Abstract:

Title: ARRANGEMENTS AND METHODS THEREOF FOR PROCESSING VIDEO

Fig. 3

Determine a RPS for the current picture ~ 301

Is current picture a temporal switching point? ~ 302

Ensure that the RPS of the current picture includes no picture having a temporaljd greater than or equal to the temporaljd of the current picture ~ 303

(51) International Patent Classification:

H04N 7/36 (2006.01) H04N 7/26 (2006.01)

(21) International Application Number:

PCT/SE2013/050409

(22) International Filing Date:

15 April 2013 (15.04.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/624,496 16 April 2012 (16.04.2012) US

(71) Applicant: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL) [SE/SE]; SE-164 83 Stockholm (SE).

(72) Inventors: S JÖBERG, Rickard; Robert Almstromsgatan 9A, S-1 36 Stockholm (SE), SAMUELSSON, Jonatan; Stadshagsplan 1, S-1 12 50 Stockholm (SE).

(74) Agent: EGRELIUS, Fredrik; Ericsson AB, Patent Unit Kista DSM, SE-16480 Stockholm (SE).

Published:

— with international search report (Art. 21(3))
ARRANGEMENTS AND METHODS THEREOF FOR PROCESSING VIDEO

Technical Field

The embodiments relate to arrangements, i.e. an encoder, an element, a receiver, a transmitter, computer program products, computer programs, and methods for processing video. In particular, the embodiments relate to video processing supporting temporal layers.

Background

High Efficiency Video Coding (HEVC) is a new video coding standard currently being developed in Joint Collaborative Team - Video Coding (JCT-VC). JCT-VC is a collaborative project between MPEG and ITU-T. Currently, a Committee Draft (CD) is defined that includes a number of new tools and is considerably more efficient than H.264/AVC.

A picture coded/decoded according to HEVC is partitioned into one or more slices, where each slice is an independently decodable segment of the picture. This means that if a slice is missing, for instance got lost during transmission, the other slices of that picture can still be decoded correctly. In order to make slices independent, they are self contained and do not depend on each other which imply that no bitstream element of another slice is required for decoding any element of a given slice.

Each slice contains a slice header which provides data for the slice to be independently decodable. One example of a data element present in the slice header is the slice address, which is used for the decoder to know the spatial location of the slice. There are many more data elements in the slice header.

HEVC uses previously decoded pictures for encoding and decoding a current picture. These previously decoded pictures are referred to as reference pictures. The encoder indicates to the decoder which reference pictures that are allowed to be used for decoding in a reference picture set (RPS). The previously decoded pictures are stored in a decoded picture buffer (DPB) and the RPS indicates which pictures in the DPB that should be kept, i.e. which are allowed to be used as reference pictures and which pictures in the DPB that should be discarded, i.e. never be used for reference again. It should be noted that the encoder contains a copy of the decoder's DPB.
Figure 1 illustrates a simplified scenario, where the pictures are distinguished by a picture order count (POC). In this case the RPS indicates POC 1 and POC 2 which implies that the reference pictures identified by POC 1 and POC2 should be kept in the DPBs and the pictures identified by POC 3 should be discarded unless it should be outputted for display.

The reference picture set (RPS) for each picture consists of five different lists (not shown in figure 1) of reference pictures, also referred to as the five RPS subsets: RefPicSetStCurrBefore consists of all short-term reference pictures that are prior to the current picture in both decoding order and output order, and that are available for inter prediction of the current picture. RefPicSetStCurrAfter consists of all short-term reference pictures that are prior to the current picture in decoding order, that succeed the current picture in output order, and that are made available for inter prediction of the current picture. RefPicSetStFoll consists of all short-term reference pictures that are available for inter prediction of one or more of the pictures following the current picture in decoding order, and that are unavailable for inter prediction of the current picture. RefPicSetLtCurr consists of all long-term reference pictures that are available for inter prediction of the current picture. RefPicSetLtFoU consists of all long-term reference pictures that are available for inter prediction of one or more of the pictures following the current picture in decoding order, and that are unavailable for inter prediction of the current picture.

The RPS controls which pictures that are possible to put in the reference picture list. However, a picture that is put in the reference picture list may or may not be used for inter prediction but for a picture to be used for inter prediction (used for reference) for the current picture it is required that the picture is included in a reference picture list, in one of the lists denoted Curr. In short, RPS controls, which reference pictures to keep in the DPB and which reference pictures to discard from the DPB.

