2008/0381:39 A 2 I} 1010 00 0 1 R0

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 April 2008 (03.04.2008)

(10) International Publication Number

WO 2008/038139 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/IB2007/003444
(22) International Filing Date: 9 July 2007 (09.07.2007)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

0613684.0 10 July 2006 (10.07.2006) GB
0613687.3 10 July 2006 (10.07.2006) GB
0613976.0 13 July 2006 (13.07.2006) GB

(71) Applicant (for all designated States except US): SO-
LARFLARE COMMUNICATIONS INCORPO-
RATED [US/US]J; 9501 Jeronimo Road, Suite 250, Irvine,
California 92618 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): POPE, Steven
[GB/GB]; 25 Greville Road, Cambridge CB1 3QJ (GB).
RIDDOCH, David [GB/GB]; 68 Tenison Road, Cam-
bridge CB1 2DW (GB).

(74) Agents: SLINGSBY, Philip, Roy et al.; Page White &
Farrer, Bedford House, John Street, London WCIN 2BF
(GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

(34)

(54) Title: NETWORK STACKS

; / 503
KERNEL SPACE USER SPACE
501~/'\ pp pp e s e w mv505
II!! l !! I 506
SOCKET LIBRARY }~—507
Tcm 08— 509
] ERVICE PROVIDER —
S STACK \I\—s’/]
513«\|N1C DRIVER
NIC ~515

(57) Abstract: A method for transmitting data by means of a data processing system, the system supporting an operating system
and at least one application and having access to a memory and a network interface device capable of supporting a communication
link over a network with another network interface device, the method comprising the steps of: forming by means of the application
data to be transmitted; requesting by means of the application a user-mode operating system functionality of the data processing
system to direct the data to be transmitted, the request including an indication of a protocol by which the data is to be transmitted;
responsive to that request, the user-mode operating system functionality selecting a protocol processing entity in accordance with the
indication of a protocol by which the data is to be transmitted; forming within the context of the application by means of the protocol
processing entity the data into packets for transmission in accordance with the protocol by which the data is to be transmitted and
writing by means of the protocol processing entity the packets to be transmitted to an area of the memory; initiating by means of
communication between the protocol processing entity and the network interface device a transmission operation of at least some of

the packets over the network.

WO 2008/038139 PCT/IB2007/003444

NETWORK STACKS

The present application relates to network protocol stacks and discloses three
distinct inventive concepts which are described below in Sections A to C of the

description.

Claims 1 to 33 relate to the description in Section A, claims 34 to 93 relate to the
description in Section B, and claims 94 to 128 relate to the description in Section
C.

In the appended drawings, figures 1 to 6 relate to the description in Section A,
figures 7 to 9 relate to the description in Section B, and figures 10 to 12 relate to

the description in Section C.

Embodiments of each of the inventions described herein may include any one or

more of the features described in relation to the other inventions.

Where reference numerals are used in a Section of the description they refer only

to the figures that relate to the description in that Section.

WO 2008/038139 PCT/IB2007/003444

SECTION A
ONLOAD NETWORK PROTOCOL STACK

BACKGROUND OF THE INVENTION

This invention relates to the transmission of data across a network by means of a
data processing system having access to a network interface device that is
capable of supporting a communication link over a network with another network
interface device.

Figure 1 is a schematic diagram showing a network interface device such as a
network interface card (NIC) and the general architecture of the system in which it
may be used. The network interface device 10 is connected via a data link 5 to a
processing device such as computer 1, and via a data link 14 to a data network
20. Further network interface devices such as processing device 30 are also
connected to the network, providing interfaces between the network and further

processing devices such as processing device 40.

The computer 1 may, for example, be a personal computer, a server or a
dedicated processing device such as a data logger or controller. In this example it
comprises a processor 2, a program store 4 and a memory 3. The program store
stores instructions defining an operating system and applications that can run on
that operating system. The operating system provides means such as drivers and
interface libraries by means of which applications can access peripheral hardware
devices connected to the computer. Drivers and libraries that are external to the

operating system may also be provided.

A typical computer system 1 includes a processor subsystem (including one or
more processors), a memory subsystem (including main memory, cache memory,
etc.), and a variety of "peripheral devices" connected to the processor subsystem
via a peripheral bus. Peripheral devices may include, for example, keyboard,
mouse and display adapters, disk drives and CD-ROM drives, network interface

WO 2008/038139 PCT/IB2007/003444

devices, and so on. The processor subsystem communicates with the peripheral
devices by reading and writing commands and information to specific addresses
that have been preassigned fo the devices. The addresses may be preassigned
regions of a main memory address space, an I/O address space, or another kind
of configuration space. Communication with peripheral devices can also take
place via direct memory access (DMA), in which the peripheral devices (or
another agent on the peripheral bus) transfers data directly between the memory
subsystem and one of the preassigned regions of address space assigned to the

peripheral devices.

Most modern computer systems are multitasking, meaning they allow multiple
different application programs to execute concurrently on the same processor
subsystem. Most modern computer systems also run an operating system which,
among other things, allocates time on the processor subsystem for executing the
code of each of the different application programs. One difficulty that might arise
in a multitasking system is that different application programs may wish to control
the same peripheral device at the same time. In order to prevent such conflicts,
another job of the operating system is to coordinate control of the peripheral
devices. In particular, only the operating system can access the peripheral
devices directly; application programs that wish to access a peripheral devices
must do so by calling routines in the operating system. The placement of
exclusive control of the peripheral devices in the operating system also helps to
modularize the system, obviating the need for each separate application program
to implement its own software code for controlling the hardware.

The part of the operating system that controls the hardware is usually the kernel.
Typically it is the kernel which performs hardware initializations, setting and
resetting the processor state, adjusting the processor internal clock, initializing the
network interface device, and other direct accesses of the hardware. The kernel
executes in kernel mode, also sometimes called trusted mode or a privileged
mode, whereas application level processes (also called user level processes)
execute in a user mode. Typically it is the processor subsystem hardware itself

WO 2008/038139 PCT/IB2007/003444

which ensures that only trusted code, such as the kernel code, can access the
hardware directly. The processor enforces this in at least two ways: certain
sensitive instructions will not be executed by the processor unless the current
privilege level is high enough, and the processor will not allow user level
processes to access memory locations (including memory mapped addresses
associated with specific hardware resources) which are outside of a user-level
physical or virtual address space already allocated to the process. As used
herein, the term "kernel space” or "kernel address space” refers to the address
and code space of the executing kernel. This includes kernel data structures and
functions internal to the kernel. The kernel can access the memory of user
processes as well, but "kernel space" generally means the memory (including
code and data) that is private to the kernel and not accessible by any user
process. The term "user space”, or "user address space", refers to the address
and code space allocated by a code that is loaded from an executable and is
available to a user process, excluding kernel private code data structures. As
used herein, all four terms are intended to accommodate the possibility of an
intervening mapping between the software program's view of its own address
space and the physical memory locations to which it corresponds. Typically the
software program's view of its address space is contiguous, whereas the
corresponding physical address space may be discontiguous and out-of-order,

and even potentially partly on a swap device such as a hard disk drive.

Although parts of the kernel may execute as separate ongoing kernel processes,
much of the kernel is not actually a separate process running on the system.
Instead it can be thought of as a set of routines, to some of which the user
processes have access. A user process can call a kernel routine by executing a
system call, which is a function that causes the processor to trap, change privilege
level and enter kernel mode to execute some code on behalf of the process. The
"current process" is still the user process, but during system calls it is executing
"inside of the kernel", and therefore has access to kernel address space and can
execute in a privileged mode. Kernel code is also executed in response to an
interrupt issued by a hardware device, since the interrupt handler is found within

WO 2008/038139 PCT/IB2007/003444

the kernel. The kernel also, in its role as process scheduler, switches control
between processes rapidly using the clock interrupt (and other means) to trigger a
switch from one process to another. Each time a kernel routine is called, the
current privilege level increases to kernel mode in order to allow the routine to
access the hardware directly. When the kernel relinquishes control back to a user

process, the current privilege level returns to that of the user process.

When a user level process desires to communicate with the NIC, conventionally it
can do so only through calls to the operating system. The operating system
implements a system level protocol processing stack which performs protocol
processing on behalf of the application. In particular, an application wishing to
transmit a data packet using TCP/IP calls the operating system API (e.g. using a
send() call) with data to be transmitted. This call causes a context switch to invoke
kernel routines to copy the data into a kernel data buffer and perform TCP send
processing. Here protocol is applied and fully formed TCP/IP packets are
enqueued with the interface driver for transmission. Another context switch takes
place when control is returned to the application program. Note that kernel
routines for network protocol processing may be invoked also due to the passing
of time. One example is the triggering of retransmission algorithms. Generalily the
operating system provides all OS modules with time and scheduling services
(driven by the hardware clock interrupt), which enable the TCP stack to implement
timers on a per-connection basis. The operating system performs context
switches in order to handle such timer-triggered functions, and then again in order
to return to the application.

It can be seen that network transmit and receive operations can involve excessive
context switching and resulting cache pollution, and this can cause significant
overhead. The problem is especially severe in networking environments in which
data packets are often short, causing the amount of required control work to be

large as a percentage of the overall network processing work.

One solution that has been attempted in the past has been the creation of user
level protocol processing stacks operating in parallel with those of the operating

WO 2008/038139 PCT/IB2007/003444

system. Such stacks can enable data transfers using standard protocols to be

made without requiring data to traverse the kernel stack.

Figure 2 illustrates one implementation of this. In this architecture the TCP (and
other) protocols are implemented twice: as denoted TCP1 and TCP2 in figure 2.
In a typical operating system TCP2 will be the standard implementation of the
TCP protocol that is built into the operating system of the computer. In order to
control and/or communicate with the network interface device an application
running on the computer may issue API (application programming interface) calls.
Some API calls may be handled by the transport libraries that have been provided
to support the network interface device. API calls which cannot be serviced by
the transport libraries that are available directly to the application can typically be
passed on through the interface between the application and the operating system
to be handled by the libraries that are available to the operating system. For
implementation with many operating systems it is convenient for the transport
libraries to use existing Ethernet/IP based control-plane structures: e.g. SNMP
and ARP protocols via the OS interface.

There are a number of difficulties in implementing transport protocols at user
level. Most implementations to date have been based on poriing pre-existing
kernel code bases to user level. Examples of these are Arsenic and Jet-stream.
However, these have not addressed a number of the problems required to
achieve a complete, robust, high-performance commercially viable
implementation.

Figure 3 shows an architecture employing a standard kernel TCP f{ransport
(TCPK). The operation of this architecture is as follows.

On packet reception from the network interface hardware (e.g. a network interface
card (NIC)), the NIC transfers data into pre-allocated data buffer (a) and invokes
the OS interrupt handler by means of the interrupt line. (Step i). The interrupt
handler manages the hardware interface e.g. posts new receive buffers and

WO 2008/038139 PCT/IB2007/003444

passes the received (in this case Ethernet) packet looking for protocol information.
If a packet is identified as destined for a valid protocol e.g. TCP/IP it is passed

(not copied) to the appropriate receive protocol processing block. (Step ii).

TCP receive-side processing takes place and the destination part is identified
from the packet. If the packet contains valid data for the port then the packet is
engaged on the port's data queue (step iii) and that port marked (which may
involve the scheduler and the awakening of blocked process) as holding valid

data.

The TCP receive processing may require other packets to be transmitted (step iv),
for example in the cases that previously transmitted data should be retransmitted
or that previously enqueued data (perhaps because the TCP window has opened)
can now be transmitted. In this base packets are enqueued with the OS “NDIS”
driver for transmission.

In order for an application to retrieve a data buffer it must invoke the OS API (step
v), for example by means of a call such as recv(), select() or poll(). This has the
effect of informing the application that data has been received and (in the case of
a recv() call) copying the data from the kernel buffer to the application’s buffer.
The copy enables the kernel (OS) to reuse its network buffers, which have special
attributes such as being DMA accessible and means that the application does not
necessarily have to handle data in units provided by the network, or that the
application needs to know a priori the final destination of the data, or that the
application must pre-allocate buffers which can then be used for data reception.

It should be noted that on the receive side there are at least two distinct threads of
control which interact asynchronously: the up-call from the interrupt and the
system call from the application. Many operating systems will also split the up-call
to avoid executing too much code at interrupt priority, for example by means of
“soft interrupt” or “deferred procedure call” techniques.

WO 2008/038139 PCT/IB2007/003444

The send process behaves similarly except that there is usually one path of
execution. The application calls the operating system API (e.g. using a send()call)
with data to be transmitted (Step vi). This call copies data into a kernel data
buffer and invokes TCP send processing. Here protoz:ol is applied and fully
formed TCP/IP packets are enqueued with the interface driver for transmission.

If successful, the system call returns with an indication of the data scheduled (by
the hardware) for transmission. However there are a number of circumstances
where data does not become enqueued by the network interface device. For
example the transport protocol may queue pending acknowledgements or window
updates, and the device driver may queue in software pending data transmission
requests to the hardware.

A third flow of control through the system is generated by actions which must be
performed on the passing of time. One example is the triggering of
retransmission algorithms. Generally the operating system provides all OS
modules with time and scheduling services (driven by the hardware clock
interrupt), which enable the TCP stack to implement timers on a per-connection

basis.

If a standard kernel stack were implemented at user-level then the structure might
be generally as shown in figure 4. The application is linked with the transport
library, rather than directly with the OS interface. The structure is very similar to
the kernel stack implementation with services such as timer support provided by
user level packages, and the device driver interface replaced with user-level
virtual interface module. However in order to provide the model of asynchronous
processing required by the TCP implementation there must be a number of active
threads of execution within the transport library:

(i) System API calls provided by the application

(i) Timer generated calls into protocol code

(i) Management of the virtual network interface and resultant upcalls into
protocol code. (ii and iii can be combined for some architectures)

WO 2008/038139 PCT/IB2007/003444

However, this arrangement introduces a number of problems:

(@) Context switching between these threads and implementing locking to
protect shared-data structures can involve significant overheads, costing a
significant amount of processing time.

(b) The user level timer code generally operates by using timer/time support
provided by the operating system. Large overheads caused by system calls from
the timer module result in the system failing to satisfy the aim of preventing
interaction between the operating system and the data path.

(c) There may be a number of independent applications each of which
manages a sub-set of the network connection; some via their own transport
libraries and some by existing kernel stack transport libraries. The NIC must be
able to efficiently parse packets and deliver them to the appropriate virtual
interface (or the OS) based on protocol information such as [P port and host
address bits.

(d) It is possible for an application to pass control of a particular network
connection to another application, for example during a fork() system call on a
Unix operating system. This requires that a completely different transport library
instance would be required to access connection state. Worse, a number of
applications may share a network connection which would mean transport
libraries sharing ownership via (inter process communication) techniques.
Existing transports at user level do not attempt to support this.

(e) It is common for transport protocols to mandate that a network connection
outlives the application to which it is tethered. For example using the TCP
protocol, the transport must endeavour to deliver sent, but unacknowledged data
and gracefully close a connection when a sending application exits or crashes.
This is not a problem with a kernel stack implementation that is able to provide the
“timer” input to the protocol stack no matter what the state (or existence) of the
application, but is an issue for a transport library which will disappear (possibly
ungracefully) if the application exits, crashes, or stopped in a debugger.

WO 2008/038139 PCT/IB2007/003444
10

Instead of implementing a stack at user-level, some systems offload the TCP
stack onto a NIC equipped with a TCP Offload Engine (TOE) for handling the TCP
protocol processing. This reduces the load on the system CPU. Typically, data is
sent to a TOE-enabled NIC via a TOE-enabled virtual interface driver, by-passing
the kernel TCP/IP stack entirely. Data sent along this fast path therefore need
only be formatted to meet the requirements of the TOE driver. US Patent
Application No. 10/844,665 describes a system for interfacing TCP offload
engines using an interposed socket library.

However, performing the TCP protocol processing at the NIC requires the NIC to
have considerable processing power. This increases expense, especially since
embedded processing power on devices such as network interface devices is
typically more expensive than main processor power. TOE NICs are therefore
more expensive than generic network adapters. Furthermore, data must be
formatted twice: firstly at the user-level for the TOE driver, and secondly at the
TOE-enabled NIC to form TCP packets.

It would be desirable to provide a system in which TCP protocol processing is
performed in user-space on a host CPU (i.e. using the processing means of a
computer to which a network interface card is connected) but in which problems
(a) to (e) described above are at least partially addressed. Such an
implementation is advantageous because it allows a user to take advantage of the
price/performance lead of main CPU technology as against co-processors.

SUMMARY OF THE INVENTION

According to a first aspect of the present invention there is provided a method for
transmitting data by means of a data processing system, the system supporting
an operating system and at least one application and having access to a memory
and a network interface device capable of supporting a communication link over a
network with another network interface device, the method comprising the steps
of: forming by means of the application data to be transmitted; requesting by

WO 2008/038139 PCT/IB2007/003444
11

means of the application a user-mode operating system functionality of the data
processing system to direct the data to be transmitted, the request including an
indication of a protocol by which the data is to be transmitted; responsive to that
request, the user-mode operating system functionality selecting a protocol
processing entity in accordance with the indication of a protocol by which the data
is to be fransmitted; forming within the context of the application by means of the
protocol processing entity the data into packets for transmission in accordance
with the protocol by which the data is to be transmitted and writing by means of
the protocol processing entity the packets to be transmitied to an area of the
memory; initiating by means of communication between the protocol processing
entity and the network interface device a transmission operation of at least some
of the packets over the network.

Preferably the data processing system supports one or more instances of the
protocol processing entity, each instance being associated with an application.
Alternatively the data processing system supports one or more instances of the
protocol processing entity, each instance being associated with a socket
requested by an application.

Preferably the user mode operating system functionality is a socket library.
Preferably the protocol processing entity is a transport library including a network

protocol stack.

The method may further comprise the step of performing stateless protocol
processing at the network interface device. Suitably the step of performing
stateless protocol processing includes at least one of calculating a checksum,
performing a cyclic redundancy check (CRC), performing segmentation tasks, and

data encryption.

Preferably the protocol processing entity operates in user mode. Alternatively the

protocol processing entity operates in kernel mode.

WO 2008/038139 PCT/IB2007/003444
12

The operating system may be a Microsoft Windows operating system and the
protocol processing entity is provided as a Winsock Service Provider (WSP).
Suitably the protocol processing entity communicates with the user-mode
operating system functionality via a Service Provider Interface (SPI). Suitably the
user-mode operating system functionality is a Winsock dynamic link library.

Preferably the area of the memory is allocated to the protocol processing entity by
the operating system in response to a request from the protocol processing entity.
Suitably the area of memory is a buffer allocated by the operating system to which
the protocol processing entity and network interface device have access.

Suitably the communication between the protocol processing entity and the
network interface device is by means of an event placed on an event queue by
the network interface device . '

The protocol may be TCP/IP.

The method may further comprise the step of, subsequent to the initiating step,
accessing the area of the memory by means of the kernel mode operating system
and performing at least part of a transmission operation of at least some of the
packets over the network by means of the network interface device.

According to a second aspect of the present invention there is provided a method
for transmitting data by means of a data processing system, the system
supporting an operating system and at least one application and having access to
a memory and a network interface device capable of supporting a communication
link over a network with another network interface device, the method comprising
the steps of: forming by means of an application data to be fransmitted;
requesting by means of the application a user-mode operating system
functionality of the data processing system to direct the data to be transmitted, the
request including an indication of a protocol by which the data is to be transmitted;
responsive to that request, the user-mode operating system functionality selecting

WO 2008/038139 PCT/IB2007/003444
13

a protocol processing entity in accordance with the indication of a protocol by
which the data is to be transmitted; creating an instance of the. protocol
processing entity; forming within the context of the application by means of the
instance of the protocol processing entity the data into packets for transmission in
accordance with the protocol by which the data is to be transmitted and writing by
means of the instance of the protocol processing entity the packets to be
transmitted to an area of the memory; initiating by means of communication
between the instance of the protocol processing entity and the network interface
device a transmission operation of at least some of the packets over the network.

