FRAGRANCE SAMPLER INSERT

Inventor: Sven Dobler, Huntington, NY (US)

 Correspondence Address:
Paul Denk
763 S. New Dallas
St. Louis, MO 63141 (US)

Appl. No.: 12/231,827
Filed: Sep. 5, 2008

Related U.S. Application Data
Continuation of application No. 11/726,117, filed on Mar. 21, 2007, now abandoned, which is a continuation of application No. 10/464,392, filed on Jun. 17, 2003, now abandoned, which is a continuation-in-part of application No. 10/233,136, filed on Aug. 30, 2002, which is a continuation-in-part of application No. 09/858,566, filed on May 17, 2001, now Pat. No. 6,461,620, which is a continuation-in-part of application No. 09/531,296, filed on Mar. 20, 2000, now Pat. No. 6,251,408.

Publication Classification

Int. Cl.
B65D 73/00 (2006.01)

U.S. Cl. .. 206/484

ABSTRACT

A fragrance sampler is provided which is made from two plies, a bottom ply and a top ply, of material. A cosmetic, such as a wet fragrance, sample is deposited on the bottom ply. A well is formed in at least one of the plies and is sized and shaped to surround the sample. The two plies are then adhered together to form a liquid tight seal between the two plies and around the well.
FRAGRANCE SAMPLER INSERT

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This is a continuation patent application of pending continuation application Ser. No. 11/726,117, filed on Mar. 21, 2007, which is a continuation patent application of continuation application Ser. No. 10/464,392, filed on Jun. 17, 2003 now abandoned, which is a continuation-in-part of pending application Ser. No. 10/233,136 filed on Aug. 30, 2002, which in turn is a continuation-in-part of application Ser. No. 09/858,566, filed May 17, 2001, now U.S. Pat. No. 6,461,620, which, in turn, is a continuation-in-part of application Ser. No. 09/531,296, filed Mar. 20, 2000, now U.S. Pat. No. 6,251,408, all of which are entitled Fragrance Sampler Insert, and all of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] This invention relates to fragrance samplers which are inserted in magazines or used in direct mailings.

[0003] Traditionally fragrance samplers were dry presented blotter cards that had to be individually overwrapped to contain the fragrance for use in direct mail or magazine advertising. Beginning in the late 1970’s, the micro-encapsulated Scentsstrip® style magazine and direct mail insert was introduced. The Scentsstrip insert is described in U.S. Pat. No. 5,693,182 to Ross. This product was produced on wide web offset printing equipment and therefore offered significant cost efficiencies for mass marketing. However, this was still a dry sample since the water moisture in the deposited fragrance slurry would very quickly wick into the paper substrate and leave the product sample dry. In fact, the entire technology depended on this moisture wicking since the wet microcapsules would not bond to the paper and would not break upon opening of the sampler. The microcapsules only break and release the fragrance oil when they are dry and are bonded to the paper. The draw back with this product was that it did not replicate the actual wet perfume product very well. In order to sample the fragrances in its real life wet form, the moisture wicking of the wet fragrance slurry deposited in the wide web offset printing process needed to be prevented. This was most easily accomplished by using existing narrow web flexographic label printing technology to create a pressure sensitive product that incorporated a wet fragrance or cosmetic sample material between imperious barrier materials such as plastic films and foil structures.

[0004] Currently there are three main fragrance sampler patents that guide us in wet fragrance or cosmetic sampling in magazines and direct mail. One is U.S. Pat. No. 5,391,420 to Bootman, which describes a pressure sensitive label comprising two plies of a film or plastic material: one bottom pressure sensitive ply, a deposit of fragrance material and an overlay of a second ply which traps said fragrance deposit. The sealing is by heat seal. The draw back of this product is that the perfume material is often forced into and through the seal areas under pressure from the stacking forces of many magazines or inserts in distribution.