Thus, pictures that are listed in the RPS (any of the 5 RPS lists) are kept and pictures that does not listed are discarded. Then RPS also controls which pictures that are possible to put in the reference picture lists L0 and LI. The pictures in the Foil lists can not be put in L0 and LI. L0 and LI may only contain some of the pictures from Curr lists. Finally, the encoder chooses what reference pictures from L0 and LI to use for inter prediction for each block. It may for example choose to use one reference picture for all blocks, even if L0 and LI contains many pictures.
The HEVC draft specification specifies that each picture shall belong to a temporal layer and that a syntax element called temporal_id shall be present for each picture in the bitstream, corresponding to the temporal layer the picture belongs to.

The temporal layers are ordered and have the property that a picture of a lower temporal layer never references a picture of a higher temporal layer. Thus, higher temporal layers can be removed without affecting the lower temporal layers. The removal of temporal layers can be referred to as temporal scaling. Removal of layers can be done in an entity that is neither an encoder nor a decoder, such as a network node. Such an entity can, but is not limited to, forward video bitstream packets from an encoder to a decoder and perform removal of temporal layers without performing full video decoding on the incoming data.

The resulting bitstream after one or more temporal layers have been removed is called a subsequence. In HEVC it is possible to signal that a picture is a temporal layer switching point, which indicates that at this picture it is possible for a decoder to start decoding more temporal layers than what was decoded before the switching point. The switching point indication guarantees that no picture following the switching point references a picture from before the switching point that might not have been decoded because it belongs to a higher temporal layer than what was decoded before the switching point. The switching points are therefore very useful for a layer removal entity in order to know when to stop removing a certain temporal layer and start forwarding it.

An example is shown in figure 2 where vertical axis represents temporal layer and the horizontal axis represent output order. The numbers in the pictures represent decoding order. The arrows represent inter prediction.

Temporal switching can be performed at any point except at picture P_6 (to picture P_7) since P_7 uses P_3 for inter prediction.

HEVC contains four different picture types: instant decoder refresh (IDR), clean random access (CRA), temporal layer access (TLA) and regular pictures (non-IDR, non-CRA and non-TLA).

IDR and CRA pictures must have temporal_id equal to 0. TLA pictures must have temporal_id greater than 0.

The TLA picture type is used to define a temporal layer switching point and is currently defined as:

temporal layer access (TLA) picture: A *codedpicture* for which each *slice* has *nal_unit_type* equal to 3; the TLA picture and all *codedpictures* with temporal_id greater than or equal to the temporal_id
of the TLA picture that follow the TLA picture in decoding order shall not use inter prediction from any picture with temporalMd greater than or equal to the temporal_id of the TLA picture that precedes the TLA picture in decoding order.

According to the current HEVC specification, it is allowed to include a reference picture from the same or higher temporal layer in the reference picture set of a TLA picture. It is also allowed to include a reference picture from the same temporal layer in the reference picture lists of the TLA picture as long as it is not used for inter prediction. However if a media-aware network element (MANE) performs temporal layer switching at that point, the reference picture in the RPS from the same temporal layer as the TLA picture would not be in the DPB.

However, it is specified for the RPS that:

When the first coded picture in the bitstream is an DDR picture or the current coded picture is not a leading picture of the first coded picture in the bitstream, there shall be no entry in RefPicSetStCurrBefore, RefPicSetStCurrAfter or RefPicSetLtCurr that is equal to "no reference picture".

An entry being equal to "no reference picture" means that the picture is not present in the DPB.

Thus this requirement on the RPS would violated which means that with the current HEVC specification it is possible to use the TLA picture type even though it is not possible to perform valid temporal layer switching.

