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized. The heteroatom(s) O, N and S may be placed at any interior position of the heteroalkyl group. Up to two heteroatoms may be consecutive, such as, for example, -CH₂-NH-OCH₃.

The term "heteroaryl," as used herein, alone or in combination, refers to a 3 to 7 membered unsaturated heteromonocyclic ring, or a fused monocyclic, bicyclic, or tricyclic ring system in which at least one of the fused rings is aromatic, which contains at least one atom selected from the group consisting of O, S, and N. In certain embodiments, said heteroaryl will comprise from 5 to 7 carbon atoms. The term also embraces fused polycyclic groups wherein heterocyclic rings are fused with aryl rings, wherein heteroaryl rings are fused with other heteroaryl rings, wherein heteroaryl rings are fused with heterocycloalkyl rings, or wherein heteroaryl rings are fused with cycloalkyl rings. Examples of heteroaryl groups include pyrrolyl, pyrylonyl, indazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazolyl, pyranlyl, furyl, thieryl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, thiadiazolyl, isothiazolyl, indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, quinoxalinyl, quinazolinyl, indazolyl, benzotriazolyl, benzodioxolyl, benzopyranyl, benzoxazolyl, benzoazolyl, benzothiazolyl, benzothiadiazolyl, benzofuryl, benzothienyl, chromonyl, coumarinyl, benzopyranyl, tetrahydroquinolinyl, tetraazolopyridazinyl, tetrahydroisoquinolinyl, thienopyrimidinyl, furanpyrimidinyl, pyrimidopyridinyl and the like. Exemplary tricyclic heterocyclic groups include carbazolyl, benzindolyl, phenanthrolinyl, dibenzofuranyl, acridinyl, phenanthridinyl, xanthenyl and the like.

The terms "heterocycloalkyl" and, interchangeably, "heterocycle," as used herein, alone or in combination, each refer to a saturated, partially unsaturated, or fully unsaturated monocyclic, bicyclic, or tricyclic heterocyclic group containing at least one heteroatom as a ring member, wherein each said heteroatom may be independently selected from the group consisting of nitrogen, oxygen, and sulfur. In certain embodiments, said heterocycloalkyl will comprise from 1 to 4 heteroatoms as ring members. In further embodiments, said heterocycloalkyl will comprise from 1 to 2 heteroatoms as ring members. In certain embodiments, said heterocycloalkyl will comprise from 3 to 8 ring members in each ring. In further embodiments, said heterocycloalkyl will comprise from 3 to 7 ring members in each ring. In yet further embodiments, said heterocycloalkyl will comprise from 5 to 6 ring members in each ring. *Heterocycloalkyl* and "heterocycle" are intended to include sulfones, sulfoxides, N-oxides of tertiary nitrogen ring members, and carbocyclic fused and benzo fused ring systems; additionally, both terms also include systems where a heterocyclic ring is fused to an aryl group, as defined herein, or an additional heterocycle group. Examples of heterocycle groups include aziridinyl, azetidinyl, 1,3-benzodioxolyl, dihydroindolyl, dihydroisoquinolinyl, dihydrocinolinyl, dihydrobenzodioxinyl, dihydro[1,3]oxazol[4,5-b]pyridinyl, benzothiazolyl, dihydroindolyl, dihydropropyridinyl, 1,3-dioxanyl, 1,4-dioxanyl, 1,3-dioxolanly, isoindolinyl, morpholinyl, piperazinyl, pyrrolidinyl, tetrahydropyridinyl, piperidinyl, thiomorpholinyl, and the like. The heterocycle groups may be optionally substituted unless specifically prohibited.
The term "hydrazinyl" as used herein, alone or in combination, refers to two amino groups joined by a single bond, i.e., -N-N-.

The term "hydroxy," as used herein, alone or in combination, refers to -OH.

The term "hydroxalkyl," as used herein, alone or in combination, refers to a hydroxy group attached to the parent molecular moiety through an alkyl group.

The term "imino," as used herein, alone or in combination, refers to =N-.

The term "iminohydroxy," as used herein, alone or in combination, refers to =N(OH) and =N-O-.

The phrase "in the main chain" refers to the longest contiguous or adjacent chain of carbon atoms starting at the point of attachment of a group to the compounds of any one of the formulas disclosed herein.

The term "isocyanato" refers to a -NCO group.

The term "isothiocyanato" refers to a -NCS group.

The phrase "linear chain of atoms" refers to the longest straight chain of atoms independently selected from carbon, nitrogen, oxygen and sulfur.

The term "lower," as used herein, alone or in combination, where not otherwise specifically defined, means containing from 1 to and including 6 carbon atoms.

The term "lower aryl," as used herein, alone or in combination, means phenyl or naphthyl, which may be optionally substituted as provided.

The term "lower heteroaryl," as used herein, alone or in combination, means either 1) monocyclic heteroaryl comprising five or six ring members, of which between one and four said members may be heteroatoms selected from the group consisting of O, S, and N, or 2) bicyclic heteroaryl, wherein each of the fused rings comprises five or six ring members, comprising between them one to four heteroatoms selected from the group consisting of O, S, and N.

The term "lower cycloalkyl," as used herein, alone or in combination, means a monocyclic cycloalkyl having between three and six ring members. Lower cycloalkyls may be unsaturated. Examples of lower cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.

The term "lower heterocycloalkyl," as used herein, alone or in combination, means a monocyclic heterocycloalkyl having between three and six ring members, of which between one and four may be heteroatoms selected from the group consisting of O, S, and N. Examples of lower heterocycloalkyls include pyrrolidinyl, imidazolidinyl, pyrazolidinyl, piperidinyl, piperazinyl, and morpholinyl. Lower heterocycloalkyls may be unsaturated.

The term "lower amino," as used herein, alone or in combination, refers to -NRR, wherein R and R' are independently selected from the group consisting of hydrogen, lower alkyl, and lower heteroalkyl, any of which may be optionally substituted. Additionally, the R and R' of a lower amino group may combine to form a five- or six-membered heterocycloalkyl, either of which may be optionally substituted.

The term "mercaptal" as used herein, alone or in combination, refers to an RS- group, where R is as defined herein.

The term "nitro," as used herein, alone or in combination, refers to -NO2.

The terms "oxy" or "oxa," as used herein, alone or in combination, refer to -O-.

The term "oxo," as used herein, alone or in combination, refers to =O.

The term "per haloalkoxy" refers to an alkoxy group where all of the hydrogen atoms are replaced by halogen atoms.
The term "perhaloalkyl" as used herein, alone or in combination, refers to an alkyl group where all of the hydrogen atoms are replaced by halogen atoms.

The terms "sulfonate," "sulfonic acid," and "sulfonic," as used herein, alone or in combination, refer the -SO₃H group and its anion as the sulfonic acid is used in salt formation.

The term "sulfanyl," as used herein, alone or in combination, refers to -S-.

The term "sulfinyl," as used herein, alone or in combination, refers to -S(O)-.

The term "sulfonyl," as used herein, alone or in combination, refers to -S(O)₂-.

The term "N-sulfonamido" refers to a RS(=O)₂NR' group with R and R' as defined herein.

The term "S-sulfonamido" refers to a -S(=O)₂NRR' group, with R and R' as defined herein.

The terms "thia" and "thio," as used herein, alone or in combination, refer to a -S- group or an ether wherein the oxygen is replaced with sulfur. The oxidized derivatives of the thio group, namely sulfinyl and sulfonyl, are included in the definition of thia and thio.

The term "thiol," as used herein, alone or in combination, refers to an -SH group.

The term "thiocarbonyl," as used herein, when alone includes thioformyl-C(S)H and in combination is a-C(S)- group.

The term "N-thiocarbamyl" refers to an ROC(S)NR' group, with R and R' as defined herein.

The term "O-thiocarbamyl" refers to a -OC(S)NRR', group with R and R' as defined herein.

The term "thiocyanato" refers to a -CNS group.

The term "trihalomethanesulfonamido" refers to a X₃CS(O)₂NR- group with X is a halogen and R as defined herein.

The term "trihalomethanesulfonfyl" refers to a X₃CS(O)₂- group where X is a halogen.

The term "trihalomethoxo" refers to a X₃CO- group where X is a halogen.

The term "trisubstituted silyl," as used herein, alone or in combination, refers to a silicone group substituted at its three free valences with groups as listed herein under the definition of substituted amino. Examples include trimethyisilyl, tertbutyldimethyisilyl, triphenylisilyl and the like.

Any definition herein may be used in combination with any other definition to describe a composite structural group. By convention, the trailing element of any such definition is that which attaches to the parent moiety. For example, the composite group alkylamido would represent an alkyl group attached to the parent molecule through an amido group, and the term alkoxyalkyl would represent an alkoxy group attached to the parent molecule through an alkyl group.

When a group is defined to be "null," what is meant is that said group is absent.

The term "optionally substituted" means the antecedent group may be substituted or unsubstituted. When substituted, the substituents of an "optionally substituted" group may include, without limitation, one or more substituents independently selected from the following groups or a particular designated set of groups, alone or in combination: lower alkyl, lower alkenyl, lower alkynyl, lower alkanoyl, lower heteroalkyl, lower heterocycloalkyl, lower haloalkyl, lower haloalkenyl, lower haloalkynyl, lower perhaloalkyl, lower perhaloalkoxy, lower cycloalkyl, phenyl, aryl, aryloxy, lower alkoxy, lower haloalkoxy, oxo, lower acyloxy, carbonyl, carboxyl, lower alkylcarbonyl, lower carboxyester, lower carboxamido, cyano, hydrogen, halogen, hydroxy, amino, lower alkylamine, aroyl, amino, nitro, thiol, lower alkylthio, lower haloalkylthio, lower perhaloalkylthio, arythio, sulfonate, sulfonic acid, trisubstituted silyl, N₃, SH, SCH₂, C(Ο)CH₃, CO₂CH₃, CO₂H, pyridinyl, thiophene, furanyl, lower carbamate, and lower urea. Two substituents may be joined together to form a fused five-, six-, or seven-membered carbocyclic or heterocyclic ring consisting
of zero to three heteroatoms, for example forming methylenedioxy or ethylenedioxy. An optionally substituted group may be unsubstituted (e.g., \(-\text{CH}_2\text{CH}_3\)) fully substituted (e.g., \(-\text{CF}_2\text{CF}_3\)), monosubstituted (e.g., \(-\text{CH}_2\text{CH}_3\text{F}\)) or substituted at a level anywhere in-between fully substituted and monosubstituted (e.g., \(-\text{CH}_2\text{CF}_3\)). Where substituents are recited without qualification as to substitution, both substituted and unsubstituted forms are encompassed. Where a substituent is qualified as "substituted," the substituted form is specifically intended. Additionally, different sets of optional substituents to a particular moiety may be defined as needed; in these cases, the optional substitution will be as defined, often immediately following the phrase, "optionally substituted with."

[0096] The term R or the term R', appearing by itself and without a number designation, unless otherwise defined, refers to a moiety selected from the group consisting of hydrogen, alkyl, cycloalkyl, heteroalkyl, aryl, heteroaryl and heterocycloalkyl, any of which may be optionally substituted. Such R and R' groups should be understood to be optionally substituted as defined herein. Whether an R group has a number designation or not, every R group, including R, R' and R\(^1\) where n=(1, 2, 3, ...,n), every substituent, and every term should be understood to be independent of every other in terms of selection from a group. Should any variable, substituent, or term (e.g. aryl, heterocycle, R, etc.) occur more than one time in a formula or generic structure, its definition at each occurrence is independent of the definition at every other occurrence. Those of skill in the art will further recognize that certain groups may be attached to a parent molecule or may occupy a position in a chain of elements from either end as written. Thus, by way of example only, an unsymmetrical group such as \(-\text{C(O)N(R)}\) may be attached to the parent moiety at either the carbon or the nitrogen.

[0097] Asymmetric centers exist in the compounds disclosed herein. These centers are designated by the symbols "R" or "S," depending on the configuration of substituents around the chiral carbon atom. It should be understood that the invention encompasses all stereoisomeric homochiral forms, including diastereomers, enantiomers, and epimeric forms, as well as di-isomers and 1-isomers, and mixtures thereof. Individual stereoisomers of compounds can be prepared synthetically from commercially available starting materials which contain chiral centers or by preparation of mixtures of enantiomeric products followed by separation as such conversion to a mixture of diastereomers followed by separation or recrystallization, chromatographic techniques, direct separation of enantiomers on chiral chromatographic columns, or any other appropriate method known in the art. Starting compounds of particular stereochimistry are either commercially available or can be made and resolved by techniques known in the art. Additionally, the compounds disclosed herein may exist as geometric isomers. The present invention includes cis, trans, syn, anti, entgegen (E), and zusammen (Z) isomers as well as the appropriate mixtures thereof. Additionally, compounds may exist as tautomers; all tautomeric isomers are provided by this invention. Additionally, the compounds disclosed herein can exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like. In general, the solvated forms are considered equivalent to the unsolvated forms.

[0098] The term "bond" refers to a covalent linkage between two atoms, or two moieties when the atoms joined by the bond are considered to be part of larger substructure. A bond may be single, double, or triple unless otherwise specified. A dashed line between two atoms in a drawing of a molecule indicates that an additional bond may be present or absent at that position.

[0099] The term "disease" as used herein is intended to be generally synonymous, and is used interchangeably with the terms "disorder" and "condition" (as in medical condition), in that all reflect an abnormal condition of the human or animal body or of one of its parts that impairs normal functioning, is typically manifested by distinguishing signs and symptoms, and causes the human or animal to have a reduced duration or quality of life.

[0100] The term "NF-\(\kappa\)B-mediated disease," refers to a disease in which NF-\(\kappa\)B plays an active role in the disease pathology. NF-\(\kappa\)B-mediated diseases include diseases in which multiple biological pathways and/or processes in addition to NF-\(\kappa\)B-mediated processes contribute to the disease pathology. A NF-\(\kappa\)B-mediated disease may be completely or partially mediated by modulating the activity or amount of NF-\(\kappa\)B. In particular, a NF-\(\kappa\)B-mediated disease is one in which modulation of NF-\(\kappa\)B results in some effect on the underlying disease e.g., administration of a NF-\(\kappa\)B modulator results in some improvement in at least some of the patients being treated. The term "NF-\(\kappa\)B-mediated disease" also refers to the following diseases, even though the compounds disclosed herein exert their effects through biological pathways and/or processes other than NF-\(\kappa\)B: muscular dystrophy, arthritis, traumatic brain injury, spinal cord injury, sepsis, rheumatic disease, cancer atherosclerosis, type 1 diabetes, type 2 diabetes, leptospirosis renal disease, glaucoma, retinal disease, ageing, headache, pain, complex regional pain syndrome, cardiac hypertrophy, muscle wasting, catabolic disorders, obesity, fetal growth retardation, hypercholesterolemia, heart disease, chronic heart failure, ischemia/reperfusion, stroke, cerebral aneurysm, engine pectoris, pulmonary disease, cystic fibrosis, acid-induced lung injury, pulmonary hypertension, asthma, chronic obstructive pulmonary disease, Sjogren's syndrome, hyaline membrane disease, kidney disease, glomerular disease, alcoholic liver disease, gut diseases, portal endometriosis, skin diseases, nasal sinusitis, mesothelioma, anhidrotic ectodermal dysplasia-ID, behcet’s disease, incontinencia pigmenti, tuberculosis, asthma, crohn's disease, colitis, ocular allergy, appendicitis, paget's disease, pancreatitis, periodontitis, endometriosis, inflammatory bowel
disease, inflammatory lung disease, silica-induced diseases, sleep apnea, AIDS, HIV-1, autoimmune diseases, antiphospholipid syndrome, lupus, lupus nephritis, familial mediterranean fever, hereditary periodic fever syndrome, psychosocial stress diseases, neuropathological diseases, familial amyloidotic polyneuropathy, inflammatory neuropathy, parkinson's disease, multiple sclerosis, alzheimer's disease, amyotrophic lateral sclerosis, huntington's disease, cataracts, and hearing loss.

[0101] The term "combination therapy" means the administration of two or more therapeutic agents to treat a therapeutic condition or disorder described in the present disclosure. Such administration encompasses co-administration of these therapeutic agents in a substantially simultaneous manner, such as in a single capsule having a fixed ratio of active ingredients or in multiple, separate capsules for each active ingredient. In addition, such administration also encompasses use of each type of therapeutic agent in a sequential manner. In either case, the treatment regimen will provide beneficial effects of the drug combination in treating the conditions or disorders described herein.

[0102] "NF-κB modulator is used herein to refer to a compound that exhibits an EC_{50} with respect to NF-κB activity of no more than 100 μM and more typically not more than 50 μM, as measured in the NF-κB inhibitor assays described generally hereinbelow. "EC_{50}" is that concentration of modulator which either activates or reduces the activity or increases or decreases the amount of an enzyme (e.g., (NF-κB)) to half-maximal level. Certain compounds disclosed herein have been discovered to exhibit modulatory activity against NF-κB. In certain embodiments, compounds will exhibit an EC_{50} with respect to NF-κB of no more than 10 μM; in further embodiments, compounds will exhibit an EC_{50} with respect to NF-κB of no more than 5 μM; in yet further embodiments, compounds will exhibit an EC_{50} with respect to NF-κB of not more than 1 μM; in yet further embodiments, compounds will exhibit an EC_{50} with respect to NF-κB of not more than 200 nM, as measured in the NF-κB assay described herein.

[0103] The phrase "therapeutically effective" is intended to qualify the amount of active ingredients used in the treatment of a disease or disorder. This amount will achieve the goal of reducing or eliminating the said disease or disorder.

[0104] The term "therapeutically acceptable" refers to those compounds (or salts, tautomers, zwitterionic forms, etc.) which are suitable for use in contact with the tissues of patients without undue toxicity, irritation, and allergic response, are commensurate with a reasonable benefit/risk ratio, and are effective for their intended use.

[0105] As used herein, reference to "treatment" of a patient is intended to include prophylaxis. The term "patient" means all mammals including humans. Examples of patients include humans, cows, dogs, cats, goats, sheep, pigs, and rabbits. Preferably, the patient is a human.

[0106] The compounds disclosed herein can exist as therapeutically acceptable salts. The present invention includes compounds listed above in the form of salts, including acid addition salts. Suitable salts include those formed with both organic and inorganic acids. Such acid addition salts will normally be pharmaceutically acceptable. However, salts of non-pharmaceutically acceptable salts may be of utility in the preparation and purification of the compound in question. Basic addition salts may also be formed and be pharmaceutically acceptable. For a more complete discussion of the preparation and selection of salts, refer to Pharmaceutical Salts: Properties, Selection, and Use (Stahl, P. Heinrich. Wiley-VCHA, Zurich, Switzerland, 2002).

[0107] The terms "therapeutically acceptable salt," or "salt," as used herein, represents salts or zwitterionic forms of the compounds disclosed herein which are water or oil-soluble or dispersible and therapeutically acceptable as defined herein. The salts can be prepared during the final isolation and purification of the compounds or separately by reacting the appropriate compound in the form of the free base with a suitable acid. Representative acid addition salts include acetate, adipate, alginate, L-ascorbate, aspartate, benzoate, benzenesulfonate (besylate), bisulfate, butyrate, camphorate, camphorsulfonate, citrate, digluconate, formate, fumarate, gentisate, glutarate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hippurate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethansulfonate (ethionate), lactate, maleate, malonate, DL-mandelate, mesitylenesulfonate, methanesulfonate, naphthalenesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphonate, picate, pivalate, propionate, pyrogallate, succinate, sulfonate, tartrate, L-tartrate, trichloroacetate, trifluoroacetate, phosphate, glutamate, bicarbonate, para-toluene sulfonate (p-tosylate), and undecanoate. Also, basic groups in the compounds disclosed herein can be quaternized with methyl, ethyl, propyl, and butyl chlorides, bromides, and iodides; dimethyl, diethyl, dibutyl, and diamyl sulfates; decyl, lauryl, myristyl, and steryl chlorides, bromides, and iodides; and benzyl and phenethyl bromides. Examples of acids which can be employed to form therapeutically acceptable addition salts include inorganic acids such as hydrochloric, hydrobromic, sulfuric, and phosphoric, and organic acids such as oxalic, maleic, succinic, and citric. Salts can also be formed by coordination of the compounds with an alkali metal or alkaline earth ion. Hence, the present invention contemplates sodium, potassium, magnesium, and calcium salts of the compounds disclosed herein, and the like.
Basic addition salts can be prepared during the final isolation and purification of the compounds by reacting a carboxy group with a suitable base such as the hydroxide, carbonate, or bicarbonate of a metal cation or with ammonia or an organic primary, secondary, or tertiary amine. The cations of therapeutically acceptable salts include lithium, sodium, potassium, calcium, magnesium, and aluminium, as well as nontoxic quaternary amine cations such as ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, diethylamine, ethylamine, tributylamine, pyridine, N,N-dimethylaniline, N,N-dimethylpiperidine, N methylmorpholine, dicyclohexylamine, procaine, dibenzylamine, N,N-dibenzylpiperazine, 1-ephenamine, and N,N-dibenzylethylendiamine. Other representative organic amines useful for the formation of base addition salts include ethylenediamine, ethanolamine, diethanolamine, piperidine, and piperazone.

In certain embodiments, the salts may include hydrochloride, hydrobromide, sulfonate, citrate, tartrate, phosphonate, lactate, pyruvate, acetate, succinate, oxalate, fumarate, malate, oxaloacetate, methanesulfonate, ethanesulfonate, p-toluene sulfonyl, benzenesulfonate and isothionate salts of compounds disclosed herein. A salt of a compound can be made by reacting the appropriate compound in the form of the free base with the appropriate acid.

While it may be possible for the compounds of the subject invention to be administered as the raw chemical, it is also possible to present them as a pharmaceutical formulation. Accordingly, pharmaceutical formulations which comprise a compound of the invention, or one or more pharmaceutically acceptable salts, esters, amides, or solvates thereof, together with one or more pharmaceutically acceptable carriers thereof and optionally one or more other therapeutics ingredient may be administered. The carrier(s) must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. Proper formulation is dependent upon the route of administration chosen. Any of the well-known techniques, carriers, and excipients may be used as suitable and as understood in the art, e.g., in Remington’s Pharmaceutical Sciences. The pharmaceutical compositions disclosed herein may be manufactured in any manner known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or compression processes.

The formulations include those suitable for oral, parenteral (including subcutaneous, intradermal, intramuscular, intravenous, intraarticular, and intramedullary), intraperitoneal, transmucosal, transdermal, rectal and topical (including dermal, buccal, sublingual and intraocular) administration although the most suitable route may depend upon for example the condition and disorder of the recipient. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. Typically, these methods include the step of bringing into association a compound of the subject invention or a pharmaceutically acceptable salt, ester, amide, or solvate thereof ("active ingredient") with the carrier which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both and then, if necessary, shaping the product into the desired formulation.

Formulations of the compounds disclosed herein suitable for oral administration may be presented as discrete units such as capsules, sachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion. The active ingredient may also be presented as a bolus, electuary or paste.

Pharmaceutical preparations which can be used orally include tablets, push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. Tablets may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with binders, inert diluents, or lubricating, surface active or dispersing agents. Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein. All formulations for oral administration should be in dosages suitable for such pharmaceuticals. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. Dragge cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous.
infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. The formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in powder form or in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example, saline or sterile pyrogen-free water, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.

[0115] Formulations for parenteral administration include aqueous and non-aqueous (oily) sterile injection solutions of the active compounds which may contain antioxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.

[0116] For oral or parenteral use, the compounds may be formulated as nanoparticle preparations. Such nanoparticle preparations can include, for example, nanosphere encapsulations of active compounds, inactive nanoparticles to which active compounds can be tethered, or nanoscale powders of active compounds. Nanoparticle preparations can be used to increase the bioavailability of the active compounds, control the rate of release of the active compounds, or deliver active compounds to a particular location in the body. See A. Dove, "An Easy Pill to Swallow", Drug Discovery & Development Magazine: 11(11), November, 2008, pp. 22-24.

[0117] In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or on exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

[0118] For buccal or sublingual administration, the compositions may take the form of tablets, lozenges, pastilles, or gels formulated in conventional manner. Such compositions may comprise the active ingredient in a flavored basis such as sucrose and acacia or tragacanth.

[0119] The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter, polyethylene glycol, or other glycerides.

[0120] The compound of the invention may be administered topically, that is is by non-systemic administration. This includes the application of a compound disclosed herein externally to the epidermis or the buccal cavity and the instillation of such a compound into the ear, eye and nose, such that the compound does not significantly enter the blood stream. In contrast, systemic administration refers to oral, intravenous, intraperitoneal and intramuscular administration.

[0121] Formulations suitable for topical administration include liquid or semiliquid preparations suitable for penetration through the skin to the site of inflammation such as gels, limments, lotions, creams, ointments or pastes, and drops suitable for administration to the eye, ear or nose. The active ingredient for topical administration may comprise, for example, from 0.001% to 10% w/w (by weight) of the formulation. In certain embodiments, the active ingredient may comprise as much as 10% w/w. In other embodiments, it may comprise less than 5% w/w. In certain embodiments, the active ingredient may comprise from 2% w/w to 5% w/w. In other embodiments, it may comprise from 0.1% to 1% w/w of the formulation.

[0122] Formulations for topical administration in the mouth, for example buccally or sublingually, include lozenges comprising the active ingredient in a flavored basis such as sucrose and acacia or tragacanth, and pastilles comprising the active ingredient in a basis such as gelatin and glycerin or sucrose and acacia.

[0123] For administration by inhalation, compounds may be conveniently delivered from an insufflator, nebulizer pressurized packs or other convenient means of delivering an aerosol spray. Pressurized packs may comprise a suitable propellant such as dichlorodifluoromethane, trichloroethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount. Alternatively, for
administration by inhalation or insufflation, the compounds according to the invention may take the form of a dry powder composition, for example a powder mix of the compound and a suitable powder base such as lactose or starch. The powder composition may be presented in unit dosage form, in for example, capsules, cartridges, gelatin or blister packs from which the powder may be administered with the aid of an inhalator or insufflator.

[0124] Preferred unit dosage formulations are those containing an effective dose, as herein below recited, or an appropriate fraction thereof, of the active ingredient.

[0125] It should be understood that in addition to the ingredients particularly mentioned above, the formulations described above may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavoring agents.

[0126] Compounds may be administered orally or via injection at a dose of from 0.1 to 500 mg/kg per day. The dose range for adult humans is generally from 5 mg to 2 g/day. Tablets or other forms of presentation provided in discrete units may conveniently contain an amount of one or more compounds which is effective at such dosage or as a multiple of the same, for instance, units containing 5 mg to 500 mg, usually around 10 mg to 200 mg.

[0127] The amount of active ingredient that may be combined with the carrier materials to produce single dosage form will vary depending upon the host treated and the particular mode of administration.

[0128] The compound can be administered in various modes, e.g. orally, topically, or by injection. The precise amount of compound administered to a patient will be the responsibility of the attendant physician. The specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diets, time of administration, route of administration, rate of excretion, drug combination, the precise disorder being treated, and the severity of the indication or condition being treated. Also, the route of administration may vary depending on the condition and its severity.

[0129] In certain instances, it may be appropriate to administer the compound described herein (or a pharmaceutically acceptable salt or ester, thereof) in combination with another therapeutic agent. By way of example only, if one of the side effects experienced by a patient upon receiving the compound described herein is hypertension, then it may be appropriate to administer an anti-hypertensive agent in combination with the initial therapeutic agent. Or, by way of example only, the therapeutic effectiveness of the compound described herein may be enhanced by administration of an adjuvant (i.e., by itself the adjuvant may only have minimal therapeutic benefit, but in combination with another therapeutic agent, the overall therapeutic benefit to the patient is enhanced). Or, by way of example only, the benefit of experienced by a patient may be increased by administering one of the compounds described herein with another therapeutic agent (which also includes a therapeutic regimen) that also has therapeutic benefit. By way of example only, in a treatment for diabetes involving administration of one of the compounds described herein, increased therapeutic benefit may result by also providing the patient with another therapeutic agent for diabetes. In any case, regardless of the disease, disorder or condition being treated, the overall benefit experienced by the patient may simply be additive of the two therapeutic agents or the patient may experience a synergistic benefit.

[0130] In any case, the multiple therapeutic agents (at least one of which is a compound disclosed herein) may be administered in any order or even simultaneously. If simultaneously, the multiple therapeutic agents may be provided in a single, unified form, or in multiple forms (by way of example only, either as a single pill or as two separate pills). One of the therapeutic agents may be given in multiple doses, or both may be given as multiple doses. If not simultaneous, the timing between the multiple doses may be any duration of time ranging from a few minutes to four weeks. Ischemia/reperfusion injury, stroke, cerebral aneurysm, angina pectoris, pulmonary disease, cystic fibrosis, acid-induced lung injury, pulmonary hypertension, chronic obstructive pulmonary disease, hyaline membrane disease, kidney disease, glomerular disease, alcoholic liver disease, leptospirosis renal disease, gut diseases, peritoneal endometriosis, skin diseases, nasal sinusitis, mesothelioma, anhidrotic edemaphyidae-ID, behcet's disease, incontinentia pigmenti, tuberculosis, asthma, arthritis, crohn's disease, coitis, ocular allergy, glaucoma, appendicitis, paget's disease, pancreatitis, periodontitis, endometriosis, inflammatory bowel disease, inflammatory lung disease, sepsis, silica-induced diseases, sleep apnea, AIDS, HIV-1, autoimmune diseases, antiphospholipid syndrome, lupus, lupus nephritis, familial mediterranean fever, hereditary periodic fever syndrome, psychosocial stress diseases, neuropathological diseases, familial amyloidotic polyneuropathy, inflammatory neuropathy, traumatic brain injury, spinal cord injury, parkinson's disease, multiple sclerosis, rheumatic disease, alzheimer's disease, amyotropic lateral sclerosis, huntington's disease, retinal disease, cataracts, hearing loss, and cancer.

General Synthetic Methods for Preparing Compounds
[0131] The following scheme II can be used to practice the present invention. The remaining schemes do not form part of the invention but are included for comparative purposes and for understanding the biological data presented at the end of the Examples.

Scheme I

1. \(\text{R}_2\text{MgBr, CuII} \), propionate, tetrahydrofuran
2. \(\text{NaHCO}_3, \text{H}_2\text{O}, \text{ethyl acetate} \)

Scheme II

1. \(\text{R}_2\text{MgBr, CuII} \), propionate, tetrahydrofuran
2. \(\text{Triethyl} \), chloride
3. \(\text{NaHCO}_3, \text{H}_2\text{O}, \text{ethyl acetate} \)
4. Silica gel chromatography

1. \(\text{m-chloroperbenzoic acid, DCM} \)
2. \(\text{NaHCO}_3, \text{H}_2\text{O} \)

Scheme III

- Methanesulfonyl chloride, \(\text{SO}_3 \), tetrahydrofuran, dimethylformamide
- \(\text{K}_2\text{CO}_3, \text{H}_2\text{O, tetrahydrofuran} \)

Scheme IV

[0132] Examples 6-7 can be synthesized according to scheme I.

[0133] Example 8 can be synthesized according to scheme II.

[0134] Examples 1-3 can be synthesized according to scheme III.
[0135] Preparation 1 can be synthesized according to scheme IV.

Scheme V

1. R_6-MgBr, Cu(II) propionate, CH$_2$CO$_2$, tetrahydrofuran

2. N-bromosuccinimide

[0136] Example 9 can be synthesized according to scheme V.

[0137] The invention is further illustrated by the following examples. All IUPAC names were generated using CambridgeSoft's ChemDraw 10.0.

[0138] The following Example 8 exemplifies the compound used in the present invention. The remaining examples to not form part of the invention but are included for comparative purposes and to understand the biological data presented at the end of the specification.

Preparation 1

2-oxo-2-((6S,10R,13S)-6,10,13-trimethyl-3-oxo-6,7,8,10,12,13,14,15-octahydro-3H-cyclopenta[a]phenanthren-17-yl)ethyl acetate

[0139] **Step 1**
2-((6S,10R,13S)-17-hydroxy-6,10,13-trimethyl-3-oxo-6,7,8,10,12,13,14,15,16,17-decahydro-3H-cyclopenta[a]phenanthren-17-yl)-2-oxoethyl acetate (see Tetrahedron Letters, 2001, 42 (14): 2639-2642). Alternatively, methyl prednisolone 21-acetate is dissolved in a mixture of dimethylformamide and tetrahydrofuran and cooled in an ice bath. SO₂ is bubbled into methanesulfonyl chloride and the mixture is added dropwise to the solution containing the solution of methyl prednisolone 21-acetate. The title product can then be isolated by standard aqueous workup.

Step 2

(2'R,4'R,6S,10R,13S)-2'-acetyl-2',6,10,13-tetramethyl-7,8,10,12,13,14,15,16-octahydrospiro[cyclopenta[a]phenanthrene-17,4'-[1,3]dioxane]-3,5'(6H)-dione: 2-((6S,10R,13S)-17-hydroxy-6,10,13-trimethyl-3-oxo-6,7,8,10,12,13,14,15,16,17-decahydro-3H-cyclopenta[a]phenanthren-17-yl)-2-oxoethyl acetate is dissolved in toluene and heated with 1.5 equivalents of ethyl orthoacetate and a trace of pyridinium hydrochloride. Ethanol is distilled off the reaction mixture to drive it to completion.

Step 3

(6S,10R,13S)-17-(2-hydroxyacetyl)-6,10,13-trimethyl-3-oxo-6,7,8,10,12,13,14,15,16,17-decahydro-3H-cyclopenta[a]phenanthren-17-yl acetate: The reaction mixture from step 3 is concentrated, dissolved in tetrahydrofuran, and treated with dilute hydrochloric acid. Standard aqueous workup yields the title compound.

Step 4
[0147] 2-oxo-2-((6S,10R,13S)-6,10,13-trimethyl-3-oxo-6,7,8,10,12,13,14,15-octahydro-3H-cyclopenta[a]phenanthren-17-yl)ethyl acetate: (6S,10R,13S)-17-((2-hydroxyacetyl)-6,10,13-trimethyl-3-oxo-6,7,8,10,12,13,14,15,16,17-decahydro-3H-cyclopenta[a]phenanthren-17-yl acetate is heated with 2 equivalents of potassium carbonate in dimethyl formamide. Standard aqueous workup yields the title compound.

EXAMPLE 1

(10S,13S,17R)-17-hydroxy-17-(2-hydroxyacetyl)-10,13-dimethyl-6,7,8,10,12,13,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3(2H)-one

[0148]

Step 1

[0149]

[0150] (10S,13S,17R)-17-hydroxy-17-(2-hydroxyacetyl)-10,13-dimethyl-6,7,8,10,12,13,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3(2H)-one: Commercially available as Aneclorve acetate. The title compound can be synthesized according to the procedure of Example 8, Step 2, substituting 2-((10S,13S,17R)-17-hydroxy-10,13-dimethyl-3-oxo-2,3,6,7,8,10,12,13,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl)-2-oxoethyl acetate for 2-oxo-2-((10S,13S,16R,17S)-10,13,16-trimethyl-3-oxo-2,3,6,7,8,10,12,13,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl acetate.

EXAMPLE 2

(10S,13S,17R)-17-hydroxy-17-(2-hydroxyacetyl)-10,13-dimethyl-6,7,8,10,12,13,14,15,16,17-decahydro-3H-cyclopenta[a]phenanthren-3-one

[0151]
[0152] (10S,13S,17R)-17-hydroxy-17-(2-hydroxyacetyl)-10,13-dimethyl-6,7,8,10,12,13,14,15,16,17-decahydro-3H-cyclopenta[a]phenanthren-3-one: The title compound can be synthesized according to the procedures of Example 3, Step 1 and Example 1, Step 1, substituting prednisolone acetate for hydrocortisone acetate.

EXAMPLE 3

2-((10S,13S,17R)-17-hydroxy-10,13-dimethyl-3-oxo-2,3,6,7,8,10,12,13,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-y1)-2-oxoethyl acetate

[0153]

Step 1

[0154]

[0155] 2-((10S,13S,17R)-17-hydroxy-10,13-dimethyl-3-oxo-2,3,6,7,8,10,12,13,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-y1)-2-oxoethyl acetate: The title compound can be synthesized from hydrocortisone acetate according to the procedure disclosed in EP 0097328. 405 g (1 mol) of hydrocortisone acetate is added to a mixture of 2 liters of N,N-dimethylformamide and 350 ml of pyridine, and with stirring at room temperature, 260 g of methanesulfonyl chloride is added. The reaction mixture is heated, maintained at 80 to 85 °C for 1 hour, and then cooled to room temperature. Methanol (7 liters) is added. The precipitated crystals are separated by filtration, washed with methanol and water, and dried under reduced pressure to give the title compound.

EXAMPLE 6

(10S,13S,16R,17S)-17-(2-hydroxyacetyl)-10,13,16-trimethyl-6,7,8,10,12,13,14,15,16,17-decahydro-3H-cyclopenta[a]phenanthren-3-one
(10S,3S,16R,7S)-17-(2-hydroxyacetyl)-10,13,16-trimethyl-6,7,8,10,12,13,14,15,16,17-decahydro-3H-cyclopenta[a]phenanthren-3-one: A solution of the product from Example 7, step 2 in methylene chloride and methanol (1:3 methylene chloride/methanol) is stirred under an inert atmosphere and cooled in an ice bath. Aqueous potassium carbonate is added by syringe. The reaction is stirred at 5°C for 2 hours. The reaction is then neutralized with 1 N HCl and concentrated. After partitioning between water and methylene chloride, the product solution is dried over anhydrous magnesium sulfate, filtered and evaporated to give the title compound.

EXAMPLE 7

2-oxo-2-((10S,3S,16R)-10,13,16-trimethyl-3-oxo-6,7,8,10,12,13,14,15,16,17-decahydro-3H-cyclopenta[a]phenanthren-17-yl)ethyl acetate
cyclopenta[a]phenanthren-17-y)-2-oxoethyl acetate (commercial product from Pfizer). The starting material was dissolved in 200 ml of anhydrous tetrahydrofuran and 200 ml of anhydrous dichloromethane. Trimethylsilyl imidazole, (20.0 ml, 136 mmole), was added. This solution was cooled to -50°C under a small nitrogen flow.

