发明名称
一种尾矿蒸压砖的级配设计方法

摘要
本发明具体涉及一种尾矿蒸压砖的级配设计方法。其技术方案是：建立尾矿蒸压砖集料粒径
d_i 与该粒径的通过百分率 P_{di} 的数学模型，即 $P_{di} = 62.25(d_i/d_{max})^{3.22} + 37.75(d_i/d_{min})^4$。其级配设计方案步骤为：先结合尾矿粒度特性选择集料最大粒径 $d_{max} = 1\sim7mm$，再确定级配修正指数 K，然后
根据上述数学模型得到不同粒径 d_i 的通过百分率 P_{di}。最后根据尾矿粒度特性中粒径 d_i 的负累
积产率 S_i，得到尾矿集料为 $C_i = P_{di}/S_{di} \times 100\%$。将 d_i 调整的调整集料添加量为 $C_{di} = P_{di} - d_i^{(S_{di}-S_{di-1})}(P_{di}/S_{di})$，得
$C_{d_{max-1}} = P_{d_{max-1}} - d_{max-1}(S_{d_{max-1}} - S_{d_{max-1}-1})(P_{d_{max-1}}/S_{d_{max-1}})$。本发明能显著降低研制成本和减小劳动强度，具有尾矿利用率高、强度好的特点，可有效推动尾矿在蒸压砖领域的利用。
1. 一种尾矿蒸压砖的级配设计方法,其特征在于该级配设计步骤是:

先结合尾矿粒度特性,选择集料最大粒径 \(d_{\text{max}} \), \(d_{\text{max}} = 1 \sim 7 \text{mm} \);

再确定级配修正指数 \(K \);当对尾矿的利用率无要求时,若尾矿中 0.074mm 的负累积产率大于 35%,则取 \(K = 0.39 \);若尾矿中 0.074mm 的负累积产率小于 35%,则取 \(K = 1.25 \);当对尾矿的
利用率有要求时,则根据其要求计算级配修正指数 \(K \), \(K = 0.39 \sim 1.25 \);

然后建立尾矿蒸压砖集料粒径 \(d_i \) 与该粒径的通过百分率 \(P_{d_i} \) 的数学模型,即得尾矿蒸压砖集料不同粒径通过百分率 \(P_{d_i} \) 的计算公式:

\[
P_{d_i} = 62.25 \left(\frac{d_i}{d_{\text{max}}} \right)^{0.22} + 37.75 \left(\frac{d_i}{d_{\text{max}}} \right)^{1.8} \quad (1)
\]

式(1)中: \(d_i \) - 集料粒径; \(0 < d_i \leq d_{\text{max}} \); 其中 \(1 \leq i \leq n \);

其中 \(n \) - 集料粒径级配的粒径数, \(5 \leq n \leq 10 \);

分别选取 \(d_i \) 为 \(d_1, d_2, \ldots, d_{n-1} \) 和 \(d_n \), 其中, \(0 < d_1 < d_2 < \cdots < d_{n-1} < d_n = d_{\text{max}} \); 根据式(1), 粒径 \(d_1, d_2, \ldots, d_{n-1} \) 和 \(d_n \) 的通过百分率分别为 \(P_{d_1}, P_{d_2}, \ldots, P_{d_{n-1}}, P_{d_n} \), 则小于 \(d_i \) 粒径百分率为 \(P_{d_i} \), \(d_1 \sim d_2 \) 粒径百分率为 \(P_{d_1} \sim P_{d_2} = P_{d_2} - P_{d_1}, \ldots, d_{n-1} \sim d_n \) 粒径百分率为 \(P_{d_{n-1}} \sim P_{d_n} = P_{d_n} - P_{d_{n-1}} \);