According to a third aspect of the present invention there is provided a data
processing system for transmitting data, the system supporting an operating
system and having access to a memory and a network interface device capable of
supporting a communication link over a network with another network interface
device, the system comprising: an application configured to form data to be
transmitted and request a user-mode operating system functionality of the data
processing system to direct the data to be transmitted, the request including an
indication of a protocol by which the data is to be transmitted; a user-mode
operating system functionality configured to select a protocol processing entity in
accordance with the indication of a protocol by which the data is to be transmitted
in response to the request from the application; a protocol processing entity
configured to form within the context of the application the data into packets for
transmission in accordance with the protocol by which the data is to be
transmitted, to write the packets to be transmitted to an area of the memory and to
initiate by means of communication between itself and the network interface
device a transmission operation of at least some of the packets over the network.

Preferably the data processing system supports one or more instances of the
protocol processing entity, each instance being associated with an application.
Alternatively the data processing system supports one or more instances of the
protocol processing entity, each instance being associated with a socket

requested by an application.

WO 2008/038139 PCT/IB2007/003444
14

Preferably the operating system is configured to subsequently access the area of
the memory and perform at least part of a fransmission operation of at least some
of the packets over the network by means of the network interface device.

According to a fourth aspect of the present invention there is provided a method
for receiving data by means of a data processing system, the system supporting
an operating system and at least one application and having access to a memory
and a network interface device capable of supporting a communication link over a
network with another network interface device, the method comprising the steps
of: establishing by means of a protocol processing entity of the data processing
system a channel for reception of data by an application, the channel being
associated with an area of the memory; writing data packets received at the
network interface device to the area of the memory; the protocol processing entity
reading the received data packets from the area of the memory and processing
the data packets within the context of an application in accordance with a protocol
by which the data packets are received so as to exiract the data therein; and the
application receiving the exiracted data from the non-operating-system

functionality by means of a user-mode operating system functionality.

Preferably if the protocol processing entity is not responsive to communications
from the network interface device, the operating system reads the received data
packets from the area of the memory and performs at least part of a transmission
operation of at least some of the packets over the network by means of the

network interface device.

The method may further comprising the step of performing stateless protocol
processing at the network interface device. Suitably the step of performing
stateless protocol processing includes at least one of checksum processing,
performing a cyclic redundancy check (CRC), performing segmentation tasks, and

data encryption.

WO 2008/038139 PCT/IB2007/003444
15

Suitably the step of the protocol processing entity reading the received data
packets from the area of the memory occurs in response to an interrupt set by the
network interface device. Alternatively the step of the protocol processing entity
reading the received data packets from the area of the memory occurs in
response to an event placed on an event queue by the network interface device.

According to a fifth aspect of the present invention there is provided a data
processing system for transmitting data, the system supporting an operating
system and having access to a memory and a network interface device capable of
supporting a communication link over a network with another network interface
device, the system comprising: one or more applications each configured to form
data to be transmitted and to request a user-mode operating system functionality
of the data processing system to direct the data fo be transmitted, each request
including an indication of a protocol by which that data is to be transmitied; the
user-mode operating system functionality being configured to select, in response
to each request from an application, a protocol processing entity in accordance
with the indication of a protocol included in each request; one or more instances
of a protocol processing entity, each instance being associated with an application
and configured to form, within the context of that application, data received from
that application into packets for transmission in accordance with the protocol by
which that data is to be transmitted, to write the packets to be transmitted to an
area of the memory and to initiate by means of communication between itself and
the network interface device a transmission operation of at least some of the

packets over the network.

According to a sixth aspect of the present invention there is provided a data
processing system for receiving data, the system supporting an operating system
and having access to a memory, the system comprising: a protocol processing
entity configured to establish a channel for reception of data by an application, the
channel being associated with an area of the memory; a network interface device
capable of supporting a communication link over a network with another network
interface device and of writing data packets received at the network interface

WO 2008/038139 PCT/IB2007/003444
16

device to the area of the memory; the protocol processing entity being configured
to read the received data packets from the area of the memory and process the
data packets within the context of an application in accordance with a protocol by
which the data packets are received so as to extract the data therein; and the
application being configured to receive the extracted data from the non-operating-
system functionality by means of a user-mode operating system functionality.

According to a seventh aspect of the present invention there is provided a system
for installing a protocol processing entity into a data processing system, the data
processing system supporting an operating system and at least one application
and having access to a memory and a network interface device capable of
supporting a communication link over a network with another network interface
device, the system comprising: a protocol processing entity operable to form data
into packets for transmission within the context of an application in accordance
with a protocol by which the data is to be transmitted, to write the packets to be
transmitted to an area of the memory and to initiate by means of communication
between jtself and the network interface device a transmission operation of at
least some of the packets over the network; and an installer configured to install
the protocol processing entity into the data processing system; wherein the
operating system is one in which an installed protocol processing entity
communicates with an application by means of a user-mode operating system

functionality.

According to an eighth aspect of the present invention there is provided a system
for transmitting or receiving data, the system comprising: a data processing
system supporting an operating system and at least one application and having
access to a memory, one or more areas of which are allocated for use as buffers
in the transfer of data between the data processing system and the network
interface device; a network interface device capable of supporting a
communication link over a network with another network interface device; the
system being operable to: fransmit data according to the methods described
herein; and receive data according to the methods described herein.

WO 2008/038139 PCT/IB2007/003444
17

According to a ninth aspect of the present invention there is provided a protocol
processing entity for performing network-level protocol processing in a data
processing system, the data processing system supporting the Microsoft Windows
operating system and at least one application and having access to a network
interface device capable of supporting a communication link over a network with
another network interface device, the protocol processing entity being embodied
as a Winsock Service Provider and being configured to: receive data packets from
the network interface device and process the data packets within the context of an
application in accordance with a protocol by which the data packets are received
so as to extract the data therein; and form within the context of an application data
received from that application into packets for transmission in accordance with the
protocol by which the data is to be transmitted.

The user-mode operating system functionality and the operating system may be
provided by different vendors, but it is important that equivalent functions are

provided by the functionality and that it is a user-mode functionality.

DESCRIPTION OF THE DRAWINGS

The present invention will now be described by way of example with reference to
the accompanying drawings, in which:

Figure 1 is a schematic diagram of a network interface device in use;,

Figure 2 illustrates an implementation of a transport library architecture;

Figure 3 shows an architecture employing a standard kernel TCP transport
with a user level TCP transport;

Figure 4 illustrates an architecture in which a standard kernel stack is
implemented at user-level,

Figure 5 shows an example of a typical TCP transport architecture;

Figure 6 shows a TCP transport architecture in accordance with the

present invention;

WO 2008/038139 PCT/IB2007/003444
18

DETAILED DESCRIPTION OF THE DRAWINGS

The following description is presented to enable any person skilled in the art to
make and use the invention, and is provided in the context of a particular
application and its requirements. Various modifications fo the disclosed
embodiments will be readily apparent to those skilled in the art, and the general
principles defined herein may be applied to other embodiments and applications
without departing from the spirit and scope of the present invention. Thus, the
present invention is not intended to be limited to the embodiments shown, but is to
be accorded the widest scope consistent with the principles and features
disclosed herein.

Figure 5 shows a typical TCP transport architecture for a data processing system.
When an application 505 wishes to send data over the network to which NIC 515
is connected, the application sends a request to socket library 507. Under current
versions of the Microsoft Windows operating system this request can be sent
according to the Winsock APl 506 and applications are only therefore required to
understand the Winsock API in order to transmit data. One or more transport
libraries 509, may be present in the system. In figure 5, fransport library 509
handles, for example, TCP/IP traffic. Under the Microsoft Windows operating
system, a transport library is a Winsock Service Provider (WSP) which interacts
with the Winsock via the Service Provider Interface (SPI) 508. Security layers,
such as a virus checker, may also be provided as Winsock Service Providers.
Transport library 509 directs the data to be sent to the TCP/IP stack 511 of the
operating system which resides in kernel space 501. The TCP/IP stack performs
the protocol processing and passes the data to the NIC for transmission over the
network in accordance with the functionality defined by the NIC driver 513.

Under Microsoft Windows, the operating system maintains a catalogue of the
service providers (WSPs) present in the data processing system and the order in
which the service provider layers should be applied. Thus a virus checking WSP
usually promotes itself as the primary WSP layer so that all data passing via the

WO 2008/038139 PCT/IB2007/003444
19

Winsock is scanned for viruses. When an application requests creation of a
socket based on its address family, type and protocol identifier, the Winsock
consulis the parameters and order of registered VWSPs and directs the data flow to
the appropriate WSP or sequence of WSPs. A request by an application to
transmit data via TCP/IP is therefore directed to a TCP/IP-capable WSP, possibly
via WSP-layers offering other data processing or filiering functionality, such as a
virus checking WSP. Under the layered WSP model, each WSP interacts with the
next WSP in the chain according to the SPI. The chain is terminated by a Base
Service Provider which directs all calls it receives to the kernel TCP stack.

A transport architecture in accordance with the present invention includes an
onload transport library. An onload transport library is a transport library which is
dedicated to an application. An onload transport library performs processing of
data for transmission and data received at a network interface device within the
context of the application to which it is bound. The processing of data within an
onload transport library is therefore temporally close to the application processing
the data.

Figure 6 shows a TCP transport architecture according to an embodiment of the
present invention. Socket library 507 receives a socket creation request from an
application 505 that wishes to transmit data over the network. Socket library 507
may be provided by the operating system. Socket library 507 preferably operates
in user mode. The socket library passes on or directs socket calls to the
appropriate transport libraries based on the address family, type or protocol
identifier of the requested socket. Transport library 517 is registered with the
socket library as operable to handle data in accordance with a particular transport
protocol. Preferably, transport library 517 is selected on the basis of the transport
protocol by which the data is to be sent. Transport library 517 may be selected on
the basis of the address to which data is to be sent.

Onload transport library 517 is a non-operating-system functionality providing a
network protocol stack. An instance of the non-operating-system functionality is

WO 2008/038139 PCT/IB2007/003444
20

created for each application having data to send, or for each socket by which data
may be sent. The data flows to and from each application may therefore be
independently managed by the respective instances of the transport library.

In the embodiments in which the operating system is a Windows operating
system, the tfansport library is preferably a WSP and the socket library is
preferably the Windows Winsock. Preferably the transport library is configured to
be the primary TCP/IP or UDP/IP WSP. Providing a transport library in
accordance with the present invention as a WSP that plugs into the existing
Winsock via the SPI interface allows the transport library to benefit from any
security or other data filtering layers installed into the operating system. For
example, data for transmission by means of the transport fibrary may be first
passed through a virus checking WSP. Thus the data transmission system may
take advantage of the security measures offered by the operating system and
other components installed into it and does not require separate security

measures.

The socket library passes on socket calls as appropriate to transport library 517
across SPI interface 508. Transport library 517 includes a TCP/IP stack, with
TCP/IP protocol processing being performed in the transport library. This allows
the good price:performance ratio of system CPU(s) (as compared to dedicated
network card processors) to be fully utilised. Furthermore, in operating the
transport library in user mode, no context switching is required in order for an
application to transmit data across the network, no interrupts are required for an
application to receive data and the processing of data by the application is closely

coupled with the execution of the transport library.

A feature of the present invention is that the transport library is provided in an
onload configuration. In other words, the protocol processing performed by the
transport library is loaded onto the CPU and not off-loaded to a processor on a
NIC.

WO 2008/038139 PCT/IB2007/003444
21

Another feature of the present invention is that a new instance of the transport
library is created for each application that requests a connection. Network
protocol stacks are therefore defined on a per-application basis. In the most
closely coupled onload arrangement, the transport library is a user-mode object
and each instance of the transport library is directly associated with a particular
application. The application and transport library may be separated by a dynamic
link resolved function call. This allows the transport library to carry out protocol
processing within the context of the application to which it is bound. However
other embodiments of an onloaded configuration are possible. For example, each
instance of the fransport library may be associated with a particular application,

but separated by a system call interface.

In an embodiment of the present invention, the transport library operates in kernel
mode but is closely coupled to the application. In this case, the transport library is
separated from the application by a system call interface. Many of the benefits of
a full user level transport library are provided, but with the exception that there is
some context switch overhead. This architecture would be useful where the
security policies of the system would not allow a user-level implementation of the

transport library.

Under Microsoft Windows, the non-operating-system functionality (the transport
library) is preferably implemented as a WSP. The WSP can be thought of as a
per-application fransport stack. Data is therefore received direcily to a
subcomponent of an existing operating system socket library. A user-level
transport library would therefore receive data from an operating system API.

The stack may be a UDP/IP stack. Could also support any common network

protocol configurations.

The transport library retains the ability to pass on a socket call to other transport
implementations: for example, to the default TCP/IP fransport library of the
operating system further down the hierarchy. Data flows may be sent via the

WO 2008/038139 PCT/IB2007/003444
22

kernel stack if the data flow requires processing that cannot be carried out by the
hardware or transport library: for example, flows in accordance with a protocol not
understood by the hardware or transport library.

Once the protocol processing has been performed in the transport library the data
is passed to the NIC for transmission across the network by writing the data to a
transmit buffer. Buffers are allocated in memory on the data processor for use in
cooperation with the NIC for the transmission and/or reception of data over the
network. In the case of a transmit buffer, which is for use in transmitting data, the
NIC is configured for reading data from that buffer and transmitting it over the
network. The NIC may automatically read that data and transmit it, or it may be
triggered to read the data by the transport library or the operating system running
on the data processor. The trigger can conveniently be a doorbell write to a
location decoded by the NIC which identifies the data structure requiring
transmission. In the case of a receive buffer, which is for use in receiving data,
the NIC is configured for writing to that buffer data received over the network. The
data in the receive buffer may then be read by the fransport library or the

operating system and further processed by it.

The buffers are most conveniently owned by the operating system, in the sense
that it has control over which entities have access to the buffers it has allocated,
and/or it has created the buffers, and it is responsible for deleting them. However,
both the transport library and the operating system can directly access the buffers
for reading data from and writing data to them. The transport library, when
operating in an unprivileged (user) mode, is not given access to the physical
addresses of these buffers. The transport library may instead use the buffers
either by a memory mapping onto the buffer which is provided by the operating
system, or else by reference to a virtual address which has been associated with
the buffer by the operating system. This association may also be programmed
into the NIC by the operating system, thus enabling the unprivileged transport
library to safely refer to the buffer when communicating directly to the NIC
hardware. . '

WO 2008/038139 PCT/IB2007/003444
23

In the case of transmission of data, the application will be expected to write data
to a buffer for transmission and then trigger the NIC to read from the buffer to
transmit that data. In some situations this alone may be sufficient to allow the
data to be transmitted successfully over the network. However, the NIC does not
perform protocol processing of transmitted or received data. Instead it is
performed by the traﬁsport library or the operating system. Therefore if, for
instance, the data is not received successfully by the intended recipient the
transport library or the operating system must process acknowledgements,
retransmission requests etc. (according to the protocol in use) and cause the NIC
to perform retransmission. Normally this can be expected to be done by the

transport library.

When the NIC has data such as an acknowledgement message or a timeout for
the transport library it writes that either to a receive buffer and/or an event queue.
At the same time it starts a timer running. When the transport library accesses
the buffer/event queue via the transport library it stops and resets the timer. In
that way the NIC knows that the transport library is responsive. However, if the
timer reaches a predetermined value then the NIC determines that the application
is unresponsive and signals the operating system, for example by means of an
interrupt, to handle the data for the application. This has a number of advantages.
First, the transmission of the data can be progressed by the operating system
even if the application is busy or has been descheduled. Second, it gives the
transport library the opportunity to intentionally ignore the data, for example by
having itself descheduled, once it has placed it on the transmit queue, since the
operating system will fake over if necessary. Preferably the application controls
the length of the timer, for example by setting its initial value. This allows the
application to set the timer to suit its priority. The timer is preferably a hardware
resource on the NIC to which the application has direct access.

In the case of reception of data, the NIC parses each packet and determines to
which transport library (i.e. which receive interface) the packet data should be
sent. The NIC will then write the data to the determined receive buffer.

WO 2008/038139 PCT/IB2007/003444
24

In the case of received data the processing by either the transport library or the
operating system will typically involve protocol processing: e.g. checking of packet
sequence numbers, executing congestion control and avoidance algorithms and
removal of data from the buffer for use by the application. When the transport
library handles the protocol processing, the processing usually occurs in the
context of the application and temporally close to the processing of the data by

the application.

Whilst the buffers are preferably allocated by the operating system, it is
convenient for that to be done in response to a request from the transport library
on behalf of an application (typically at start of day). Thus, if the received data
might overflow the available receive buffers for an application, the transport library

can request allocation of further buffers by the operating system.

Preferably a state buffer holds protocol state data that is accessible to the
operating system and the transport library. The state buffers can hold event
gueues of event messages. This allows the operating system to keep track of the
state of a connection when the user level transport library is managing the

connection.

It should be noted that the transmit and receive buffers defined above are internal
to the data processing system, i.e. the buffers are not addressable by entities on
the network external to the data processing system. The above system achieves
user-level networking or more generally network onloading, without requiring the
transfer of information regarding those buffers over the network. Preferably the
buffers are addressable only by the NIC and the transport library.

In an embodiment of the present invention, the network interface device can
(preferably in hardware) examine the flow of incoming packets. This allows it to
identify relevant bit sequences in incoming packets without affecting the flow of
data. For TCP and/or UDP packets the identification of bit sequences may, for
example, be implemented using a simple decode pipeline because of the simple

WO 2008/038139 PCT/IB2007/003444
25

header layout of such packets. The NIC may therefore direct incoming data to the
appropriate receive buffer of an application by identifying a bit sequence in a data
stream. There is thus no requirement (as in RDMA) to define buffer names that
are valid over the entire network in order for an application to pass data to another
application running on another data processing device via a fast data path that
does not require data to traverse a kernel network stack.

The principal differences between the architecture of the example of figure 6 and
conventional architectures are as follows.

(i) TCP code which performs protocol processing on behalf of a network
connection is located both in the transport library, and in the OS kernel. The fact
that this code performs protocol processing is especially significant.

(i) Connection state and data buffers are held in kernel memory and memory
mapped into the fransport library’s address space. The operating system is the
owner of those buffers, thus having full control over them, but they can be directly
accessed by the application for whose communications they are to be used. This
enables the application to transmit and receive data directly through those buffers
and to read state data from the corresponding state buffer.

(i) Both kernel and transport library code may access the virtual hardware
interface for and on behalf of a particular network connection.

(iv) Timers may be managed through the virtual hardware interface, (these
correspond to real timers on the network interface device) without requiring
system calls to set and clear them. The NIC generates timer events which are
received by the network interface device driver and passed up to the TCP support
code for the device.

It should be noted that the TCP support code for the network interface device is in
addition to the generic OS TCP implementation. This is suitably able to co-exist

with the stack of the network interface device.

The effects of this architecture are as follows.

WO 2008/038139 PCT/IB2007/003444
26

(@) Requirement for multiple threads active in the transport Library

This requirement is not present for the architecture of figure 6 since TCP code can
either be executed in the transport library as a result of a system API cali (e.g.
recv()) or by the kernel as a result of a timer event. In ether case, the VI (virtual
interface) can be managed and both code paths may access connection state or
data buffers, whose protection and mutual exclusion may be managed by shared
memory locks. As well as allowing the overheads of thread switching at the
transport library level to be removed, this feature can prevent the requirement for
applications to change their thread and signal-handling assumptions: for example
in some situations it can be unacceptable to require a single threaded application
to link with a multi-threaded library.