[0005] U.S. Pat. No. 5,161,688 to Muchin perfects upon the Bootman product by introducing a center ply material which has a die-cut window. This window ply is introduced onto the bottom pressure sensitive ply and thus creates a well for the fragrance material. The top, third ply is then added and the result is that stacking forces are distributed onto the widow ply and the fragrance material is exposed to less forces that may lead to seal failures and leakage: a major defect in the original product.

[0006] A modification of this second patent concept is described in U.S. Pat. No. 5,622,263 to Greenland. Greenland uses a liquid polyethylene or other hot liquid plastic material that creates the above-mentioned well and also assists in the heat sealing process. The draw back of the Muchin patent is that the additional window ply involves additional cost and manufacturing complications for die-cutting and introducing the third ply in the process. The Greenland concept also adds additional material cost and slows the process as the liquid plastic material needs to be deposited and bonded to the top and bottom ply. Further, the hot liquid plastic material introduces foreign odor and can, in some circumstances, contaminate the cosmetic or fragrance sampling material.

[0007] There are various other patents that deal with cosmetic sampling. Gunderman (U.S. Pat. No. 5,690,130) discloses a sampling device with a unit dose of cosmetic that is screen printed onto a base paper with a perimeter adhesive and clear film overlay. In this case a well area is embossed to receive an integral applicator. The well is not designed as a receptor for the cosmetic product nor is the embossing incorporated into the seal so as to afford strength and allow the seal to withstand pressure better. Also, this sampler uses screen printing and, as disclosed, is not intended or capable of delivering a wet liquid dose of cosmetic material. Lastly, a pressure sensitive base material is not envisioned which would allow automatic affixing as a label onto magazine or direct mail materials as the current Invention envisions.

[0008] Gunderman (U.S. Pat. No. 5,566,693) describes a screen printed sampler that delivers a cosmetic dose under a clear film overlay with pressure sensitive base material allowing affixing as a label. Again, this sampler is not designed to deliver a wet fragrance. The fragrance formulation requires fragrance to be mixed in a powder-based vehicle so that it can be screen printed. Also the sealing is not designed to contain wet fragrance or provide enough strength to contain liquid under stacking pressure. Further no embossing is envisioned to hold a cosmetic dose or to create seal wall integrity.

[0009] Gunderman (U.S. Pat. No. 5,562,112) envisions a lipstik sampler, again with neither a well or an embossed seal wall feature.

[0010] Ashcraft (U.S. Pat. No. 5,249,676) describes a multi-layer film with a flavor carrier layer between barrier layers. This does not create a wet fragrance sampler and there is no provision to create seals by embossing or otherwise that will allow a wet cosmetic sample to be contained under pressure.

[0011] Moir (U.S. Pat. No. 5,192,386) describes a screen printed, two-ply sampler with perimeter adhesive and clear film overlay. The cosmetic ingredient is a cosmetic powder, a heated oily, non-liquid waxy material, or a fragrance in a dry powder formulation. The product is dry, not wet, and there is no provision for creating heat sealed, embossed or interlocking walls to define a well and create internal seal strength sufficient to withstand stacking forces.

[0012] Szychler et al. (U.S. Pat. No. 4,880,690) shows a perfume patch.

[0013] Moir (U.S. Pat. No. 4,848,378) discloses a cosmetic screen printed, two-ply sampler that allows a pattern deposit of the cosmetic ingredient in the form of a non-smeary powder. This product is not pressure sensitive has no embossed wells or seal walls and does not deliver a wet sample.
Dreger (U.S. Pat. No. 4,769,264) discloses a label product comprising at least two sheets, bonded by adhesive, with microencapsulated fragrance. The liquid fragrance inside the microspheres is so little that it does not create a wet rendering of the product and is as dry to the touch and in current day dry "scents/rips". There is no mention of creating a well to hold the cosmetic dose in a confined area, nor is any use made of embossing or interlocking seal walls to create an improved seal and resist stacking pressure.