Summary

A problem with the existing HEVC specification is that an encoder can use the TLA picture type for a picture that has a picture P in its reference picture set even though P precedes the TLA picture in decoding order and has the same temporal identity. As long as picture P is not used for inter prediction this is fine. This requires a MANE to keep track of the RPS state so that it does not perform a switching at that TLA picture. It would be preferable that the MANE only has to check the picture types and be certain that switching at a TLA picture cannot result in a bitstream that breaks bitstream conformance.
For example (referring to figure 2), it is possible to include P_i in the reference picture set of P_3 and still code P_2 as a TLA picture (since P_i is not used by P_2 or any picture that follows P_2 in decoding order). Then P_i can be included in the RefPicSetStCurrBefore of P_3 as long as it is not used for inter prediction. However if a temporal switch was actually performed at P_2, P_i would not be in the DPB when P_3 is decoded which would violate the requirement on the RPS.

Thus the purpose of the embodiments is to solve the problem with the current definition of TLA pictures (also referred to as TSA pictures) that it is possible to use the TLA picture type even though switching at the point of the TLA picture results in a bitstream that violates a bitstream requirement.

In the embodiments presented herein a restriction that reference pictures from the same or higher temporal layer cannot be included in the reference picture set for a TLA picture is introduced. In this way, it is guaranteed that a substream after temporal switching is always bitstream conformant according to HEVC.

According to one aspect of the embodiments a method is provided. In the method, a current picture belonging to a temporal level is encoded and an RPS for the current picture is determined, wherein the RPS indicates the reference pictures to be kept in the DPB when decoding the current picture. When it is determined that the current picture is a temporal switching point such as a TSA picture, it is ensured that there is no picture included in the RPS with temporal_id greater than or equal to the temporal_id of the current picture.

According to a second aspect, a method performed in an element for parsing bits representing at least a part of a current picture, wherein the current picture belongs to a temporal level identified by a temporal_id, is provided. The current picture is associated with an RPS indicating reference pictures to be kept in the DPB when decoding the current picture. In the method, it is asserted that for each TSA picture there is no picture included in the RPS of the temporal switching point that has the same or higher temporal_id as the TSA picture. If there is such a picture it is interpreted as a bit-error, loss of data or non-compliant bitstream.

According to a third aspect, a video encoder for encoding a current picture belonging to a temporal level identified by a temporal_id is provided. The encoder comprises a unit for determining an RPS for the current picture. The RPS indicates the reference pictures and to be kept in the DPB when decoding the current picture. The encoder further comprises an RPS controlling unit for ensuring that the RPS of the current picture includes no picture having a temporal_id greater than or equal to the temporal_id of the current picture when the current picture 550 is a temporal switching point.
According to a fourth aspect, an element for parsing bits representing at least a part of a current picture, wherein the current picture belongs to a temporal level identified by a temporal_id is provided. The current picture is received by an input unit and the current picture is associated with an RPS which indicates the reference pictures to be kept in the DPB when decoding the current picture.

The element comprises a parsing unit configured to assert that for the current picture, when being a temporal switching point, there is no picture included in the RPS of the current picture that has the same or higher temporal_id as the current picture. The element further comprises a determining unit configured to interpret that as a bit-error, loss of data or non-compliant bitstream when there is such a picture included in the RPS.

According to a fifth aspect, a transmitter comprising a video encoder for encoding a current picture belonging to a temporal level identified by a temporal_id is provided. The encoder comprises a unit for determining an RPS for the current picture indicating reference pictures to be kept in the DPB when decoding the current picture, and an RPS controlling unit for ensuring that the RPS of the current picture includes no picture having a temporal_id greater than or equal to the temporal_id of the current picture when the current picture is a temporal switching point.

According to a sixth aspect, a receiver comprising an element for parsing bits representing at least a part of a current picture, wherein the current picture belongs to a temporal level identified by a temporal_id is provided. The current picture is associated with an RPS indicating reference pictures to be kept in the DPB when decoding the current picture. The element comprises a parsing unit configured to assert that for the current picture, when being a temporal switching point, there is no picture included in the RPS of the current picture that has the same or higher temporal_id as the current picture, and a determining unit configured to interpret that as a bit-error, loss of data or non-compliant bitstream when there is such a picture included in the RPS.

According to a seventh aspect, a device is provided. The device comprises a transmitter as mentioned above and / or a receiver as also mentioned above. The device can be exemplified by video camera e.g. in a mobile device or any other device for displaying or outputting a video stream.

According to an eighth aspect a computer program is provided. The computer program comprises computer readable code units which when run on a processor causes the processor to:

-determine an RPS for the current picture indicating reference pictures to be kept in the DPB when decoding the current picture, and
when the current picture is a temporal switching point,

-ensure that the RPS of the current picture includes no picture having a temporal _id greater than or equal to the temporal _id of the current picture.

According to a ninth aspect a computer program product is also provided comprising computer readable medium and a computer program according to the eighth aspect stored on the computer readable medium.

According to a tenth aspect a computer program is provided. The computer program, comprises computer readable code units which when run on a processor causes the processor to:

-assert that for the current picture, when being a temporal switching point, there is no picture included in the RPS of the current picture that has the same or higher temporal _id as the current picture, if there is such a picture included in the RPS,

-interpret that as a bit-error, loss of data or non-compliant bitstream.

According to an eleventh aspect a computer program product is also provided, comprising computer readable medium and a computer program according to tenth aspect stored on the computer readable medium.

An advantage with the embodiments is that the provided restriction makes temporal layer access pictures more useful. The embodiments can for instance be used in a network node or MANE to perform temporal layer switching without parsing and keeping track of RPSs. The network node or MANE needs only to inspect the NAL (Network Abstraction Layer) unit type to safely perform temporal layer switching. Without the embodiments, such a switching may lead to the outputting of a bitstream that is not compliant with HEVC.

Brief Description of the Drawings

Figure 1 illustrates schematically an RPS and how the RPS indicates which reference pictures to be kept in the DPB according to prior art.

Figure 2 illustrates pictures in different temporal layers according to prior art.

Figures 3 and 4 are flowcharts illustrating methods according to embodiments of the present invention.
Figure 5 illustrates schematically an encoder and an element according to embodiments of the present invention.

Figure 6 illustrates schematically a transmitter and a receiver according to embodiments of the present invention.

Figures 7 and 8 illustrate schematically the encoder and the element implemented by respective computer program and computer program product.

Detailed description

The embodiments of the present invention relates to video coding processes where previously decoded pictures are used for reference pictures when decoding a current picture and where each picture belongs to a temporal layer as explained above.

More specifically, the embodiments relate to pictures being a temporal layer switching point exemplified by temporal layer access (TLA) pictures. The temporal layer switching point indicates that at this picture it is possible for a decoder to start decoding more temporal layers than what was decoded before the switching point. The switching point indication guarantees that no picture following the switching point references a picture from before the switching point that might not have been decoded because it belongs to a higher temporal layer than what was decoded before the switching point. The switching points are therefore very useful for a layer removal entity in order to know when to stop removing a certain temporal layer and start forwarding it.

The problem with the current definition of TLA pictures is that it is possible to use the TLA picture type even though switching at the point of the TLA picture results in a bitstream that violates the requirement on the RPS.

The TLA pictures are hereinafter referred to as TSA (temporal sub-layer access) pictures.

In one embodiment that is solved by a method to be performed by encoder applying the restriction that:

"When the current picture is a TSA picture, there shall be no picture included in the RPS with temporal_id greater than or equal to the temporal_id of the current picture."
A method according to one aspect of the embodiments is provided as illustrated in Figure 3. In the method, the encoder encodes a current picture belonging to a temporal level and determines 301 an RPS for the current picture, wherein the RPS indicates the reference pictures to be kept in the DPB when decoding the current picture. The reference pictures may be allowed to be used for reference pictures for the current picture and/or future pictures. Typically, the RPS is determined before the pixel values of the picture are encoded. When the encoder determines 302 that the current picture is a temporal switching point such as a TSA picture, the encoder ensures 303 that there is no picture included in the RPS with temporal_id greater than or equal to the temporal_id of the current picture. Thus the pictures indicated in the RPS should not have a temporal_id greater than or equal to the temporal_id of the current picture.

According to one embodiment, the picture, being a temporal switching point, is a TSA picture which is defined as:

Temporal sub-layer access (TSA) picture: A codedpicture for which each slice has nal_unit_type equal to 3; the TSA picture and all codedpictures with temporal_id greater than or equal to the temporal_id of the TSA picture that follow the TSA picture in decoding order shall not include any picture in their reference picture set that precedes the TSA picture in decoding order and for which temporal_id is greater than or equal to the temporal_id of the TSA picture.

According to this embodiment, the encoder is configured to perform the following:

When encoding a TSA picture the encoder ensures that the reference pictures indicated to be allowed for reference by the RPS of the TSA picture only include pictures with lower temporal_id than the TSA picture.

According to this embodiment, an element that operates on a bitstream (such as a network-node or a Media Aware Network Element) is configured to perform the following:

By using the embodiments, the element receiving a decoded bitstream can perform temporal switching at a temporal switching point, exemplified by the TSA picture, without scanning the RPS of the temporal switching point for pictures in the same temporal layer with used_by_curr_pic_flag equal to 1 which indicates that the picture is allowed to be used for reference. The element can be sure that it is possible to perform temporal layer switching at any TSA picture.

Accordingly a method performed in an element is provided as illustrated in Figure 4. The element is parsing bits representing at least a part of a current picture (i.e. the encoded bits), wherein the current
picture belongs to a temporal layer. The element may parse the header bits (e.g. the slice bits) of the picture (i.e. bits representing at least a part of the current picture) or the bits representing the entire picture. If the element is a decoder the element parses the bits and also decodes the bits.

In the method, the element asserts 401 that for each TSA picture (i.e. for each temporal switching point) there is no picture included in the RPS of the temporal switching point that has the same or higher temporal_id as the TSA picture. If there is such a picture 402 the element is configured to interpret 403 that as a bit-error, loss of data or non-compliant bitstream or non-compliant encoder and take appropriate action (e.g. report the error or perform concealment). If there is no such picture the element is configured to interpret the bitstream as a correct bitstream, forward the current picture to a decoder or decode the TSA picture if the element comprises a decoder.

The element can be a decoder, or any element that operates on a bitstream that can perform temporal switching such as a network-node or a Media Aware Network Element (MANE).

With reference according to figure 5, a video encoder 100 for encoding a current picture belonging to a temporal level identified by a temporal_id is provided. The encoder 100 comprises a unit 501 for determining an RPS 210 for the current picture 550. The RPS 210 indicates the reference pictures to be kept in the DPB when decoding the current picture 550. The encoder further comprises an RPS controlling unit 502 for ensuring that the RPS of the current picture includes no picture having a temporal_id greater than or equal to the temporal_id of the current picture 550 when the current picture 550 is a temporal switching point. Typically, the encoder 100 comprises an output unit 503 configured to send the current picture 550 and the RPS 210 and also a copy of the DPB 150 of the decoder.

Further, the RPS controlling unit 210 is configured to ensure that the TSA picture and all coded pictures with temporal_id greater than or equal to the temporal_id of the TSA picture that follow the TSA picture in decoding order shall not include any picture in their reference picture set that precedes the TSA picture in decoding order and for which temporal_id is greater than or equal to the temporal_id of the TSA picture.
With further reference to figure 5, an element 200 for parsing a current picture 550 belonging to a
temporal level identified by a temporal_id. The current picture is received by an input unit 504 and the
current picture is associated with an RPS 210 which indicates the reference pictures to be kept in the
DPB when decoding the current picture. Hence, the reference pictures are allowed to be used for
reference for the current picture and/or the future pictures. The element 200 comprises a parsing unit
5
505 configured to assert that for the current picture 550, when being a temporal switching point, there
is no picture included in the RPS of the current picture that has the same or higher temporal_id as the
current picture. The element further comprises a determining unit 506 configured to interpret that as a
bit-error, loss of data or non-compliant bitstream when there is such a picture included in the RPS. If
the element is a decoder it comprises a DPB 150 comprising previously decoded pictures. The
decoded pictures indicated by the RPS are allowed to be used as reference pictures when decoding the
current picture and/or the future pictures.

According to an embodiment, the determining unit 506 is further configured to reporting the bit-error
or loss of data or non-compliant bitstream and/or to perform concealment if there is at least one
reference picture included in the RPS of the current picture that has the same or higher temporal_id as
the current picture:

The current picture which is a temporal switching point, is according to an embodiment a temporal
sub-layer access (TSA picture). The TSA picture is defined as: The TSA and all codedpictures with
temporal_id greater than or equal to the temporal_id of the TSA picture that follow the TSA picture in
decoding order shall not include any picture in their referencepicture set that precedes the TSA
picture in decoding order and for which temporal_id is greater than or equal to the temporal_id of the
TSA picture.

The TSA picture can further be defined as a temporal layer switching point which is a codedpicture
for which each slice has a unique nal_unit_type, e.g. nal_unit_type equal to 3.

Moreover, the unit for determining 506 may be configured to check for pictures that are not TSA pictures,
that their RPS does not include a picture before a TSA picture that has a temporal id equal or higher than the
temporal id of said TSA picture.
Turning to figure 6, a transmitter 601 comprising a video encoder 100 for encoding a current picture belonging to a temporal level identified by a temporal_id is provided. The encoder 100 comprises a unit 501 for determining an RPS for the current picture indicating reference pictures to be kept in the DPB when decoding the current picture, and an RPS controlling unit 502 for ensuring that the RPS of the current picture includes no picture having a temporal_id greater than or equal to the temporal_id of the current picture when the current picture is a temporal switching point.

In addition, a receiver 602 comprising an element 200 for parsing bits representing at least a part of a current picture, wherein the current picture belongs to a temporal level identified by a temporal_id is provided. The current picture is associated with an RPS indicating reference pictures to be kept in the DPB when decoding the current picture. The element 200 comprises a parsing unit 505 configured to assert that for the current picture, when being a temporal switching point, there is no picture included in the RPS of the current picture that has the same or higher temporal_id as the current picture, and a determining unit 506 configured to interpret that as a bit-error, loss of data or non-compliant bitstream when there is such a picture included in the RPS.

Further a device 610 comprising a transmitter 601 as mentioned above and / or a receiver 602 as also mentioned above. The device can be exemplified by video camera e.g. in a mobile device or any other device for displaying or outputting a video stream.

The embodiments can be applied for HEVC, which implies that the encoder can be an HEVC encoder and the decoder can be an HEVC decoder, but are not limited to HEVC. The embodiments can be applied to any extension of HEVC such as a scalable extension or multiview extension or to other similar video codecs.

Thus according to the embodiments, an encoder and any element that operates on a bitstream such as a network-node or a Media Aware Network Element is configured to make sure that when the current picture is a TSA picture, there shall be no picture included in the RPS with temporal_id greater than or equal to the temporal_id of the current picture.

The different embodiments define different ways to implement the conditions and how to indicate the syntax element.
Further, the functionalities of the encoder (and similar entity) and the decoder can be implemented by a respective processor and memory, wherein the memory stores software code portions that can be executed by the processor to perform said functionalities.

As illustrated in figure 7, a computer program 703, is provided. The computer program 703 comprises computer readable code units which when run on a processor (702) causes the processor (702) to:

- determine an RPS for the current picture indicating the reference pictures to be kept in the DPB when decoding the current picture, and

when the current picture is a temporal switching point,

- ensure that the RPS of the current picture includes no picture having a temporal_id greater than or equal to the temporal_id of the current picture.

A computer program product 701 is also provided comprising computer readable medium and a computer program 703 stored on the computer readable medium.

As illustrated in figure 8, a computer program 803 is provided. The computer program 803, comprises computer readable code units which when run on a processor 802 causes the processor 802 to:

- assert that for the current picture, when being a temporal switching point, there is no picture included in the RPS of the current picture that has the same or higher temporal_id as the current picture, if there is such a picture included in the RPS,

- interpret that as a bit-error, loss of data or non-compliant bitstream.

A computer program product 801 is also provided, comprising computer readable medium and a computer program 803 according to claim 28 stored on the computer readable medium.
CLAIMS

1. A method to be performed by a video encoder for encoding a current picture belonging to a
temporal level identified by a temporal_id, the method comprises:

 - determining (301) a Reference Picture Set, RPS, for the current picture indicating reference
 pictures that are kept in a decoded picture buffer, DPB, when decoding the current picture, and

 when the current picture is a temporal switching point (302),

 - ensuring (303) that the RPS of the current picture includes no picture having a temporal_id
greater than or equal to the temporal_id of the current picture.

2. The method according to claim 1, wherein the current picture, being a temporal switching
 point, is a temporal sub-layer access, TSA, picture, the TSA picture and all codedpictures
 with temporal_id greater than or equal to the temporal_id of the TSA picture that follow the
 TSA picture in decoding order shall not include any picture in their referencepicture set that
 precedes the TSA picture in decoding order and for which temporal_id is greater than or equal
 to the temporal_id of the TSA picture.

3. The method according to any of claims 1-2, wherein the temporal layer switching point is a
codedpicture for which each slice has a unique nal_unit_type.

4. The method according to claim 3, wherein the TSA picture is a codedpicture for which each
 slice has a unique nal_unit_type equal to 3.

5. The method according to any of claims 1-4, wherein the encoder is a High Efficiency Video
 Coding, HEVC, encoder.

6. A method to be performed by an element for parsing bits representing at least a part of a
 current picture, wherein the current picture belongs to a temporal level identified by a
 temporal_id, wherein the current picture is associated with a Reference Picture Set, RPS,
 indicating reference pictures that are kept in a decoded picture buffer, DPB, when decoding the
 current picture, the method comprises:
-asserting (401) that for the current picture, when being a temporal switching point, there is no picture included in the RPS of the current picture that has the same or higher temporal_id as the current picture, if there is such a picture included in the RPS (402), the method comprises the further step of:

-interpreting (403) that as a bit-error, loss of data or non-compliant bitstream.

7. The method according to claim 6, wherein the method further comprising if there is at least one reference picture included in the RPS of the current picture that has the same or higher temporal_id as the current picture:

- reporting (404) the bit-error or loss of data or non-compliant bitstream or performing concealment.

8. The method according to any of claims 6-7, wherein the current picture, being a temporal switching point, is a temporal sub-layer access, TSA, picture, the TSA picture and all coded pictures with temporal_id greater than or equal to the temporal_id of the TSA picture that follow the TSA picture in decoding order shall not include any picture in their reference picture set that precedes the TSA picture in decoding order and for which temporal_id is greater than or equal to the temporal_id of the TSA picture.

9. The method according to any of claims 6-8, wherein the temporal layer switching point is a coded picture for which each slice has a unique nal_unit_type.

10. The method according to claim 9, wherein the TSA picture is a codedpicture for which each slice has a unique nal_unit_type equal to 3.

11. The method according to any of claims 6-10, wherein the element is a network element or a decoder, wherein the decoder is a High Efficiency Video Coding, HEVC, decoder.

12. A video encoder (100) for encoding a current picture belonging to a temporal level identified by a temporal_id, the encoder (100) comprises a unit (501) for determining a Reference Picture Set, RPS, for the current picture indicating reference pictures that are kept in a decoded picture buffer, DPB, when decoding the current picture, and an RPS controlling unit (502) for ensuring that the RPS of the current picture includes no picture having a temporal_id greater than or equal to the temporal_id of the current picture when the current picture is a temporal switching point.
13. The video encoder (100) according to claim 12, wherein the current picture, being a temporal
switching point, is a temporal sub-layer access, TSA, picture, the TSA picture and all coded
pictures with temporal_id greater than or equal to the temporal_id of the TSA picture that
follow the TSA picture in decoding order shall not include any picture in their reference
picture set that precedes the TSA picture in decoding order and for which temporal_id is
greater than or equal to the temporal_id of the TSA picture.

14. The video encoder (100) according to any of claims 12-13, wherein the temporal layer
switching point is a coded picture for which each slice has a unique nal_unit_type.

15. The video encoder (100) according to claim 14, wherein the TSA picture is a coded picture for
which each slice has a unique nal_unit_type equal to 3.

16. The video encoder (100) according to any of claims 12-15, wherein the encoder is a High
Efficiency Video Coding, HEVC, encoder.

17. An element (200) for parsing bits representing at least a part of a current picture, wherein the
current picture belongs to a temporal level identified by a temporal_id, wherein the current
picture is associated with a Reference Picture Set, RPS, indicating reference pictures to be kept
in a decoded picture buffer, DPB, when decoding the current picture, the element (200)
comprises a parsing unit (505) configured to assert that for the current picture, when being a
temporal switching point, there is no picture included in the RPS of the current picture that has
the same or higher temporal_id as the current picture, and a determining unit (506) configured
to interpret that as a bit-error, loss of data or non-compliant bitstream when there is such a
picture included in the RPS.

18. The element (200) according to claim 17, wherein the determining unit (506) is further
configured to reporting the bit-error or loss of data or non-compliant bitstream and/or to
perform concealment if there is at least one reference picture included in the RPS of the
current picture that has the same or higher temporal_id as the current picture.
19. The element (200) according to any of claims 17-18, wherein the current picture, being a temporal switching point, is a temporal sub-layer access, TSA, picture, the TSA picture and all coded pictures with temporal_id greater than or equal to the temporal_id of the TSA picture that follow the TSA picture in decoding order shall not include any picture in their reference picture set that precedes the TSA picture in decoding order and for which temporal_id is greater than or equal to the temporal_id of the TSA picture.

20. The element (200) according to any of claims 17-19, wherein the temporal layer switching point is a coded picture for which each slice has a unique nal_unit_type.

21. The element (200) according to claim 20, wherein the TSA picture is a coded picture for which each slice has a unique nal_unit_type equal to 3.

22. The element (200) according to any of claims 17-21, wherein the element (200) is a network element or a decoder, wherein the decoder is a High Efficiency Video Coding, HEVC, decoder

23. A transmitter (601) comprising a video encoder (100) for encoding a current picture belonging to a temporal level identified by a temporal_id, the encoder (100) comprises a unit (501) for determining a Reference Picture Set, RPS, for the current picture indicating reference pictures to be kept in a decoded picture buffer, DPB, when decoding the current picture, and an RPS controlling unit (502) for ensuring that the RPS of the current picture includes no picture having a temporal_id greater than or equal to the temporal_id of the current picture when the current picture is a temporal switching point.

24. A receiver (602) comprising an element (200) for parsing bits representing at least a part of a current picture, wherein the current picture belongs to a temporal level identified by a temporal_id, wherein the current picture is associated with a Reference Picture Set, RPS, indicating reference pictures to be kept in a decoded picture buffer, DPB, when decoding the current picture, the element (200) comprises a parsing unit (505) configured to assert that for the current picture, when being a temporal switching point, there is no picture included in the RPS of the current picture that has the same or higher temporal_id as the current picture, and a determining unit (506) configured to interpret that as a bit-error, loss of data or non-compliant bitstream when there is such a picture included in the RPS.

25. A device (403) comprising a transmitter (401) according to claim 23 and / or a receiver according to claim 24.
26. A computer program (703), comprising computer readable code units which when run on a processor (702) causes the processor (702) to:

- determine a Reference Picture Set, RPS, for the current picture indicating reference pictures to be kept in a decoded picture buffer, DPB, when decoding the current picture, and when the current picture is a temporal switching point,

- ensure that the RPS of the current picture includes no picture having a temporal_id greater than or equal to the temporal_id of the current picture.

27. A computer program product (701), comprising computer readable medium and a computer program (703) according to claim 26 stored on the computer readable medium.

28. A computer program (803), comprising computer readable code units which when run on a processor (802) causes the processor (802) to:

- assert that for the current picture, when being a temporal switching point, there is no picture included in the RPS of the current picture that has the same or higher temporal_id as the current picture, if there is such a picture included in the RPS,

- interpret that as a bit-error, loss of data or non-compliant bitstream.

29. A computer program product (801), comprising computer readable medium and a computer program (803) according to claim 28 stored on the computer readable medium.
Determine a RPS for the current picture

Is current picture a temporal switching point?

Ensure that the RPS of the current picture includes no picture having a temporal_id greater than or equal to the temporal_id of the current picture.
Assert, that for the current picture, when being a temporal switching point (e.g. TSA), there is no picture included in the RPS of the current picture that has the same or higher temporal_id as the current picture.

Is there such a picture included in the RPS?

Yes:
Interpret that as a bit-error, loss of data or non-compliant bitstream.

Report the bit-error or loss of data or non-compliant bitstream or perform concealment.
7/8

Fig. 7

Video payload

RPS 210

Headers

Processor 702

Computer program 703

Computer program product 701

Encoder 100
A. CLASSIFICATION OF SUBJECT MATTER

INV. H04N7/36 H04N7/26

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H04N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Additional documents are listed in the continuation of Box C.

Date of the actual completion of the international search: 3 July 2013

Date of mailing of the international search report: 23/07/2013
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2009003439 AI</td>
<td>01-01-2009</td>
<td>CN 101690229 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2174502 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100030648 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2010102823 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009003439 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009001313 A2</td>
</tr>
</tbody>
</table>