(b) Requirement to issue system calls for timer management

This requirement is not present for the architecture of figure 6 because the
network interface device can implement a number of timers which may be
allocated to particular virtual interface instances: for example there may be one
timer per active TCP transport library. These timers can be made programmable
through a memory mapped VI and result in events being issued. Because timers
can be set and cleared without a system call — without directly involving the
operating system —the overhead for timer management is greatly reduced.

(c) Correct Delivery of packets to multiple transport libraries

The network interface device can contain or have access to content addressable
memory, which can match bits taken from the headers of incoming packets as a
parallel hardware match operation. The results of the maich can be taken to
indicate the destination virtual interface which must be used for delivery, and the
hardware can proceed to deliver the packet onto buffers which have been pushed

WO 2008/038139 PCT/IB2007/003444
27 .

on the VI. A CAM or hash algorithm may be used by hardware to determine
which virtual interface to use.

(d) Handover of connections between Processes/Applications/Threads

When a network connection is handed over the same system-wide resource
handle can be passed between the applications. This could, for example, be a file
descriptor. The architecture of the network interface device can attach all state
associated with the network connection with that (e.g.) file descriptor and require
the transport library to memory map on to this state. Following a handover of a
network connection, the new application (whether as an application, thread or
process) — even if it is executing within a different address space — is able to
memory-map and continue to use the state. Further, by means of the same
backing primitive as used between the kernel and transport library any number of
applications are able to share use of a network connection with the same
semantics as specified by standard system APls.

(e) Completion of transport protocol operations when the transport library is
ether stopped or killed or quit.

This step can be achieved in the architecture of the network interface device
because connection state and protocol code can remain kernel resident. The OS
kernel code can be informed of the change of state of an application in the same
manner as the generic TCP (TCPk) protocol stack. An application which is
stopped will then not provide a thread to advance protocol execution, but the
protocol will continue via timer events, for example as is known for prior art kernel
stack protocols.

There are a number of protocols, such as RDMA and iSCSI, which are designed
to run in an environment where the TCP and other protocol code executes on the
network interface device. Facilities will now be described whereby such protocols
can execute on the host CPU (i.e. using the processing means of the computer to

WO 2008/038139 PCT/IB2007/003444
28

which a network interface card is connected). Such an implementation is
advantageous because it allows a user to take advantage of the
price/performance lead of main CPU technology as against co-processors.

Protocols such as RDMA involve the embedding of framing information and cyclic
redundancy check (CRC) data within the TCP stream. While framing information
is trivial to calculate within protocol libraries, CRC’s (in contrast to checksums) are
computationally intensive and best done by hardware. To accommodate this,
when a TCP stream is carrying an RDMA or similar encapsulation an option in the
virtual interface can be is enabled, for example by means of a flag. On detecting
this option, the NIC will parse each packet on transmission, recover the RDMA
frame, apply the RDMA CRC algorithm and insert the CRC on the fly during
transmission. Analogous procedures can beneficially be used in relation to other
protocols, such as iSCSI, that require computationally relatively intensive

calculation of error check data.

In line with this system the network interface device can also verify CRCs on
received packets using similar logic. This may, for example, be performed in a
manner akin to the standard TCP checksum off-load technique.

Protocols such as RDMA also mandate additional operations such as RDMA
READ which in conventional implementations require additional intelligence on
the network interface device. This type of implementation has led to the general
belief that RDMA/TCP should best be implemented by means of a co-processor
network interface device. In an architecture of the type described herein, specific
hardware filters can be encoded to trap such upper level protocol requests for a
particular network connection. In such a circumstance, the NIC can generate an
event akin to the timer event in order to request action by software running on the
attached computer, as well a delivery data message. By triggering an event in
such a way the NIC can achieve the result that either the transport library, or the
kernel helper will act on the request immediately. This can avoid the potential

WO 2008/038139 PCT/IB2007/003444
29

problem of kernel extensions not executing until the transport library is scheduled
and can be applied to other upper protocols if required.

The RDMA model may be implemented under the optional Microsoft Windows
component Winsock Direct (WSD). Winsock Direct bridges the semantic
difference between the Winsock APl and the RDMA model, providing a direct data
path from the Winsock architecture to an RDMA-enabled NIC. Under the WSD
model, the interconnect vendor’s virtualized hardware driver is provided as an
RDMA SAN (System Area Network) Provider. The RDMA SAN Provider allows
data to be received from the Winsock Direct Switch (which plugs into the native
system Winsock) via an SPI interface and addressed directly to the NIC via the
vendor’s integrated virtualized hardware driver. An RDMA-enabled NIC performs
all statefull protocol processing, typically on a processor on the NIC. This is to be
contrasted with the methods in accordance with the present invention, in which
statefull protocol processing is performed at the host CPU and preferably in the
context of the application to which data is being sent or transmitted from. As
described, stateless protocol processing (such as checksum calculations) may be
performed on the NIC.

Typically RDMA SANs are connection oriented and require signalling through a
non-IP control plane. These operations are implemented within the kernel and a
data transfer operation therefore requires the use of kernel system calls.
Furthermore, the RDMA model allows a remote application to be given read or
write access to a region of memory in an application’s address space. Buffers
allocated for remote direct memory access must be uniquely named so that they
can be referred to over the network. Since buffer resources are finite within a
system and since the number of resources required in this model grows as the
number of communicating hosts in a cluster grows, the algdrithms for efficiently
managing this are complex and result in more signalling messageé being sent
around the network.

WO 2008/038139 PCT/IB2007/003444
30

The present invention allows the direct transfer of data over a low latency fast
path between applications that are remote to one another but without supporting
the RDMA model as such. The complexity of an RDMA SAN Provider running
under Winsock Direct is not required. For example, no signalling messages to
grant or revoke read or write rights to buffers are required. Buffers are allocated
by the operating system to a transport library and NIC operating according to the
principles of the present invention. Preferably buffers are allocated in response to
requests made by the transport library. These requests may be made in response
to the creation of new sockets or data flows. Buffers are not therefore allocated to
(or addressable by) remote applications or allocated on a connection-oriented

basis.

A transport library operable according to the principles of the present invention
may exist in a system with the WSD architecture since the WSD switch also plugs
into the Winsock via SPI. The transport library may precede or follow the WSD
switch layer. Preferably the transport library precedes the WSD switch. The
WSD switch may be the Base Service Provider and therefore be located at the
end of the WSP chain.

One advantage that has been promoted for co-processor TCP implementations is
the ability to perform zero-copy operations on transmit and receive. In practice,
provided there is no context switch or other cache or TLB (transmit look-aside
buffer) flushing operations on the receive path (as for the architecture described
above) there is almost no overhead for a single-copy on receive since this serves
the purpose of loading the processor with received data. When the application
subsequently accesses the data it is not impacted by cache misses, which would

otherwise be the case for a zero copy interface.

However on transmit, a single copy made by the transport library does invoke
additional overhead both in processor cycles and in cache pollution. The
architecture described above can allow copy on send operations to be avoided if
the following mechanisms are, for example, implemented:

WO 2008/038139 PCT/IB2007/003444
31

(i) transmitted data can be acknowledged quickly (e.g. in a low-latency
- environment); alternatively

(i) where data is almost completely acknowledged before all the data in a
transfer is sent (e.g. if bandwidth x delay product is smaller than the message
size);

(iii) where the data is resident in a kernel owned buffer and cannot be modified by
the application (e.g sendfile)

The transport library can simply retain sent buffers until the data from them is
acknowledged, and data transmitted without copying. This can also be done

when asynchronous networking APls are used by applications.

Even where data copy is unavoidable, the transport library can use memory copy
routines which execute non-temporal stores. These can leave copied data in
memory (rather than cache), thus avoiding cache pollution. The data not being in
cache would not be expected to affect performance since the next step for
transmission will be expected to be DMA of the data by the network interface
device, and the performance of this DMA operation is unlikely to be affected by
the data being in memory rather than cache.

The network interface device can (preferably in hardware) examine the flow of
incoming packets in order that it can in effect parse the network header. This
allows it to identify relevant bit sequences in incoming packets without affecting
the flow of data. The NIC may then determine the appropriate receive buffer for a

packet by:

1. Identifying the relevant bit sequences. This can be done using a simple
decode pipeline, or for more flexibility (for example, to support multiple
protocols) using a flexible packet parsing engine (a simple CPU).

2. Matching the identified bits. This can be done using a Content Addressable
Memory (CAM) or a hash table.

WO 2008/038139 PCT/IB2007/003444
32

The applicant hereby discloses in isolation each individual feature described
herein and any combination of two or more such features, to the extent that such
features or combinations are capable of being carried out based on the present
specification as a whole in the light of the common general knowledge of a person
skilled in the art, irrespective of whether such features or combinations of features
solve any problems disclosed herein, and without limitation to the scope of the
claims. The applicant indicates that aspects of the present invention may consist
of any such individual feature or combination of features. In view of the foregoing
description it will be evident to a person skilled in the art that various modifications
may be made within the scope of the invention.

WO 2008/038139 PCT/IB2007/003444
33 :

SECTION B
CHIMNEY ONLOAD IMPLEMENTATION OF NETWORK PROTOCOL STACK

BACKGROUND OF THE INVENTION

This invention relates to the transmission of data across a network by means of a
data processing system having access {0 a network interface device that is
capable of supporting a communication link over a network with another network

interface device.

Figure 7 represents equipment capable of implementing a prior art protocol stack,
such as a transmission control protocol (TCP) stack in a computer connected to a
network 6. The equipment includes an application 1, a socket 2 and an operating
system 3 incorporating a kernel 4. The socket connects the application to remote
entities by means of a network protocol, in this example TCP/IP. The application
can send and receive TCP/IP messages by opening a socket and reading and
writing data to and from the socket, and the operating system causes the
messages to be transported across the network by means of appropriate network
hardware 5. For example, the application can invoke a system cail (syscall) for
transmission of data through the socket and then via the operating system to the
network. Syscalls can be thought of as functions taking a series of arguments
which cause execution of the CPU to switch to a privileged level and start
executing the operating system. Here the syscalls are denoted 1 to N. A given
syscall will be composed of a specific list of arguments, and the combination of

arguments will vary depending on the type of syscall.

Certain management functions of a data processing device are conventionally
managed entirely by the operating system. These functions typically include basic
control of hardware (e.g. networking hardware) attached to the device. When
these functions are performed by the operating system the state of the computing
device’s interface with the hardware is managed by and is directly accessible to
the operating system. Alternatively, at least some of the functions usually

WO 2008/038139 PCT/IB2007/003444
34

performed by the operating system may be performed by code running at user
level. In a user-level architecture at least some of the state of the function can be
stored by the user-level code. This can cause difficulties when an application
performs an operation that requires the operating system to interact with or have
knowledge of that state.

In particular, state control of networking hardware is conventionally handled by the
operating system. Thus applications having data to transmit over the network to
which a network interface device is connected must pass their data to the
operating system for processing into data packets for transmission over the
network. Conventionally the operating system performs all (at least statefull)
protocol processing and would therefore handie requests for retransmission,

segmentation and reassembly, flow control, congestion avoidance etc.

Alternatively, a protocol stack may be implemented in user mode, with data being
passed from the application to the stack for processing and onto the network
interface device for transmission without involving the operating system. The
stack could be a TCP/IP stack, with most user level TCP/IP stack implementations
to date being based on porting pre-existing kernel code bases to user level.
Examples of these are Arsenic and Jet-stream. However, these have not
addressed a number of the problems required to achieve a complete, robust,

high-performance commercially viable implementation.

Instead of implementing a stack at user-level, some systems offload the TCP
stack onto a NIC equipped with a TCP Offload Engine (TOE) for handling the TCP
protocol processing. This reduces the load on the system CPU. Typically, data is
sent to a TOE-enabled NIC via a TOE-enabled virtual interface driver, by-passing
the kernel TCP/IP stack entirely. Data sent along this fast path therefore need

only be formatted to meet the requirements of the TOE driver.

Alacritech, Inc. has developed a range of network interface cards having TCP
offload engines. Various aspects of the Alacritech network interface cards and

WO 2008/038139 PCT/IB2007/003444
35

associated technologies are described in US patent applications having the
following publication numbers: US6226680, US6247060, US6334153,
US6389479, US6393487, US6427171, US6427173, US6434620, US6470415,
US6591302.

However, performing the TCP protocol processing at the NIC requires the NIC to
have considerable processing power. This increases expense, especially since
embedded processing power on devices such as network interface devices is
typically more expensive than main processor power. TOE NICs are therefore
more expensive than generic network adapters. Furthermore, data must be
processed twice: firstly at the top edge of the TOE driver, and secondly at the
TOE-enabled NIC to form TCP packets.

The network architecture of the latest Microsoft Windows operating system will
support TOE-enabled NICs. Collectively the network architecture is known as
Chimney. Chimney supports both TOE enabled network devices and TOE/RDMA
enabled network devices, with TOE/RDMA enabled network devices being able to
interpret the RDMA protocols and deliver data directly into user-level buffers, in
addition to running a TCP stack on a CPU embedded on the network device.

Under the Chimney model a network connection to a remote computer is always
first negotiated using the default kernel TCP/IP stack. The use of additional
protocols (such as RDMA) is then progressively negotiated. The kernel stack may
hand over control of a given TCP/IP data flow if the flow matches certain
conditions. For example, the kernel stack may hand over control of a data flow to
a TOE-enabled NIC if the flow is long lived or if large amounts of data are being
transferred. This allows the flow to take advantage of the fast data path provided
by the interface and shown in Figure 8. Alternatively, the flow may be handed
over to the NIC in dependence on the destination address of the data, or after a
predetermined amount of time. Or simply on a per-port basis where the ports are

decided by the operator.

WO 2008/038139 PCT/IB2007/003444
36

The handover is initiated by the operating system sending a state handover
message to the network interface device via the driver interface of the network
device. The state handover messaging forms part of Network Driver Interface
Specification (NDIS) 6.0, currently in development by Microsoft. The NDIS API
interfaces vendor specific driver code fo the core operating system and provides
the state update interface in the Chimney model.

In response to a state handover message received from the operating system, a
driver for the TOE-enabled NIC that is to take over protocol processing from the
operating system configures that NIC to handle the TCP/IP flow indicated in the
state handover message. Furthermore, the operating system configures the
sockets library layer to direct traffic data from the application via a fast data path
which avoids the kernel TCP/IP stack. Thus, the transfer of state to the NIC
allows data transfers over the fast path to entirely bypass the operating system.

Over the fast data path, traffic data from an application is directed by the sockets
layer to the Chimney switch (which is essentially a WSP embodying operating
system functionality). The switch allows data to be sent directly to a TOE-enabled
NIC via the TOE virtual hardware interface, bypassing the kernel TCP/IP stack.

For a TOE only chimney the kemel TCP/IP stack can be bypassed by the
operating system and for an RDMA/TOE chimney, communication over the fast
data path between the switch and NIC is achieved by means of the Sockets Direct
Protocol (SDP). SDP is also a messaging protocol by which RDMA is achieved.
The switch may be a base service provider (i.e. the lowest level WSP). Other
similar aiternatives are possible such as RDMA via a protocol called Winsock
Direct Protocol (WSD) although it is currently unclear whether this protocol would

be incorporated into a Chimney architecture.

Chimney preserves the sockets interface (Winsock) used by applications to
request transmission of traffic data. When an application wishes to send data
over the network to which a NIC is connected, the application sends a request to

WO 2008/038139 PCT/IB2007/003444
37

a user-mode library. Under the Microsoft Windows operating system this request
is sent according to the Winsock API and applications are only therefore required
to understand the Winsock APl in order to transmit data. One or more Winsock
Service Providers (WSPs) which interact with the Winsock via the Service
Provider Interface (SPI) may be present in a system. A WSP may offer a
transport library that handles, for example, TCP/IP traffic. Security layers, such as
a virus checker, may also be provided as Winsock Service Providers. Typically, a
transport library directs the data to be transmitted to a kernel mode protocol stack.
The protocol stack performs the protocol processing and passes the data to a NIC

for transmission over the appropriate network.

Under Microsoft Windows, the operating system maintains a catalogue of the
service providers (WSPs) present in the data processing system and the order in
which the service provider layers should be applied. Thus a virus checking WSP
usually promotes itself as the primary WSP layer so that all data passing via the
Winsock is scanned for viruses. When an application requests creation of a
socket based on its address family, type and protocol identifier, the Winsock
consults the parameters and order of registered WSPs and directs the data flow to
the appropriate WSP or sequence of WSPs. A request by an application to
transmit data via TCP/IP is therefore directed to a TCP/IP-capable WSP, possibly
via WSP-layers offering other data processing or filtering functionality, such as a
virus checking WSP. Under the layered WSP model, each WSP interacts with the
next WSP in the chain according to the SPI.

Chimney also supports RDMA via the Sockets Direct Protocol (SDP) that enables
direct communication between an application at the sockets layer and a
TOE/RDMA network interface card. SDP operates between the Chimney switch
and RDMA NIC and emulates sockets streaming semantics, so existing
applicétions that rely on sockets can transparently and without modification take
advantage of RDMA-optimized data transfers.

WO 2008/038139 PCT/IB2007/003444
38

RDMA-enabled NICs are able to interpret RDMA-data plane protocols and deliver
data directly into user-level buffers, in addition to running a TCP stack on a
processor embedded on the NIC. Under the Chimney model, use of the RDMA
‘protocol is negotiated once a TCP-plane connection has been established using
the default kernel TCP/IP stack.

SUMMARY OF THE INVENTION

According to a first aspect of the present invention there is provided a software
networking arrangement for operation in a first data processing system, the data
processing system comprising: an operating system capable of processing a flow
of traffic data received from an application supported by the first data processing
system, the operating system being operable in: a first mode, in which the
operating system performs protocol processing of a flow of traffic data and then
passes the protocol processed data to a network interface device for
transmission; and a second mode, in which the operating system does not
perform protocol processing of a flow of traffic data, the operating system being
arranged to, on entering the second mode, transmit a message to the network
interface device indicating that the network interface device is to perform protocol
processing of the flow of traffic data; the software networking arrangement
comprising: a protocol processing entity; and a driver for a network interface
device, the driver being configured to receive said message from the operating
system and in response thereto, to configure the protocol processing entity to
perform transport-level protocol processing of the flow of traffic data received from
an applicétion within the context of that application and then pass the protocol
processed data to the network interface device.

Preferably the operating system is operable in the first mode for a first flow of
traffic data and in the second mode for a second flow of traffic data, each flow of
traffic data being associated with a particular application or socket of an

application.

WO 2008/038139 PCT/IB2007/003444
39

Preferably the driver is arranged to configure the protocol processing entity to
perform transport-level protocol processing of the flow of traffic data received from
the application by redirecting said message to the protocol processing entity.

Preferably, in response to the driver receiving said message, the software
networking arrangement is arranged to create a new instance of the protocol
processing entity to process the flow of traffic data received from the application.
Alternatively, in response to the driver receiving said message, the software
networking arrangement is arranged to create a new instance of the protocol
processing entity to process the flow of traffic data received from a socket of the

application.

Suitably the operating system is arranged to configure an interface between the
application and the protocol processing entity to direct the flow of traffic data from
the application to the network interface device.

Preferably, on entering the second mode, the operating system is arranged to
cause an interface between the application and the protocol processing entity to
direct the flow of traffic data from the application to the protocol processing entity
if the protocol processing entity is associated with the driver of the network

interface device.

On being configured to perform protocol processing of the flow of traffic data from
the application, the protocol processing entity may be arranged to intercept that
flow of traffic data from the application to the interface. Alternatively, on being
configured to perform protocol processing of the flow of traffic data from the
application, the protocol processing entity may be arranged to intercept a flow of
data from the interface to the network interface device which corresponds to that

flow of traffic data from the application.

WO 2008/038139 PCT/IB2007/003444
40

Subsequent to being configured to perform protocol processing of the flow of
traffic data from the application, the protocol processing entity may be arranged to
intercept all flows of traffic data from that application to the interface.