Moir (U.S. Pat. No. 4,751,934) discloses another version of a screen printed cosmetic powder formulation that may include fragrance in a two-ply pressure sensitive label construction. The seals of the two ply layers are by adhesive seal and the product rendering is dry or waxy, as in the lipstick dose version, but not wet as contemplated in the current invention. No embossing or debossing is used to create well areas or build wall seals.

Fraser (U.S. Pat. No. 4,720,423) describes using in a multi-layer strip having an adhesive with fragrable microcapsules as a package overlap. This product does not render a wet sample and create wells or seal walls either.

Charbonneau (U.S. Pat. No. 4,606,956) discloses a pressure sensitive two ply label construction with conventional microencapsulated slurry applied wet and then allowed to dry as is the conventional practice in the manufacture of scent strips. The product sample is rendered in a dry state, no wells or embossed wells are used to create a more impervious seal that can hold up to stacking forces.

BRIEF SUMMARY OF THE INVENTION

Briefly stated, a sampler is provided for insertion into an article such as a magazine or a mass mailing. The sampler includes a bottom ply and a top ply, both of which have an upper surface and a lower surface. A well is formed in at least one of the top and bottom plies to receive the sample. The well can be formed by a wall on the bottom ply, or can be formed as a depression in the bottom ply. A cosmetic sample (such as a wet fragrance sample) is deposited on the bottom ply. The top ply and bottom ply are adhered together to form a seal to substantially prevent leakage of the sample. A barrier formation can be formed in the bottom ply. The barrier formation is positioned to be within the area defined by the wall and is sized and shaped to impede the flow of said sample on said bottom ply. For example, the barrier formation can comprise a plurality of dimples, knurls, baffles, or grooves.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a fragrance sampler of the present invention prior to assembly of the sampler; FIG. 2 a cross-sectional view of the sampler when assembled; FIG. 3 is a schematic drawing of the sampler producing process; FIG. 4 is a cross-sectional view of an alternative construction of the fragrance sampler; FIG. 5 is a cross-sectional view of another alternative construction of the fragrance sampler; FIG. 6 schematic drawing of an alternative process for producing the sample of either FIG. 2 or 4; FIGS. 7A-C show three alternative constructions of the fragrance sampler which include single walls; FIGS. 8A-B show two other alternative constructions of the fragrance sampler which include double walls; FIGS. 9A-D show alternative constructions of the sampler bottom ply, wherein the bottom ply is provided with flow barriers; FIG. 10 is a schematic view of an alternative process for manufacturing the sampler; FIG. 11 is a cross-sectional view of a further embodiment of the sampler which is similar to the sampler of FIG. 5, but which lacks the interlock feature of the sampler of FIG. 5; FIG. 12 is a cross-sectional view of yet another embodiment of the sample in which walls on the top and bottom plies are aligned, and thus, the sampler lacks the interlock feature; FIG. 13 is a cross-sectional view of the sampler of FIG. 12, but with the embossed walls in a collapsed condition; and FIGS. 14 and 15 are cross-sectional view of a sampler similar to the sampler of FIGS. 12 and 13, but which has a double wall construction, rather than a single wall construction.

Corresponding reference numerals will be used throughout the several figures of the drawings.

DETAILED DESCRIPTION OF THE INVENTION

The following detailed description illustrates the invention by way of example and not by way of limitation. This description will clearly enable one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what I presently believe is the best mode of carrying out the invention.