[0162] Into pre-dried reactor 2 was added copper II propionate (2.10 grams, 10.0 mmole), 150 ml of anhydrous tetrahydrofuran, and anhydrous 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone. The mixture was cooled to -50°C and methyl magnesium chloride (3M, 10.0 ml) was added dropwise over approximately 5 minutes. The mixture was stirred for approximately 10 minutes. The contents of reactor 2 were transferred to reactor 1 via cannula quickly (approximately 30 sec.), and reactor 2 was rinsed with 10 ml of anhydrous tetrahydrofuran and this was also cannulated into reactor 1. A pump was set up with methyl magnesium chloride (3M, 45.0 ml) and pumped into reactor 1 over 45 min (pump setting at 1.0 ml/min). Reactor 1 was stirred further at -50°C for 1 hour, then warmed to -30°C overnight.

[0163] Toluene (1 L) was added and the temperature brought to 0°C. The mixture was extracted with 2 x 500 ml of 5% acetic acid (cold), then with 200 ml of 25% sodium chloride. The aqueous phases were back extracted with 300 ml of toluene. The combined toluene extracts were dried over magnesium sulfate, filtered, and concentrated to a viscous oil. Yield - 57.8 grams.

Step 2

[0164]

[0165] 2-oxo-2-(((10S,13S,16R,17S)-10,13,16-trimethyl-3-oxo-6,7,8,10,12,13,14,15,16,17-decahydro-3H-cyclopenta[a]phenanthren-17-y)ethoxyethyl acetate: The crude product from step 1 is dissolved in ethyl acetate, and slurried with aqueous 1 N HCl until hydrolysis is complete. The aqueous acid is neutralized with aqueous potassium bicarbonate, and the ethyl acetate phase is dried, filtered, and concentrated to a semi-solid.

EXAMPLE 2

(10S,13S,16R,17R)-17-hydroxy-17-(2-hydroxyacetyl)-10,13,16-trimethyl-6,7,8,10,12,13,14,15,16,17-decahydro-3H-cyclopenta[a]phenanthren-3-one

[0166]

Step 1

[0167]
Step 2

EXAMPLE 9

(10S,13S,16S,17R)-17-hydroxy-17-(2-hydroxyacetyl)-10,13,16-trimethyl-6,7,8,10,12,13,14,15,16,17-decahydro-3H-cyclopenta[a]phenanthren-3-one

Biological Activity Assay

In vitro NF-κB inhibitor screening assay
C2C 12 skeletal muscle cells stably transfected with a luciferase reporter construct regulated under multiple copies of the NF-κB response element (Panomics, Fremont, CA) were used to screen NF-κB inhibitors. These cells were maintained at 37°C with 5% CO₂ in a tissue culture incubator with Dulbecco’s modified Eagle medium (DMEM) medium containing 10% Fetal bovine serum (FBS) (ATCC, Manassas, VA), Penicillin 100 U/ml, Streptomycin 100 µg/ml, and 100 µg/ml Hygromycin B (Roche, Indianapolis, IN). Screening assays were performed in myoblasts (grown in medium containing 10% FBS) in duplicate 96 well plates at a cell concentration of 5 x 10⁴ cells per well in 100 uL volume. Cells were pretreated with various concentrations (0.01 µg/ml to 10 µg/ml) of compound for 24h duration before stimulating with tumor necrosis factor-α (TNF-α) (10 ng/ml) for another 24 hrs. Prednisolone was included in every plate tested as a positive control. After the completion of incubation cells were washed twice with PBS and lysed with cell lysis buffer to measure luciferase activity (Promega Corp, Madison, WI) using Centro LB 960 luminometer (Berthold technologies, GmbH & Co, Bad Wildbad, Germany). Relative luminescence units with TNF-α stimulation in the absence of drugs were considered as 100% percent and data was represented as % inhibition relative to TNF-α induced NF-κB activation.

Table 1 - Dose-dependent inhibition of NF-κB in C2C12 skeletal muscle cell luciferase assay

<table>
<thead>
<tr>
<th>Example #</th>
<th>0.01 µg/mL</th>
<th>0.1 µg/mL</th>
<th>1 µg/mL</th>
<th>10 µg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>2</td>
<td>++</td>
<td>++</td>
<td>++*</td>
<td>+++*</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>+</td>
<td>++*</td>
<td>+*</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>++</td>
<td>++*</td>
<td>+++</td>
<td>+++*</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>++*</td>
<td>+++</td>
<td>++++*</td>
</tr>
<tr>
<td>8</td>
<td>++</td>
<td>++*</td>
<td>+++</td>
<td>+++*</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>++*</td>
<td>+++</td>
<td>+++*</td>
</tr>
</tbody>
</table>

- indicates ≥ 100% inhibition
+ indicates 80-100% inhibition
++ indicates 60-80% inhibition
+++ indicates 40-60% inhibition
++++ indicates 20-40% inhibition
* indicates p<0.01

Cell viability was assayed in duplicate plates by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) (Sigma, Saint Louis, Missouri) as per manufacturer’s protocols. Percent cell viability was calculated relative to untreated cells. There was not a significant decrease in cell viability (< 80%) for any of Examples 1-9 at any of the doses (0.01, 0.1, 1, and 10 µg/mL) tested.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US693084A [0007]
- US559302A [0007]
- WO20093102A [0012]
- US4645763A [0013]
Non-patent literature cited in the description

Patentkrav

1. Forbindelse til anvendelse i en fremgangsmåde til behandling af en sygdom valgt fra gruppen bestående af Crohns sygdom, colitis, inflammatorisk tarmsygdom, og multipel sklerose, hvor forbindelsen har strukturformlen:

![Chemical structure](image)

2. Forbindelsen til anvendelse ifølge krav 1, hvor sygdommen er Crohns sygdom.

3. Forbindelsen til anvendelse ifølge krav 1, hvor sygdommen er colitis.

4. Forbindelsen til anvendelse ifølge krav 1, hvor sygdommen er inflammatorisk tarmsygdom.

5. Forbindelsen til anvendelse ifølge krav 1, hvor sygdommen er multipel sklerose.