Preferably the interface is a Chimney Switch.

Preferably the protocol processing entity is a user-level protocol processing entity.

Suitably the message is a state handover message. The state handover
message may include an indication of the state of the flow of the fraffic data.

The flow of traffic data may be associated with a socket of the application.

Preferably network-level protocol processing is performed at the network interface
device. Suitably the network-level protocol processing includes calculating a
checksum. Suitably the network-level protocol is Internet Protocol (IP). Suitably
the IP-level protocol processing includes the DEMUX of packets based on
protocol address bits. Preferably all higher-level protocol processing is performed

at the protocol processing entity.

Suitably the operating system is Microsoft Windows.

Preferably the protocol processing entity is a Winsock Service Provider.
Alternatively the protocol processing entity is a System Area Network provider and
the protocol processing entity is arranged to communicate with the interface by

means of the Sockets Direct Protocol.

Preferably the operating system is arranged to enter the second mode when the
flow of traffic data from the application through the operating system matches one
or more predetermined conditions. One of the predetermined conditions may be
an elapsed time for which the data flow has been active. One of the

WO 2008/038139 PCT/IB2007/003444
41

predetermined conditions may be an amount of data transferred over the data

flow.

The flow of traffic data may be sent over an RDMA connection and the driver may
be arranged to configure the protocol processing entity to perform RDMA protocol
processing of the flow of traffic data. Preferably the network interface device is
arranged to perform stateless RDMA protocol processing. Suitably the stateless
RDMA protocol processing includes performing a cyclic redundancy check (CRC).

On being configured to perform RDMA protocol processing, the protocol
processing entity may be arranged to signal a second data processing system
which terminates the RDMA connection to indicate that the software networking
arrangement is operating at the first data processing system. Preferably, if the
second data processing system responds to the first data processing system with
an indication that it is also operating the software networking arrangement, the
protocol processing entities at the first and second data processing systems are
arranged to take down the RDMA connection and to subsequently process the
transport data in accordance with the underlying transport-layer protocol.

Suitably the transport layer protocol is the TCP protocol.

Suitably the driver is arranged to indicate to the operating system that it
represents a network interface device supporting a TCP offload engine. Suitably
the driver is arranged to indicate to the operating system that it represents a
network interface device supporting an RDMA-TCP offload engine.

The software networking arrangement may be stored on a data carrier.

According to a second aspect of the present invention there is provided a software
networking arrangement for operation in a first data processing system, the data
processing system comprising: an operating system capable of processing a flow
of data packets received at a network interface device for an application

WO 2008/038139 PCT/IB2007/003444
42

supported by the first data processing system, the operating system being
operable in: a first mode, in which the operating system performs protocol
processing of a flow of data packets and then passes the protocol processed data
to the application; and a second mode, in which the operating system does not
perform protocol processing of a flow of data packets, the operating system being
arranged to, on entering the second mode, transmit a message o the network
interface device indicating that the network interface device is to perform protocol
processing of the flow of data packets; the software networking arrangement
comprising: a protocol processing entity; and a driver for a network interface
device, the driver being configured to receive said message from the operating
system and, in response thereto, to configure the protocol processing entity to
perform transport-level protocol processing of the flow of data packets received at
the network interface device and then pass the protocol processed data to the
application associated with the flow of data packets, the protocol processing being
performed within the context of that application.

Preferably the operating system is arranged to operate in the first mode for a first
flow of data packets and in the second mode for a second flow of data packets,
each flow of data packets being associated with a particular application or socket
of an application.

The software networking arrangement may be stored on a data carrier.

According to a third aspect of the present invention there is provided a method for
processing data by means of a data processing system, the system supporting an
operating system and at least one application, and having access to a network
interface device; the method comprising the steps of: the operating system:
receiving a flow of traffic data from an application; performing protocol processing
of the flow of traffic data; passing the protocol processed data to the network
interface device for transmission; determining that the network interface device is
to perform protocol processing of the flow of traffic data received from the

application; and transmitting to the network interface device a message indicating

WO 2008/038139 PCT/IB2007/003444
43

that the network interface device is to take over protocol processing of the flow of
traffic data; the driver receiving said message from the operating system and in
response thereto configuring a protocol processing entity to perform transport-
level protocol processing of the flow of traffic data within the context of the
application.

Preferably the operating system is arranged to determine that the network
interface device is to perform protocol processing of the flow of traffic data when
the flow of traffic data from the application through the operating system matches
one or more predetermined conditions. One of the predetermined conditions may
be an elapsed time for which the data flow has been active. One of the
predetermined conditions may be an amount of data transferred over the data
flow. '

Preferably the driver is arranged to configure the protocol processing entity to
perform transport-level protocol processing of the flow of traffic data received from

the application by redirecting said message to the protocol processing entity.

Preferably, in response to the driver receiving said message, the software
networking arrangement is arranged o create a new instance of the protocol
processing entity to process the flow of traffic data received from the application.

Suitably, on entering the second mode, the operating system is arranged to
configure an interface between the application and the protocol processing entity
to direct the flow of traffic data from the application to the network interface
device.

Preferably the operating system is arranged to cause an interface between the
application and the protocol processing entity to direct the flow of traffic data from
the application to the protocol processing entity if the protocol processing entity is
associated with the driver of the network interface device.

WO 2008/038139 PCT/IB2007/003444
: 44

According to a fourth aspect of the present invention there is provided a method
for processing data by means of a data processing system, the system supporting
an operating system and at least one application, and having access to a network
interface device; the method comprising the steps of: the operating system:
receiving a flow of data packets from the network interface device for an
application; performing protocol processing of the flow of data packets; passing
the protocol processed data to the application; determining that the network
interface device is to perform protocol processing of the flow of data packets
received at the network interface device for the application; and transmitting to the
network interface device a message indicating that the network interface device is
to take‘over protocol processing of the flow of data packets; the driver receiving
said message from the operating system and in response thereto configuring a
protocol processing entity to perform transport-level protocol processing of the
flow of data packets within the context of the application.

According to a fifth aspect of the present invention there is provided a software
networking arrangement for operation in a data processing system, the data
processing system comprising: an operating system capable of processing a flow
of traffic data received from an application.supported by the data processing
system, the operating system being operable in: a first mode, in which the
operating system performs protocol processing of a flow of traffic data and then
passes the protocol processed data to a network interface device for
transmission; and a second mode, in which the operating system does not
perform protocol processing of a flow of traffic data; wherein the operating system
is arranged to, on entering the first mode, transmit a message to the network
interface device indicating that the operating system is to perform protocol
processing of the flow of traffic data; the software networking arrangement
comprising: a protocol processing entity operable to perform transport-level
protocol processing of a flow of traffic data received from an application within the
context of that application and then pass the protocol processed data to a network
interface device; and a driver for that network interface device, the driver being
configured to receive said message from the operating system and, if the protocol

WO 2008/038139 PCT/IB2007/003444
45

processing entity is performing protocol processing of the flow of traffic data, to
configure the protocol processing entity to cease performing protocol processing
of that flow of traffic data.

Preferably the operating system is arranged to operate in the first mode for a first
flow of traffic data and in the second mode for a second flow of traffic data, each
flow of traffic data being associated with a particular application or socket of an
application.

On entering the first mode, the operating system may be arranged to configure an
interface between the application and the protocol processing entity to direct the
flow of traffic data from the application to the operating system.

Preferably the interface is a Chimney Switch.
Suitably the message is a state reclaim message.

Preferably the driver is arranged to configure the protocol processing entity to
cease performing protocol processing of the flow of traffic data by redirecting said

message to the protocol processing entity.
The software networking arrangement may be stored on a data carrier.

According to a sixth aspect of the present invention there is provided a method for
processing data by means of a data processing system, the system supporting an
operating system, a protocol processing entity, at least one application, and
having access to a network interface device; the method comprising the steps of:
the protocol processing entity: receiving a flow of traffic data from an application;
performing transport-level protocol processing of the flow of traffic data within the
context of the application; passing the protocol processed data to the network
interface device for transmission; determining by means of the operating system

that the operating system is to perform protocol processing of the flow of traffic

WO 2008/038139 PCT/IB2007/003444
46

data received from the application; transmitting to the network interface device a
message indicating that the operating system is to take over protocol processing
of the flow of traffic data; and the driver receiving said message and in response
thereto configuring the protocol processing entity to cease performing protocol
processing of the flow of traffic data for the application.

According to a seventh aspect of the present invention there is provided a driver
for a network interface device, the driver being supported by a data processing
system having access to the network interface device, the data processing system
further supporting an operating system, at least one application and a protocol
processing entity capable of performing protocol processing of a traffic data flow
within the context of an application with which the data flow is associated, the
driver being operable to: intercept a state handover message sent from the
operating system to the network interface device indicating that the network
interface device is to take over protocol processing of a traffic data flow; and direct
said message to the protocol processing entity so as to cause the protocol
processing entity to take over protocol processing of the traffic data flow.

Suitably the driver is arranged to indicate to the operating system that it
represents a network interface device supporting a TCP offload engine.

Suitably the driver is arranged to indicate to the operating system that it
represents a network interface device supporting an RDMA-TCP offload engine.

The driver may be stored on a data carrier.
DESCRIPTION OF THE DRAWINGS
The present invention will now be described by way of example with reference to

the accompanying drawings, in which:
Figure 7 shows a data processing system of the prior art;

WO 2008/038139 PCT/IB2007/003444
47

Figure 8 shows a data processing system in accordance with the Chimney
network architecture;
Figure 9 shows a data processing system in accordance with the present

invention.
DETAILED DESCRIPTION OF THE DRAWINGS

The following description is presented to enable any person skilled in the art to
make and use the invention, and is provided in the context of a particular
application and its requirements. Various modifications to the disclosed
embodiments will be readily apparent to those skilled in the art, and the general
principles defined herein may be applied to other embodiments and applications
without departing from the spirit and scope of the present invention. Thus, the
present invention is not intended to be limited to the embodiments shown, but is to
be accorded the widest scope consistent with the principles and features

disclosed herein.

Figure 8 shows a data processing system in accordance with the Chimney
network architecture. Winsock 217 receives a request from an application 215
that wishes to send data over network 227. Application 215 communicates with
the winsock via the Winsock APl. Socket calls received by the winsock are
passed onto switch 219, which is a Winsock Service Provider (WSP).
Communication between the winsock and switch is over SPI interface 225. The
switch may receive data via intermediate WSPs embodying, for example, security

layers such as virus checkers.

The switch distributes the data flows in accordance with a directory maintained by
the switch that indicates the transport libraries responsible for managing each
data flow (i.e. which transport libraries are to perform the protocol processing).
The switch updates the directory in response to messages received from the
operating system that identify which transport libraries are to manage which data
flows.

WO 2008/038139 PCT/IB2007/003444
48

When a new socket is set up for a TCP/IP connection, the default kernel stack
manages the TCP/IP data flow. Thus switch 219 directs the flow of data from the
application socket to the kernel TCP/IP stack 205. This is indicated by data flow
arrow 202.

In order to relieve the burden of protocol processing from the operating system
(and hence the system CPU), the operating system can pass management of a
given data flow to TCP/IP Offload Engine (TOE) 204 provided by network
interface device 211. To effect the handover, state control entity 229 transmits a
state handover message 233 to TOE NIC driver 207. This message forms part of
the NDIS messaging functionality. TOE NIC 211 subsequently handies the data
flow indicated in the state handover message. In order to provide the TOE NIC
with the traffic data for protocol processing and transmission, the state control
entity 229 also messages switch 219 to indicate to the switch that subsequent
traffic data for the data flow being handed over is to be sent via the fast path 221.
The fast path is provided by the SDP architecture, which defines a direct data
path between the switch and TOE NIC.

Figure 9 shows a data processing system in accordance with the present
invention. Socket library 317 receives a request from an application 315 that
wishes to send data over network 327. Socket library 317 is typically provided by
the operating system: in Microsoft Windows, the Windows Socket library
(Winsock) is provided. Application 315 communicates with the socket library via
interface 323, which in Windows is typically the Winsock APl. Socket calls
received by the socket library are passed onto switch 319, which in Windows
would be a Winsock Service Provider (WSP).

The switch acts to distribute each data flow to the appropriate transport library.
When a new socket is requested by an application, the default kernel stack
manages the data flow. Thus swiich 319 directs the flow of data from the
application socket to the kernel stack 305. This is indicated by flow arrow 302.

WO 2008/038139 PCT/IB2007/003444
49

Operating system 306 is operable to hand over the state of a data flow to a
network interface device having protocol-processing capabilities. Typically, the
operating system may determine whether or not a given NIC is capable of
performing protocol processing by querying the driver of that NIC, or by consulting
a system file or registry information.

The present invention allows the operating system to hand over protocol
processing to a software-implemented stack by means of the mechanism
provided by the operating system to allow the handover of protocol processing to
a hardware stack implemented at a protocol-processing NIC. However, a data
processing system in accordance with the present invention need not comprise
network hardware capable of performing protocol processing.

The operating system may initiate state handover when a data flow matches one
or more predetermined scenarios or conditions. These conditions may be:
elapsed time since creation of a connection, amount of data transferred over a
connection, or any other predetermined condition. A connection may be defined
in terms of the socket at which the corresponding data flow terminates, the
application at which the corresponding data flow terminates, or by any other
identifier of a particular data flow.

A transport architecture in accordance with the present invention includes an
onload transport library. An onload transport library is a transport library which is
dedicated to an application. An onload transport library performs processing of
data for transmission and data received at a network interface device within the
context of the application to which it is bound. The processing of data by an
onload transport library is temporally close to the application processing the data.

Onload transport library 517 is typically a non-operating-system functionality
providing a network protocol stack. An instance of the transport library is
preferably created for each application having data to send, or for each socket by

WO 2008/038139 PCT/IB2007/003444
50

which data may be sent. The data flows to and from each application may
therefore be independently managed by the respective instances of the transport
library.

Transport library 517 includes a TCP/IP stack, with TCP/IP protocol processing
being performed in the transport library. This allows the good price:performance
ratio of system CPU(s) (as compared to dedicated network card processors) to be
fully utilised. Furthermore, in operating the transport library in user mode, no
context switching is required in order for an application to transmit data across the
network, no interrupts are required for an application to receive data and the
processing of data by the application is closely coupled with the execution of the
transport library.

Driver 307 is configured to appear to the operating system as a driver for a NIC
that is capable of performing protocol processing. Driver 307 may achieve this by
supporting those commands which usually allow handover of a connection from
the operating system to a protocol-processing NIC. Alternatively or additionally,
driver 307 may inform the operating system (by means of a flag, register entry
etc.) that NIC 311 is a NIC capable of performing protocol processing.

By passing itself off as a driver for a protocol processing NIC, driver 307 may
receive state handover messages from the operating system. When driver 307
receives a state handover message 331 indicating that NIC 311 is to take over
management of a particular data flow, the driver redirects the state handover
message to an instance of the onload transport library 313 running on the host
CPU. Onload transport library 313 is configured to take over management of that
particular data flow. A new instance of onload transport library 313 may be
created to handle the data flow. Under Windows, onload transport library 313 is
preferably a Winsock Service Provider (WSP). |

Since driver 307 presents itself to the operating system as a driver for a protocol-
processing NIC and since the handover is carried out by means of the usual state

WO 2008/038139 PCT/IB2007/003444
51

handover mechanism, the operating system is typically unaware that the protocol
processing is being performed at an onload stack, rather than at a stack
supported by a NIC. The present invention therefore allows applications to utilise
an onload TCP stack by means of the standard socket interface provided to the

applications by the operating system.

The state handover message may be modified by the driver before it is passed
onto the onload stack. Instead of the state handover message itself being sent to
the onload stack, a message indicating that the driver has received a state
handover message may be sent to the onload stack.

Preferably, protocol processing takes place both on the NIC and in the onload
transport library. However, transport layer processing is not done on the NIC. In
embodiments of the present invention, protocol processing is split such that
network-level processing is done on the NIC and all higher level processing is
done on the host CPU. The network-level protocol may be Internet Protocol (IP)
and the IP-level protocol processing preferably includes the DEMUX of packets
based on protocol address bits.

Typically, the state control entity forms part of the operating system. The protocol
may be any network protocol. The protocol may be TCP.

In accordance with an embodiment of the present invention, the driver 307 is
configured to appear to the operating system that it is a driver for a protocol-
processing enabled NIC, and therefore one capable of protocol processing. In
fact, the NIC does not need to be capable of protocol processing. Driver 307
appears to the operating system that it is a driver for a TOE-enabled NIC because
driver 307 implements the TOE Chimney APl - i.e. the instruction set by which the
operating system can hand over a connection state. The TOE Chimney API is
defined in the latest versions of the Microsoft Scalable Networking Packs.

WO 2008/038139 PCT/IB2007/003444
52

Preferably onload transport library 313 is registered with an instance of driver 307.
Preferably the operating system provides a mechanism for registering a transport
library with a driver instance. Upon state handover, the state control entity 329
messages switch 319 to indicate to the switch that subsequent traffic data for the
data flow being handed over is to be sent to NIC 311. Since the transport library
is registered or in some way associated with driver 307, transport data destined
for NIC 311 may be sent via transport library 313 (which in Windows would be a
WSP layer). Preferably the operating system provides a mechanism by which a
transport library may be associated or registered with a network interface driver.
The transport library may therefore perform the protocol processing and pass the
at least partially formed data packets to the NIC.

Once the protocol processing has been performed in the transport library the data
is passed to the NIC for transmission across the network by writing the data to a
transmit buffer. Buffers are allocated in memory on the data processor for use in
cooperation with the NIC for the transmission and/or reception of data over the
network. In the case of a transmit buffer, which is for use in transmitting data, the
NIC is configured for reading data from that buffer and transmitting it over the
network. The NIC may automatically read that data and transmit it, or it may be
triggered to read the data by the transport library or the operating system running
" on the data processor. The trigger can conveniently be a doorbell write fo a
location decoded by the NIC which identifies the data structure requiring
transmission. In the case of a receive buffer, which is for use in receiving data,
the NIC is configured for writing to that buffer data received over the network. The
data in the receive buffer may then be read by the transport library and further

processed by it.

In the case of transmission of data, the application will be expected to write data
to a buffer for transmission and then trigger the NIC to read from the buffer to
transmit that data. In some situations this alone may be sufficient to allow the

data to be transmitted successfully over the network. However, the NIC does not

WO 2008/038139 PCT/IB2007/003444
53

perform transport-level protocol processing of transmitted or received data.
Instead this is performed by the transport library.

In the case of reception of data, the NIC parses each packet and determines to
which transport library (i.e. which receive interface) the packet data should be

sent. The NIC will then write the data to the determined receive buffer.

In the case of received data the processing by either the transport library or the
operating system will typically involve protocol processing: e.g. checking of packet
sequence numbers, executing congestion control and avoidance algorithms and
removal of data from the buffer for use by the application. When the transport
library handles the protocol processing, the processing preferably occurs in the
context of the application.

Whilst the buffers are preferably allocated by the operating system, it is
convenient for that to be done in response to a request from the transport library
on behalf of an application (typically at start of day). Thus, if the received data
might overflow the available receive buffers for an application, the transport library

can request allocation of further buffers by the operating system.

it should be noted that the transmit and receive buffers defined above are internal
to the data processing system, i.e. the buffers are not addressable by entities on
the network external to the data processing system. The above system achieves
user-level networking or more generally network onloading, without requiring the
transfer of information regarding those buffers over the network. Preferably the
buffers are addressable only by the NIC and the transport library.

In one embodiment in which there is no mechanism to register transport library
with an instance of the NIC driver, the transport library is configured to catch calls
to the switch and determine whether or not they correspond to connections that
are managed by the fransport library. Those calls which correspond to
connections that are managed by the transport library are intercepted and the

WO 2008/038139 PCT/IB2007/003444
54

data flow handled by the transport library (i.e. the traffic data is processed in
accordance with the network protocol to be applied and the processed data
passed to the NIC for transmission). Under Windows, the transport library may be
embodied as a WSP layer which promotes itself so that all calls received at the
Winsock pass through the transport layer WSP.