A first embodiment of a sampler 1 of the present invention is shown in FIGS. 1 and 2. The sampler 1 includes a top ply 3 and a bottom ply 5, both of which are preferably formed from a foil, a polyester, or a polyethylene laminated structure. The plies can alternatively be made of an acetate or other paper, foil, and plastic film laminated or non laminated barrier plies. To facilitate affixing the sampler, for example, in
The top and bottom plies 3 and 5 each include top and bottom surfaces 3a, 5a and 3b, 5b, respectively. A wall 7 is formed in the bottom ply 5 which extends up from the bottom ply's upper surface 5a. The wall 7, as shown, has an inner surface 7a, an outer surface 7b, and a top surface 7c which define a channel 7d in the bottom ply bottom surface 5b. The channel 7d is preferably rectangular in cross-section (but could have other configurations), and the wall 7 defines a "double wall." The wall 7 also defines a well 9 into which a wet fragrance sample 11 can be deposited. The fragrance sample 11 can be a sample of a perfume, or a cosmetic crème, lotion, hair color tint, lip stick, powder, or other cosmetic ingredient.

An opposing wall 13 is formed in the top ply 3 and extends upwardly from the top ply top surface 3a (with reference to FIG. 2). The wall 13 has an inner surface 13a, an outer surface 13b, and a top surface 13c which, in combination, define a channel 13d in the top ply bottom surface 3b. The top ply channel 13d is preferably rectangular in cross-section (but could have other configurations that correspond to the configuration of the bottom ply channel 7d), and the wall 13 is a "double wall." As seen in FIG. 2, the wall 13 in the upper ply has dimensions slightly larger than the dimensions of the dimensions of the top ply, and the channel 13d is slightly wider than the channel 7d. Thus, the top ply wall 13 receives the bottom ply wall 7, as seen in FIG. 2, so that the walls 7a-c defining the lower ply channel 7d are substantially adjacent the walls 13a-c defining the upper ply channel 13d.

The top and bottom ply walls 7 and 13 are preferably formed by an embossing/embossing process.

As can be seen in FIGS. 1 and 2, when the walls 7 and 13 are formed, the top and bottom plies each include a frame 15, 17 surrounding the walls 7 and 13, respectively. The top ply 3 and bottom ply 5 are adhered together to cover and close the well 9 so that the sample 11 will be sealed in the well 9 between the two plies. The plies can be joined by heat sealing or sonically sealing the two plies together or using an adhesive to bond the top plies together. An adhesive device is used, the adhesive can be cationic or coating adhesive, or other equally acceptable adhesive which will form a liquid tight barrier to prevent premature release of the fragrance contained in the well 9.

Although the walls 7 and 13 are shown in FIGS. 1 and 2 to be "double walls" with one wall being received in the channel of the other, one of the walls 7 and 13 could alternatively be formed as single walls as seen in the sampler 1' of FIG. 4. The sampler 1' includes a top ply 3' and a bottom ply 5'. The top and bottom plies 3' and 5' each include top and bottom surfaces 3a', 5a' and 3b', 5b'. A wall 7 extends up from the bottom ply's upper surface 3a'. Unlike the wall 7 of the sampler 1 of FIGS. 1 and 2, the wall 7' is a single wall. The wall 7' is spaced inwardly from the outer edge of the sampler bottom ply 5' and extends around the bottom ply 5' to form a well 9' into which a wet fragrance sample 11' can be deposited.

An opposing wall 13' extends up from the top ply top surface 3a'. The wall 13' has an inner surface 13a', an outer surface 13b', and a top surface 13c' which, in combination, define a channel 13d' in the top ply bottom surface 3b'. The top ply channel 13d' is sized to receive the bottom ply wall 7, so that the walls 7' and 13' are engaged when the sampler 1' is formed.

Another alternative construction for the fragrance sampler is shown in FIG. 5. In this construction, the sampler 1' includes a top ply 3' and a bottom ply 5' having upper and lower surfaces 3a', 5a' and 3b', 5b', respectively. Unlike the embodiments of FIGS. 1 and 4, the fragrance sampler 1' includes a well 9' formed in the bottom ply 5' which holds the fragrance sample 11'. Unlike the walls of samplers 1 and 1' (FIGS. 1, 2, and 4) in which the walls are above or on top of the bottom ply, the wall 9' is below the plane of the bottom ply 5'. The well 9' can be either by either an embossing or debossing process. The top ply 3' includes a wall 13' which extends from the top ply top surface 3a'. The wall 13' is sized to be received in the well 9' so that, when the sampler 1' is formed, the wall 13' will be adjacent the wall 7' of the well 9' and so that the two walls will engage each other to form a liquid tight seal to retain the liquid fragrance sample in the well 9'. Unlike the samplers 1 and 1' of FIGS. 1-4, the sampler 1' includes no "double walls", rather, both the walls 7' and 13' are single walls.