最后根据尾矿粒度特性中粒径 \(d_1, d_2, \ldots, d_{n-1} \) 和 \(d_n \) 的负累积产率分别为 \(S_{d_1}, S_{d_2}, \ldots, S_{d_{n-1}}, S_{d_n} \), 则得尾矿掺量为 \(C_1 = P_{d_1} / S_{d_1} \) * 100wt%; \(d_1 \sim d_2 \) 粒级调整集料掺量为 \(C_{d_1} \sim d_2 = P_{d_1} \sim d_2 = \frac{P_{d_2} - P_{d_1}}{S_{d_2} - S_{d_1}} \) * (\(P_{d_1} / S_{d_1} \)), \ldots, \(d_{n-1} \sim d_n \) 粒级调整集料掺量为 \(C_{d_{n-1}} \sim d_n = P_{d_n} \sim d_{n-1} = \frac{P_{d_n} - P_{d_{n-1}}}{S_{d_n} - S_{d_{n-1}}} \) * (\(P_{d_{n-1}} / S_{d_{n-1}} \)), 即完成尾矿蒸压砖的级配设计。

2. 根据权利要求 1 所述的尾矿蒸压砖的级配设计方法,其特征在于所述的尾矿蒸压砖
是指原料中尾矿掺量大于 30wt% 的蒸压砖, 尾矿为金属尾矿或非金属尾矿。

3. 根据权利要求 1 所述的尾矿蒸压砖的级配设计方法,其特征在于所述的 \(d_{\text{max}} = 1 \sim 7 \text{mm} \)
中, \(d_{\text{max}} \) 选择 2.5mm 或 5.0mm 或 7.0mm。
一种尾矿蒸压砖的级配设计方法

技术领域
[0001] 本发明涉及建筑材料技术领域，具体涉及一种尾矿蒸压砖的级配设计方法。

背景技术
[0002] 尾矿是选矿过程中排出的固体废弃物，是工业固体废弃物的重要组成部分。传统处理尾矿的方法是建立尾矿库进行堆放，这样不仅占用大量土地，同时带来环境污染和尾矿库安全问题。当前尾矿主要利用于建筑材料领域，作为水泥、墙体材料和装饰材料的原料。随着国家“禁粘”工作的逐步深入，尾矿蒸压砖是以尾矿为主要原料制备的蒸压砖，属新型建筑材料，因其良好的产品性能深受各部门青睐。
[0003] 尾矿蒸压砖的制备过程主要包括级配设计、压制成型和蒸压养护。级配设计是蒸压砖制备过程中的关键环节，良好颗粒级配的集料，不需要提高石灰掺量，就能生产出品具有高强度、低吸水率和高弹性能的蒸压砖。现有的蒸压砖颗粒级配设计公式 $P_d = (d/d_{max})^{0.5}$，当 $d_{max} = 5mm$ 时 0.15mm 粒径的通过百分率仅为 17.32%。一种铁尾矿砂堆体蒸压砖及其制备方法（申请号 CN101725206A，公开日 2010.06.09）中尾矿粒度小于 0.074mm 的占 53wt%；在公开的论文（赵风清，肖军，陈建波，等。低硅尾矿制蒸压砖性能的影响因素探讨[J]。金属矿山，2007，37（5）：78-80。）中，尾矿粒径小于 0.154mm 的占 70wt%；在公开的论文（张金瑞，刘文，贾清梅。唐山地区铁尾矿制取蒸压砖的研究[J]。金属矿山，2007，369（3）：85-87。）中，尾矿粒度小于 0.175mm 的占 64.41wt%。不难看出，选矿尾矿一般具有粒度细的特点，按现行的级配设计方法计算出的细粒级掺量太少，导致尾矿利用率过低，不能满足大容量、高效利用尾矿的要求。而现在尚未有适合高尾矿掺量蒸压砖级配设计的方法，实际生产中一般通过试验得到级配方，但往往会增加研制成本和提高劳动强度。

发明内容
[0004] 本发明旨在克服现有技术缺陷，目的是提供一种能显著降低研制成本、减小劳动强度、且尾矿利用率高的尾矿蒸压砖的级配设计方法，用该方法制备的蒸压砖强度高而性能好。
[0005] 为实现上述目的，本发明采用的级配设计方法是：
[0006] 先结合尾矿粒度特性，选择集料最大粒径 d_{max}，$d_{max} = 1 - 7mm$，优先选择 2.5mm 或 5.0mm 或 7.0mm。
[0007] 再确定级配修正指数 K；当对尾矿的利用率无要求时，若尾矿中 0.074mm 的负累积产率大于 35%，取 $K = 0.39$，若尾矿中 0.074mm 的负累积产率小于 35%，则取 $K = 1.25$；当对尾矿的利用率有要求时，则根据其要求计算级配修正指数 K，$K = 0.39 - 1.25$。
[0008] 然后建立尾矿蒸压砖集料粒径 d_i 与该粒径的通过百分率 P_{d_i} 的数学模型，即得尾矿蒸压砖集料不同粒径过百分率 P_{d_i} 的计算公式：
[0009] $P_{d_i} = 62.25(d_i/d_{max})^{0.25} + 37.75(d_i/d_{max})^k$ （1）
[0010] 式（1）中：d_i—集料粒径；$0 < d_i < d_{max}$；其中 $1 < i < n$；
说明书