Alternatively, the transport library may be configured to receive data from the
switch via the usual fast data path (discussed above in relation to figure 8). In
other words, the transport library may present an interface to the switch that is
compatible with the messaging interface via which data transfer from the switch fo
a NIC is normally mediated. In Windows the transport library could be embodied
as a System Area Network (SAN) Provider and the interface would typically be an
SDP interface.

The transport library may be generally operable to intercept calls to the switch and
take over management of the corresponding data flows. In this case, the
transport library determines which data flows it is to handle and which the
operating system is to handle. This may be in addition to any determination
performed by the operating system as to whether or not a given data flow is to be
off-loaded to a hardware stack.

The transport library may be configured to intercept and handle those data flows
for which the data is to be sent in accordance with a particular protocol.
‘Alternatively, the transport library may intercept those data flows relating to a
particular application/socket or set of applications/sockets. Alternatively, the
transport library may intercept those data flows having any other predetermined

characteristics.

In embodiments of the present invention, the operating system may not be a
Microsoft Windows operating system. It is not important which messaging API or
command interfaces are used, but only that driver 307 is configured to appear to

WO 2008/038139 PCT/IB2007/003444
55

the operating system as a driver for a TOE-enabled NIC that is capable of taking
over the management of a data flow.

The term TOE is used throughout this application to refer to a NIC capable of
performing protocol processing and managing the state of a connection.
However, the protocol according to which data is processed and the connection
managed may be any network protocol and is not restricted to being TCP/IP.

The operating system may attempt to reclaim the state of a particular data flow by
sending a state reclaim message to driver 307. When operating in accordance
with the Chimney architecture, the driver signals to the onload transport library to
cease protocol processing and hand over the state of the data flow back to the
operating system. The. driver may signal the onload transport library by
forwarding the (possibly modified) state reclaim message to the transport library.
The operating system also configures the Chimney switch to direct further
application transport data to the operating system rather than the onload transport
library.

In cases in which the onload transport library is configured to intercept calls to the
switch, onload transport library may be configured to cease intercepting those
calls corresponding to the data flow which the operating system wishes to reclaim.
Alternatively, the onload transport library may itself determine whether or not to
hand back the state of a data flow to the operating system. The onload transport
library would therefore ignore any state reclaim messages from the operating
system and continue to intercept those switch calls which it has itself determined
to handle.

A feature of the present invention is that the transport library is provided in an
onload configuration. In other words, the protocol processing performed by the
transport library is loaded onto the CPU and not off-loaded to a processor on a
NIC. The transport library performs transport-level protocol processing. Network-
level (such as IP) protocol processing may be performed at the NIC and all

WO 2008/038139 PCT/IB2007/003444
56

higher-level protocol processing would be performed at the transport library. This
may include TCP and possibly RDMA protocol processing, as required. The
protocol processing performed at the NIC may include or be limited to the DEMUX

of packets based on protocol address bits and/or the calculation of a checksum.

In embodiments of the present invention, a new instance of the transport library is
created for each application that requests a connection. Network protocol stacks
are therefore defined on a per-application basis. In the most closely coupled
onload arrangement, the transport library is a user-mode object and each instance
of the transport library is directly associated with a particular application. The
application and transport library may be separated by a dynamic link resolved
. function call. This allows the transport library to carry out protocol processing
within the context of the application to which it is bound. However other
embodiments of an onloaded configuration are possible. For example, each
instance of the transport library may be associated with a particular application,
but separated by a system call interface.

In the case that the transport library is separated from the application by a system
call interface, many of the benefits of a full user level transport library are
provided, with the exception that there is some context switch overhead. This
architecture would be useful where the security policies of the system would not
allow a user-level implementation of the transport library.

Under Microsoft Windows, the non-operating-system functionality (the fransport
library) is preferably implemented as a WSP. The WSP can be thought of as a
per-application transport stack. Data is therefore received directly to a
subcomponent of an existing operating system socket library. A user-level
transport library wduld therefore receive data from an operating system API.

There are a number of protocols, such as RDMA and iSCSI, which are designed
to run in an environment where the TCP and other protocol code executes on the
network interface device. As described above, the Chimney architecture supports
off-loaded protocol processing engines by providing a direct data path between

WO 2008/038139 PCT/IB2007/003444
57

the switch and a suitable virtual hardware interface (usually provided by the
hardware vendor). Facilities will now be described whereby such protocols can
execute on the host CPU (i.e. using the processing means of the computer to
which a network interface card is connected). Such an implementation is
advantageous because it allows a user to take advantage of the
price/performance lead of main CPU technology as against co-processors.

Protocols such as RDMA involve the embedding of framing information and cyclic
redundancy check (CRC) data within the TCP stream. While framing information
is trivial to calculate within protocol libraries, CRC's (in contrast to checksums) are
computationally intensive and best done by hardware. To accommodate this,
when a TCP stream is carrying an RDMA or similar encapsulation an option in the
virtual interface can be is enabled, for example by means of a flag. On detecting
this option, the NIC will parse each packet on transmission, recover the RDMA
frame, apply the RDMA CRC algorithm and insert the CRC on the fly during
transmission. Analogous procedures can beneficially be used in relation to other
protocols, such as iSCS|, that require computationally relatively iniensive
calculation of error check data.

In line with this system the network interface device can also verify CRCs on
received packets using similar logic. This may, for example, be performed in a
manner akin to the standard TCP checksum off-load technique.

Protocols such as RDMA also mandate additional operations such as RDMA
READ which in conventional implementations require additional intelligence on
the network interface device. This type of implementation has led to the general
belief that RDMA/TCP should best be implemented by means of a co-processor
network interface device. In an architecture of the type described herein, specific
hardware filters can be encoded to trap such upper level protocol reqﬁests for a
particular network connection. In such a circumstance, the NIC can generate an
event akin to the timer event in order to request action by software running on the
attached computer, as well a delivery data message. By triggering an event in

WO 2008/038139 PCT/IB2007/003444
58

such a way the NIC can achieve the result that either the transport library, or the
kernel helper will act on the request immediately. This can avoid the potential
problem of kernel extensions not executing until the transport library is scheduled
and can be applied to other upper protocols if required.

An RDMA-enabled NIC performs all statefull protocol processing, typically on a
processor on the NIC. This is to be contrasted with the methods in accordance
with the present invention, in which statefull protocol processing is performed at
the host CPU and preferably in the context of the application to which data is
being sent or transmitted from. As described, stateless protocol processing (such
as checksum calculations) may be performed on the NIC. Thus, in the preferred
embodiments, the onload transport library handles all protocol processing above
the network-level (e.g. IP-level). This would include TCP and possibly RDMA
processing.

For the operating system to hand over an RDMA connection state to NIC 311,
driver 307 is configured to appear to the operating system as a driver for a NIC
that is capable of the RDMA performing protocol processing (i.e. an RDMA-TOE
NIC). Driver 307 may achieve this by supporting those commands which usuaily
allow handover of a connection from the operating system to an RDMA-TOE NIC.
Alternatively or additionally, driver 307 may inform the operating system (by
means of a flag, register entry etc.) that NIC 311 is capable of performing the
RDMA-level protocol processing. However, in accordance with the principles of
the present invention, NIC 311 need not be capable of RDMA processing since
the connection state is actually handed over to fransport library 307.

Typically RDMA SANs are connection oriented and require signalling through a
non-IP control plane. These operations are implemented within the kernel and a
data transfer operation therefore requires the use of kernel system calls.
Furthermore, the RDMA model allows a remote application to be given read or
write access to a region of memory in an application’s address space. Buffers
allocated for remote direct memory access must be uniquely named so that they

WO 2008/038139 PCT/IB2007/003444
59

can be referred to over the network. Since buffer resources are finite within a
system and since the number of resources required in this model grows as the
number of communicating hosts in a cluster grows, the algorithms for efficiently
managing this are complex and result in more signalling messages being sent
around the network.

The present invention allows the direct transfer of data over a low latency fast
path between applications that are remote to one another but without supporting
the RDMA model as such. The complexity of an RDMA SAN Provider running
under the Chimney architecture is not required. For example, no signalling
messages to grant or revoke read or write rights to buffers are required. Buffers
are allocated by the operating system to a transport library and NIC/driver
operating according to the principles of the present invention. Preferably buffers
are allocated in response to requests made by the transport library or driver.
These requests may be made in response to the creation of new sockets or data
flows. Buffers are not therefore allocated to (or addressable by) remote

applications or allocated on a connection-oriented basis.

The present invention provides a low-latency data path over which traffic data
may be transferred directly into and out of a memory area that is accessible to an
application. In comparison, the RDMA architecture introduces significant
processing overheads and a complicated buffer structure to achieve memory-to-
memory network transfers. It is therefore advantageous in many situations to use
the data transfer mechanisms taught herein in favour of conventional RDMA data

transfer mechanisms.

In embodiments of the present invention, the transport library determines whether
or not an RDMA connection it is supporting is to another data processing system
operable in accordance with the present invention (i.e. the connection is
supported at each endpoint by a transport library operating in accordance with the
present invention). The transport library may perform this determination for an
RDMA connection when it is handed that connection by the operating system (e.g.

WO 2008/038139 PCT/IB2007/003444
60

when driver 307 receives an RDMA handover message form the operating
system). Operating system 306 typically negotiates an RDMA connection once a
data flow is established by means of a lower level protocol (such as TCP/IP). In
the case in which the transport library is configured to intercept calls to the switch,
the transport library may perform the determination for calls refating to RDMA

connections.

The transport library may determine whether or not a particular RDMA connection,
or request for an RDMA connection, is between two data processing systems
operable in accordance with the present invention by performing additional
signalling. The transport library may signal the other endpoint of an RDMA
connection in order to determine whether or not it supports a transport library
operating in accordance with the present invention. If the other endpoint is also a
transport library operating in accordance with the present invention it may signal
back to the first transport library a message to that effect. Further signalling may
take place between the transport library endpoints in order to establish, for
example, which protocol is to be used when the RDMA connection is taken down.
The other endpoint may signal that the RDMA connection is to be maintained: if
this occurs, it may signal at some later point that it is ready to take down the
RDMA connection. Either transport library may periodically signal the other to
determine whether or not the other is ready to take down the RDMA connection.
Preferably the protocol is TCP/IP. The transport libraries at each end of the
connection may use the default mechanisms provided by the operating system to
take down the RDMA connection.

Note that driver 307, instead of or in combination with the transport library, may
determine whether or not the data proceséing system it is communicating with
across the network by means of RDMA is also operating in accordance with the

present invention.

WO 2008/038139 PCT/IB2007/003444
61 :

These embodiments allow the net amount of cross network communication to be
reduced while retaining the advantages of a low latency data path between

memory areas accessible to applications at both ends of a connection.

The applicant hereby discloses in isolation each individual feature described
herein and any combination of fwo or more such features, to the extent that such
features or combinations are capable of being carried out based on the present
specification as a whole in the light of the common general knowledge of a person
skilled in the art, irrespective of whether such features or combinations of features
solve any problems disclosed herein, and without limitation to the scope of the
claims. The applicant indicates that aspects of the present invention may consist
of any such individual feature or combination of features. In view of the foregoing
description it will be evident to a person skilled in the art that various modifications
may be made within the scope of the invention.

WO 2008/038139 PCT/IB2007/003444
62

SECTION C
INTERRUPT MANAGEMENT

The present invention relates to a method and system for processing data, and in
particular it relates to processing data in accordance with a data transfer protocol.

Figure 10 represents elements of a computer system capable of implementing a
conventional protocol stack, such as a transmission control protocol (TCP) stack
in a computer connected to a network. The computer system includes an
application 1, a socket 2 and an operating system 3 incorporating a kermel 4. A
network interface such as a network interface card (NIC) 6 is provided for
interfacing between the computer system and the network. The socket 2
connects the application to a remote entity by means of a network protocol, in this
example TCP/IP. The application can send and receive TCP/IP messages by
opening a socket and reading and writing data to and from the socket, and the
operating system causes the messages to be transported across the network via
the NIC. One socket is typically provided for each network endpoint with which an
application wishes to communicate. The application can invoke a system call
(syscali) for transmission of data onto the network. Syscalls can be thought of as
functions taking a series of arguments which cause execution of the CPU to
switch to a privileged level and start executing the operating system. A given
syscall will be composed of a specific list of arguments, and the combination of

arguments will vary depending on the type of syscall.

Syscalls made by applications in a computer system can indicate a file descriptor
(sometimes called a handle), which is usually an integer number that identifies an
open file within a process. A file descriptor is obtained each time a file is opened
or a socket or other resource is created. File descriptors can be re-used within a
computer system, but at any given time a descriptor uniquely identifies an open
file or other resource within the context of a process. Thus, when a resource
(such as a file) is closed down, the descriptor will be destroyed, and when another
resource is subsequently opened the descriptor can be re-used to identify the new

WO 2008/038139 PCT/IB2007/003444
63

resource. Any operations which for example read from, write to or close the
resource take the corresponding file descriptor as an input parameter. A system
call when invoked causes the operating system to execute algorithms which are
specific to the file descriptor identified in the syscall.

In the context of networking, syscalls are used by applications to invoke a stack o
send data, and to consume data that has been received, optionally blocking until
more data arrives. In this context, a stack is a set of software and/or hardware
resources that implement a collection of sockets. Other system calls are used for
control plane operations such as creating and destroying sockets, connecting to
remote endpoints, and querying the state of sockets.

In a typical network arrangement packets arriving at a NIC are delivered into
buffers in host memory, and a notification is sent, in the form of a communication
to the NIC's device driver in the operating system kernel. The communication
channel by which this communication is delivered typically consists of a queue of
notifications that may include notifications of other types of events, including
successful transmission of outgoing packets. This communication channel is

referred to in the following description as an event queue.

When network events are occurring in the computer system, at some point the
device driver must process the event queue by inspecting each event notification
and processing the received packets. It is desirable that this happen promptly,
since undue delay in the processing of received packets may delay the progress
of applications, or may cause the link to go idle. In conventional systems the
processing of the event queue is invoked by way of an interrupt generated by the
NIC at the time that the event is delivered to the event queue.

An interrupt causes the CPU to save the state of whatever process is currently
running, and switch control to an interrupt service routine. This routine processes

the event queue, and carries out network processing for the received packets.

WO 2008/038139 PCT/IB2007/003444
64

Thus network processing is carried out in a timely manner and at high priority in
response to packet arrival.

A disadvantage of this mechanism is that interrupts incur high overhead due to
the requirement to save and subsequently restore the state of the running
process, and to interact with the hardware, and due to the impact on the memory
caches in the processor.

It is widely known that performance can be improved by reducing the rate at which
interrupts are invoked. One means by which this can be achieved is interrupt
moderation, which imposes a minimum time gap between each interrupt. This
may delay the processing of received packets slightly, but it means that the
overheads of an interrupt are effectively spread over a larger number of event
notifications.

Another means to reduce overheads due to interrupts is “Lazy Receiver
Processing”’, discussed at http://www.cs.rice.edu/CS/Systems/LRP/final.html in an

article entitled Lazy Receiver Processing: A Network Subsystem Architecture for
Server Systems by Peter Druschel and Gaurav Banga. In this model interrupts
are not enabled by default. [nstead any outstanding event notifications in the
event queue are processed when the stack is invoked by the application via a
system call. Thus received packets are processed promptly provided the
application invokes the stack frequently. When the application is blocked waiting
to send or receive on a socket it is not available to process the event queue. To
ensure that events will still be handled at this time, interrupts are enabled and the

event queue is processed in the conventional way.

A problem with the Lazy Receiver Processing scheme is that if the process does
not invoke the stack frequently, and is not blocked waiting for a socket, then the
event queue may not get processed in a timely fashion. This can be resolved by
providing a kernel thread that is able process the event queue from time-to-time
as necessary, as described in the applicant's co-pending PCT application no.

WO 2008/038139 PCT/IB2007/003444
65

PCT/GB06/002202. However, this mechanism may not always be capable of
implementation in a way that is both efficient and timely, partly because it involves
the use of an additional thread competing with applications for CPU fime.

According to a first aspect of the present invention there is provided a method for
use in a data processing system connected to a network in accordance with a
data transfer protocol, the data processing system having one or more event
queues for holding network events, and being capable of responding to interrupts
issued in response to the presence of a network event in the data processing
system by invoking a stack fo cause processing in accordance with the data
transfer protocol of network events on the event queues; the method comprising:
deciding whether to permit the interrupts to be enabled, in dependence on the
result of a determination as to the presence of current indications that the stack
will be invoked by an entity in the data processing system to cause processing in
accordance with the data transfer protocol of network events on the event queues.

According to a second aspect of the present invention there is provided a data
processing system capable of connection to a network in accordance with a data
transfer protocol, the data processing system having one or more event queues
for holding network events, and being capable of responding to interrupts issued
in response to the presence of a network event in the data processing system by
invoking a stack to cause processing in accordance with the data transfer protocol
of network events on the event queues; the data processing system being
capable of deciding whether to permit the interrupts to be enabled, in dependence
on the result of a determination as to the presence of current indications that the
stack will be invoked by an entity in the data processing system to cause
processing in accordance with the data transfer protocol of network events on the
event queues.

According to a third aspect of the present invention there is provided a computer
program for use in a data processing system connected to a network in
" accordance with a data transfer protocol, the data processing system having one

WO 2008/038139 PCT/IB2007/003444
66

or more event queues for holding network events, and being capable of
responding to interrupts issued in response to the presence of a network event in
the data processing system by invoking a stack to cause processing in
accordance with the data transfer protocol of network events on the event queues;
the computer program being capable of deciding whether to permit the interrupts
to be enabled, in dependence on the result of a determination as to the presence
of current indications that the stack will be invoked by an entity in the data
processing system to cause processing in accordance with the data transfer
protocol of network events on the event queues.

According to a fourth aspect of the present invention there is provided a data
carrier bearing a computer program as set out above.

A network event may comprise: (i) an indication of completion of a requested
transmission of data from the data processing system; (ii) an indication of receipt
at the data processing system of data from the network; or (iii) an indication of a
network error.

The data processing system may comprise a network interface for interfacing with
the network, and the said interrupts may be issued by the network interface.

The stack may be capable'of being invoked directly by an application supported

by the data processing system.

Access to at least a part of the stack is preferably restricted by means of a lock,
such that only one thread of execution may access the restricted part of the stack
concurrently. The said determination may comprise checking the status of the
lock to determine whether an application is currently accessing or attempting to
access the restricted part of the stack. When the step of checking the status of
the lock results in an indication that an application is currently accessing or
attempting to access the restricted part of the stack, the said step of deciding
preferably results in a decision not to permit interrupts o be enabled.

WO 2008/038139 PCT/IB2007/003444
67 .

The method may further comprise the step of maintaining state to indicate
whether interrupts are currently enabled. The said determination may comprise
the step of checking the state to determine whether interrupts are currently
enabled. When the step of checking the state results in an indication that
interrupts are currently enabled, the said step of deciding preferably results in a
decision not to permit interrupts to be enabled.

The data processing system may support application blocking, and processing in
accordance with the data transfer protocol of network events in the event queues
may cause waking of blocked applications associated with the network events on
which the processing was performed. The said determination may comprise
checking whether recent processing in accordance with the data transfer protocol
of network events in the event queues caused the waking of any blocked
applications. When the step of checking whether recent processing caused the
waking of any blocked applications results in an indication that blocked
applications were woken, the said step of deciding preferably results in a decision
not to permit interrupts to be enabled.

The said entity may be an application process or a routine invoked in response to
an interrupt.