The process for producing the samplers 1, 1', and 1" is shown schematically in FIG. 3. The top and bottom ply material are originally contained on rollers 21 and 23, respectively. The top ply material is pulled off the top ply roller 21 and passed through a printer station 25 and then through an embossing station 27. At the printer station 25 desired graphics are printed on the top ply 3a, 3a', 3b' of the top ply 3, 3', 3", the top ply wall 13, 13', 13" is formed at the embossing station 27. The top foil laminated ply is printed on a narrow web flexographic or letter press printing press, with all subsequent finishing steps performed either in-line or off-line.

While the top ply is being processed, the bottom ply material is pulled off the bottom ply roller 23 and passed through an embossing station 29 where the bottom ply wall 7, 7', 7" is formed. A flat bed embossing tool is used to push up or emboss the wall 7, 7', 7" on the bottom ply to form the well 9, 9', 9". The bottom ply embossing can be also be formed by rotary embossing methods.

The bottom ply 5, 5', 5" is passed under an injection station 31 where a liquid fragrance sample is deposited in the well 9, 9', 9". The sample 11, 11', 11" can be deposited in any other desired manner, such as extrusion, spray, flexographic equipment or silkscreen.

After the top ply has been printed and after the wall 13, 13', 13" is formed in the top ply, the top ply is passed about a pair of rollers 33 and 35 to bring the top ply 3, 3', 3" into close proximity with the bottom ply 5, 5', 5". The path of travel of the bottom ply is preferably substantially horizontal, at least after the fragrance sample has been deposited in the bottom ply well 9, 9', 9", to avoid spilling of the sample. Thus, the top ply 3, 3', 3" is preferably brought to the bottom ply 5, 5', 5". However, the process could be designed so that the bottom ply is brought up to the top ply. The two plies are then passed through a sealing station 37 where the two plies are adhered together to form a liquid tight seal which will contain the fragrance sample in the chamber. The sealing station interlocks with the well wall 7, 7', 7" with the top ply wall 13, 13', 13" to form a safe, closed well for the sample material. As can be appreciated, the webs of top ply and bottom ply material move at an indexed rate such that when the two plies are
brought together at the sealing station, the top ply wall 13, 13', 13" will be in alignment with the bottom ply wall 7, 7', 7". The sealing station 37 is preferably a heat sealer, and the top and bottom plies can be adhesed or sealed together for example, by welding (such as friction, sonic, or ultrasonic welding), or other standard heat sealing processes which will create a seal between the two plies. Alternatively, as noted above, the sealing station can utilize an adhesive, such as cationic curing adhesives, traditional cohesive seals, or adhesive seals, which will bind the top and bottom plies together to form the seal.

[0048] The joined plies are then passed to a die-cut station 39 where side portions of the frames 15 and 17 are removed from the formed samplers. The die-cutting step can be performed with either rotary or flat bed equipment. The formed samplers are then collected on a product roller 41. Product is delivered in roll form for automatic applications to other printed materials. The die-cutting station 39 can also form perforations between adjacent samplers to facilitate separation of the samplers. The waste material can be collected on a waste roller 43.

[0049] If desired, a pressure sensitive material with a release liner can be incorporated into the bottom ply so as to result in a product that can later be readily applied to another substrate using affixing equipment. Alternatively, the pressure sensitive adhesive with its release liner can be applied to the bottom layer ply. The pressure sensitive adhesive can be applied to the bottom ply either as a pre-treatment or after the embossing/debossing process.

[0050] An alternative production process is shown in FIG. 6. As with the process of FIG. 3, webs of the top and bottom ply material are originally contained on rollers 21 and 23, respectively. The top ply material is pulled off the top ply roller 21 and passed through a printer station 25 where desired graphics are printed on the top surface of the top ply. At the same time, the bottom ply material is pulled off the bottom ply roller 23 under an injection station 31 where a liquid fragrance sample is deposited on the bottom ply. As can be appreciated, in this version, the liquid fragrance sample is deposited on the bottom ply prior to the formation of the walls of the top and bottom plies.

[0051] After the top ply has been printed, the top ply is passed about a pair of rollers 33 and 35 to bring the top ply into close proximity with the bottom ply. The path of travel of the bottom ply is preferably substantially horizontal, at least after the fragrance sample has been deposited on the bottom ply to avoid spilling of the sample. Thus, the top ply is preferably brought to the bottom ply. However, the process could be designed so that the bottom ply is brought up to the top ply. The two plies are then passed through a sealing station 37. At the sealing station 37, the webs of the top and bottom plies are formed, and the two plies are adhered together to form a liquid tight seal which will contain the fragrance sample in the chamber. The sealing station interlocks with the well wall with the top ply wall to form a safe, closed well for the sample material. As can be appreciated, the webs of top ply and bottom ply material move at an indexed rate such that when the two plies are brought together at the sealing station, the fragrance will be within the walls formed at the sealing station and the printing on the top ply will be above the liquid fragrance sample. The sealing station 37 is preferably a heat sealer, which embosses/debosses the top and bottom ply walls in the sampler at the same time the sampler plies are heat sealed together.

[0052] The joined plies are then passed to a die-cut station 39 where side portions of the frames 15 and 17 are removed from the formed samplers. The die-cutting step can be performed with either rotary or flat bed equipment. The formed samplers are then collected on a product roller 41. Product is delivered in roll form for automatic applications to other printed materials. The waste material can be collected on a waste roller 43.

[0053] In another variation, the walls in the bottom ply can be "pre-formed" to allow for filling of the well in an off-line operation.

[0054] As can be appreciated, the sampler of the present invention is easily formed from only two plies of material. The top and bottom ply walls are substantially adjacent each other, to engage each other to form a liquid tight seal around the fragrance sample. Additionally, the adjacent walls will reinforce each other to enable the walls to carry the stacking or compression forces to reduce seal failures and fragrance leaks.

[0055] Several different alternative configurations of the fragrance sampler are shown in FIGS. 7A-9D. In FIG. 7A, the fragrance sampler 100 has a top ply 103 and a bottom ply 105. The bottom ply 105 is flat. That is, it does not include any walls or wells which define a chamber. Rather, the top ply has a pair of spaced apart walls 113A and 113B which are concentric with each other, and which extend downwardly from the bottom surface of the top ply. The sampler 100 is formed in substantially the same way as described above, with the fragrance sample being deposited on the bottom ply 105 in an area which will be surrounded by the wall 113B, so as to be contained within the sampler upon sealing of the sampler. As can be appreciated, the two plies can be reversed, so that the walls 113A,B form a chamber into which the fragrance sample is deposited during formation of the sampler. In this case, the well will be formed in the bottom ply, and the top ply will be flat. The top ply will then be sealed (such as by heat sealing) to the bottom ply to form a liquid tight seal between the two plies.

[0056] The sampler 100A shown in FIG. 7B includes the top ply 103 identical to the top ply 103 of the sampler 100 (FIG. 7A), and a bottom ply 105A. The bottom ply includes a single wall 107 which extends upwardly from the upper surface of the bottom ply to define a fragrance chamber 109. The bottom ply wall 107 is positioned to be contained within the top ply wall 113B, and sized so that its outer surface will abut the inner surface of the top ply wall 113B. Thus, the walls 107 and 113B will effectively engage each other when the sampler is sealed.

[0057] The sampler 100B shown in FIG. 7C includes the top ply 103 identical to the top ply 103 of the sampler 100 (FIG. 7A), and a bottom ply 105B. The bottom ply 105B includes a pair of spaced apart walls 107A and 107B which are concentric with each other, the wall 107B being contained within the wall 107A. As seen, the top ply walls and bottom ply walls are sized to be off-set from each other, such that the bottom ply wall 107A is received between the top ply walls 113A and 113B; and the bottom ply wall 107B is received inwardly of the top ply wall 113B. Thus, the walls 113A,B and 107A,B mesh with each other.

[0058] The samplers 100, 100A, and 100B all include single walls, as opposed to double walls, such as the walls 7 and 13 of the sampler 1 (FIG. 2). The samplers 200 and 200A shown in FIGS. 8A and 8B, respectively, include only double walls. The sampler 200 (FIG. 8A) includes a top ply 203 and
a bottom ply 205. The bottom ply 205 is identical to the bottom ply 105 (FIG. 7A); it is flat and has no walls, wells, etc. The top ply 203 includes a pair of double walls 213A and 213B which are concentric with each other, the wall 213B being formed within the wall 213A. As seen in FIG. 8A, the concentric double walls, which are adjacent each other, give the top ply a serrated appearance. As can be appreciated, the sampler 200 is similar to the sampler 100, except that the single top ply walls 113A,B of the sampler 100 have been replaced with the double walls 213A,B. Hence, the sampler 200 would be formed substantially the same way as the sampler 100. As with the sample 100, the sampler 200 could be formed such that the walls are formed in the bottom ply to define a well into which the sample is deposited. The top ply would then be flat. After the sample is deposited in the well, the two plies are brought together, as discussed above, to adhere the two plies together to form a liquid tight seal between the two plies.

The sampler 200A (FIG. 8B) is somewhat similar to the sampler 1 (FIG. 2). It includes a top ply 203A and a bottom ply 203B. The top ply 203A includes a double wall 213 which extends downwardly from the top ply’s bottom surface. The bottom ply includes an upwardly extending wall 207. In the sampler 1, the wall 7 is received in the channel defined by the wall 13. In the sampler 200A, the respective location of the bottom ply wall has been moved relative to the top ply wall, so that the outer surface of the bottom ply wall 201 is adjacent to the inner surface of the top ply wall 213. When the sampler is formed, the sealed web is either perforated, or cut, to produce separable (or separated) samplers which can then be inserted in a magazine, mailer, etc.

The samplers of FIGS. 1-9 all include interlocking walls, as described above. The samplers of FIGS. 11-14, on the other hand, do not have interlocking walls. The sampler 400 of FIG. 11 is similar to the sampler 1” of FIG. 5. The sampler 400 includes a top ply 402 and a bottom ply 404. Like the bottom ply of the sampler 1”, the bottom ply 404 has a well 406 that is formed in the bottom ply by an embossing or debossing procedure. The well 406 is below the plane of the bottom ply 404, and is shown to be generally concave and curved (as opposed to rectangular). The top ply 402 includes a wall 408, which is shown to be a double wall similar to the wall 13 of the sampler 10 (FIG. 1). However, the wall 408 is positioned such that its inner surface is approximately aligned with the periphery of the well 406. Thus, the bottom surface 408a of the well will contact the upper surface of the bottom ply 404. The sampler 400 can be formed using any of the methods described above. The sample will be received in the well 406, and, in a subsequent step, the wall bottom surface 408a will be sealed to the bottom ply top surface to form a liquid tight seal around the well. The seal between the wall bottom surface and the bottom ply top surface can be formed in any number of ways. For example the seal can be formed by welding (such as heat welding, sonic welding, ultrasonic welding, friction welding, etc.) or by bonding using adhesives.

The sampler 500 of FIG. 12 includes bottom and top plies 502 and 504. Walls 506 and 508 are formed on the bottom and top plies, respectively, such that the walls face each other. Hence, the bottom ply wall 506 is formed on the upper surface of the bottom ply and the top ply wall 508 is formed on the bottom surface of the top ply. The walls 506 and 508 are shown to be double walls, but could be single walls if desired. As can be seen, the walls 506 and 508 are aligned with each other, such that their respective end surfaces 506a and 508a will contact each other when the two plies are brought together. Because the walls 506 and 508 are aligned, the sampler 500 lacks the interlocking feature of the sampler 10 (FIG. 1), for example. However, the two plies are joined together at the walls to form a liquid tight seal between the top and bottom plies. The seal between the wall bottom surface and the bottom ply top surface can be formed in any number of ways. For example the seal can be formed by welding (such as heat welding, sonic welding, ultrasonic welding, friction welding, etc.) or by bonding using adhesives. The use of double walls facilitates welding of the two plies together. Upon completion of assembly of the sampler, the top and bottom ply walls 506 and 508 are crushed together, as seen in FIG. 13. When collapsed, the walls do not return to their original flat surface configuration. Rather, they form a physical wall barrier that provides additional compression resistance to the finished product.

The sampler 600 shown in FIGS. 14 and 15 is substantially similar to the sampler 500. However, the sampler 600 is provided with two walls 606 and 607 on the bottom ply 602 and two wall 608 and 609 on the top ply 604. The walls 607 and 609 are outer walls which surround walls 606 and 608, which are inner walls. Like the sampler 500, the walls of the sampler are aligned with each other. Thus, the wall 606 and 608 are aligned and the walls 607 and 609 are aligned. The top and bottom plies 602 and 604 are assembled
together in the same manner as the plies of the sampler 500, and, upon assembly, the walls 606-609 are crushed or collapsed, as seen in FIG. 15.

[0065] As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

I claim:

24. A sampler for inserting into an article such as a magazine or a mass mailing, said sampler including a cosmetic sample for application to the face, such as foundation, blush, or rouge, said sampler including:
 a bottom ply having an upper surface and a lower surface, and an integral wall extending upwardly from said bottom ply upper surface, said wall having an end surface away from said upper surface, and said bottom ply wall defining a well receiving a cosmetic sample therein;
 a top ply having an upper surface and a lower surface, and an integral wall extending downwardly from said top ply bottom surface, and said wall having an end surface away from said lower surface; and,
 said wall of said top ply aligning with said wall of said bottom ply and said end surface of said bottom ply wall joining said end surface of said top ply wall thus sealing said top ply to said bottom ply liquid tight.

25. The sampler of claim 24 wherein said top and bottom ply walls are double walls.

26. The sampler of claim 24 wherein said top ply wall and said bottom ply wall are further defined as first walls;

said sampler includes an integral second wall outwardly of said first wall on said top ply and an integral second wall outwardly of said first wall on said bottom ply;
said second walls surrounding said first walls and said second walls aligning with each other.

27. The sampler of claim 26 wherein said first walls and said second walls are joined together then said first walls and said second walls of said top ply and said bottom ply are collapsed.

28. A sampler for inserting into an article such as a magazine or a mass mailing, said sampler including a cosmetic sample, said sampler including:
 a bottom ply having an upper surface and a lower surface, and a curved well extending below said bottom ply adapted to receive a cosmetic sample, said well smoothly transitioning to said lower surface and said upper surface;
 a top ply having an upper surface and a lower surface, and an integral wall extending downwardly from said top ply lower surface, said top ply locating opposite said well, said wall having a bottom surface away from said lower surface; and,
 said bottom surface of said wall of said top ply abutting said upper surface of said bottom ply outwardly of said well thus sealing said top ply to said bottom ply.

29. The sampler of claim 28 wherein said well is concave.

30. The sampler of claim 28 wherein said well is embossed.

* * * * *