[0011] 其中：n-集料粒径级配的粒级数，5 ≤ n ≤ 10。

[0012] 分别取 d_1, d_2, ..., d_{n-1} 和 d_n, 其中, 0 < d_1 < d_2 < ... < d_{n-1} < d_n = d_{max}。根据式 (1), 粒径 d_1, ..., d_{n-1} 和 d_n 的通过百分率分别为 P_{d_1}, P_{d_2}, ..., P_{d_{n-1}} 和 P_{d_n}; 则小于 d_1 粒级百分率为 P_{d_1}, d_1 < d_2 粒级百分率为 P_{d_1} - P_{d_2}, ..., d_{n-1} < d_n 粒级百分率 P_{d_{n-1}} - P_{d_n}。

[0013] 最后根据尾矿粒度特性中粒径 d_1, d_2, ..., d_{n-1} 和 d_n 的负累积产率分别为 S_{d_1}, S_{d_2}, ..., S_{d_{n-1}} 和 S_{d_n}; 则得尾矿掺量为 C_i = P_{d_i}/S_{d_i}×100wt%, d_1 < d_2 粒级调整集料掺量为 C_{d_1} - C_{d_2} = P_{d_1} - P_{d_2} × (S_{d_2} - S_{d_1}) × (P_{d_{n-1}} - P_{d_n}) × (S_{d_n} - S_{d_{n-1}}) / (P_{d_{n-1}} - P_{d_n}) / (S_{d_n} - S_{d_{n-1}}), 即完成尾矿蒸压砖的级配设计。

[0014] 所述的尾矿蒸压砖是指原料中尾矿掺量大于 30wt%的蒸压砖, 尾矿为金属尾矿或非金属尾矿。

[0015] 所述的集料粒径 d_i 的范围是: 0 < d_i < d_{max}; d_i 优先取 0.074mm, 0.15mm, 0.45mm, 0.9mm, 1.2mm, 1.6mm, 2.5mm, 4.0mm, 5.0mm 和 7.0mm。

[0016] 由于采用上述技术方案，本发明根据尾矿的粒度特性、选择最大粒径 d_{max} 和级配修正指数 K, 利用所建立的尾矿蒸压砖集料粒径 d_i 与该粒径通过百分率 P_{d_i} 的数学模型，即可实现尾矿蒸压砖的级配设计。利用本发明，尾矿蒸压砖集料中 0.15mm 粒径百分率通过率大 30%, 能显著降低研制成本和减少劳动强度，且制备的尾矿蒸压砖的抗压强度和抗折强度指标超过 GB 11945-1999《蒸压灰砂砖》标准中最高等级 25MU 的性能要求的高强度尾矿蒸压砖。

[0017] 本发明利用现代数学理论和计算技术，建立了适合高尾矿掺量蒸压砖级配设计的数学模型，根据该数学模型即可完成尾矿蒸压砖的级配设计，不仅能显著降低研制成本和减小劳动强度，且具有尾矿利用率高、强度好的特点，能有效推动尾矿在蒸压砖领域的利用。

具体实施方式

[0018] 为了更好地理解本发明，下面结合实施例进一步阐明本发明的内容，但本发明的内容不仅仅局限于下面的实施例。

[0019] 实施例 1:

[0020] 一种尾矿蒸压砖的级配设计方法，某赤铁矿矿山的尾矿库库容即将达到设计的最大库容和服务年限，为解决尾矿综合利用问题，减少入库尾矿量，延长现有尾矿库的寿命，以赤铁矿尾矿为主要原料制备蒸压砖。该矿山对尾矿库的利用率无要求，其尾矿粒度特性见表 1。

[0021] 表 1 某赤铁矿尾矿粒度特性表

<table>
<thead>
<tr>
<th>粒度/mm</th>
<th>0.045</th>
<th>0.074</th>
<th>0.10</th>
<th>0.15</th>
<th>0.18</th>
<th>0.30</th>
<th>0.45</th>
<th>0.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>负累积产率%</td>
<td>49.27</td>
<td>80.97</td>
<td>85.90</td>
<td>89.93</td>
<td>92.56</td>
<td>95.63</td>
<td>97.70</td>
<td>100.00</td>
</tr>
</tbody>
</table>

[0022] 本实施例的尾矿蒸压砖的级配设计步骤是：

[0023] 先结合表 1 所示的该赤铁矿尾矿粒度特性，选择集料最大粒径 d_{max} = 5.0mm。
说明书
3/6页

[0025] 再确定级配修正指数 K : 由于该矿山对尾矿的利用率无要求，尾矿中 0.074mm 的负
累积产率为 80.97%，即负累积产率大于 35%，则取级配修正指数 K = 0.39。
[0026] 然后根据尾矿蒸压砖集料粒径 d_i 与该粒径的通过百分率 p_{d_i} 的数学模型，分别计
算尾矿蒸压砖集料不同粒径 d_i 的通过百分率 p_{d_i}：

\[p_{d_i} = 62.25 \left(\frac{d_i}{5} \right)^{0.33} + 37.75 \left(\frac{d_i}{5} \right)^{0.39} \] (2)

[0028] 式 (2) 中 : d_i一集料粒径；0 < d_i ≤ d_{max}；其中 1 ≤ i ≤ n。
[0029] 本实施例中 : n 为集料粒径级配的粒级数，取 n = 6；即取 d_i 分别为 0.074mm、
0.15mm、0.45mm、1.2mm、2.5mm 和 5.0mm。
[0030] 根据式 (2)，得到粒径为 0.074mm、0.15mm、0.45mm、1.2mm、2.5mm 和 5.0mm 的通过
百分率分别为 P_{0.074} = 31.94%、P_{0.15} = 38.26%、P_{0.45} = 51.41%、P_{1.2} = 67.12%、P_{2.5} =
82.26% 和 P_{5.0} = 100%，则：

[0031] 小于 0.074mm 粒级百分率为 P_{0.074} = 31.94%；
[0032] 0.074 ~ 0.15mm 粒级的百分率为 P_{0.074 ~ 0.15} = P_{0.15} - P_{0.074} = 6.32%；
[0033] 0.15 ~ 0.45mm 粒级的百分率 P_{0.15 ~ 0.45} = P_{0.45} - P_{0.15} = 13.15%；
[0034] 0.45 ~ 1.2mm 粒级的百分率 P_{0.45 ~ 1.2} = P_{1.2} - P_{0.45} = 15.71%；
[0035] 1.2 ~ 2.5mm 粒级的百分率 P_{1.2 ~ 2.5} = P_{2.5} - P_{1.2} = 15.14%；
[0036] 2.5 ~ 5.0mm 粒级的百分率 P_{2.5 ~ 5.0} = P_{5.0} - P_{2.5} = 17.74%。
[0037] 最后根据表 1 可知，该赤铁矿尾矿粒度特性中粒径为 0.074mm、0.15mm、0.45mm、
1.2mm、2.5mm 和 5.0mm 的负累积产率分别为 80.97%、89.93%、97.90%、100%、100% 和
100%。得：

[0038] 尾矿掺量为 C_1 = P_{0.074}/S_{0.074}*100wt% = 39.45wt%；
[0039] 0.074 ~ 0.15mm 粒级调整集料掺量为 C_{0.074 ~ 0.15} = P_{0.074 ~ 0.15} - (S_{0.15} - S_{0.074}) * 0.3945
= 2.79wt%；
[0040] 0.15 ~ 0.45mm 粒级调整集料掺量为 C_{0.15 ~ 0.45} = P_{0.15 ~ 0.45} - (S_{0.45} - S_{0.15}) * 0.3945
= 10.08wt%；
[0041] 0.45 ~ 1.2mm 粒级调整集料掺量为 C_{0.45 ~ 1.2} = P_{0.45 ~ 1.2} - (S_{1.2} - S_{0.45}) * 0.3945
= 14.80wt%；
[0042] 1.2 ~ 2.5mm 粒级调整集料掺量为 C_{1.2 ~ 2.5} = P_{1.2 ~ 2.5} = 15.14wt%；
[0043] 2.5 ~ 5.0mm 粒级调整集料掺量为 C_{2.5 ~ 5.0} = P_{2.5 ~ 5.0} = 17.74wt%。
[0044] 即完成尾矿蒸压砖的级配设计。利用该级配设计配方，在石灰用量为 12wt%（外加）、蒸压时间 6h 和蒸压压力 1.2MPa 条件下，所制备的高密度蒸压砖的抗压强度为 28 ~ 31MPa，抗折强度为 4.8 ~
5.1MPa。实施案例 2：
[0047] 一种尾矿蒸压砖的级配设计方法。某金矿矿山的尾矿库库容即将达到设计的最大
库容和服务年限，为解决尾矿的综合利用问题，减少入库尾矿量，延长现有尾矿库的寿命，
以金尾矿库为尾矿库的主要原料制备蒸压砖。该矿山对尾矿的利用率无要求，其尾矿库的
粒度特性见表 2。
[0048] 表 2 某金矿尾矿粒度特性表
[0049] 粒径/mm 0.074 0.15 0.3 0.45 1.20 1.60 2.50 3.20
负累积分率/% 30.10 32.20 38.72 42.60 55.60 64.31 77.60 100.00

[0050] 本实施例的尾矿蒸压砖的级配设计步骤是：
[0051] 结合表2所示的该金尾矿粒度特性，选择集料最大粒径$d_{max} = 5.0$mm。
[0052] 再确定级配修正指数K：该矿山对尾矿的利用率无要求，尾矿中0.074mm的负累积分率
为30.10%，即负累积分率小于35%，则取级配修正指数$K = 1.25$。
[0053] 然后根据尾矿蒸压砖集料粒径D_i与该粒径的通过百分率$P_{0.074}$的数学模型，分别计算
尾矿蒸压砖集料不同粒径D_i的通过百分率$P_{0.074}$：

$$P_{D_i} = 62.25(D_i/5)^{0.22} + 37.75(D_i/5)^{1.25}$$ (3)

式 (3) 中：D_i-集料粒径，$0 < D_i \leq d_{max}$，其中$1 \leq i \leq n$；
[0054] 本实施例中：n为集料粒径级配的粒级数，取$n = 6$；即取D_i分别为0.074mm、0.45mm
1.6mm、2.5mm、4.0mm和5.0mm。
[0055] 根据式 (3)，得到粒径为0.074mm、0.45mm、1.6mm、2.5mm、4.0mm和5.0mm的通过
百分率分别为$P_{0.074} = 24.83%$，$P_{0.45} = 38.51%$，$P_{1.6} = 57.53%$，$P_{2.5} = 69.32%$，$P_{4.0} =
87.83%$和$P_{5.0} = 100%$，则：

[0056] 小于0.074mm粒级百分率为$P_{0.074} = 24.83%$；
[0057] 0.074 ~ 0.45mm粒级百分率为$P_{0.074} = P_{0.45} = 13.68%$；
[0058] 0.45 ~ 1.6mm粒级百分率为$P_{0.45} = 19.02%$；
[0059] 1.6 ~ 2.5mm粒级百分率为$P_{1.6} = 11.79%$；
[0060] 2.5 ~ 4.0mm粒级百分率为$P_{2.5} = 18.51%$；
[0061] 4.0 ~ 5.0mm粒级百分率为$P_{4.0} = 12.17%$。

最后根据表2可知，该金尾矿蒸压砖的粒度特性中粒径为0.074mm、0.45mm、1.6mm、
2.5mm、4.0mm和5.0mm的负累积分率分别为30.10%、42.60%、64.31%、77.60%和
100%。得；

[0062] 尾矿掺量为$C_i = P_{0.074}/S_{0.074} \times 100 \text{wt}\% = 82.49 \text{wt}\%$；

$$0.074 ~ 0.45mm \text{粒级调整集料掺量为} C_{0.074} = P_{0.074} = (S_{0.45} - S_{0.074}) \times 0.8249 =
3.37 \text{wt}\%$$

$$0.45 ~ 1.6mm \text{粒级调整集料掺量为} C_{0.45} = P_{0.45} = (S_{1.6} - S_{0.45}) \times 0.8249 =
1.11 \text{wt}\%$$

$$1.6 ~ 2.5mm \text{粒级调整集料掺量为} C_{1.6} = P_{1.6} = (S_{2.5} - S_{1.6}) \times 0.8249 =
0.83 \text{wt}\%$$

$$2.5 ~ 4.0mm \text{粒级调整集料掺量为} C_{2.5} = P_{2.5} = (S_{4.0} - S_{2.5}) \times 0.8249 =
0.03 \text{wt}\%$$

[0063] 由于0.45 ~ 1.6mm、1.6 ~ 2.5mm和2.5 ~ 4.0mm粒级调整集料掺量均较小，将其
合并，则0.45 ~ 4.0mm粒级调整集料掺量为$C_{0.45} = 1.97 \text{wt}\%$；

$$4.0 ~ 5.0mm \text{粒级调整集料掺量为} C_{4.0} = P_{4.0} = 12.17 \text{wt}\%$$。

[0064] 即完成尾矿蒸压砖的级配设计。

[0065] 利用该级配设计配方，在石灰用量为12wt%（外加）、蒸压时间6h和蒸压压
力 1.2MPa 条件下，所制备的高强度蒸压砖的抗压强度为 32 ～ 35MPa，抗折强度为 5.0 ～ 5.5MPa。

[0074] 实施例 3：

[0075] 一种尾矿蒸压砖的级配设计方法。某铜矿矿山的尾矿库库容将达到设计的最大
库容和服务年限，为解决尾矿的综合利用问题，减少入库尾矿，延长现有尾矿库的寿命，
以铜矿尾矿为主要原料制定蒸压砖。该矿山要求尾矿的利用率为 80％，其尾矿粒度特性见
下表 3。

[0076] 表 3 某铜矿尾矿粒度特性表

<table>
<thead>
<tr>
<th>粒度/mm</th>
<th>0.074</th>
<th>0.15</th>
<th>0.3</th>
<th>0.45</th>
<th>0.90</th>
<th>1.20</th>
<th>1.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>负累积产率%</td>
<td>46.30</td>
<td>52.80</td>
<td>61.25</td>
<td>68.65</td>
<td>82.53</td>
<td>89.21</td>
<td>100.00</td>
</tr>
</tbody>
</table>

[0077] 本实施例的尾矿蒸压砖的级配设计步骤是：

[0078] 先结合表 3 所示的该铜矿尾矿粒度特性，选择集料最大粒径 \(d_{\text{max}} = 2.5 \)mm。

[0079] 再确定级配修正指数 \(K \)：由于该矿山要求尾矿的利用率为 80wt%，即 \(P_{0.074} =

[0080] 46.30 \% \times 80\% = 37.04 \% \)，将 \(d_i = 0.074 \)mm 和 \(P_{d_i} = P_{0.074} = 37.04\% \) 代入集料粒
径 \(d_i \) 与该粒径的通过百分率 \(P_{d_i} \) 的数学模型

[0081] \[P_{d_i} = 62.25 \left(d_i/2.5 \right)^{0.22} + 37.75 \left(d_i/2.5 \right)^k \] (4)

[0082] 式 (4) 中：\(d_i \) - 集料粒径；\(0 < d_i \leq d_{\text{max}} \)；其中 \(1 \leq i \leq n \)；

[0083] \(K = 0.4258 \)，符合 \(K = 0.39 \sim 1.25 \)。

[0084] 然后根据式 (4)，分别计算尾矿蒸压砖集料不同粒径 \(d_i \) 的通过百分率 \(P_{d_i} \)：

[0085] 本实施例中：\(n \) 为集料粒径级配的粒级数，取 \(n = 6 \)；即取 \(d_i \) 分别为 0.074mm、
0.15mm、0.45mm、0.9mm、1.2mm 和 2.5mm。

[0086] 根据式 (4)，得到粒径为 0.074mm、0.15mm、0.45mm、0.9mm、1.2mm 和 2.5mm 的通过
百分率分别为 \(P_{0.074} = 37.04\% \)、\(P_{0.15} = 44.92\% \)、\(P_{0.45} = 60.88\% \)、\(P_{0.9} = 74.15\% \)、\(P_{1.2} =
80.59\% \) 和 \(P_{2.5} = 100\% \)，则：

[0087] 小于 0.074mm 粒级百分率为 \(P_{0.074} = 37.04\% \)；

[0088] 0.074 ～ 0.15mm 粒级百分率为 \(P_{0.074} - P_{0.15} = P_{0.15} - P_{0.074} = 7.79\% \)；

[0089] 0.15 ～ 0.45mm 粒级百分率为 \(P_{0.15} - P_{0.45} = P_{0.45} - P_{0.15} = 15.96\% \)；

[0090] 0.45 ～ 0.9mm 粒级百分率为 \(P_{0.45} - P_{0.9} = P_{0.9} - P_{0.45} = 13.28\% \)；

[0091] 0.9 ～ 1.2mm 粒级百分率为 \(P_{0.9} - P_{1.2} = P_{1.2} - P_{0.9} = 6.43\% \)；

[0092] 1.2 ～ 2.5mm 粒级百分率为 \(P_{1.2} - P_{2.5} = P_{2.5} - P_{1.2} = 19.41\% \)。

[0093] 最后根据表 3 可知，该铜矿山尾矿粒度特性中粒径为 0.074mm、0.15mm、0.45mm、
0.9mm、1.2mm 和 2.5mm 的负累积产率分别为 46.30\%、52.80\%、68.65\%、82.53\%、89.21\% 和
100\%。得：

[0094] 尾矿掺量为 \(C_1 = P_{0.074}/S_{0.074} \times 100\% = 80\% \)。则：

[0095] 0.074 ～ 0.15mm 粒级调整集料掺量为 \(C_{0.074} - P_{0.15} = P_{0.15} - (S_{0.15} - S_{0.074}) \times 0.8 =
2.59wt\% \)；

[0096] 0.15 ～ 0.45mm 粒级调整集料掺量为 \(C_{0.15} - P_{0.45} = P_{0.45} - (S_{0.45} - S_{0.15}) \times 0.8 =
3.28wt\% \)；
0.45～0.9mm粒级调整集料掺量为C_{0.45~0.9} = P_{0.45~0.9} - (S_{0.9} - S_{0.45}) \times 0.8 = 2.17wt%；

0.9～1.2mm粒级调整集料掺量为C_{0.9~1.2} = P_{0.9~1.2} - (S_{1.2} - S_{0.9}) \times 0.8 = 1.09wt%；

1.2～2.5mm粒级调整集料掺量为C_{1.2~2.5} = P_{1.2~2.5} - (S_{2.5} - S_{1.2}) \times 0.8 = 10.87wt%。

即完成尾矿蒸压砖的级配设计。

利用该级配设计配方，在石灰用量为12wt%（外加）、蒸压时间6h和蒸压压力1.2MPa条件下，所制备的高强度蒸压砖的抗压强度为30～33MPa，抗折强度为4.9～5.3MPa。

上述实施例详细说明了本发明的技术方案和实施要点，并非是对本发明的保护范围进行限制，凡根据本发明精神实质所作的任何简单修改及等效结构变换或修饰，均应涵盖在本发明的保护范围之内。

本具体实施方式根据尾矿的粒度特性、选择最大粒径d_{max}和级配修正指数K，利用所建立的尾矿蒸压砖采用集料粒径 d_i 与该集料通过百分率 P_{di} 的数学模型，即可实现尾矿蒸压砖的级配设计。利用本发明，尾矿蒸压砖采用0.15mm粒径百分通过率大30%，显著降低制砖成本和减少劳动强度，且制备的尾矿蒸压砖的抗压强度和抗折强度指标超过GB 11945-1999《蒸压灰砂砖》标准中最高等级25MU的性能要求的高强度尾矿蒸压砖。

本具体实施方式利用现代数学理论和计算技术，建立了适合高尾矿掺量蒸压砖级配设计的数学模型，根据该数学模型即可完成尾矿蒸压砖的级配设计，不仅能显著降低制砖成本和减少劳动强度，且具有尾矿利用率高、强度好的特点，能有效推动尾矿在蒸压砖领域的利用。