According to a fifth aspect of the present invention there is provided a method for
use in a data processing system connected by means of one or more sockets to a
network in accordance with a data transfer protocol, the data processing system
having one or more event queues for holding network events, each network event
_ being associated with at least one of the sockets, and the data processing system
being capable of responding to interrupts issued in response to the presence of a
network event in the data processing system by invoking a stack to cause
processing in accordance with the data transfer protocol of network events on the
event queues, wherein such processing can cause a change in a status of one or
more of the sbckets, the method comprising the steps of: receiving an enquiry

WO 2008/038139 PCT/IB2007/003444
68

from an application supported by the data processing system as to the status of at
least one of the sockets; in response to receiving the enquiry, determining
whether the interrupts are enabled in the data processing system; and in
dependence on the result of the determination, deciding whether to perform
processing in accordance with the data transfer protocol of network events on the
event queues. |

According to a sixth aspect of the present invention there is provided a data
processing system capable of connection by means of one or more sockets to a
network in accordance with a data transfer protocol, the data processing system
having one or more event queues for holding network events, each network event
being associated with at least one of the sockets, and the data processing system
being capable of responding to interrupts issued in response to the presence of a
network event in the data processing system by invoking a stack to cause
processing in accordance with the data transfer protocol of network events on the
event queues, wherein such processing can cause a change in a status of one or
more of the sockets, the data processing system being further capable of:
receiving an enquiry from an application supported by the data processing system
as to the status of at least one of the sockets; in response to receiving the
enquiry, determining whether the interrupts are enabled in the data processing
system; and in dependence on the result of the determination, deciding whether to
perform processing in accordance with the data transfer protocol of network
events on the event queues.

According to a seventh aspect of the present invention there is provided a
computer program for use in a data processing system connected by means of
one or more sockets to a network in accordance with a data transfer protocol, the
data processing system having one or more event queues for holding network
events, each network event being associated with at least one of the sockets, and
the data processing system being capable of responding to interrupts issued in
response to the presence of a network event in the data processing system by
invoking a stack to cause processing in accordance with the data transfer protocol

WO 2008/038139 PCT/IB2007/003444
69

of network events on the event queues, wherein such processing can cause a
change in a status of one or more of the sockets, the data processing system
being further capable of receiving an enquiry from an application supported by the
data processing system as to the status of at least one of the sockets; and the
computer program being capable of: in response to receipt of the enquiry at the
data processing system, determining whether the interrupts are enabled in the
data processing system; and in dependence on the result of the determination,
deciding whether to perform processing in accordance with the data transfer
protocol of network events on the event queues.

According to an eighth aspect of the present invention there is provided a data
carrier bearing a computer program as set out above.

The method may further comprise the step of, in response to receiving the
enquiry, checking the current status of at least one of the sockets and, in
dependence on the result of the check deciding whether to block the application

until a change occurs in the status of at least one of the sockets.

The said status is prefera’bly an indicator of whether the at least one of the
sockets is ready to receive data for transmission over the network or ready fo
provide to an application data received over the network.

When the result of the determination is positive, the step of deciding preferably
results in a decision not to perform the said processing. Conversely, when the
result of the determination is negative, the step of deciding preferably results in a
decision to perform the said processing.

Access to at least a part of the stack is preferably restricted by means of a lock,
such that only one thread of execution may access the restricted part of the stack
concurrently. The step of deciding whether to perform the said processing may
comprise checking the status of the lock to determine whether an application is
currently accessing or attempting fo access the restricied part of the stack. When

WO 2008/038139 PCT/IB2007/003444
70

the step of checking the status of the lock results in an indication that an
application is currently accessing or attempting to access the restricted part of the
stack, the step of deciding preferably results in a decision not to perform the said
processing.

The said enquiry may be an enquiry from the group comprising poll(), select(),
epoll() and GetQueuedCompletionStatus calls.

The method may further comprise the step of returning a response to the
application indicating the status of the at least one of the sockets.

The method may further comprise the step of maintaining state indicating whether
interrupts are currently enabled, and the step of determining may comprise
checking the said state. When the step of checking the said state results in an
indication that interrupts are currently enabled, the step of deciding preferably
results in a decision not to perform the said processing.

The present invention will now be described by way of example with reference to
the accompanying drawings, in which:

Figure 10 shows a prior art computer system);

Figure 11 shows a computer system for use with embodiments of the invention;
and

Figure 12 shows the path of incoming data received at a computer system.

In the exemplary system of figure 11, an event queue 31 is provided for a given
stack. However it is possible for one stack to manage a number of event queues.
Since one stack is capable of supporting a large number of sockets 2, it can
therefore occur that a single event queue contains data relating to a number of
network endpoints, and thus a single event queue can contain data relating to a
number of descriptors. Each application process in the data processing system

WO 2008/038139 PCT/IB2007/003444
71

can be associated with one or more sockets if it is involved in transferring data

over the network, and can use one or more stacks.

As mentioned in the introduction above, data arriving from the network at the NIC
6 is delivered into memory by the NIC, and a notification event is delivered to an
event queue with which the data is associated. This step is indicated as 20 in
figure 12. At some subsequent time, software in the stack 5 will perform network
protocol processing on each received packet. The processing of events on the
event queues is referred to hereafter as “updating the stack”, since it resulis in
any outstanding data in the event queues handled by the stack being processed.
Updating the stack causes received packets to be transferred to the appropriate
socket (step 21). If the data in the event queue relates to more than one socket,

then it will be demultiplexed onto the appropriate sockets.

When a thread wishes to receive data from a particular socket 2, it issues a recv()
system call. For this call to operate correctly in general it is necessary that the
stack first be brought up-to-date. That is, any events in the event queue must be
handled so that received packets will be processed. As a result of the recv() call,
any received data available in the socket will be copied into a buffer supplied by
the application. If there is no new received data the thread may choose to block
inside the recv() call until data arrives. Blocking while awaiting a given condition
is a well-known occurrence in data processing systems, and in the preferred

embodiment it comprises the following steps:

1) placing the thread in a wait-queue associated with the socket;

2) optionally setting state (for example a flag) to indicate that the wait-queue
should be woken when the given condition (e.g. the arrival of new daia at a

socket) is met;

3) checking that the condition has not yet been met;

WO 2008/038139 PCT/IB2007/003444
72

4) enabling interrupts for the event queue associated with the socket; and

5) putting the thread “to sleep” — the thread becomes inactive until the wait-queue
is woken.

When the given condition occurs, the corresponding wait-queue is signalled, and
any threads waiting on the wait-queue become runnable again, i.e. they begin
competing for CPU time to carry out required processing. Thus, in the present
example, when processed data appears at the relevant socket of the blocking
thread 1a, the thread will be woken from its wait queue (step 22). Software in the
stack 5 can be used to implement the wake-up of waiting threads. The thread 1a
can then receive the data using a recv() call or similar.

The above implementation of a recv() call is suitable for an application-driven
stack. It is desirable in this case for interrupts to be enabled before the thread is
put to sleep to ensure that unprocessed events are not left unprocessed for an
undue length of time while the application blocks. In an interrupt-driven stack the
implementation of recv() differs only in that it is not first necessary to bring the
stack up-to-date, and step 4) is not necessary, because interrupts are always
enabled.

The above discussion uses the receipt of data from the network as an example.
Corresponding considerations apply to the transmission of data over the network,
as will be understood by a skilled person. Specifically, when a thread wishes to
push data onto the network, it will first need to determine whether the relevant
socket has available space in its transmit buffers so that the data can be passed
by the thread to the buffers and then onto the network via the NIC. Thus, in the
transmission case, a thread may block until there is sufficient space available in
the socket's transmit buffers.

When a process carrying out networking tasks blocks, that process can no longer
invoke the stack in order to process newly arrived data. Unprocessed data may

WO 2008/038139 PCT/IB2007/003444
73

therefore build up on the event queue, and this can be inefficient and cause the
link to go idle as discussed above. In embodiments of the invention, measures
are taken to ensure that incoming data can be processed while the process blocks
or is descheduled. Specifically, intefrupts are enabled (e.g. at step 4 of the
blocking scheme given above) so that as soon as a network event occurs an
interrupt service routine will run to enable prompt processing of the event queue
by means of the stack.

However, it may not always be desirable to enable interrupts while a process is
blocking because interrupts have a high overhead (as explained in the
introduction) and it is possible that there may be another process capable of
invoking the stack while the first process is blocking, or another blocking process
may already have enabled interrupts for the same stack. In such cases, interrupts
would be unnecessary and could therefore usefully be avoided.

Embodiments of the present invention can permit greater efficiency by making
certain determinations as to the condition of the system and accordingly reducing
the use of interrupts as far as possible. A number of techniques are used in this

regard:

- State (such as a flag) is set to indicate when interrupts are enabled. This can
be queried to avoid multiple processes enabling interrupts concurrently for the
same stack, which would lead to unnecessary overhead.

- Checks are made as to whether the lock used to protect parts of the state of
the shared stack is contended. The lock is conventionally implemented to
prevent muitiple processes from accessing the stack concurrently. If the lock
is already being held by a process, then that suggests that the process has
invoked (or is likely soon to invoke) the stack and cause processing of the
event queue. In such a case, it would be unnecessary for a different process
to enable interrupts in respect of the stack.

- When a process capable of invoking the stack has just been woken from a
blocked state, this is used as an indication that there is a process running, or

WO 2008/038139 PCT/IB2007/003444
74

about to be running, that will keep the stack up-to-date. Interrupts need not
be enabled by another process in this situation.

The use of such techniques can provide a relatively low interrupt rate, while
ensuring that the stack is kept up-to-date. Keeping the stack up-to-date at all
times has the advantage that there is a low overhead for select(), poll() and similar
calls, because if there is no backlog of unprocessed data waiting on the event
queue then a response can be issued relatively rapidly to such calls. Maintaining
an up-to-date stack has the further advantage of enabling efficient network
connections, since sockets' transmit buffers are emptied frequently, thereby
enabling new data for transmission to be placed on the buffers, and incoming data
is processed shortly after it arrives at the event queue so that the process for
which it is intended can access it quickly.

Specific implementation details according to a preferred embodiment of the

invention will now be discussed.

First, a modified blocking mechanism is used that only enables interrupts under
certain conditions. A flag is maintained to indicate whether the lock protecting a
part of the stack is currently being held, and this is queried during execution of the
blocking mechanism. Specifically, step 4) of the blocking scheme described
above includes the following two parts: ‘

4a) checking the condition of the stack lock;

4b) only if the lock is unlocked, enabling interrupts for the event queue.

It is possible that while a first application is holding the lock to the protected part of
the stack, further applications may be attempting to acquire the lock. Such a

situation is referred to as lock contention, and the lock may be implemented so as
to comprise an indicator of whether further applications are attempting to access

WO 2008/038139 PCT/IB2007/003444
75

the lock concurrently. In the preferred embodiment this indicator is implemented
as a single bit of state to represent either “contended” or “uncontended”.

In the situation where a first thread of an application is holding the lock while
deciding whether to enable interrupts, for example before blocking, it can be
useful for that first thread to know whether another thread will take up the lock
when the first thread relinquishes it and blocks. If it knows that the lock is
contended then the likelihood is that the stack will be invoked by one of the
threads currently contending the lock and that protocol processing will be carried
out promptly while the first thread blocks. Thus, in the case where a first thread
already holds the lock, step 4b) could usefully be modified as follows:

4b) only if the stack lock is uncontended, enabling interrupts for the event queue.

In the preferred embodiment, the routine for handling interrupts (“interrupt service
routine”) is a part of the NIC driver 12 in the OS and has the following properties:

. It ensures that when a new event arrives at the event queue, software will
be invoked to bring the stack up-to-date. The act of updating the stack may
cause one or more blocking processes to be woken, for example if data in a
received packet is processed and passed to the proceés’s socket, triggering a
wake-up call.

. It interprets such a waking of a process as an indication that there is
currently no requirement for interrupts to be enabled, and accordingly does not
re-enable interrupts. This is because the woken process is assumed to be
seeking CPU allocation in order to invoke the stack in future, and there is
therefore a process available to keep the stack up-to-date.

« If no processes are woken as a result of the event queue processing
phase, then it re-enables interrupts to ensure that action will be taken promptly in
response to the next network event.

WO 2008/038139 PCT/IB2007/003444
76

« It checks the lock protecting the stack. If the lock is locked, it interprets this
as an indication that there is a process currently invoking the stack. In this case it
does not attempt to bring the stack up-to-date, and does not re-enable interrupts.

An exemplary interrupt service routine for achieving the above features is
expressed in pseudo-code below:

nic_interrupt_service_routine (stack) {
do_reenable_ interrupts = false;

if(trylock(stack)) {
update_ stack(stack);
unlock (stack) ;
if (update_stack did not wake_any threads)
do_reenable interrupts = true;
}

if(do_reenable_ interrupts)
enable_ interrupts(stack) ;
else
stack->interrupts_enabled = false;

The trylock operation in the interrupt service routine attempts to acquire the lock
required for accessing the stack’s event queue. If the lock is available it takes the
lock, and if it is unavailable the operation returns false, and the stack is not
brought up-to-date.

Operating systems provide a number of APIls to allow processes to manage
multiple descriptors. In the multiple descriptor case, each descriptor may identify
a socket or another type of resource. The APIs are used fo allow a process to
determine which among a set of file/socket descriptors are "ready" for I/O (i.e.
have received data ready to be consumed, or are ready to transmit). They also
typically provide a means to block until at least one of them becomes ready.

Certain known mechansims such as GetQueuedCompletionStatus() are used on
Microsoft Windows systems. On Unix systems multiple sockets are managed
using APls including select(), poll() and epoll(). These APIs are implemented by

WO 2008/038139 PCT/IB2007/003444
77

the operating system kernel: when a user process invokes an API call a system
call is generated, which causes the CPU to switch to privileged mode and its
control is passed to the kernel. A detailed example of code implementing a poll()
system call is given in the Appendix below. In each case a set of file/socket
descriptors is provided by the process. For each type of file/socket descriptor the
kernel invokes a poll hook function in the subsystem that implements the
file/socket. This hook must indicate the status of the file/socket (whether or not it
is "ready") and must also link the thread to a wait-queue so that it will be woken
when the file/socket becomes ready.

As explained above, in order to determine whether a given one of the sockets is
ready it is necessary fo ensure that the stack is up-to-date. To ensure that the
responsible process will be woken promptly when a socket becomes ready it is
necessary to ensure the stack will be kept up-to-date, so it is necessary to enable
interrupts under certain conditions.

It is not possible to pass state between each invocation of the hook for each
socket. This is because the API used for the hook function may be invoked
concurrently by more than one thread. As a result, each socket has to be treated
independently. However these operations incur significant CPU overhead if they
are done on a per-socket basis. The preferred implementation of the invention is
intended to minimise that overhead, especially when there are multiple sockets
indicated in the set of file descriptors. A poll hook implementation for sockets is
shown in terms of psuedo-code below:

1 socket_poll hook(socket) {
2 stack = stack of (socket);
3 if(interrupts not_ enabled(stack)) {
4 do_enable_interrupts = true; '
5 if (any events_ outstanding(stack)) {
6 if(trylock(stack)) {
7 /* The stack may not be up-to-date. The following brings
8 ** the stack up-to-date by processing any network
9 ** avents. */
10 update_stack(stack) ;
11 unlock (stack) ;

12 if(update_stack_woke_any threads)

WO 2008/038139 PCT/IB2007/003444
78

13 do_enable_ interrupts = false;

14 }

15 else

16 do_enable interrupts = false;

17

18 if(do_enable_ interrupts) enable_interrupts(stack};
19 }

20 link_thread to_wait_ gueue (current thread, socket);

21 return readiness_of (socket) ;

22 }

Whenever the interrupt service routine runs and does not re-enable interrupts, the
interrupt flag is cleared. By maintaining a flag in this way, quick checks can be
made, for example in line 3 of the poll hook, as to whether interrupts are currently
enabled. The flag can be used to efficiently implement select(), poll() and epoli()
API calls, since the poll hook is designed to update the stack only when interrupts
are not enabled. This is useful because interrupts are only enabled when the
stack has just been updated, so a positive determination that interrupts are
enabled can be used as an indication that the stack is up-to-date. The poll hook
therefore has low overhead when interrupts are enabled.

The preferred implementation also takes advantage of the fact that if many
sockets are being managed then they are all likely to be in the same stack. Once
the hook has run a first time, running it for second and subsequent sockets tends
to be very quick because the test on line 3 of the socket_poll_hook() is likely to
fail. This helps to keep overhead down.

Figure 11 shows a series of steps summarising the various features of the
preferred embodiment described above. Step 50 illustrates an API call such as
poll() being issued from an application process 1 to cause updating of the stack.

In response to the call from the application, the device driver 12 supporting the
network hardware 8 invokes the stack 5 (step 52) to process events on the event
queue (step 52). The stack then performs protocol processing of any events in
the event queues 31-33 (step 53). In the preferred embodiment, events are
notifications identifying incidents that have occurred in respect of the network

WO 2008/038139 PCT/IB2007/003444
79

connections of the computer system. They may include: (i) an indication that a
requested fransmission of a data packet over the network has been successfully
completed; (ii) an indication of the arrival of data at the NIC; or (iii) an indication of
a transmission or reception error (e.g. a erroneous packet received). In some
implementations, such as where a user-level stack is used, it may be desirable to
use additional events including timeouts and wake-ups.

After the events have been processed, packets of data are passed at step 54 to
the relevant socket(s) 2. The preferred embodiment provides one socket for each
network endpoint to which the computer is connected, although other
implementations are possible within the scope of the invention. Similarly, the
preferred embodiment uses a stack with one event queue per NIC in a system,
although further stacks each with one or more event queues may be implemented
if desired.

Once data is placed on the sockets 2 it can be retrieved by the application at step

55 by means of an API call such as recv().

Step 51 shows the alternative route for invoking the stack in the preferred
embodiment. An interrupt is generated by the NIC and causes the CPU to save
the context of the currently running process and switch to privileged mode to
process the interrupt service routine implemented in the NIC driver 12. This
causes the NIC driver to invoke the stack at step 52, and steps 52 to 55 can
proceed as described above.

The preferred embodiment involves the generation of interrupts using an
indirection. Specifically, the first event to arrive at an event queue following the
enablement of interrupts causes a second event to be delivered to a particular
event queue designated for interrupt triggering. The second event indicates the
event queue at which the first event was received, and may be a wakeup event of
type (v) mentioned above. The receipt at the designated event queue of an event
of this type triggers an interrupt to be issued from the NIC to the OS, as shown in

WO 2008/038139 PCT/IB2007/003444
80

step 51 of figure 11. This indirect interrupt-triggering mechanism has the
advantage that only one event queue needs to be configured for triggering
interrupts, while the system as a whole can support a plurality of event queues for
handling other network events. As an alternative, interrupts could be generated
by the NIC directly in response to the receipt of an event at any of the event

queues.

It should be noted that the stack 5 shown in figure 11 is accessible by the kernel
in the preferred embodiment, but could alternatively or in addition be accessible
directly by a user application by means of an appropriate call. User-level stacks
are discussed in detail in the applicant's co-pending PCT applications
WO02004/079981 and WQ2005/104475. Embodiments of the invention could

provide one stack for each application involved in networking tasks.

It will be appreciated that modifications of the techniques described herein may be
made within the scope of the invention to achieve the overall advantage of
reducing overhead in a networked data processing system. Similarly, other
techniques involving the intelligent use of system conditions may be conceived
which also lie within the scope of the invention.

It will also be understood that while TCP has been used herein as an example of
a data transmission protocol, the principles of the invention are equally applicable
to other protocols.

The applicant hereby discloses in isolation each individual feature described
herein and any combination of two or more such features, to the extent that such
features or combinations are capable of being carried out based on the present
specification as a whole in the light of the common general knowledge of a person
skilled in the art, irrespective of whether such features or combinations of features
solve any problems disclosed herein, and without limitation to the scope of the
claims. The applicant indicates that aspects of the present invention may consist
of any such individual feature or combination of features. In view of the foregoing

WO 2008/038139 PCT/IB2007/003444
81

description it will be evident to a person skilled in the art that various modifications

may be made within the scope of the invention.

WO 2008/038139 PCT/IB2007/003444
82

APPENDIX TO SECTION C

The following is simplified pseudo-code for the kernel's poll() system call, to show °
how it interacts with the subsystems that implement the file objects identified by
file descriptors. poll() is invoked with an array "pfds”, whose entries specify which
file/socket descriptors the application is querying, and are also used to store the

result (whether or not that file/socket is "ready").

poll_all(pfds) ({
int n_ready = 0;
for(each pfd in pfds) {
file obj = lookup_file(current process, pfd->fd);
pfd->ready = file obj->subsystem->poll_hook(file obj);
if(pfd->ready) n ready = n_ready + 1;

return n_ready;

}

poll(pfds, timeout) {
loop(forever) ({
n_ready = poll_all(pfds);
if(n_ready or nonblocking) return n_ready;
block_thread(timeout) ;

}
}

First, poll() calls poll_all() to query the subsystem that implements each file/socket
to determine whether any are already ready. If any are, or if this is a non-blocking
call, it returns immediately. Otherwise it blocks until the thread is woken and then
calls poll_all() again. The thread is woken when one of the files/sockets changes
state. (This will usually, but not always, correspond to one of the files/sockets
becoming ready)

This code is invoked by an application at user-level via a system call. The
following is a highly simplified example of how a user-level application might use

poll

/* We are interested in file descriptors 1 and 3. */
pfds[0] ->fd = 1;
pfds (1] ->£d = 3;
loop(forever) {

/* Block until at least one socket is ready. */

WO 2008/038139 PCT/IB2007/003444
83

poll (pfds, timeout);

/* For each socket that is ready, receive some data. */
for(i = 0; 4 < len(pfds); i =1 + 1)
if(pfds[i] ->ready)
recv(pfds([i] ->£d, buffer, len(buffer));

WO 2008/038139 PCT/IB2007/003444
84

CLAIMS

1. A method for transmitting data by means of a data processing system, the
system supporting an operating system and at least one application and having
access to a memory and a network interface device capable of supporting a
communication link over a network with another network interface device, the
method comprising the steps of:

forming by means of the application data to be transmitted;

requesting by means of the application a user-mode operating system
functionality of the data processing system to direct the data to be transmitted, the
request including an indication of a protocol by which the data is to be transmitted;

responsive to that request, the user-mode operating system functionality
selecting a protocol processing entity in accordance with the indication of a
protocol by which the data is to be transmitted;

forming within the context of the application by means of the protocol
processing entity the data into packets for transmission in accordance with the
protocol by which the data is to be transmitted and writihng by means of the
protocol processing entity the packets to be transmitted to an area of the memory;

initiating by means of communication between the protocol processing
entity and the network interface device a transmission operation of at least some

of the packets over the network.

2. A method as claimed in claim 1, wherein the data processing system supports
one or more instances of the protocol processing entity, each instance being

associated with an application.

3. A method as claimed in claim 1, wherein the data processing system supports
one or more instances of the protocol processing entity, each instance being
associated with a socket requested by an application.

4. A method as claimed in claim 1, wherein the user mode operating system

functionality is a socket library.

WO 2008/038139 PCT/IB2007/003444
85

5. A method as claimed in claim 1, wherein the protocol processing entity is a

transport library including a network protocol stack.

6. A method as claimed in claim 1, further comprising the step of performing

stateless protocol processing at the network interface device.

7. A method as claimed in claim 6, wherein the step of performing stateless
protocol processing includes at least one of calculating a checksum, performing a
cyclic redundancy check (CRC), performing segmentation tasks, and data

encryption.

8. A method as claimed in any preceding claim, wherein the protocol processing
entity operates in user mode.

9. A method as claimed in any preceding claim, wherein the protocol processing
entity operates in kernel mode.

10. A method as claimed in claim 1, wherein the operating system is a Microsoft
Windows operating system and the protocol processing entity is provided as a
Winsock Service Provider (WSP).

11. A method as claimed in claim 10, wherein the protocol processing entity
communicates with the user-mode operating system functionality via a Service
Provider Interface (SPI).

12. A method as claimed in claim 10, wherein the user-mode operating system
functionality is a Winsock dynamic link library.

13. A method as claimed in any preceding claim, wherein the area of the memory
is allocated to the protocol processing entity by the operating system in response
to a request from the protocol processing entity.

WO 2008/038139 PCT/IB2007/003444
86

14. A method as claimed in claim 13, wherein the area of memory is a buffer
allocated by the operating system to which the protocol processing entity and

network interface device have access.

15. A method as claimed in any preceding claim, wherein the communication
between the protocol processing entity and the network interface device is by

means of an event placed on an event queue by the network interface device .
16. A method as claimed in any preceding claim, wherein the protocol is TCP/IP.

17. A method as claimed in claim 1, wherein subsequent to the initiating step,
accessing the area of the memory by means of the kernel mode operating system
and performing at least part of a transmission operation of at least some of the

packets over the network by means of the network interface device.

18. A method for transmitting data by means of a data processing system, the
system supporting an operating system and at least one application and having
access to a memory and a network interface device capable of supporting a
communication link over a network with another network interface device, the
method comprising the steps of:

forming by means of an application data to be transmitted:;

requesting by means of the application a user-mode operating system
functionality of the data processing system to direct the data to be transmitted, the
request including an indication of a protocol by which the data is to be transmitted:

responsive to that request, the user-mode operating system functionality
selecting a protocol processing entity in accordance with the indication of a
protocol by which the data is to be transmitted:;

creating an instance of the protocol processing entity;

forming within the context of the application by means of the instance of the
protocol processing entity the data into packets for transmission in accordance
with the protocol by which the data is to be transmitted and writing by means of

WO 2008/038139 PCT/IB2007/003444
87

the instance of the protocol processing entity the packets to be transmitted to an
area of the memory;

initiating by means of communication between the instance of the protocol
processing entity and the network interface device a transmission operation of at
least some of the packets over the network.

19. A data processing system for transmitting data, the system supporting an
operating system and having access to a memory and a network interface device
capable of supporting a communication link over a network with another network
interface device, the systefn comprising:

an application configured to form data to be transmitted and request a
user-mode operating system functionalily of the data processing system to direct
the data fo be transmitted, the request including an indication of a protocol by
which the data is to be transmitted;

a user-mode operating system functionality configured to select a protocol
processing entity in accordance with the indication of a protocol by which the data
is to be transmitted in response to the request from the application;

a protocol processing entity configured to form within the context of the
application the data into packets for transmission in accordance with the protocol
by which the data is to be transmitted, to write the packets to be transmitted to an
area of the memory and to initiate by means of communication between itself and
the network interface device a transmission operation of at least some of the

packets over the network.

20. A data processing system as claimed in claim 19, wherein the data
processing system supports one or more instances of the protocol processing

entity, each instance being associated with an application.

21. A data processing system as claimed in claim 19, wherein the data
processing system supports one or more instances of the protocol processing
entity, each instance being associated with a socket requested by an application.

WO 2008/038139 PCT/IB2007/003444
88

22. A data processing system as claimed in claim 19, wherein the operating
system is configured to subsequently access the area of the memory and perform
at least part of a transmission operation of at least some of the packets over the
network by means of the network interface device.

23. A method for receiving data by means of a data processing system, the
system supporting an operating system and at least one application and having
access to a memory and a network interface device capable of supporting a
communication link over a network with another network interface device, the
method comprising the steps of:

establishing by means of a protocol processing entity of the data
processing system a channel for reception of data by an application, the channel
being associated with an area of the memory;

writing data packets received at the network interface device to the area of
the memory; .

the protocol processing entity reading the received data packets from the
area of the memory and processing the data packets within the context of an
application in accordance with a protocol by which the data packets are received
so as to extract the data therein; and

the application receiving the extracted data from the non-operating-system

functionality by means of a user-mode operating system functionality.

24. A method as claimed in claim 23, wherein if the protocol processing entity is
not responsive to communications from the network interface device, the
operating system reading the received data packets from the area of the memory
and performing at least part of a transmission operation of at least some of the
packets over the network by means of the network interface device.

25. A method as claimed in claim 23, further comprising the step of performing
stateless protocol processing at the network interface device.

WO 2008/038139 PCT/IB2007/003444
89

26. A method as claimed in claim 25, wherein the step of performing stateless
protocol processing includes at least one of checksum processing, performing a
cyclic redundancy check (CRC), performing segmentation tasks, and data
encryption.

27. A method as claimed in claim 23, wherein the step of the protocol processing
entity reading the received data packets from the area of the memory occurs in
response to an interrupt set by the network interface device.

28. A method as claimed in claim 23, wherein the step of the protocol processing
entity reading the received data packets from the area of the memory occurs in
response to an event placed on an event queue by the network interface device.

29. A data processing system for transmitting data, the system supporting an
operating system and having access to a memory and a network interface device
capable of supporting a communication link over a network with another network
interface device, the system comprising:

one or more applications each configured to form data to be transmitted
and tb request a user-mode operating system functionality of the data processing
system to direct the data to be transmitted, each request including an indication of
a protocol by which that data is to be transmitted,

the user-mode operating system functionality being configured to select, in
response to each request from an application, a protocol processing entity in
accordance with the indication of a protocol included in each request;

one or more instances of a protocol processing entity, each instance being
associated with an application and configured to form, within the context of that
application, data received from that application into packets for transmission in
accordance with the protocol by which that data is to be transmitted, to write the
packets to be transmitted to an area of the mémory and to initiate by means of
communication between itself and the network interface device a transmission
operation of at least some of the packets over the network.

WO 2008/038139 PCT/IB2007/003444
90

30. A data processing system for receiving data, the system supporting an
operating system and having access to a memory, the system comprising:

a protocol processing entity configured to establish a channel for reception
of data by an application, the channel being associated with an area of the
memory;

a network interface device capable of supporting a communication link over
a network with another network interface device and of writing data packets
received at the network interface device to the area of the memory;

the protocol processing entity being configured to read the received data
packets from the area of the memory and process the data packets within the
context of an application in accordance with a protocol by which the data packets
are received so as to extract the data therein; and

the application being configured to receive the extracted data from the non-
operating-system functionality by means of a user-mode operating system

functionality.

31. A system for installing a protocol processing entity into a data processing
system, the data processing system supporting an operating system and at least
one application and having access to a memory and a network interface device
capable of supporting a communication link over a network with another network
interface device, the system comprising:

a protocol processing entity operable to form data into packets for
transmission within the context of an application in accordance with a protocol by
which the data is to be transmitted, to write the packets to be transmitted to an
area of the memory and to initiate by means of communication between itself and
the network interface device a transmission operation of at least some of the
packets over the network; and

an installer configured to install the protocol processing entity into the data
processing system;
wherein the operating system is one in which an installed protocol processing
entity communicates with an application by means of a user-mode operating

system functionality.

WO 2008/038139 PCT/IB2007/003444
91

32. A system for transmitting or receiving data, the system comprising:

a data processing system supporting an operating system and at least one
application and having access to a memory, one or more areas of which are
allocated for use as buffers in the transfer of data between the data processing
system and the network interface device;

a network interface device capable of supporting a communication link over
a network with another network interface device;

the system being operable to:

transmit data according to the method as claimed in claim 1; and

receive data according to the method as claimed in claim 14.

33. A protocol processing entity for performing network-level protocol processing
in a data processing system, the data processing system supporting the Microsoft
Windows operating system and at least one application and having access to a
network interface device capable of supporting a communication link over a
network with another network interface device, the protocol processing entity
being embodied as a Winsock Service Provider and being configured to:

receive data packets from the network interface device and process the
data packets within the context of an application in accordance with a protocol by
which the data packets are received so as to exiract the data therein; and

form within the context of an application data received from that application
into packets for transmission in accordance with the protocol by which the data is

to be transmitted.

34. A software networking arrangement for operation in a first data processing
system, the data processing éystem comprising:

an operating system capable of processing a flow of traffic data received
from an application supported by the first data processing system, the operating
system being operable in: |

WO 2008/038139 PCT/IB2007/003444
92

a first mode, in which the operating system performs protocol
processing of a flow of traffic data and then passes the protocol processed
data to a network interface device for transmission; and
a second mode, in which the operating system does not perform
protocol processing of a flow of traffic data, the operating system being
arranged to, on entering the second mode, transmit a message to the
network interface device indicating that the network interface device is to
perform protocol processing of the flow of traffic data;
the software networking arrangement comprising:

a protocol processing entity; and

a driver for a network interface device, the driver being configured to
receive said message from the operating system and in response thereto, to
configure the protocol processing entity to perform transport-level protocol
processing of the flow of traffic data received from an application within the
context of that application and then pass the protocol processed data to the
network interface device.

35. A software networking arrangement as claimed in claim 34, wherein the
operating system is operable in the first mode for a first flow of traffic data and in
the second mode for a second flow of traffic data, each flow of traffic data being

associated with a particular application or socket of an application.

36. A software networking arrangement as claimed in claim 34 or 35, wherein the
driver is arranged to configure the protocol processing entity to perform transport-
level protocol processing of the flow of traffic data received from the application by
redirecting said message to the protocol processing entity.

37. A software networking arrangement as claimed in any of claims 34 to 36,
wherein, in response to the driver receiving said message, the software
networking arrangement is arranged to create a new instance of the protocol
processing entity to process the flow of traffic data received from the application.

WO 2008/038139 PCT/IB2007/003444
93

38. A software networking arrangement as claimed in any of claims 34 to 36,
wherein, in response to the driver receiving said message, the software
networking arrangement is arranged to create a new instance of the protocol
processing entity to process the flow of traffic data received from a socket of the
application.

39. A software networking arrangement as claimed in any of claims 34 to 38, on
entering the second mode, the operating system is arranged to configure an
interface between the application and the protocol processing entity to direct the
flow of traffic data from the application to the network interface device.

40. A software networking arrangement as claimed in any of claims 34 to 38,
wherein, on entering the second mode, the operating system is arranged to cause
an interface between the application and the protocol processing entity to direct
the flow of traffic data from the application to the protocol processing entity if the
protocol processing entity is associated with the driver of the network interface
device.

41. A software networking arrangement as claimed in claim 39 or 40, wherein, on
being configured to perform protocol processing of the flow of traffic data from the
application, the protocol processing entity is arranged to intercept that flow of
traffic data from the application to the interface.

42. A software networking arrangement as claimed in claim 39 or 40, wherein, on
being configured to perform protocol processing of the flow of traffic data from the
application, the protocol processing entity is arranged to intercept a flow of data
from the interface to the network interface device which corresponds to that flow
of traffic data from the application.

43. A software networking arrangement as claimed in claim 39 or 40, wherein,
subsequent to being configured to perform protocol processing of the flow of

WO 2008/038139 PCT/IB2007/003444
94

traffic data from the application, the protocol processing entity is arranged to

intercept all flows of traffic data from that application to the interface.

44. A software networking arrangement as claimed in any of claims 39 to 43,
wherein the interface is a Chimney Switch.

45. A software networking arrangement as claimed in any of claims 34 to 44,
wherein the protocol processing entity is a user-level protocol processing entity.

46. A software networking arrangement as claimed in any of claims 34 to 45,
wherein the message is a state handover message.

47. A software networking arrangement as claimed in claim 46, wherein the state
handover message includes an indication of the state of the flow of the traffic
data.

48. A software networking arrangement as claimed in any of claims 34 to 47,
wherein the flow of traffic data is associated with a socket of the application.

49. A software networking arrangement as claimed in any of claims 34 to 48,
wherein network-level protocol processing is performed at the network interface
device.

50. A software networking arrangement as claimed in claim 49, wherein the

network-level protocol processing includes calculating a checksum.

51. - A software networking arrangement as claimed in claim 49, wherein the
network-level protocol is Internet Protocol (IP).

52. A software networking arrangement as claimed in claim 51, wherein the IP-
level protocol processing includes the DEMUX of packets based on protocol
address bits.

WO 2008/038139 PCT/IB2007/003444
95

53. A software networking arrangement as claimed in claim 49, wherein all
higher-level protocol processing is performed at the protocol processing entity.

54. A software networking arrangement as claimed in any of claims 34 to 53,
wherein the operating system is Microsoft Windows.

55. A software networking arrangement as claimed in claim 54, wherein the
protocol processing entity is a Winsock Service Provider.

56. A software networking arrangement as claimed in claim 54, wherein the
protocol processing entity is a System Area Network provider.

57. A software networking arrangement as claimed in claim 56, wherein the
protocol processing entity is arranged to communicate with the interface by
means of the Sockets Direct Protocol.

58. A software networking arrangement as claimed in any of claims 34 to 57,
wherein the operating system is arranged to enter the second mode when the flow
of traffic data from the application through the operating system matches one or

more predetermined conditions.

59. A software networking arrangement as claimed in claim 58, wherein one of
the predetermined conditions is an elapsed time for which the data flow has been

active.

60. A software networking arrangement as claimed in claim 58, wherein one of
the predetermined conditions is an amount of data transferred over the data flow.

61. A software networking arrangement as claimed in any of claims 34 to 60,
wherein the flow of traffic data is o be sent over an RDMA connection and the

WO 2008/038139 PCT/IB2007/003444
96

driver is arranged to configure the protocol processing entity to perform RDMA
protocol processing of the flow of traffic data.

62. A software networking arrangement as claimed in claim 61, wherein the
network interface device is arranged to perform stateless RDMA protocol
processing.

63. A software networking arrangement as claimed in claim 62, wherein the
stateless RDMA protocol processing includes performing a cyclic redundancy
check (CRC).

64. A software networking arrangement as claimed in claim 61, wherein, on being
configured to perform RDMA protocol processing, the protocol processing entity is
arranged to signal a second data processing system which terminates the RDMA
connection to indicate that the software networking arrangement is operating at
the first data processing system.

65. A software networking arrangement as claimed in claim 64, wherein, if the
second data processing system responds to the first data processing system with
an indication that it is also operating the software networking arrangement, the
protocol processing entities at the first and second data processing systems are
arranged to take down the RDMA connection and to subsequently process the

transport data in accordance with the underlying transport-layer protocol.

66. A software networking arrangement as claimed in any of claims 34 to 65,
wherein the transport layer protocol is the TCP protocol.

67. A software networking arrangement as claimed in any of claims 34 fo 66,
wherein the driver is arranged to indicate to the operating system that it
represents a network interface device supporting a TCP offload engine.

WO 2008/038139 PCT/IB2007/003444
97

68. A software networking arrangement as claimed in any of claims 34 to 67,
wherein the driver is arranged to indicate to the operating system that it
represents a network interface device supporting an RDMA-TCP offload engine.

69. A data carrier for storing a software networking arrangement as claimed in
claim 34.

70. A software networking arrangement for operation in a first data processing
system, the data processing system comprising:

an operating system capable of processing a flow of data packets received
at a network interface device for an application supported by the first data
processing system, the operating system being operable in:
a first mode, in which the operating system performs protocol
procéssing of a flow of data packets and then passes the protocol
processed data to the application; and
a second mode, in which the operating system does not perform
protocol processing of a flow of data packets, the operating system being
arranged to, on entering the second mode, transmit a message to the
network interface device indicating that the network interface device is to
perform protocol processing of the flow of data packets;
the software networking arrangement comprising:

a protocol processing entity; and

a driver for a network interface device, the driver being configured to
receive said message from the operating system and, in response thereto, to
configure the protocol processing entity to perform transport-level protocol
processing of the flow of data packets received at the network interface device
and then pass the protocol processed data to the application associated with the
flow of data packets, the protocol processing being performed within the context

of that application.

71. A software networking arrangement as claimed in claim 70, wherein the
operating system is arranged to operate in the first mode for a first flow of data

WO 2008/038139 PCT/IB2007/003444
98

packets and in the second mode for a second flow of data packets, each flow of
data packets being associated with a particular application or socket of an
application.

72. A data carrier for storing a software networking arrangement as claimed in
claim 70.

73. A method for processing data by means of a data processing system, the
system supporting an operating system and at least one application, and having
access to a network interface device; the method comprising the steps of:
the operating system:
receiving a flow of traffic data from an application;
performing protocol processing of the flow of traffic data;
passing the protocol processed data to the network interface device
for transmission;
determining that the network interface device is to perform protocol
processing of the flow of traffic data received from the application; and
transmitting to the network interface device a message indicating
that the network interface device is to take over protocol processing of the
flow of traffic data;
the driver receiving said message from the operating system and in
response thereto configuring a protocol processing entity to perform transport-
level protocol processing of the flow of traffic data within the context of the

application.

74. A method as claimed in claim 73, wherein the operating system is arranged to
determine that the network interface device is to perform protocol processing of
the flow of traffic data when the flow of traffic data from the application through the
operating system matches one or more predetermined conditions.

75. A method as claimed in claim 74, wherein one of the predetermined
conditions is an elapsed time for which the data flow has been active.

WO 2008/038139 PCT/IB2007/003444
99

76. A method as claimed in claim 74, wherein one of the predetermined
conditions is an amount of data transferred over the data flow.

77. A method as claimed in claim 73, wherein the driver is arranged to configure
the protocol processing entity to perform transport-level protocol processing of the
flow of traffic data received from the application by redirecting said message to
the protocol processing entity.

78. A method as claimed in claim 73, wherein, in response to the driver receiving
said message, the software networking arrangement is arranged to create a new
instance of the protocol processing entity to process the flow of traffic data

received from the application.

79. A method as claimed in claim 73, wherein, on entering the second mode, the
operating system is arranged to configure an interface between the application
and the protocol processing entity to direct the flow of traffic data from the
application to the network interface device.

80. A method as claimed in claim 73, wherein, on entering the second mode, the
operating system is arranged to cause an interface between the application and
the protocol processing entity to direct the flow of traffic data from the application
to the protocol processing entity if the protocol processing entity is associated with
the driver of the network interface device.

81. A method for processing data by means of a data processing system, the
system supporting an operating system and at least one application, and having
access fo a network interface device; the method comprising the steps of:
the operating system:
receiving a flow of data packets from the network interface device
for an application;
performing protocol processing of the flow of data packets;

WO 2008/038139 PCT/IB2007/003444
100

passing the protocol processed data to the application;
determining that the network interface device is to perform protocol
processing of the flow of data packets received at the network interface
device for the application; and
transmitting to the network interface device a message indicating
that the network interface device is to take over protocol processing of the
flow of data packets;
the driver receiving said message from the operating system and in
response thereto configuring a protocol processing entity to perform transport-
level protocol processing of the flow of data packets within the context of the
application.

82. A software networking arrangement for operation in a data processing
system, the data processing system comprising:

an operating system capable of processing a flow of traffic data received
from an application supported by the data processing system, the operating
system being operable in:

a first mode, in which the operating sysiem performs protocol
processing of a flow of traffic data and then passes the protocol processed
data to a network interface device for transmission; and

a second mode, in which the operating system does not perform
protocol processing of a flow of traffic data;

wherein the operating system is arranged to, on entering the first mode, transmit a
message to the network interface device indicating that the operating system is to
perform protocol processing of the flow of traffic data;

the software networking arrangement comprising:

a protocol processing entity operable to perform transport-level protocol
processing of a flow of traffic data received from an application within the context
of that application and then pass the protocol processed data to a network
interface device; and

a driver for that network interface device, the driver being configured to
receive said message from the operating system and, if the protocol processing

WO 2008/038139 PCT/IB2007/003444
101

entity is performing protocol processing of the flow of traffic data, to configure the
protocol processing entity to cease performing protocol processing of that flow of
traffic data.

83. A software networking arrangement as claimed in claim 82, wherein the
operating system is arranged to operate in the first mode for a first flow of traffic
data and in the second mode for a second flow of traffic data, each flow of traffic
data being associated with a particular application or socket of an application.

84. A software networking arrangement as claimed in claim 82, wherein, on
entering the first mode, the operating system is arranged to configure an interface
between the application and the protocol processing entity to direct the flow of
traffic data from the application to the operating system.

85. A software networking arrangement as claimed in claim 84, wherein the
interface is a Chimney Switch.

86. A software networking arrangement as claimed in claim 82, wherein the

message is a state reclaim message.

87. A software networking arrangement as claimed in claim 82, wherein the driver
is arranged to configure the protocol processing entity to cease performing
protocol processing of the flow of traffic data by redirecting said message to the

protocol processing entity.

88. A data carrier for storing a software networking arrangement as claimed in
claim 82.

89. A method for processing data by means of a data processing system, the
system supporting an operating system, a protocol processing entity, at least one
application, and having access to a network interface device; the method

comprising the steps of:

WO 2008/038139 PCT/IB2007/003444
. 102

the protocol processing entity:
receiving a flow of traffic data from an application;
performing transport-level protocol processing of the flow of traffic
data within the context of the application;
passing the protocol processed data to the network interface device
for transmission;
determining by means of the operating system that the operating system is
to perform protocol processing of the flow of traffic data received from the
application;
transmitting to the network interface device a message indicating that the
operating system is to take over protocol processing of the flow of traffic data; and
the driver receiving said message'and in response thereto configuring the
protocol processing entity to cease performing protocol processing of the flow of
traffic data for the application.

90. A driver for a network interface device, the driver being supported by a data
processing system having access to the network interface device, the data
processing system further supporting an operating system, at least one
application and a protocol processing entity capable of performing protocol
processing of a traffic data flow within the context of an application with which the
data flow is associated, the driver being operable to:

intercept a state handover message sent from the operating system to the
network interface device indicating that the network interface device is to take
over protocol processing of a traffic data flow; and

direct said message to the protocol processing entity so as to cause the
protocol processing entity to take over protocol processing of the traffic data flow.

91. A driver as claimed in claim 90, wherein the driver is arranged to indicate to
the operating system that it represents a network interface device supporting a
TCP offload engine.

WO 2008/038139 PCT/IB2007/003444
103

92. A driver as claimed in claim 90, wherein the driver is arranged to indicate to
the operating system that it represents a network interface device supporting an
RDMA-TCP offload engine.

93. A data carrier for storing a driver as claimed in claim 90.

94. A method for use in a data processing system connected to a network in
accordance with a data transfer protocol, the data processing system having one
or more event queues for holding network events, and being capable of
responding to interrupts issued in response to the presence of a network event in
the data processing system by invoking a stack to cause processing in
accordance with the data transfer protocol of network events on the event queues;
the method comprising:

deciding whether to permit the interrupts to be enabled, in dependence on
the result of a determination as to the presence of current indications that the
stack will be invoked by an entity in the data processing system to cause
processing in accordance with the data transfer protocol of network events on the
event queues.

95. A method according to claim 94 wherein a network event may comprise:

(i) an indication of completion of a requested transmission of data from the
data processing system;

(i) an indication of receipt at the data processing system of data from the
network; or

(iii) an indication of a network error.

96. A method according to claim 94 or claim 95 wherein the data processing
system comprises a network interface for interfacing with the network, and
wherein the said interrupts are issued by the network interface.

97. A method according to any of claims 94 to 96 wherein the stack is capable of

being invoked directly by an application supported by the data processing system.

WO 2008/038139 PCT/IB2007/003444
104

98. A method according to any of claims 94 to 97 wherein access to at least a
part of the stack is restricted by means of a lock, such that only one thread of

execution may access the restricted part of the stack concurrently.

99. A method according to claim 98 wherein the said determination comprises
checking the status of the lock to determine whether an application is currently
accessing or attempting to access the restricted part of the stack.

100. A method according to claim 99 wherein, when the step of checking the
status of the lock results in an indication that an application is currently accessing
or attempting to access the restricted part of the stack, the said step of deciding

results in a decision not to permit interrupts to be enabled.

101. A method according to any of claims 94 to 100 further comprising the step of
maintaining state to indicate whether interrupts are currently enabled.

102. A method according to claim 101 wherein the said determination comprises
the step of checking the state to determine whether interrupts are currently

enabled.

103. A method according to claim 102 wherein, when the step of checking the
state results in an indication that interrupts are currently enabled, the said step of
deciding results in a decision not to permit interrupts to be enabled.

104. A method according to any of claims 94 to 103 wherein the data processing
system supports application blocking, and wherein processing in accordance with
the data transfer protocol of network events in the event queues may cause
waking of blocked applications associated with the network events on which the
processing was performed, and wherein the said determination comprises
checking whether recent processing in accordance with the data transfer protocol

WO 2008/038139 PCT/IB2007/003444
105

of network events in the event queues caused the waking of any blocked
applications.

105. A method according to claim 104 wherein, when the step of checking
whether recent processing caused the waking of any blocked applications results
in an indication that blocked applications were woken, the said step of deciding
results in a decision not to permit interrupts to be enabled.

106. A method according to any of claims 94 to 105 wherein the said entity may
be an application process or a routine invoked in response to an interrupt.

107. A data processing system capable of connection to a network in accordance
with a data transfer protocol, the data processing system having one or more
event queues for holding network events, and being capable of responding to
interrupts issued in response to the presence of a network event in the data
processing system by invoking a stack to cause processing in accordance with
the data transfer protocol of network events on the event queues; the data
processing system being capable of deciding whether to permit the interrupts to
be enabled, in dependence on the result of a determination as to the presence of
current indications that the stack will be invoked by an entity in the data
processing system to cause processing in accordance with the data transfer

protocol of network events on the event queues.

108. A computer program for use in a data processing system connected to a
network in accordance with a data transfer protocol, the data processing system
having one or more event queues for holding network events, and being capable
of responding to interrupts issued in response to the presence of a network event
in the data processing system by invoking a stack to cause processing in
accordance with the data transfer protocol of network events on the event queues;
the computer program being capable of deciding whether to permit the interrupts
to be enabled, in dependence on the result of a determination as to the presence
of current indications that the stack will be invoked by an entity in the data

WO 2008/038139 PCT/IB2007/003444
106

processing system to cause processing in accordance with the data transfer
protocol of network events on the event queues.

109. A data carrier bearing a computer program according to claim 108.

110. A method for use in a data processing system connected by means of one
or more sockets to a network in accordance with a data transfer protocol, the data
processing system having one or more event queues for holding network events,
each network event being associated with at least one of the sockets, and the
data processing system being capable of responding to interrupts issued in
response to the presence of a network event in the data processing system by
invoking a stack to cause processing in accordance with the data transfer protocol
of network events on the event queues, wherein such processing can cause a
change in a status of one or more of the sockets, the method comprising the steps
of:

receiving an enquiry from an application supported by the data processing
system as to the status of at least one of the sockets;

in response to receiving the enquiry, determining whether the interrupts are
enabled in the data processing system; and

in dependence on the result of the determination, deciding whether to
perform processing in accordance with the data transfer protocol of network

events on the event queues.

111. A method according to claim 110 further comprising the step of, in response
to receiving the enquiry, checking the current status of at least one of the sockets
and, in dependence on the result of the check deciding whether to block the

application until a change occurs in the status of at least one of the sockets.

112. A method according to claim 110 or claim 111 wherein the said status is an
indicator of whether the at least one of the sockets is ready to receive data for
transmission over the network or ready to provide to an application data received

over the network.

WO 2008/038139 PCT/IB2007/003444
107

113. A method according to any of claims 110 to 112 wherein when the result of
the determination is positive, the step of deciding results in a decision not to

perform the said processing.

114. A method according to any of claims 110 to 113 wherein when the resuit of
the determination is negative, the step of deciding results in a decision to perform
the said processing.

115. A method according to any of claims 110 to 114 wherein thé stack is
capable of being invoked directly by the application.

116. A method according to any of claims 110 to 115 wherein access to at least a
part of the stack is restricted by means of a lock, such that only one thread of

execution may access the restricted part of the stack concurrently.

117. A method according to claim 116 wherein the step of deciding whether to
perform the said processing comprises checking the status of the lock to
determine whether an application is currently accessing or attempting to access

the restricted part of the stack.

118. A method according to claim 117 wheréin, when the step of checking the
status of the lock results in an indication that an application is currently accessing
or attempting to access the restricted part of the stack, the step of deciding results

in a decision not to perform the said processing.

119. A method according to any of claims 110 to 118 wherein the said enquiry is
an enquiry from the group comprising poll(), select(), epoll) and

GetQueuedCompletionStatus calls.

WO 2008/038139 PCT/IB2007/003444
108

120. A method according to any of claims 110 to 119, further comprising the step
of returning a response to the application indicating the status of the at least one
of the sockets.

121. A method according to any of claims 110 to 120 wherein a network event
may comprise:

(i) an indication of completion of a requested transmission of data;

(i) an indication of receipt at the data processing system of data from the
network; or

(ii) an indication of a network error.

122. A method according to any of claims 110 to 121 wherein the data
processing system comprises a network interface for interfacing with the network,
and wherein the said interrupts are issued by the network interface.

123. A method according to any of claims 110 to 122, further comprising the step

of maintaining state indicating whether interrupts are currently enabled.

124. A method according to any of claims 110 to 123 wherein the step of

determining comprises checking the said state.

125. A method according to claim 124 wherein, when the step of checking the
said state results in an indication that interrupts are currently enabled, the step of
deciding results in a decision not to perform the said processing.

126. A data processing system capable of connection by means of one or more
sockets to a network in accordance with a data transfer protocol, the data
processing system having one or more event queues for holding network events,
each network event being associated with at least one of the sockets, and the
data processing system being capable of responding to interrupts issued in
response to the presence of a network event in the data processing system by
invoking a stack to cause processing in accordance with the data transfer protocol

WO 2008/038139 PCT/IB2007/003444
109

of network events on the event queues, wherein such processing can cause a
change in a status of one or more of the sockets, the data processing system
being further capable of:

receiving an enquiry from an application supported by the data processing
system as to the status of at least one of the sockets;

in response to receiving the enquiry, determining whether the interrupts are
enabled in the data processing system; and

in dependence on the result of the determination, deciding whether to
perform processing in accordance with the data transfer protocol of network
events on the event queues.

127. A computer program for use in a data processing system connected by
means of one or more sockets to a network in accordance with a data transfer
protocol, the data processing system having one or more event queues for
holding network events, each network event being associated with at least one of
the sockets, and the data processing system being capable of responding to
interrupts issued in response to the presence of a network event in the data
processing system by invoking a stack to cause processing in accordance with
the data transfer protocol of network events on the event queues, wherein such
processing can cause a change in a status of one or more of the sockets, the data
processing system being further capable of feceiving an enquiry from an
application supported by the data processing system as to the status of at least
one of the sockets; and the computer program being capable of:

in response to receipt of the enquiry at the data processing system,
determining whether the interrupts are enabled in the data processing system;
and

in dependence on the result of the determination, deciding whether to
perform processing in accordance with the data transfer protocol of network
events on the event queues.

128. A data carrier bearing a computer program according to claim 127.

WO 2008/038139 PCT/IB2007/003444

1 FIG. 1
4 2 2 11 10
)) \ | 16
H— -
\ [{ I
Ijﬂ 2 =\, 14 2
(5 15 12 13 ; |
3 [=
oo
40
FIG. 2
APPLICATION LEVEL API (g SOCKETS)
TRANSPORT LIBRARIES
TCP4 « ««+ |OTHER TRANSPORTS
!
0S INTERFACE
OTHER
TCP2 IproTOCOLS
| VIRTUAL
NDIS WDM HARDWARE
INTERFACES
DRIVER DRIVER

HARDWARE

WO 2008/038139

PCT/IB2007/003444
2/9

FIG. 3

"COPY"
/ﬂ SENF()

RECV
/ ()

OPERATING SYSTEM API / /

Jo

(O PORT (v) "COPY"

DATA
QUEUE o

DATA BUFFER

DATABUFFERS

\

(a)
"ENQUEUE"
(i)

TCP RECEIVE
PROCESSING

TCP SEND
PROCESSING

(vii)

T1CP
TIMER
/

7

(v) | () "ENQUEUE"

TIME AND
SCHEDULING
SERVICES

GENERAL OS
SERVICES

"NDIS" NETWORK
DEVICE DRIVER

|

 HARDWARE |
REAL TIME CLOCK

NETWORK INTERFACE
HARDWARE (NIC)

} HARDWARE

(i

PACKETRy PACKET Ty

WO 2008/038139

3/9

FIG. 4

PCT/IB2007/003444

. APPLICATION

(i)

SYSTEMAPI (LIBRARY

LINKAGE)

(i)

TCPRy

TCPTy

Vi

TIMER INTERFACE

(i)

OS EMULATION HARNESS

7

TCPUAS A
"PORT"
FROM TCPK

TRANSPORT
— LIBRARY

OPERATING SYSTEM INTERFACE

VIRTUAL HARDWARE
INTERFACE

HARDWARE INTERFACE

WO 2008/038139

4/9

PCT/IB2007/003444

501~

51—

STACK \

FIG. 5
) 503
,

KERNEL SPACE USER SPACE

App 1| |App 2| » + « = - A

v v
| SOCKET LIBRARY
f\ 508J/

TCP/IP | SERVICE PROVIDER

_

pp N
——1—506
l,~
I/~

—505
—507
—509

513—NIC DRIVER
NIC ~515
FIG. 6 0
//
KERNEL SPACE USER SPACE
501—~ App 1| |App2| « « « « - App N}—+—505
v v =506
| SOCKET LIBRARY | ~—507
508
L |TCPIIP RY
511 R 50& | \3/;\NSPORT LIBRATCPHP o
, \\| SERVICE PROVIDER]| STACK | |
513—HNIC DRIVER ~__ DRIVER
NIC ~515

WO 2008/038139

PCT/IB2007/003444
5/9
FIG. 7
A1
A2
4—1——0»> 3
—~_5

WO 2008/038139 PCT/IB2007/003444

6/9
FIG. 8
] - 203
KERNEL USER SPACE
20—~ 2021 T 0T 1.e.... |»v21 5
/‘S\ 233| | ! : Uﬂ 217
205 b S \\ | 225~/~
[N= T
B —— 221
211~

—
<

204

227

WO 2008/038139

PCT/IB2007/003444

719

FIG. 9
/303
, KERNEL 315 USER SPACE
301~ 302 P 1.....
—— Tag3| R
3054 999 | 317
| < \ 325—
306~ TN s 1319
I «L __’/ v
A e
307 —{ < \\ | 8 321
_T331
=309 ,
31—t

327

WO 2008/038139 PCT/IB2007/003444

8/9
\
1
2
~3 >FIG. 10
4
6

!
/ 54
50'V __________ ‘6~~\
| T~
| RS
! \\
) ~
\
3~ 5~ \\‘
I
4/‘_, o ,[’
-
__,—’7’/ /
TR, %
4 -

PCT/IB2007/003444

WO 2008/038139

9/9

\

A4
e)
N [1]
[L7
QYIYHL f———— 7
dn - DIYM Lsmmm

0¢

Smw S——

——
e

Nmm

€

¢l 9l

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - claims
	Page 86 - claims
	Page 87 - claims
	Page 88 - claims
	Page 89 - claims
	Page 90 - claims
	Page 91 - claims
	Page 92 - claims
	Page 93 - claims
	Page 94 - claims
	Page 95 - claims
	Page 96 - claims
	Page 97 - claims
	Page 98 - claims
	Page 99 - claims
	Page 100 - claims
	Page 101 - claims
	Page 102 - claims
	Page 103 - claims
	Page 104 - claims
	Page 105 - claims
	Page 106 - claims
	Page 107 - claims
	Page 108 - claims
	Page 109 - claims
	Page 110 - claims
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings

