(19) **日本国特許庁(JP)**

(12)特 許 公 報(B2)

(11)特許番号

特許第4120586号 (P4120586)

(45) 発行日 平成20年7月16日 (2008.7.16)

(24) 登録日 平成20年5月9日(2008.5.9)

(51) Int.Cl.		F 1	
CO7D 277/20	(2006.01)	CO7D	277/46
CO7D 277/46	(2006.01)	A 6 1 K	31/426
A 6 1 K 31/426	(2006.01)	A 6 1 K	31/439
A 6 1 K 31/439	(2006.01)	A 6 1 K	31/4545
A 6 1 K 31/4545	(2006.01)	A 6 1 K	31/496

請求項の数 4 (全 82 頁) 最終頁に続く

(21) 出願番号 特願2003-562111 (P2003-562111) (86) (22) 出願日 平成15年1月15日 (2003.1.15) (86) 国際出願番号 PCT/JP2003/000270 W02003/062233 (87) 国際公開番号 平成15年7月31日 (2003.7.31) (87) 国際公開日 平成16年2月12日 (2004.2.12) 審査請求日 (31) 優先権主張番号 特願2002-10413 (P2002-10413) (32) 優先日 平成14年1月18日 (2002.1.18) (33) 優先権主張国 日本国(JP) (31) 優先権主張番号 特願2002-10447 (P2002-10447) 平成14年1月18日 (2002.1.18) (32) 優先日 (33) 優先権主張国 日本国(JP)

||(73)特許権者 000006677

アステラス製薬株式会社

東京都中央区日本橋本町2丁目3番11号

(74)代理人 100091096

弁理士 平木 祐輔

(74)代理人 100096183

弁理士 石井 貞次

|(74)代理人 100118773

弁理士 藤田 節

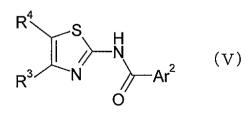
||(74)代理人 100122389

弁理士 新井 栄一

(74)代理人 100098501

弁理士 森田 拓

最終頁に続く


(54) 【発明の名称】 2-アシルアミノチアゾール誘導体又はその塩

(57)【特許請求の範囲】

【請求項1】

式(V)で示される2-アシルアミノチアゾール誘導体又はその製薬学的に許容される塩

【化1】

10

「式中、

Ar²は無置換であるか又は置換されているフェニル又はピリジルであり、

R ³ <u>は 1 つ乃至 3 つのハロゲンで置換されたフェニル又はチエニル(ハロゲンが 2 つ又は</u> 3 つ置換する場合、同一のハロゲンでもそれぞれ異なるハロゲンでもよい)であり、

R 4 <u>は4-(ピペリジン-1-イル)</u>ピペリジン-1-イル、4-プロピルピペリジン-1-イル、4-シ クロヘキシルピペラジン-1-イル、又は4-プロピルピペラジン-1-イルである。]

【請求項2】

 $A r^2$ が、 2 位及び 6 位が無置換であり、 <math>3 位が - H、 - F、 - C 1 又は - B r で置換されており、 <math>5 位が - F、 - C 1 又は - B r で置換されており、 <math>4 位が置換されているフ

ェニル; あるいは、 2 位及び 4 位が無置換であり、 5 位が - F、 - C 1 又は - B r で置換されており、 6 位が置換されているピリジン - 3 - イル; である請求の範囲 1 記載の化合物。

【請求項3】

請求の範囲1又は2に記載の化合物のうち、

N-[4-(4-クロロチオフェン-2-イル)-5-(4-シクロヘキシルピペラジン-1-イル)チアゾール-2-イル]-3-フルオロ-4-ヒドロキシベンズアミド、

3- クロロ-N- [4-(4- クロロチオフェン-2-イル)-5-(4-シクロヘキシルピペラジン-1-イル) チアゾール-2-イル]-4-(2-ヒドロキシエトキシ)ベンズアミド、

N- [4- (4- クロロチオフェン -2- イル) -5- (4- プロピルピペリジノ)チアゾール -2- イル] -2- メトキシイソニコチンアミド、

N-[4-(4-クロロチオフェン-2-イル)-5-(4-シクロヘキシルピペラジン-1-イル)チアゾール-2-イル]イソキノリン-6-カルボキサミド、

3- クロロ-N- [4-(4- クロロチオフェン-2- イル)-5-(4- プロピルピペラジン-1- イル) チアゾール-2- イル]-4-(2- ヒドロキシエトキシ) ベンズアミド、

5- クロロ-N- [4- (4- クロロチオフェン-2- イル) -5- (4- シクロヘキシルピペラジン-1- イル) チアゾール-2- イル] -6- (3- ヒドロキシプロポキシ) ニコチンアミド、

5- クロロ-N-[4-(4- クロロチオフェン-2-イル)-5-(4-シクロヘキシルピペラジン-1-イル) チアゾール-2-イル]-6-[(3-ヒドロキシプロピル)アミノ]ニコチンアミド、

1- (3- クロロ-5- { [4- (4- クロロチオフェン-2- イル) -5- (4- シクロヘキシルピペラジン-1- イル) チアゾール-2- イル] カルバモイル} -2- ピリジル) ピペリジン-4- カルボン酸、

1-(3-クロロ-5-{[4-(4-クロロチオフェン-2-イル)-5-(4-プロピルピペラジン-1-イル)チアゾール-2-イル]カルバモイル}-2-ピリジル)ピペリジン-4-カルボン酸、

N- [4-(4-クロロチオフェン-2-イル)-5-(4-シクロヘキシルピペラジン-1-イル)チアゾール-2-イル]-4-(4-シアノピペリジノ)-3,5-ジフルオロベンズアミド、

1-(2-クロロ-4-{[4-(4-クロロチオフェン-2-イル)-5-(4-シクロヘキシルピペラジン-1-イル)チアゾール-2-イル]カルバモイル}フェニル)ピペリジン-4-カルボン酸、

1-(2-クロロ-4-{[4-(4-クロロチオフェン-2-イル)-5-(4-シクロヘキシルピペラジン-1-イル)チアゾール-2-イル]カルバモイル}-6-フルオロフェニル)ピペリジン-4-カルボン酸、

1-(2-クロロ-4-{[4-(4-クロロチオフェン-2-イル)-5-(4-プロピルピペラジン-1-イル)チアゾール-2-イル]カルバモイル}フェニル)ピペリジン-4-カルボキサミド、

5- クロロ-N- [4-(4- クロロチオフェン-2-イル)-5-(4- シクロヘキシルピペラジン-1-イル) チアゾール-2-イル]-6-(4-ヒドロキシメチルピペリジノ)ニコチンアミド、

1- (3- クロロ-5- { [5- (4- シクロヘキシルピペラジン-1- イル) -4- (4- フルオロフェニル) チアゾール-2- イル] カルバモイル} -2- ピリジル) ピペリジン-4- カルボン酸、

1-(3-クロロ-5-{[5-(4-シクロヘキシルピペラジン-1-イル)-4-(3-トリフルオロメチルフェニル)チアゾール-2-イル]カルバモイル}-2-ピリジル)ピペリジン-4-カルボン酸、

5-クロロ-N-[4-(4-クロロチオフェン-2-イル)-5-(4-シクロヘキシルピペラジン-1-イル) チアゾール-2-イル]-6-{4-[(3-メトキシプロピル)カルバモイル]ピペリジノ}ニコチンア ミド、若しくは、

5- クロロ-N- [4-(4-クロロチオフェン-2-イル)-5-(4-シクロヘキシルピペラジン-1-イル) チアゾール-2-イル]-6- [4-(モルホリノカルボニル)ピペリジノ]ニコチンアミド、 又はその製薬学的に許容される塩。

【請求項4】

化合物が、1-(3-クロロ-5-{[4-(4-クロロチオフェン-2-イル)-5-(4-シクロヘキシルピペラジン-1-イル)チアゾール-2-イル]カルバモイル}-2-ピリジル)ピペリジン-4-カルボン酸、又はその製薬学的に許容される塩である、請求の範囲1又は2に記載の化合物。

20

10

30

40

20

30

40

50

【発明の詳細な説明】

技術分野

本発明は、医薬、殊に血小板減少症治療剤として有用な新規 2 - アシルアミノチアゾール 誘導体又はその塩及び該化合物を有効成分とする医薬に関する。

従来技術

血小板は生理的止血および病的血栓形成に主要な働きを果たす無核の血球細胞であり、生体内において、血小板は前駆細胞である巨核球から絶えず産生される。血小板産生は他の血球と同様に多能性幹細胞に由来し、多能性幹細胞は巨核球系の前駆細胞になり、それから巨核芽球、前巨核球、巨核球になる。この巨核球の成熟の過程において未熟な巨核球は細胞分裂を伴わずにDNA合成だけを行って多倍数体となる。その後、細胞質の成熟が始まり、血小板分離膜が形成され、細胞質が断裂して血小板が放出される。

一方、再生不良性貧血、骨髄異形成症候群、又は悪性腫瘍の化学療法、放射線療法等にお ける種々の造血障害による血小板の減少は出血傾向を招く等の重篤な症状を引き起こすた め、それらの治療を目的に血小板を増多させる様々な技術の開発の試みが行われてきた。 現在、血小板減少症治療の有力な手段は血小板輸血であるが、十分量の血小板が供給され ている状況ではなく、また、移入した血小板の寿命が短い等の理由により、血小板減少症 を十分に改善することは困難である。さらに、血小板輸血にはウイルス感染、同種抗体の 産生、移植細胞対宿主病(Graft Versus Host Disease: GV HD)等の問題点がある。このため、種々の症状あるいは治療によって引き起こされる造 血機能の抑制状態を緩和し、血小板数の回復を促進させる薬剤の開発が期待されている。 そのような中、巨核球系細胞への分化に関与する主要な因子であり、c-Mplリガンド であるトロンボポエチン(以下TPO)がクローニングされ、巨核球系細胞の分化・増殖 を刺激して血小板産生を促進することが報告された(Kaushansky K.et. al., Nature, 369, 568-571, 1994: 非特許文献1)。 TPOは すでに血小板増多剤として臨床試験が行われており、ヒトでの有用性と忍容性が確認され つつある。しかし、TPOの一種であるPEG-rHuMGDF(TPOのN末端から1 6 3 番目のアミノ酸がポリエチレングリコールで修飾されたもの)の臨床試験において、 中和抗体が確認された(Li J.et.al.,Blood,98,3241-324 8,2001:非特許文献2、及びBasser R.L.et.al.,Blodd, 99,2599-2602,2002:非特許文献3)ため、TPOの免疫原性が懸念さ れている。また、TPOは蛋白質であるため、消化管内で分解されてしまい、経口投与薬 剤としては実用的ではない。同様の理由で低分子ペプチドも経口投与薬剤としては実用的

上記のような化合物としては、特開平 1 1 - 1 5 2 2 7 6 号 (特許文献 1) に記載のベンゾジアゼピン誘導体、国際公開WO 9 9 / 1 1 2 6 2 号 (特許文献 2) に記載のアシルヒドラゾン誘導体、国際公開WO 0 0 / 3 5 4 4 6 号 (特許文献 3) に記載のジアゾナフタレン誘導体、国際公開WO 9 8 / 0 9 9 6 7 号 (特許文献 4) に記載のピロロカルバゾール誘導体、特開平 1 0 - 2 1 2 2 8 9 号 (特許文献 5) に記載のピロロフェナンスリジン誘導体、特開 2 0 0 0 - 4 4 5 6 2 (特許文献 6) に記載のピロロフタルイミド誘導体が知られている。

ではないと考えられる。このような状況下、血小板減少症治療を目的とした、免疫原性が

少なく経口投与可能な非ペプチド性 c - M p l リガンドの開発が進められている。

また、国際公開WO01/07423号(特許文献7)には、下記一般式(VII)で示される化合物が血小板増多作用を有することが記載されている。

$$X^{1}Y^{1}Z^{1}$$
 (VII)

(式中の記号は、該公報参照)

該公報では、 X^1 として置換されていてもよいチアゾール、 Y^1 として - N H C O - を含む化合物についての記載がある。しかし、本発明においては、該公報におけるチアゾリル基のごとき A^1 基を有する置換基で本発明化合物中の A^1 若しくは A^2 が置換される

20

30

40

50

ことはない。しかも、該公報においては、チアゾール 5 位に窒素原子が直接置換している 化合物については、実施例その他による具体的開示は一切ない。

また、国際公開WO01/53267号(特許文献8)には、下記一般式(VIII)で示される化合物が血小板増多作用を有することが記載されている。

$$X^{1} - Y^{1} - Z^{1} - W^{1}$$
 (VIII)

(式中の記号は、該公報参照)

該公報では、 X^1 として置換されていてもよいチアゾール、 Y^1 として - N H C O - を含む化合物についての記載がある。しかし、本発明においては、該公報における W^1 基を有する置換基で本発明化合物中のA r^1 若しくはA r^2 基が置換されることはない。しかも、該公報においては、チアゾール 5 位に窒素原子が直接置換している化合物については、実施例その他による具体的開示は一切ない。

また、上記特許文献 7、上記特許文献 8 の他に、本発明にかかる 2 - アシルアミノチアゾール化合物は、特許 3 1 9 9 4 5 1 号(特許文献 9)にコレシストキニン及びガストリン受容体拮抗剤として、あるいは Chemical and Pharmaceutical Bulletin, 2 5, 9, 2 2 9 2 - 2 2 9 9, 1 9 7 7 (非特許文献 4) に抗炎症特性を有する化合物として開示があるが、いずれも本発明にかかる血小板増多作用については全く触れられていない。

上記のような状況下、血小板減少症治療を目的とした、免疫原性が少なく経口投与可能な 非ペプチド性 c - M p l リガンドの開発が切望されている。

【特許文献1】

特開平11-152276号公報

【特許文献2】

国際公開第99/11262号パンフレット

【特許文献3】

国際公開第00/35446号パンフレット

【特許文献4】

国際公開第98/09967号パンフレット

【特許文献5】

特開平10-212289号公報

【特許文献6】

特開2000-44562公報

【特許文献7】

国際公開第01/07423号パンフレット

【特許文献8】

国際公開第01/53267号パンフレット

【特許文献9】

特許第3199451号公報

【非特許文献1】

ネイチャー(Nature)、1994年、第369号、p.568-571

【非特許文献2】

ブラッド(Blood)、2001年、第98巻、p.3241-3248

【非特許文献3】

ブラッド(Blood)、2002年、第99巻、p.2599-2602

【非特許文献4】

ケミカル・アンド・ファーマシューティカル・ブレチン(Chemical and Pharmaceutical Bulletin)、1977年、第25巻、第9号、p. 2292-2299

発明の開示

本発明者等は、血小板増多作用を有する化合物について鋭意研究し、新規な2・アシルア

20

30

40

50

ミノチアゾール誘導体が優れた血小板増多作用を有することを見いだし、本発明を完成させた。

即ち、本発明によれば、以下の(1)~(17)が提供される。

(1)式(I)で示される2 - アシルアミノチアゾール誘導体又はその製薬学的に許容される塩を有効成分とする血小板増多剤。

$$\begin{array}{c|c}
R^2 & S & H \\
N & N & Ar^1
\end{array}$$

「式中の記号は以下の意味を示す。

A r^1 :それぞれ置換されていてもよいアリール、単環芳香族へテロ環、又は二環系縮合へテロ環(但し、 R^1 が低級アルキル、-CO-低級アルキル、-COO-低級アルキル、-OH、-O-低級アルキル、-OCO-低級アルキル及びハロゲンからなる群より選択される1つ以上の基でそれぞれ置換されていてもよいアリール若しくはピリジルであり、かつ、 R^2 が下記式(II)で示される基であるとき;低級アルキル、-CO-低級アルキル、-OCO-低級アルキル、-OCO-低級アルキル、-OCO-低級アルキルスびハロゲンからなる群より選択される1つ以上の基でそれぞれ置換されていてもよいフェニル若しくはピリジルを除く。)。

R¹:それぞれ置換されていてもよいアリール又は単環芳香族へテロ環。

R²:式(III)、式(III)又は式(IV)で示される基。

$$X - (CR^{20}R^{21})n$$
 R^{24}
 $(CR^{22}R^{23})m - N$
 $R^{25} - N$
 (III)
 (IV)

[式中の記号は以下の意味を示す。

n:1~3の整数。

m:1~3の整数。

ここで、 n 又はm が 2 以上の整数である場合、 C R 2 0 R 2 1 及び C R 2 2 R 2 3 はそれぞれ異なる基を示してもよい。

X:O、S、 $N-R^{2}$ 6 、C $(-R^{2}$ 7 $)-R^{2}$ 8 で示される基。

E、G、J、L;それぞれ独立にN又はC-R 29 で示される基(但し、これらのうち少なくとも一つはC-R 29 を示す。)。

R²⁰、R²¹、R²²、R²³、R²⁶、R²⁷、R²⁸、R²⁹:同一又は異なって、・H;・OH;・O・低級アルキル;置換されていてもよい低級アルキル;置換されていてもよいアリール;置換されていてもよいアリール;置換されていてもよい芳香族へテロ環;置換されていてもよい芳香族へテロ環;置換されていてもよい低級アルケニル;置換されていてもよい低級アルキリデン;・COOH;・COO・低級アルキル;・COO・低級アルケニル;・COO・低級アルケニル;・COO・低級アルケニル;・COO・低級アルケニル;・COO・低級アルケール;・COO・低級アルキレン・アリール;・COO・低級アルキレン・芳香族へテロ環;ハロゲン、・OH、・O・低級アルキル又は・O・アリールでそれぞれ置換されていてもよい低級アルキル及びシクロアルキルからなる群より選択される1つ以上の基でそれぞれ置換されていてもよいカルバモイル若しくはアミノ;・NHCO・低級アルキル;又はオキソ。

R 2 4 、R 2 5 :同一又は異なって、 - H、置換されていてもよい低級アルキル、置換されていてもよい非芳香族へテロ環。]] なお、式(I)で示される化合物における A r 1 として、 A r 1 の中で好ましくは、それ

20

30

40

50

ぞれ置換されていてもよいフェニル又は単環芳香族へテロ環であり; その中でさらに好ましくは、それぞれ置換されていてもよいフェニル又はピリジルであり :

その中で特に好ましくは、2位及び6位が無置換であり、3位が-H、-F、-C1又は-Brで置換されており、5位が-F、-C1又は-Brで置換されており、4位が置換されているフェニル、あるいは、2位及び4位が無置換であり、5位が-F、-C1又は-Brで置換されており、6位が置換されているピリジン-3-イルであり:

その中で最も好ましくは、 $-O-R^Y$ 、 $-NH-R^Y$ 、置換されていてもよいピペリジン-1-4ル及び置換されていてもよいピペラジン-1-4ルからなる群より選択される基で -4 位が置換されているフェニル、あるいは、 $-O-R^Y$ 、 $-NH-R^Y$ 、置換されていてもよいピペリジン-1-4ルからなる群より選択される基で -6 位が置換されているピリジン-3-4ルである。

ここで、「 R^Y 」とは、-OH、-O- 低級アルキル、1 つ又は2 つの低級アルキルで置換されていてもよいアミノ、 $-CO_2H$ 、 $-CO_2-$ 低級アルキル、1 つ又は2 つの低級アルキルで置換されていてもよいカルバモイル、シアノ、アリール、芳香族ヘテロ環、非芳香族ヘテロ環、及びハロゲンからなる群より選択される1 つ以上の基で置換されていてもよい低級アルキルを示す(以下同様)。

また、式(I)で示される化合物における R ¹ として、好ましくは、それぞれ置換されていてもよいフェニル又はチエニルであり; さらに好ましくは、ハロゲン及びトリフルオロメチルからなる群より選択される 1 以上の基でそれぞれ置換されていてもよいフェニル又はチエニルであり; 特に好ましくは、1 つ乃至 3 つのハロゲンでそれぞれ置換されたフェニル又はチエニル(ハロゲンが 2 つ又は 3 つ置換する場合、同一のハロゲンでもそれぞれ異なるハロゲンでもよい)である。

また、式(I)で示される化合物における R 2 として、好ましくは、式(II)で示される基であり;さらに好ましくは、式(II)で示される基のうち、 n が 2 であり、 m が 2 であり、 X が N - R 2 6 又は C (- R 2 7) - R 2 8 で示される基であり;特に好ましくは、 4 - (ピペリジン - 1 - イル)ピペリジン - 1 - イル、 4 - シクロヘキシルピペラジン - 1 - イル、又は 4 - プロピルピペラジン - 1 - イルである。

(2) R 1 が 1 つ乃至 3 つのハロゲンでそれぞれ置換されたフェニル又はチエニル(ハロゲンが 2 つ又は 3 つ置換する場合、同一のハロゲンでもそれぞれ異なるハロゲンでもよい)であり; R 2 が(1)記載の式(II)で示される基であり、 n が 2 であり、 m が 2 であり、 X が N - R 2 6 又は C (- R 2 7) - R 2 8 で示される基であり; A r 1 がそれぞれ置換されていてもよいフェニル又はピリジルである(1)記載の医薬組成物。

(3)血小板減少症治療剤である(1)又は(2)記載の医薬組成物。

(4) c - Mplリガンドである(1)又は(2)記載の医薬組成物。

(5)式(V)で示される2 - アシルアミノチアゾール誘導体又はその製薬学的に許容される塩。

$$R^4$$
 S
 N
 N
 Ar^2
 (V)

[式中の記号は以下の意味を示す。

 $A r^2 : (1)$ 記載の $A r^1$ で示される基。但し、インドール - 2 - イルを除く。

 $R^{3}:(1)記載の<math>R^{1}$ で示される基。

R 4 : (1)記載のR 2 で示される基。但し、式(IV)で示される基を除く。] なお、式(V)で示される化合物におけるA 2 として、A 2 の中で好ましくは、それぞれ置換されていてもよいフェニル又は単環芳香族ヘテロ環であり;

その中でさらに好ましくは、それぞれ置換されていてもよいフェニル又はピリジルであり

;

その中で特に好ましくは、2位及び6位が無置換であり、3位が-H、-F、-C1又は-Brで置換されており、5位が-F、-C1又は-Brで置換されており、4位が置換されているフェニル、あるいは、2位及び4位が無置換であり、5位が-F、-C1又は-Brで置換されており、6位が置換されているピリジン-3-イルであり;

その中で最も好ましくは、 $-O-R^Y$ 、 $-NH-R^Y$ 、置換されていてもよいピペリジン-1-4ル及び置換されていてもよいピペラジン-1-4ルからなる群より選択される基で -4 位が置換されているフェニル、あるいは、 $-O-R^Y$ 、 $-NH-R^Y$ 、置換されていてもよいピペリジン-1-4ルからなる群より選択される基で -6 位が置換されているピリジン-3-4ルである。

また、式(V)で示される化合物における R ³ として、好ましくは、それぞれ置換されていてもよいフェニル又はチエニルであり; さらに好ましくは、ハロゲン及びトリフルオロメチルからなる群より選択される 1 以上の基でそれぞれ置換されていてもよいフェニル又はチエニルであり; 特に好ましくは、1つ乃至3つのハロゲンでそれぞれ置換されたフェニル又はチエニル(ハロゲンが2つ又は3つ置換する場合、同一のハロゲンでもそれぞれ異なるハロゲンでもよい)である。

また、式(V)で示される化合物における R 4 として、好ましくは、式(II)で示される基であり;さらに好ましくは、式(II)で示される基のうち、 n が 2 であり、 m が 2 であり、 X が N - R 2 6 又は C (- R 2 7) - R 2 8 で示される基であり;特に好ましくは、 4 - (ピペリジン - 1 - イル)ピペリジン - 1 - イル、 4 - シクロヘキシルピペラジン - 1 - イル、 又は 4 - プロピルピペラジン - 1 - イルである。

(6) Ar 2 がそれぞれ置換されていてもよいフェニル又は単環芳香族へテロ環である(5)記載の化合物。

(7) R 3 がそれぞれ置換されていてもよいフェニル又はチエニルであり、 R 4 が(1)記載の式(II)で示される基であり、 Ar 2 がそれぞれ置換されていてもよいフェニル又はピリジルである(6)記載の化合物。

(8) n が 2 であり、m が 2 であり、X が N - R 2 6 又はC (- R 2 7) - R 2 8 で示される基である(7)記載の化合物。

(9) R 3 が 1 つ乃至 3 つのハロゲンでそれぞれ置換されたフェニル又はチエニル(ハロゲンが 2 つ又は 3 つ置換する場合、同一のハロゲンでもそれぞれ異なるハロゲンでもよい)である(8) 記載の化合物。

(10) R 4 が 4 - (ピペリジン - 1 - イル) ピペリジン - 1 - イル、 4 - プロピルピペリジン - 1 - イル、 4 - シクロヘキシルピペラジン - 1 - イル、又は 4 - プロピルピペラジン - 1 - イルである (9) 記載の化合物。

(11) A r^2 が、 2 位及び 6 位が無置換であり、 3 位が - H、 - F、 - C 1 又は - B r で置換されており、 5 位が - F、 - C 1 又は - B r で置換されており、 4 位が置換されているフェニル; あるいは、 2 位及び 4 位が無置換であり、 5 位が - F、 - C 1 又は - B r で置換されており、 6 位が置換されているピリジン - 3 - イル; である(1 0)記載の化合物。

(12) A r^2 が、 - O - R $^{\gamma}$ 、 - N H R $^{\gamma}$ 、 置換されていてもよいピペリジン - 1 - イル及び置換されていてもよいピペラジン - 1 - イルからなる群より選択される基で 4 位が置換されているフェニル;あるいは、 - O - R $^{\gamma}$ 、 - N H R $^{\gamma}$ 、 置換されていてもよいピペリジン - 1 - イル及び置換されていてもよいピペラジン - 1 - イルからなる群より選択される基で 6 位が置換されているピリジン - 3 - イル;である(1 1)記載の化合物。

(13)(5)乃至(12)のいずれかに記載の化合物のうち、化合物群 X 及び化合物群 Y からなる群より選択される化合物又はその製薬学的に許容される塩。好ましくは、化合物群 X から選択される化合物又はその製薬学的に許容される塩。

ここで、「化合物群 X 」とは、

N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン

20

10

30

40

20

30

40

50

- 1 - イル)チアゾール - 2 - イル] - 3 - フルオロ - 4 - ヒドロキシベンズアミド、3 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル] - 4 - (2 - ヒドロキシエトキシ)ベンズアミド、

N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] イソキノリン - 6 - カルボキサミド、

3 - 7000 - N - [4 - (4 - 7000 + 7000 + 7000 - 2 - 7000 - 1 - 7000 + 7000 + 7000 - 2 - 7000 - 2 - 7000 - 2 - 7000 - 1 - 7000 -

5 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 6 - (3 - ヒドロキシプロポキシ) ニコチンアミド、

5 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 6 - [(3 - ヒドロキシプロピル) アミノ] ニコチンアミド、

1 - (3 - クロロ - 5 - { [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル]カルバモイル } - 2 - ピリジル)ピペリジン - 4 - カルボン酸、

1 - (3 - クロロ - 5 - { [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - プロピルピペラジン - 1 - イル)チアゾール - 2 - イル]カルバモイル } - 2 - ピリジル)ピペリジン - 4 - カルボン酸、

N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 4 - (4 - シアノピペリジノ) - 3 , 5 - ジフルオロベンズアミド、

1 - (2 - クロロ - 4 - { [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル]カルバモイル}フェニル)ピペリジン - 4 - カルボン酸、

1 - (2 - クロロ - 4 - { [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル]カルバモイル } - 6 - フルオロフェニル)ピペリジン - 4 - カルボン酸、

1 - (2 - クロロ - 4 - { [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - プロピルピペラジン - 1 - イル)チアゾール - 2 - イル]カルバモイル}フェニル)ピペリジン - 4 - カルボキサミド、

5 - 9 ロロ - N - [4 - (4 - 9 ロロチオフェン - 2 - 4 ルピペラジン - 1 - 4 ルピペラジン - 1 - 4 ルピペリンアミド、

1 - (3 - クロロ - 5 - { [5 - (4 - シクロヘキシルピペラジン - 1 - イル) - 4 - (4 - フルオロフェニル)チアゾール - 2 - イル]カルバモイル } - 2 - ピリジル)ピペリジン - 4 - カルボン酸、

1 - (3 - クロロ - 5 - { [5 - (4 - シクロヘキシルピペラジン - 1 - イル) - 4 - (3 - トリフルオロメチルフェニル)チアゾール - 2 - イル]カルバモイル } - 2 - ピリジル)ピペリジン - 4 - カルボン酸、

5 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 6 - { 4 - [(2 - メトキシエチル) カルバモイル] ピペリジノ } ニコチンアミド、

5-クロロ - N - [4- (4-クロロチオフェン - 2-イル) - 5- (4-シクロヘキシルピペラジン - 1-イル) チアゾール - 2-イル] - 6- { 4-[(3- メトキシプロピル) カルバモイル] ピペリジノ $\}$ ニコチンアミド、及び、

20

30

40

50

5 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 6 - [4 - (モルホリノカルボニル) ピペリジノ] ニコチンアミドからなる化合物群であり、「化合物群 Y 」とは、

3 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 4 - (2 - メトキシエトキシ) ベンズアミド、

3 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 5 - フルオロ - 4 - (2 - ヒドロキシエトキシ) ベンズアミド、

3 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 4 - (3 - ヒドロキシプロポキシ) ベンズアミド、

3 , 5 - $\sqrt[3]{5}$ - $\sqrt[3]{5}$ - $\sqrt[3]{6}$ - $\sqrt[3]$

3 - ブロモ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 4 - (2 - ヒドロキシエトキシ)ベンズアミド、

N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 2 - オキソ - 2 , 3 - ジヒドロベンゾオキサゾール - 6 - カルボキサミド、

3 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル] - 4 - ヒドロキシベンズアミド、

(+-) - 5 - 0

5 - 7000 - N - [4 - (4 - 7000 + 7000 + 7000 - 2 - 7000 - 1 - 7000 + 7000 - 1 - 7000 + 7000 - 1 -

5 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - プロピルピペラジン - 1 - イル) チアゾール - 2 - イル] - 6 - [(2 - ヒドロキシエチル) アミノ] ニコチンアミド、

5 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - プロピルピペラジン - イル)チアゾール - 2 - イル] - 6 - (4 - ヒドロキシピペリジノ)ニコチンアミド、

5 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 6 - (3 - オキソピペラジン - 1 - イル) ニコチンアミド、

6 - (4 - カルバモイルピペリジノ) - 5 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル]ニコチンアミド、

 (\pm) - 5 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - (4

20

30

40

50

(±) - 5 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 6 - [(テトラヒドロ - 3 - フリル) メトキシ] ニコチンアミド、

6 - (4 - カルバモイルピペリジノ) - 5 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - プロピルピペラジン - 1 - イル)チアゾール - 2 - イル]ニコチンアミド、

3 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 4 - (4 - ヒドロキシピペリジノ) ベンズアミド、

1 - (2 - ブロモ - 4 - { [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル]カルバモイル}フェニル)ピペリジン - 4 - カルボン酸、

1 - (2 - ブロモ - 4 - { [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル]カルバモイル}フェニル)ピペリジン - 4 - カルボキサミド、

1 - (4 - { [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル]カルバモイル } - 2 , 6 - ジフルオロフェニル)ピペリジン - 4 - カルボン酸、

3 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル] - 4 - (4 - シアノピペリジノ)ベンズアミド、

1 - (4 - { [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル]カルバモイル} - 2 , 6 - ジフルオロフェニル)ピペリジン - 4 - カルボキサミド、

3 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - プロピルピペラジン - 1 - イル) チアゾール - 2 - イル] - 4 - (4 - ヒドロキシピペリジノ) ベンズアミド、

1 - (2 - クロロ - 4 - { [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル]カルバモイル}フェニル)ピペリジン - 4 - カルボキサミド、

1 - (2 - クロロ - 4 - { [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - プロピルピペラジン - 1 - イル)チアゾール - 2 - イル]カルバモイル}フェニル)ピペリジン - 4 - カルボン酸、

3 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル] - 4 - (4 - シアノピペリジノ) - 5 - フルオロベンズアミド、

1 - (2 - クロロ - 4 - { [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル]カルバモイル } - 6 - フルオロフェニル)ピペリジン - 4 - カルボキサミド、

1 - (3 - クロロ - 5 - { [4 - (3 - クロロフェニル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル]カルバモイル } - 2 - ピリジル)ピペリジン - 4 - カルボン酸、

5 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 6 - (5 - オキソ - 1 , 4 - ジアゼパン - 1 - イル) ニコチンアミド、

[1-(3-クロロ-5-{[4-(4-クロロチオフェン-2-イル)-5-(4-シ クロヘキシルピペラジン-1-イル)チアゾール-2-イル]カルバモイル}-2-ピリ ジル)ピペリジン-4-イル]酢酸、

5 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 6 - { 4 - [(ジメチルアミノ)カ

ルボニル 1 ピペリジノ } ニコチンアミド、

5 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 6 - $\{4 - [(メチルアミノ)カルボニル]ピペリジノ\}ニコチンアミド、$

[4-(3-クロロ-5-{ [4-(4-クロロチオフェン-2-イル)-5-(4-シクロヘキシルピペラジン-1-イル)チアゾール-2-イル]カルバモイル}-2-ピリジル)ピペラジン-1-イル]酢酸、

3 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 5 - フルオロ - 4 - [4 - (メトキシアセチル) ピペラジン - 1 - イル] ベンズアミド、

[4-(2-クロロ-4-{ [4-(4-クロロチオフェン-2-イル)-5-(4-シ クロヘキシルピペラジン-1-イル)チアゾール-2-イル]カルバモイル}-6-フル オロフェニル)ピペラジン-1-イル]酢酸、

3 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 5 - フルオロ - 4 - (4 - スルファモイルピペラジン - 1 - イル) ベンズアミド、

4 - [4 - (カルバモイルメチル) ピペラジン - 1 - イル] - 3 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 5 - フルオロベンズアミド、

5 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 6 - [4 - (プロピルカルバモイル) ピペリジノ] ニコチンアミド、及び、

5 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル] - 6 - { 4 - [(2 - エトキシエチル)カルバモイル]ピペリジノ}ニコチンアミドからなる化合物群である。

(14)(5)乃至(13)のいずれかに記載の化合物を有効成分とする医薬組成物。

(15)血小板増多剤である(14)記載の医薬組成物。

(16)血小板減少症治療剤である(14)記載の医薬組成物。

(17) c - Mplリガンドである(14)記載の医薬組成物。

本発明化合物の化学構造上の特徴は、2位がアシルアミノ基で置換され、5位が直接窒素原子で置換されている2・アシルアミノチアゾール誘導体である点にある。また、本発明化合物の薬理学上の特徴は、ヒト c・mpl・Ba/F3細胞増殖活性、ヒトCD34⁺細胞の巨核球への分化促進活性、及びマウス経口投与試験における良好な経口活性を示し、その結果、血小板増多作用を有する点にある。

式(I)又は式(V)で示される化合物について、さらに説明すると次の通りである。 本明細書中、「低級」なる語は、特に断らない限り炭素数 1 乃至 6 個の直鎖状又は分枝状の炭素鎖を意味する。

従って、「低級アルキル」とは、 C_{1-6} のアルキルを示し、具体的には例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ネオペンチル、ヘキシルが挙げられ、好ましくは C_{1-3} アルキルのメチル、エチル、プロピル、イソプロピルである。

「低級アルケニル」とは、 C_{2-6} のアルケニルを示し、具体的には例えばエテニル、プロペニル、ブテニル、ペンテニル、ヘキセニルが挙げられ、好ましくは C_{2-3} アルケニルのエテニル、1-プロペニル、2-プロペニル、3-プロペニルである。

「低級アルキリデン」とは、 C_{1-6} のアルキリデンを示し、具体的には例えば、メチリデン、エチリデン、プロピリデン、ブチリデン、ペンチリデン、ヘキシリデンが挙げられ、好ましくは C_{1-3} アルキリデンのメチリデン、エチリデン、1-プロピリデン、2-

10

20

30

40

プロピリデンである。

「低級アルキレン」とは、 C_{1-6} アルキルの 2 価基であり、好ましくは C_{1-4} アルキレンのメチレン、エチレン、トリメチレン、メチルエチレン、テトラメチレン、ジメチルメチレン、ジメチルエチレンである。

「シクロアルキル」とは、C₃₋₈の炭素環を意味し、これらは部分的に不飽和結合を有していてもよい。従って、具体的には例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロオクチル、シクロブテニル、シクロヘキセニル、シクロオクタジエニルが挙げられる。

「アリール」とは、 $C_{6-1/4}$ の単環乃至3環の芳香環を意味し、好ましくはフェニル、ナフチルであり、さらに好ましくはフェニルである。

「アリールアルキル」とは、上記「低級アルキル」に上記「アリール」が置換した基を意味し、具体的には例えばベンジル、1-フェネチル、2-フェネチル、ナフチルメチル、1-ナフチルエチル、2-ナフチルエチルが挙げられる。

「単環芳香族へテロ環」とは、窒素、酸素、硫黄を含んでいてもよい5~6員環芳香族へテロ環又はそれらの部分的に水素化された環の1価基を意味し、具体的には例えばチエニル、フリル、ピロリル、チアゾリル、オキサゾリル、イミダゾリル、イソチアゾリル、イソキサゾリル、ピラゾリル、チアジアゾリル、オキサジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピラジニル、ピリミジニル、ピリダジニルが挙げられる。

「二環系縮合へテロ環」とは、アリール若しくは単環芳香族へテロ環と縮合した、窒素、酸素、硫黄を含んでいてもよい芳香族へテロ環又はそれらの部分的に水素化された環の1価基を意味し、具体的には例えば、インドリル、イソインドリル、インドリジニル、インダゾリル、キノリル、イソキノリル、キノリジニル、フタラジニル、ナフチリジニル、キノキサリニル、キナゾリニル、シンノリニル、ベンズイミダゾリル、イミダゾピリジル、ベンゾフラニル、ベンゾオキサゾリル、1,2-ベンゾイソキサゾリル、インドリニル、イソインドリニル、1,2-ジヒドロキノリニル、3,4-ジヒドロ-2H-11,4-ベンゾオキサジニル、1,4-ジヒドロ-2H-3,1-ベンゾオキサジニル、クロマニル、イソクロマニル、ベンゾオキソラニル、ベンゾジオキサニル等が挙げられる。

「芳香族へテロ環」とは、上記「単環芳香族へテロ環」及び「二環系縮合へテロ環」を合わせたものを意味する。

「芳香族へテロ環アルキル」とは、上記「低級アルキル」に上記「芳香族へテロ環」が置換した基を意味し、具体的には例えばチエニルメチル、フリルメチル、ピリジルメチル、チアゾリルメチル、オキサゾリルメチル、イミダゾリルメチル、チエニルエチル、フリルエチル、ピリジルエチル等が挙げられる。

「非芳香族へテロ環」とは、アリール若しくは単環芳香族へテロ環と縮合していてもよい、窒素、酸素、硫黄からなる群より選択された同一又は異なるヘテロ原子を1個以上有する縮合していてもよい非芳香族複素環の1価基を意味し、具体的には例えばアゼチジニル、ピロリジニル、イミダゾリニル、イミダゾリジニル、ピラゾリジニル、ピラゾリニル、ピペリジニル、アゼピニル、ピペラジニル、ホモピペラジニル、モルホリニル、チオモルホリニル、インドリニル、イソインドリニル等が挙げられる。

「ハロゲン」としては、フッ素、塩素、臭素及びヨウ素原子が挙げられる。

「リガンド」とは、酵素、レセプター、蛋白質等と結合する低分子物質を指し、アゴニスト、アンタゴニストが含まれ、好ましくはアゴニストである。

本明細書において「置換されていてもよい」の語の許容される置換基としては、それぞれの基の置換基として通常用いられる置換基であればいずれでもよく、各々の基に 1 つ以上 置換基を有していてもよい。

R 1 における「それぞれ置換されていてもよいアリール又は単環芳香族へテロ環」、 R 2 0 、 R 2 1 、 R 2 2 、 R 2 3 、 R 2 6 、 R 2 7 、 R 2 8 、 R 2 9 における「置換されていてもよいシクロアルキル」「置換されていてもよいアリール」「置換されていてもよいア

10

20

30

40

20

30

40

50

リールアルキル」「置換されていてもよい芳香族へテロ環」「置換されていてもよい芳香族へテロ環アルキル」「置換されていてもよい非芳香族へテロ環」及び R^2 4 、 R^2 5 における「置換されていてもよいシクロアルキル」「置換されていてもよい非芳香族へテロ環」において許容される置換基としては、以下の(a)乃至(h)に示される基が挙げられる。ここで、「 R^2 」とは、-OH、-O- 低級アルキル、1つ又は2つの低級アルキルで置換されていてもよいアミノ、1つ又は2つの低級アルキルで置換されていてもよいカルバモイル、アリール、芳香族へテロ環及びハロゲンからなる群より選択される1つ以上の基で置換されていてもよい低級アルキルを示す(以下同様)。

(a)ハロゲン;

(b) - O H、 - O - R Z 、 - O - アリール、 - O C O - R Z 、オキソ(= O); (c) - S H、 - S - R Z 、 - S - アリール、 - S O - R Z 、 - S O - アリール、 - S O $_{2}$ - R Z 、 - S O $_{2}$ - アリール、 1 つ又は 2 つの R Z で置換されていてもよいスルファモイル;

(d) 1 つ又は 2 つの R $^{\rm Z}$ で置換されていてもよいアミノ、 - N H C O - R $^{\rm Z}$ 、 - N H C O - アリール、 - N H C O $_2$ - R $^{\rm Z}$ 、 - N H C O N H $_2$ 、 - N H S O $_2$ - R $^{\rm Z}$ 、 - N H S O $_2$ - R $^{\rm Z}$ 、 - N H S O $_2$ - R $^{\rm Z}$ 、 - N H S O $_2$ - アリール、 - N H S O $_2$ N H $_2$ 、 $_2$ 、 $_2$ 、 $_3$ 、 $_4$ $_4$ 、 $_4$ $_4$ 、 $_4$

(e) - CHO、 - CO - R Z 、 - CO $_{2}$ H、 - CO $_{2}$ - R Z 、 1 つ又は 2 つの R Z で置換されていてもよいカルバモイル、シアノ;

(f) - O H、 - O - 低級アルキル、1 つ又は2 つの低級アルキルで置換されていてもよいアミノ、ハロゲン及び R $^{\rm Z}$ からなる群より選択される1 つ以上の基でそれぞれ置換されていてもよいアリール若しくはシクロアルキル;

(g) - O H 、 - O - 低級アルキル、1 つ又は 2 つの低級アルキルで置換されていてもよいアミノ、ハロゲン及び R Z からなる群より選択される 1 つ以上の基でそれぞれ置換されていてもよい芳香族へテロ環若しくは非芳香族へテロ環:

(h)上記(a)乃至(g)に示される置換基より選択される1つ以上の基で置換されていてもよい低級アルキル。

R 2 0 、 R 2 1 、 R 2 2 、 R 2 3 、 R 2 6 、 R 2 7 、 R 2 8 、 R 2 9 における「置換されていてもよい低級アルキル」「置換されていてもよい低級アルキリデン」及び R 2 4 、 R 2 5 における「置換されていてもよい低級アルキル」において許容される置換基としては、上記(a)乃至(g)に示される基が挙げられる。

Ar¹における「それぞれ置換されていてもよいアリール、単環芳香族へテロ環又は二環系縮合へテロ環」において許容される置換基としては、オキソ(但し、オキソは二環系縮合へテロ環にのみ許容される);及び一般式(VI)で示される基が挙げられる。

$$-A-B-C-D-E \qquad (VI)$$

「式中の記号は以下の意味を示す。

- A - : 単結合、又は置換されていてもよい環状アミンジイル(但し、窒素原子で置換しているものに限る)。

- B - : 単結合、 - O - 、 - N H - 、 - N (- R ^Z) - 、 - N H C O - 、 - C O - 、 - C O N H - 、又は - C O N (- R ^Z) - 。

- C - : 単結合;又はハロゲン及び - O H からなる群より選択される 1 以上の基でそれぞれ置換されていてもよい低級アルキレン若しくは低級アルケニレン。

- D - : 単結合、 - N H C O - 、 - N H S O 2 - 、 - C O - 、又は - S O 2 - 。

- E: - H;ハロゲン; - O H; - O - R Z ; - O - C O - R Z ; 1 つ若しくは 2 つの R Z で置換されていてもよいアミノ; - R Z ;シアノ;それぞれ置換されていてもよいアリール、シクロアルキル、芳香族ヘテロ環若しくは非芳香族ヘテロ環。

但し、一般式(VI)で示される基として、-CH₂-(非芳香族へテロ環)、-CH=(非芳香族へテロ環)を除き(但し、いずれも、該非芳香族へテロ環の炭素原子でメチンに置換しているものに限る);

Ar¹がそれぞれ置換されていてもよいアリール若しくは単環芳香族へテロ環である場合

には、さらに、 - A - 及び - B - が単結合であり、 - C - が単結合若しくはハロゲン及び - OHからなる群より選択される1以上の基でそれぞれ置換されていてもよいエチレン若 しくはビニレンであり、 - D - が - C O - である基; - A - 及び - B - が単結合であり、 - C - が単結合若しくはハロゲン及び - O H からなる群より選択される 1 以上の基でそれ ぞれ置換されていてもよいエチレン若しくはビニレンであり、 - D - が - SO。 - であり 、 - Eが1つ若しくは2つの R $^{\mathbb{Z}}$ で置換されていてもよいアミノである基; - A - 及び -B - が単結合であり、 - C - が単結合若しくはハロゲン及び - O H からなる群より選択さ れる1以上の基でそれぞれ置換されていてもよいエチレン若しくはビニレンであり、 - D - が単結合であり、 - Eがそれぞれ置換されていてもよいアリール、部分的に水素化され ていない単環芳香族ヘテロ環、若しくは部分的に水素化されていない単環芳香族ヘテロ環 と縮合している環の 1 価基である基; - A - が単結合であり、 - B - が - C O - である基 ;-A-、-B-、-C-及び-D-が単結合であり、-Eがそれぞれ置換されていても よいアリール、部分的に水素化されていない単環芳香族へテロ環、若しくは部分的に水素 化されていない単環芳香族ヘテロ環と縮合している環の1価基である基;を除く。] なお、 - A - における「環状アミンジイル(但し、窒素原子で置換しているものに限る) 」とは、縮合環及びスピロ環を含み、少なくとも1つの窒素原子を有し、さらに窒素、酸 素、硫黄からなる群より選択された同一又は異なるヘテロ原子を1個以上有していてもよ い環員数3~8(縮合環又はスピロ環の場合、環員数は5~15)の芳香族若しくは非芳 香族環状アミンの 2 価基を意味し、少なくとも 1 つ有する窒素原子が直接 A r ¹ に置換し ている基を示す。具体的には例えば、アゼピン、ピロリジン、ピペリジン、ピペラジン、 N - メチルピペラジン、アゼパン、ジアゼパン、N - メチルジアゼパン、モルホリン、チ オモルホリン、イソインドリン、1,4-ジオキサ-8-アザスピロ「4,51デカン、 1 - オキサ - 8 - アザスピロ [4 , 5] デカン、1 - オキサ - 8 - アザスピロ [4 , 5] ウンデカン等の2価基が挙げられる。

- A - における「置換されていてもよい環状アミンジイル」及び、 - E における「それぞれ置換されていてもよいアリール、シクロアルキル、芳香族ヘテロ環若しくは非芳香族ヘテロ環」において許容される置換基としては、上記(a)乃至(h)に示される基、及び上記(a)乃至(g)に示される基で置換されていてもよい低級アルキリデンが挙げられる。

一般式(I)又は(V)で示される本発明の化合物には、置換基の種類によっては、不斉 炭素原子を含む場合があり、これに基づく光学異性体が存在しうる。本発明はこれらの光 学異性体の混合物や単離されたものをすべて包含する。また、本発明化合物は互変異性体 が存在する場合があるが、本発明にはこれらの異性体の分離したもの、あるいは混合物が 含有される。このような互変異性体として、例えば2-ヒドロキシピリジンと2-ピリド ン間の互変異性体が挙げられる。また、ラベル体、即ち、本発明化合物の1つ以上の原子 を放射性同位元素若しくは非放射性同位元素で置換した化合物も本発明に包含される。 また、本発明の化合物は、塩を形成する場合もあり、かかる塩が製薬学的に許容されうる 塩である限りにおいて本発明に包含される。具体的には、塩酸、臭化水素酸、ヨウ化水素 酸、硫酸、硝酸、リン酸などの無機酸や、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン 酸、コハク酸、フマル酸、マレイン酸、乳酸、リンゴ酸、酒石酸、クエン酸、メタンスル ホン酸、エタンスルホン酸、 p - トルエンスルホン酸、アスパラギン酸又はグルタミン酸 などの有機酸との酸付加塩、ナトリウム、カリウム、カルシウム、マグネシウム等の金属 を含む無機塩基、メチルアミン、エチルアミン、エタノールアミン、リジン、オルニチン 等の有機塩基との塩やアンモニウム塩等が挙げられる。さらに、本発明は本発明化合物及 びその製薬学上許容される塩の各種の水和物や溶媒和物及び結晶多形を有する物質も包含 する。なお、本発明化合物には、生体内において代謝されて前記一般式(I)又は(V) を有する化合物又はその塩に変換される化合物、いわゆるプロドラッグもすべて包含され る。本発明のプロドラッグを形成する基としては、Prog.Med.5:2157-2 161(1985)に記載されている基や、廣川書店1990年刊「医薬品の開発」第7 巻 分子設計 163-198ページに記載されている基が挙げられる。

10

20

30

40

30

40

50

製造法

本発明化合物及びその製薬学的に許容される塩は、その基本骨格あるいは置換基の種類に基づく特徴を利用し、種々の公知の合成法を適用して製造することができる。以下に代表的な製法を例示する。なお、官能基の種類によっては、当該官能基を原料ないし中間体の段階で適当な保護基、すなわち容易に当該官能基に転化可能な基に置き換えておくことが製造技術上効果的な場合がある。しかるのち、必要に応じて保護基を除去し、所望の化合物を得ることができる。このような官能基としては例えば水酸基やカルボキシル基、アミノ基などを挙げることができ、それらの保護基としては例えばグリーン(Greene)及びウッツ(Wuts)著、「Protective Groups in Organic Synthesis(third edition)」に記載の保護基を挙げることができ、これらを反応条件に応じて適宜用いればよい。

(第1製法)

又はその反応性誘導体

(式中、R¹、R²、Ar¹は前記と同様の意味を示す。以下同様。)

本製法は、化合物(1 e)又はその反応性誘導体と、化合物(1 d)又はその塩とを、常法によりアミド化し、必要により保護基を除去することにより、本発明化合物(I)又は(V)を製造する方法である。

化合物(1e)の反応性誘導体としては、メチルエステル、エチルエステル、 tert-ブチルエステルなどの通常のエステル;酸クロライド、酸ブロマイドの如き酸ハライド;酸アジド; N-ヒドロキシベンゾトリアゾール、p-ニトロフェノールやN-ヒドロキシスクシンイミド等との活性エステル;対称型酸無水物;アルキル炭酸、p-トルエンスルホン酸などとの混合酸無水物等が挙げられる。

また、化合物(1 e)を遊離酸で反応させるとき、あるいは活性エステルや酸ハライドを 単離せずに反応させるときなどは、ジシクロヘキシルカルボジイミド、カルボニルジイミ ダゾール、ジフェニルホスホリルアジド、ジエチルホスホリルシアニドや1 - エチル - 3 - (3 - ジメチルアミノプロピル)カルボジイミド塩酸塩(WSC・HCl)などの縮合 剤、ピリジン溶媒中オキシ塩化リンを用いて反応させるのが好適である。

反応は使用する反応性誘導体や縮合剤によっても異なるが、通常ジクロロメタン、ジクロロエタン、クロロホルムなどのハロゲン化炭化水素類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;エーテル、テトラヒドロフラン(THF)などのエーテル類;酢酸エチルなどのエステル類;アセトニトリル、N,N・ジメチルホルムアミド(DMF)やジメチルスルホキシド(DMSO)などの反応に不活性な有機溶媒中、冷却化、冷却乃至室温下あるいは室温乃至加熱下に行われる。

なお、反応に際して、化合物(1e)を過剰に用いたり、N-メチルモルホリン、トリメチルアミン、トリエチルアミン、N,N-ジメチルアニリン、ピリジン、4-(N,N-ジメチルアミノ)ピリジン、ピコリン、ルチジンなどの塩基の存在下に反応させるのが、反応を円滑に進行させる上で有利な場合がある。また、ピリジン塩酸塩、ピリジンp-ト

ルエンスルホン酸塩、N,N-ジメチルアニリン塩酸塩などの弱塩基と強酸からなる塩を用いてもよい。ピリジンは溶媒とすることもできる。

特に、アセトニトリル、DMF等の溶媒中、ピリジン、N,N-ジメチルアニリン等の塩基を用いて、又はピリジンを溶媒として用いて反応させるのが好適である。

この反応に用いられる原料化合物(1 d) は、化合物(1 a) の 5 位をハロゲン化することにより化合物(1 b) を合成し、次いで化合物(1 c) を作用させることにより製造できる(必要なら任意の段階で保護基を除去する)。なお、化合物(1 b) は単離することなく次の反応に用いることもできる。

ハロゲン化の工程で用いられるハロゲン化剤としては、芳香環上水素のハロゲン置換反応に通常用いられるハロゲン化剤であればいずれでもよく、塩素、臭素などのハロゲン単体や、ジオキサンジプロミド、フェニルトリメチルアンモニウムトリプロミド、ピリジニウムヒドロプロミドペルプロミド、ピロリドンヒドロトリプロミドなどのピリジン、 - ピロリドン、4級アンモニウム、ジオキサン等の過臭化物等が好適に用いられるが、N-ブロモコハク酸イミドやN-クロロコハク酸イミド等のイミド系ハロゲン化剤、塩化水素、臭化水素等のハロゲン化水素酸、臭化銅(II)、塩化銅(II)等の八口ゲン化銅(II)等の金属試薬を用いることもできる。

ハロゲン化剤としてハロゲン単体若しくは過臭化物を用いる場合は、ハロゲン化炭化水素類;エーテル類;メタノール(MeOH)、エタノール(EtOH)、2・プロパノール、エチレングリコール等のアルコール類;芳香族炭化水素類;酢酸;酢酸エチル(EtOAc)等のエステル類などの反応に不活性な有機溶媒中において化合物(1a)に作用させればよい。このとき、必要により少量のハロゲン化水素などの触媒の存在下で行ってもよく、反応温度は・30 乃至使用する溶媒の還流温度で行うのが好ましい。

ハロゲン化剤として、ハロゲン化水素を用いる場合には、その酸性溶液若しくは水酸化ナトリウム水溶液等の塩基性溶液中において化合物(1a)に作用させることにより行うことができ、このときの反応温度は・30 乃至使用する溶媒の還流温度で行うのが好ましい。また、金属試薬を用いる反応は、通常、化合物(1a)をハロゲン化炭化水素類、エーテル類、アルコール類、芳香族炭化水素類、酢酸、エステル類などの反応に不活性な有機溶媒又は水又はこれらの混合溶媒に溶解し試薬を作用させ、必要により少量のハロゲン化水素などの触媒の存在下で、室温乃至加熱下に実施するのが有利である。

このようにして得られた化合物(1 b)に対し、DMF、N-メチル-2-ピロリドン、DMSO等の非プロトン性極性溶媒、ハロゲン化炭化水素類、エーテル類、芳香族炭化水素類などの反応に不活性な有機溶媒又は水又はこれらの混合溶媒中、化合物(1 c)を作用させることにより、化合物(1 d)が合成される。このときの反応温度は室温乃至使用する溶媒の還流温度で行うのが好ましい。

なお、反応に際して、化合物(1c)を過剰に用いたり、N-メチルモルホリン、トリエチルアミン、ジエチルイソプロピルアミン、N,N-ジメチルアニリン、ピリジン、4-(N,N-ジメチルアミノ)ピリジン、ピコリン、ルチジンなどの塩基の存在下に反応させるのが、反応を円滑に進行させる上で有利な場合がある。

(第2製法)

10

20

30

40

50

本製法は、第1製法に示した方法で合成される化合物(1b)と化合物(1e)又はその反応性誘導体とを常法によりアミド化し、化合物(2a)を合成し、次いで化合物(1c)を作用させ、必要により保護基を除去することにより、本発明化合物(I)又は(V)を製造する方法である。

いずれの工程も第1製法に示した方法を適用することができる。

さらに、式(I)又は式(V)で示されるいくつかの化合物は、以上のように得られた化合物から公知のアルキル化、アシル化、置換反応、酸化、還元、加水分解等、当業者が通常採用しうる工程を任意に組み合わせることにより製造することもできる。

このようにして製造された本発明化合物は、遊離のまま、又は常法による造塩処理を施し、その塩として単離・精製される。単離・精製は抽出、濃縮、留去、結晶化、濾過、再結晶、各種クロマトグラフィー等の通常の化学操作を適用して行われる。

各種の異性体は異性体間の物理化学的性質の差を利用して常法により単離できる。例えば ラセミ混合物は、例えば酒石酸等の一般的な光学活性酸とのジアステレオマー塩に導き光 学分割する方法などの一般的なラセミ体分割法により、光学的に純粋な異性体に導くこと ができる。また、ジアステレオ混合物は、例えば分別結晶化又は各種クロマトグラフィー などにより分離できる。また、光学活性な化合物は適当な光学活性な原料を用いることに より製造することもできる。

産業上の利用可能性

本発明の化合物及びその塩は優れた血小板増多作用を有する。従って、本発明化合物は再生不良性貧血、骨髄異形成症候群における血小板減少症、悪性腫瘍の化学療法、放射線療法による血小板減少症、特発性血小板減少性紫斑病、肝疾患における血小板減少症、HIVによる血小板減少症等、種々の血小板減少症の治療及び/又は予防に有用であり、また、化学療法や放射線療法により血小板減少が生じる可能性がある場合、それらの療法を施す前にあらかじめ投与しておくこともできる。

本発明化合物の薬理作用は以下の試験により確認された。

(i) Lトc-mpl-Ba/F3細胞増殖試験

96ウェルマイクロプレートに、 2×10^5 cells/mlのヒトc-mpl-Ba/F3細胞を、各濃度の被験化合物を添加した10%牛胎児血清含有RPMI1640培地(100 μ l/ウェル)にて37 で培養した。培養開始24時間後にWST-1/1-methoxy PMS(細胞計測キット,同仁)の10 μ l/ウェルを添加した。添加直後及び2時間後にA450/A650の吸光度をマイクロプレートリーダー(Model 3350:Bio-Rad)にて測定し、2時間での吸光度の増加を各被験化合物の増殖活性とした。その結果を表1に示す。

なお、表中の語句は以下の意味を示す。

pot.:実施例9の化合物(実施例9の化合物及びrhTPOにおいてはrhTPO)

20

30

50

の最大細胞増殖活性値の30%の細胞増殖を促進する被験化合物濃度。 Efficacy : 実施例9の化合物(実施例9の化合物及びrhTPOにおいてはrhTPO)の最大細胞増殖活性値を100%としたときの被験化合物の最大細胞増殖活性値。

(表1) 本発明化合物のヒト c-mpl-Ba/F3 細胞増殖作用

被験化合物	pot. [nM]	Efficacy [%]
実施例9	10	87
実施例16	2.4	93
実施例66	14	99
実施例103	18	97
実施例214	15	106
実施例250	6.7	87

(表1続き)

被験化合物 pot. [nM] Efficacy [%] 実施例272 3.3 96 実施例276 8.7 100 実施例280 4.9 107 実施例328 9.0 88 比較化合物1 4.4 101 比較化合物2 2.1 96 比較化合物3 6.9 96 rhTPO 0.012 100

表中、比較化合物 1 とは、上記特許文献 7 記載の化合物番号 A - 1 の化合物であり、比較化合物 2 とは、上記特許文献 8 記載の化合物番号 A - 1 4 の化合物であり、比較化合物 3 とは、上記特許文献 8 記載の化合物番号 J - 1 4 の化合物である。比較化合物 1 ~ 3 の構造を以下に示す。

比較化合物1

比較化合物2

比較化合物3

上記の結果より、本発明化合物がヒトc - Mplを介したBa/F3細胞増殖作用を有することが確認された。

(i i) 巨核球コロニー形成促進作用測定試験

ヒトCD34 $^+$ 細胞をMegaCult $^{\top}$ M $^-$ C(StemCell Technologies社)を用いて2well chamberスライドにて被験物質存在下で10-14日間、37 で培養した。添付の説明書に従って、脱水、固定した後、抗glycoprotein IIb/IIIa抗体にて染色した。染色された巨核球細胞の3個以上の集団を1コロニーとし、1wellあたりのコロニー数を顕鏡にて測定した。各被験化

合物のEC30値を用量曲線より算出した。

その結果、実施例 9 の化合物の E C $_{3}$ $_{0}$ 値は 1 2 n M 、実施例 6 6 の化合物の E C $_{3}$ $_{0}$ 値は 2 6 n M であった。

以上の結果、本発明化合物は優れた巨核球コロニー形成促進作用を有することが確認された。

(i i i) マウス経口投与試験

雄性ICRマウスに、0.5%メチルセルロース水溶液にて溶解若しくは懸濁させた被験化合物を、100mg/kg又は10mg/kgを経口投与した。投与2時間後に、腹部下大静脈より1/10容3.8%クエン酸ナトリウムを抗凝固剤として採血した。12,000rpmで3分間遠心分離して得られた血漿を56 で30分間加温したものを(1)記載のヒトc-mp1-Ba/F3細胞増殖試験の系に最終濃度10%血漿になるように添加し、細胞増殖活性を測定した。各被験化合物の最大の細胞増殖活性を100%としたときの各血漿の細胞増殖活性(%)を求めた。その結果を表2に示す。

(表 2) 被験化合物を経口投与した後の血漿のヒト c-mpl-Ba/F3 細胞増殖活性

被験化合物	投与量 [mg/kg p.o.]	細胞増殖活性 [%]
実施例16	10	>80%
実施例66	10	61%
実施例214	10	>80%
実施例250	10	>80%
実施例272	10	>80%
実施例276	10	>80%
実施例280	10	>80%
実施例328	10	>80%
比較化合物1	100	<10%
比較化合物2	100	<10%
比較化合物3	100	<10%

上記の結果より、本発明化合物がマウスにて経口活性を有することが確認された。特に、比較化合物では、100mg/kgにおいても経口活性を示さなかったのにもかかわらず、本発明化合物では、10mg/kgにおいても良好な経口活性を有することが見出されたのことは極めて意外であり、これはチアゾール5位の直接結合する窒素原子の導入により達成されたものと考えられる。なお、比較化合物2及び比較化合物3では、実施例化合物と同じ投与量(10mg/kg p.o.)のにおいても細胞増殖活性は<10%であった。

また、ヒト造血幹細胞を移植後、ヒト血小板産生が認められたマウスに対し、本発明化合物を投与することにより、血小板増多活性が認められることが確認された。

本発明の医薬は、一般式(I)又は(V)で示される本発明化合物の1種又は2種以上と、通常製剤化に用いられる、薬剤用単体、賦形剤、その他添加剤を用いて、通常使用されている方法によって調製することができる。投与は錠剤、丸剤、カプセル剤、顆粒剤、散剤、液剤等による経口投与、静注、筋注等の注射剤、又は座剤、経鼻、経粘膜、経皮などによる非経口投与のいずれの形態であってもよい。

本発明による経口投与のための固体組成物としては、錠剤、散剤、顆粒剤等が用いられる。このような固体組成物においては、1種又は2種以上の活性物質が、少なくとも1種の不活性な希釈剤、例えば乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルピロリドン、メタケイ酸アルミン酸マグネシウム等と混合される。組成物は、常法に従って、不活性な希釈剤以外の添加剤、例えばス

10

20

30

テアリン酸マグネシウムのような潤滑剤、繊維素グリコール酸カルシウムのような崩壊剤、ラクトースのような安定化剤、グルタミン酸又はアスパラギン酸のような溶解補助剤等を含有していてもよい。錠剤又は丸剤は必要によりショ糖、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート等の糖衣又は胃溶性若しくは腸溶性のフィルムで被覆してもよい。

経口投与のための液体組成物は、薬剤的に許容される乳濁剤、溶液剤、懸濁剤、シロップ剤、エリキシル剤等を含み、一般的に用いられる不活性な希釈剤、例えば精製水、エタノールを含む。この組成物は不活性な希釈剤以外に湿潤剤、懸濁剤のような補助剤、甘味剤、風味剤、芳香剤、防腐剤を含有していてもよい。

非経口投与のための注射剤としては、無菌の水性又は非水性の溶液剤、懸濁剤、乳濁剤を含有する。水性の溶液剤、懸濁剤としては、例えば注射用蒸留水及び生理食塩水が含まれる。非水性の溶液剤、懸濁剤としては、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油のような植物油、エタノールのようなアルコール類、ポリソルベート80等がある。このような組成物は、さらに防腐剤、湿潤剤、乳化剤、分散剤、例えばラクトースのような安定剤、例えばグルタミン酸やアスパラギン酸のような溶解補助剤等のような補助剤を含んでいてもよい。これらは例えばバクテリア保留フィルターを通す濾過、殺菌剤の配合又は照射によって無菌化される。これらはまた無菌の固体組成物を製造し、使用前に無菌水又は無菌の注射用溶媒に溶解して使用することもできる。

通常経口投与の場合、1日の投与量は、体重あたり約0.0001~50mg/kg、好ましくは約0.001~10mg/kgが適当で、さらに好ましくは0.01~1mg/kgが適当であり、これを1回であるいは2乃至4回に分けて投与する。静脈投与される場合は、1日の投与量は体重あたり約0.001~1mg/kg、好ましくは約0.001~0.1mg/kgが適当で、1日1回乃至複数回に分けて投与する。投与量は症状、年齢、性別等を考慮して個々の場合に応じて適宜決定される。

発明を実施するための最良の形態

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により何ら制限されるものではない。なお、実施例において使用される原料化合物には新規な物質も含まれており、そのような原料化合物の公知物からの製造法を参考例として説明する。 参考例 1

4 - クロロ - 2 - アセチルチオフェン 4 . 1 8 g、ジエチルエーテル 3 0 m 1 の溶液に氷冷下にて臭素 1 . 5 m 1 を加え、室温にて 2 時間攪拌した。反応液に水を加え分液し、得られる有機層を飽和食塩水 (b r i n e) で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去しプロム体を得た。プロム体の E t O H 3 0 m 1 の溶液に室温でチオ尿素 2 . 1 g を加え、 8 0 にて一晩攪拌した。析出する固体をろ過し得られる溶液を減圧留去しクロロホルムを加えた後、炭酸カリウム水溶液(a q)、 b r i n e で有機層を洗浄後、硫酸ナトリウムで乾燥した。溶媒を減圧留去後、得られた残渣をヘキサン: E t O A c = 1 : 1 の溶液で洗浄し、 2 . 5 7 g の 2 - アミノ - 4 - (4 - クロロチオフェン - 2 - イル) チアゾールを得た。

上記参考例 1 の方法と同様にして表 3 に示す参考例 2 ~ 8 を、それぞれ対応する原料を使用して製造した。

なお、表中の記号は以下の意味を示す(以下同様)。

Rf:参考例番号、

Data:物理学的データ(MS: FAB-MS(M+H) $^+$; MN: FAB-MS(M-H) $^-$; MM: FAB-MS(M) $^+$; NMR: (CH $_3$) $_4$ Siを内部標準とし、特に記載がない場合はDMSO-d $_6$ を測定溶媒とする 1 H-NMRにおけるピークの (ppm))、

structure:化学構造、

 R^{-1} 、 R^{-2} 、Ar: 一般式中の置換基(Me: メチル、Et: エチル、nPr: ノルマルプロピル、nBu: ノルマルブチル、tBu: ターシャリーブチル、cHex: シクロヘキシル、cHep: シクロヘプチル、allyl: アリル、Ph: フェニル、Bn: ベン

10

20

30

40

20

30

40

> (表3) S NH₂

 R^1 Rf Data 1 4-C1-2-The MS:217. 2 5-Cl-3-The MS:217. 3 5-F-2-The MS:201. 4 3-F-2-The MS;201. 5 5-Me-2-The MS:197. 6 4-Me-2-The MS:197. 7 4-F-5-Cl-2-The MS:235. 8 4-F-2-The MS;201.

参考例 9

を示す。

2 - P = J - 4 - (4 - D) + D 2 - P = J - 4 - (4 - D) + D 3 - D = D 3 - D = D 3 - D = D 3 - D = D 3 - D = D = D 3 - D = D = D 3 - D = D = D 3 - D = D = D 3 - D = D = D 3 - D = D = D 3 - D = D = D 3 - D = D = D 3 - D = D

上記参考例 9 の方法と同様にして表 4 に示す参考例 1 0 ~ 4 0 を、それぞれ対応する原料を使用して製造した。

参考例 4 1

参考例1の化合物0.5g、DMF5mlの溶液に氷冷下にてN-ブロモスクシンイミド0.45gを加え、同温にて50分間攪拌した。反応液にシクロヘキシルピペラジン0.6g、トリエチルアミン0.6mlを順に加え、70 にて3日間攪拌した。反応液を減圧留去しクロロホルムを加えた後、炭酸カリウムaq、brineで有機層を洗浄後、硫酸ナトリウムで乾燥した。溶媒を減圧留去後、得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン・EtOAc=1:1)にて精製し、300mgの2-アミノ・4-(4-クロロチオフェン・2-イル)・5-(4-シクロヘキシルピペラジン・1-イル)チアゾールを得た。

上記参考例41の方法と同様にして表4に示す参考例42~71を、それぞれ対応する原料を使用して製造した。

$$R^2$$
 S NH_2 R^1 N

Rf	R ¹	R ²	Data
9	4-F-Ph	4-cHex-pipa	MS;361.
10	4-F-Ph	4-nPr-pipe	MS;320.

(表4続き)

Rf	R ¹	R ²	Data
11	4-F ₃ C-Ph	4-cHex-pipa	MS;411.
12	4-O ₂ N-Ph	4-cHex-pipa	MS;388.
13	4-Me ₂ N-Ph	4-cHex-pipa	MS;386.
14	4-cyano-Ph	4-cHex-pipa	MS;368.
15	4-EtO ₂ C-Ph	4-cHex-pipa	MS;415.
16	3-F ₃ C-Ph	4-cHex-pipa	MM;410.
17	3-cyano-Ph	4-cHex-pipa	MS;368.
18	4-F-Ph	4-nPrO-pipe	MS;336.
19	4-F-Ph	4-mor-pipe	MS;363.
20	5-Cl-2-The	N.	MM;339.
21	5-Me-2-Fur	4-cHex-pipa	MS;347.
22	3-Cl-2-The	4-cHex-pipa	MS;383.
23	5-Cl-3-The	4-cHex-pipa	MS;383.
24	5-Cl-2-The	4-cHex-pipa	MS;383.
25	5-Br-2-The	4-cHex-pipa	MS;427,429.
26	5-Me-2-The	4-cHex-pipa	MS;363.
27	3-F-2-The	4-сНех-ріра	MS;367.
28	5-Cl-2-The	4-nPr-pipe	MS;342.
29	4-F-Ph	(MeO(CH ₂) ₂)(Me)N-	MS;282.
30	4-F-Ph	((cHex)(Me)N(CH ₂) ₂)(Me)N-	MS;363.
31	4-F-Ph	(Me ₂ N(CH ₂) ₂)(Me)N-	MS;295.
32	4-F-Ph	(Me ₂ N(CH ₂) ₃)(Me)N-	MS;309.
33	4-F-Ph	(pipe-(CH ₂) ₂)(Me)N-	MS;335.
34	4-F-Ph	4-AcHN-4-Ph-pipe	MS;411.
35	4-F-Ph	imid	MS;261.
36	4-F-Ph	4-Ph-imid	MS;337.
37	4-F-Ph	4-BnO ₂ C-pipa	MS;413.
38	4-F-Ph	4-nBu-2,5-diMe-pipa	MM;362.
39	4-F-Ph	3-(1-pipe)-azet	MS;333.
40	3-Cl-Ph	4-cHex-pipa	MS;377.
41	4-Cl-2-The	4-cHex-pipa	MS;383.
42	5-F-2-The	4-cHex-pipa	MS;367.
43	4-Br-2-The	4-cHex-pipa	MS;427,429.
44	4-Me-2-The	4-cHex-pipa	MS;363.
45	4-Cl-2-The	4-nPr-pipe	MS;342.
46	4-Cl-2-The	(1-nBu-piperidin-4-yl)(Me)N-	MS;385.
47	4-Cl-2-The	4-(allylO ₂ C)-pipa	MS;385.
48	4-Cl-2-The	3-(4-nPr-1-pipe)-azet	MS;397.

10

20

30

(表4続き)

Rf	R ¹	R ²	Data
49	4-Cl-2-The	4-mor-pipe	MS;385.
50	4-Cl-2-The	(1-nBu-pyrrolidin-3-yl)(Me)N-	MS;371.
51	4-CI-2-The	(quinuclidin-3-yl)(Me)N-	MS;355.
52	4-F-5-Cl-2-The	4-cHex-pipa	MS;401.
53	4-Cl-2-The	4-nPr-pipa	MS;343.
54	4-CI-2-The	mor	MS;302.
55	4-F-2-The	4-cHex-pipa	MS;367.
56	4-CI-2-The	(mor-(CH ₂) ₃)(Me)N-	MS;373.
57	4-Cl-2-The	(mor-(CH ₂) ₂)(cHex)N-	MS;427.
58	4-CI-2-The	4-tmor-pipe	MS;401.
59	4-CI-2-The	tmor	MS;318.
60	4-Cl-2-The	3-oxo-pipa	MS;315.
61	4-Cl-2-The	4-(cHex)(Me)N-pipe	MS;411.
62	4,5-diCl-2-The	4-cHex-pipa	MS;417.
63	4-Cl-2-The	4-pipe-pipe	MS;383.
64	4-Cl-2-The	4-(F ₃ C-CH ₂)(Me)N-pipe	MS;411.
65	4-Cl-2-The	(3R*,5S*)-3,5-diMe-4-nPr-pipa	MS;371.
66	4-Cl-2-The	4-сНер-ріра	MS;397.
67	4-Cl-2-The	4-(nPr)(Me)N-pipe	MS;371.
68	4-Cl-2-The	4-(F ₃ C-(CH ₂) ₂)(Me)N-pipe	MS;425.
69	4-Cl-2-The	3-EtO ₂ C-pipe	MS;372.
70	4-Cl-2-The	2-EtO ₂ C-pipe	MS;372.
71	4-Cl-2-The	4-(3-F-pyrr)-pipe	MS;387.

参考例72

参考例 6 9 の化合物 8 3 0 m g の T H F 1 0 m 1、 E t O H 2 m 1 溶液に 1 M N a O H a q 6 m 1 加え、室温で 1 晩攪拌した。溶媒を留去したのち水を加えジエチルエーテルにて抽出した。残った水層に 1 M H C 1 a q を 6 . 5 m 1 加え、生じた沈殿を濾取し減圧下乾燥し、 1 - [2 - アミノ - 4 - (4 - クロロチオフェン - 2 - イル)チアゾール - 5 - イル] ピペリジン - 3 - カルボン酸 7 2 6 m g を得た。

上記参考例72の方法と同様にして表5に示す参考例73を、対応する原料を使用して製造した。

$$R^2$$
 NH_2 N

Rf	R ¹	R ²	Data
72	4-Cl-2-The	3-HO ₂ C-pipe	MS;344.
73	4-Cl-2-The	2-HO ₂ C-pipe	MS;344.

10

20

30

参考例 7 4

参考例 7 2 の化合物 6 8 3 m g の D M F 2 0 m 1 溶液に 1 - ヒドロキシベンゾトリアゾール(H O B t) 3 5 9 m g、 W S C ・ H C 1 5 0 6 m g、 ジメチルアミン塩酸塩 4 3 2 m g、 トリエチルアミン 1 . 1 1 m 1 を加え室温で一晩攪拌した。減圧下溶媒を留去したのち飽和 N a H C O $_3$ a q を加え、生じた沈殿物を濾取した。このものをクロロホルムに溶解し、飽和 N a H C O $_3$ a q を加え、クロロホルムで抽出した。 M g S O $_4$ で乾燥後、溶媒を留去し、得られた残渣をクロロホルム: M e O H (1 0 0 : 1 ~ 5 0 : 1)を溶出溶媒とするシリカゲルカラムクロマトグラフィーにより精製し 1 - [2 - アミノ - 4 - (4 - クロロチオフェン - 2 - イル)チアゾール - 5 - イル] - N , N - ジメチルピペリジン - 3 - カルボキサミド 6 2 8 m g を得た。

上記参考例74の方法と同様にして表6に示す参考例75を、対応する原料を使用して製造した。

(表 6)

$$R^2$$
 NH_2 NH_2

Rf	R ¹	R ²	Data
74	4-Cl-2-The	3-Me ₂ NOC-pipe	MS;371.
75	4-Cl-2-The	2-Me ₂ NOC-pipe	MS;371.

参考例 7 6

参考例74の化合物608mgのTHF10m1溶液をLAH143mgのTHF10m 1 懸濁液に加え、1晩加熱還流した。室温まで冷却し、水0.14m1、2M NaOHa q 0 .14m1、水0.42m1を加えた。生じた沈殿を濾去し、減圧下溶媒を留去し得られた得られた残渣をクロロホルム:MeOH(20:1)を溶出溶媒とするシリカゲルカラムクロマトグラフィーにより精製し、2-アミノ・4-(4-クロロチオフェン・2-イル)-5-{3-[(ジメチルアミノ)メチル]ピペリジン-1-イル}チアゾール156mgを得た。

上記参考例76の方法と同様にして表7に示す参考例77を、対応する原料を使用して製造した。

(表 7)

$$R^2$$
 NH_2

Rf	R ¹	R^2	Data
76	4-Cl-2-The	3-(Me ₂ N-CH ₂)-pipe	MS;357.
77	4-Cl-2-The	2-(Me ₂ N-CH ₂)-pipe	MS;357.

参考例 7 8

3 - クロロ - 4 - ヒドロキシ安息香酸メチルエステル2 . 5 0 g、 D M F 2 5 m l 溶液に炭酸カリウム2 . 7 8 g、 2 - (tert-ブチルジメチルシリルオキシ)エチルブロミド4 . 3 1 m l を加え5 0 で1 5 時間加熱攪拌した。反応液を留去しEtOAcを加え、水、brineにて有機層を洗浄後、硫酸ナトリウムで乾燥した。溶媒を留去後、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン - EtOAc=10:1~5:1)にて精製し、4 . 8 8 g の 4 - [2 - (tert-ブチルジメチルシリルオキシ)エトキシ] - 3 - クロロ安息香酸メチルエステルを得た。

上記参考例78の方法と同様にして表8に示す参考例79~89を、それぞれ対応する原

20

30

10

40

料を使用して製造した。

参考例90

3 - クロロ - 4 - ヒドロキシ安息香酸メチルエステル 1 . 5 g 、 T H F 2 0 m l の溶液に 1 - t e r t - ブトキシ - 2 - プロパノール 1 . 8 m l 、トリフェニルホスフィン 3 . 1 6 g、ジエチルアゾジカルボキシレート1 . 9 m l を加え、室温下 1 時間攪拌した。反 応液を減圧留去後、得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキ サン - E t O A c = 1 0 0 : 1 ~ 5 : 1) にて精製し、2 . 3 g の 4 - (1 - t e r t -ブトキシ・2 - プロポキシ) - 3 - クロロ安息香酸メチルエステルを得た。

上記参考例90の方法と同様にして表8に示す参考例91~93を、それぞれ対応する原 料を使用して製造した。

参考例 9 4

6 - キノリンカルボン酸4.0gをMeOH30m1に縣濁させ、氷冷下にて濃硫酸2. 0 m 1 を加え、 7 0 にて 2 2 時間攪拌した。反応液を減圧下濃縮し水を加え、炭酸カリ ウムで中和することで析出する固体をろ過、乾燥することで6-キノリンカルボン酸メチ ルエステル4 . 2 8 g を得た。得られたエステル体 0 . 5 g をホルムアミド 5 m l に溶解 させ、室温にて濃硫酸 0 . 1 5 m l 、硫酸鉄 7 水和物 0 . 0 5 g 、 3 1 % 過酸化水素水 0 .4m1を順に加え、80 にて50分間攪拌した。反応液に水を加え、炭酸カリウムで アルカリ性にした。10%MeOH-クロロホルムを加え、不溶物をセライトろ過した。 得られたろ液を分液し、得られる有機層を無水硫酸ナトリウムで乾燥し、濃縮することに よって得られる残留物をEtOHで洗浄することによって6・メトキシカルボニル・2・ キノリンカルボキサミドを 0 . 15 g を得た。

5 - メチルピラゾール - 3 - カルボン酸エチルエステル1 . 9 6 g 、 D M F 4 0 m l 溶液 に炭酸カリウム2.64g、3-(tert-ブチルジメチルシリルオキシ)プロピルブ ロミド3.53mlを加え50 で18時間加熱攪拌した。反応液を留去しEtOAcを 加え、水、brineにて有機層を洗浄後、硫酸ナトリウムで乾燥した。溶媒を留去後、 残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン・EtOAc=15:1 ~5:1)にて精製し、1.39gの1-[3-(tert-プチルジメチルシリルオキ シ) プロポキシ] - 5 - メチルピラゾール - 3 - カルボン酸エチルエステルを得た。

3 - クロロ - 4 - ホルミル安息香酸メチルエステル 0 . 5 0 g、塩化メチレン 1 0 m 1 溶 液に酢酸0.5m1、2.メトキシエチルアミン0.3m1、トリアセトキシボロヒドリ ド 0 . 8 5 g を加え室温で 1 日間攪拌した。反応液に水を加え、炭酸カリウムで中和後、 EtOAcを加え、水、brineにて有機層を洗浄後、硫酸ナトリウムで乾燥した。溶 媒を留去することによって、ベンジルアミン体を得た。

ベンジルアミン体のTHF10m1溶液にジ・tert - ブチルジカーボネート0.70 gを加え室温で一晩攪拌した。反応液を留去後、残渣をシリカゲルカラムクロマトグラフ ィー(溶離液:ヘキサン - E t O A c = 1 0 : 1 ~ 8 : 1) にて精製し、0 . 8 7 gのN - (2-クロロ-4-メトキシカルボニルベンジル) - N - (2-メトキシエチル)カル バミン酸tert‐ブチルエステルを得た。

上記参考例96の方法と同様にして表8に示す参考例97を、対応する原料を使用して製 造した。

参考例98

3,4,5-トリフルオロ安息香酸1.52g、ジクロロメタン15ml溶液に、氷冷下 塩化オキザリル0.92m1を加え、同温にて30分間、さらに室温にて80分間攪拌し た。DMFを数滴加えた後、室温で1時間攪拌した。溶媒を減圧下留去し得られた残渣に 氷冷下ピリジン20m1、2-tert-ブトキシエタノール3.40m1、DMAPス パチュラ1杯を加え、室温下1晩攪拌した。反応液を減圧留去後、飽和NaHCOュaa を加え、EtOAcで抽出し、水、brineにて洗浄後、MgSOᇪで乾燥した。減圧 下溶媒を留去し、粗製の3,4,5-トリフルオロ安息香酸2-tert-ブトキシエチ 10

20

30

40

ルエステルを 2.10g 得た。 tert-ブトキシカリウム 1.03g の THF15m1 溶液に氷冷下 2-tert-ブトキシエタノール 1.50m1 を加え、そのまま 40 分間 攪拌した。反応液を -78 に冷却し、粗製の 3,4,5-トリフルオロ安息香酸 2-tert-ブトキシエチルエステル 2.10g の THF5m1 溶液を加え、氷冷下 1 時間、室温で 30 分間 攪拌した。飽和塩化アンモニウム aq を加え、EtOAc で抽出し、水、brine にて洗浄後、 $MgSO_4$ で乾燥した。減圧下溶媒を留去し得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン -EtOAc=100:1~20:1)にて精製し、2.24g の 4-(2-tert-プトキシエトキシ) <math>-3,5-ジフルオロ安息香酸 2-tert-プトキシエチルエステルを得た。

参老例 Q C

上記参考例 9 9 の方法と同様にして表 8 に示す参考例 1 0 0 ~ 1 0 8 を、それぞれ対応する原料を使用して製造した。

参考例109

3 - クロロ - 4 - (4 - ヒドロキシピペリジノ)安息香酸メチルエステル0.70g、塩化メチレン15ml溶液に2,6 - ルチジン1.5ml、tert - ブチルジメチルシリルトリフレート2.7gを加え室温で2週間攪拌した。反応液にEtOAcを加え、水、brineにて有機層を洗浄後、硫酸ナトリウムで乾燥した。溶媒を留去後、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン-EtOAc=50:1)にて精製し、0.93gの4-(4-tert-ブチルジメチルシリルオキシピペリジノ)-3-クロロ安息香酸メチルエステルを得た。

参考例110

1 - (4 - エトキシカルボニル - 2 - フルオロフェニル)ピペリジン - 4 - カルボキサミド1 . 5 0 g、THF 2 0 m 1 溶液に - 7 8 でトリエチルアミン 2 . 0 m 1、トリフルオロ酢酸無水物 0 . 9 m 1を加え室温で 6 時間攪拌した。反応液を留去しEtOAcを加え、水、brineにて有機層を洗浄後、硫酸ナトリウムで乾燥した。溶媒を留去後、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン - EtOAc=5:1~4:1)にて精製し、1 . 4 3 gの 4 - (4 - シアノピペリジノ) - 3 - フルオロ安息香酸エチルを得た。

参考例111

N-(4-tert-プトキシカルボニル-2-フルオロフェニル)イソニペコチン酸エチルエステル <math>0.50g、DMF5m1溶液にN-クロロスクシンイミド <math>0.21gを加え室温で 1 日間攪拌した。反応液を留去後、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン-EtOAc=5:1~1:1)にて精製し、0.51gのN-(4-tert-プトキシカルボニル-2-クロロ-6-フルオロフェニル)イソニペコチン酸エチルエステルを得た。

上記参考例111の方法と同様にして表8に示す参考例112~113を、それぞれ対応 する原料を使用して製造した。 10

20

30

(表8)

(表 8 Rf	structure	Data	
78	C) MeO ₂ C—O OTBS	MS;345.	
79	EtO ₂ C——F	MS;243	
80	MeO ₂ C — O OMe	MS;245.	10
81	Br EtO ₂ C—O_OTBS	MS;403,405.	
82	EtO ₂ C—CI O_OTBS	NMR(CDCl ₃);0.05-0.13(6H,m),0.82-0.93(9H,m), 1.40(3H,t,J=7.1Hz),3.97(2H,t,J=5.1Hz),4.28-4.34 (2H,m),4.37(2H,q,J=7.1Hz),7.68(1H,dd,J=2.0,11. 6Hz),7.87(1H,t,J=2.0Hz)	
83	EtO ₂ C-COTBS	MS;393.	20
84	CI MeO ₂ C — O_OTBS	MS;359.	
85	MeO ₂ C———O—OMe	GC-MS(M) ⁺ ;214.	
86	MeO ₂ C——O—OMe	MS;231.	30
87	EtO ₂ C N OtBu	MS;343.	
88	EtO ₂ C OTBS	MS;339.	40

(表 8 続き)

Rf	structure	Data	
89	MeO ₂ C OTBS	MS;339.	
90	MeO ₂ C — O OtBu	MS;301.	10
91	EtO ₂ C	MS;285.	
92	CI EtO ₂ C-O	MS;271	20
93	CI O O	NMR(CDCl ₃);1.38(3H,t,J=6.0Hz),1.41(3H,s),1.47 (3H,s),4.00-4.23(4H,m),4.33(2H,q,J=6.0Hz),4.48- 4.56(1H,m),6.96(1H,d,J=8.7Hz),7.92(1H,dd,J=2.0 ,8.7Hz),8.05(1H,d,J=2.0Hz).	
94	MeO ₂ C————————————————————————————————————	MS;231.	
95	EtO ₂ C — Me N-N OTBS	MS;327.	30
96	MeO ₂ C N Boc OMe	MS;358.	
97	MeO ₂ C N-Boc	MS;339.	40

(表8続き)

Rf	就さり structure	Data	
98	tBuO OtBu	MS;375.	
99	$tBuO_2C - \hspace{-2em} \begin{array}{c} CI \\ \\ \hspace{-2em} - \hspace{-2em} \hspace{-2em} - \hspace{-2em} - \hspace{-2em} \\ \hspace{-2em} - \hspace{-2em} - \hspace{-2em} - \hspace{-2em} - \hspace{-2em} \\ \hspace{-2em} - \hspace{-2em} $	MS;368	
100	AllylO ₂ C-\Begin{array}{c} -\CO_2Et	MS;318.	10
101	MeO ₂ C NO	MS;312	
102	$\begin{array}{c c} & \text{CI} \\ & \text{MeO}_2\text{C} - \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ \\ \end{array} \\ \begin{array}{c} & \\ \\ \end{array} \\ \begin{array}{c} & \\ \\ \end{array} \\ \\ \begin{array}{c} & \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} & \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\$	MS;297	
103	MeO ₂ C—OH	MS;269	20
104	tBuO ₂ C N CO ₂ Et	MS;352	
105	EtO ₂ C—CONH ₂	MS;295	
106	MeO ₂ C NH	MS;239.	30
107	AllylO F CO ₂ Et	MS;354.	
108	AllylO F CONH ₂	MS;325.	40

(表8続き)

Rf	structure	Data
109	MeO ₂ C—OTBS	MS;384
110	EtO ₂ C—CN	MS;277
111	$tBuO_2C - \bigvee_{CI} F \\ CO_2Et$	MS;386
112	EtO ₂ C CI	MS;311
113	MeO ₂ C N N-Boc	MS;373.

参考例114

参考例 7 8 の化合物 2 . 1 6 g、Me O H 2 0 m 1 - T H F 1 5 m 1 溶液に 1 M Na O H a q 7 . 5 m 1 を加え、室温にて 3 日間攪拌した。反応液を留去し、 5 % 硫酸水素カリウム a q を加え酸性にした後、クロロホルム - 2 - プロパノール(3 : 1)にて抽出した。有機層を b r i n e にて洗浄後、硫酸ナトリウムで乾燥、溶媒を留去し、 4 - [2 - (tert-ブチルジメチルシリルオキシ)エトキシ] - 3 - クロロ安息香酸 1 . 1 7 gを得た。

上記参考例114の方法と同様にして表9に示す参考例115~138を、それぞれ対応する原料を使用して製造した。

参考例139

3 , 4 , 5 - トリフルオロベンゾイルクロリド 1 . 5 6 g に、2 - メトキシエタノール 6 . 3 2 m 1 、炭酸セシウム 6 . 5 3 g を加え、1 0 0 にて 2 0 時間攪拌した。反応液に T H F 5 0 m 1 を加え、濾過、濾液を留去し、無色固体 4 . 3 6 g を得た。このものを T H F 1 5 m 1 に溶解し、2 - メトキシエタノール 3 . 1 6 m 1 、カリウム t e r t - ブトキシド 1 . 3 5 g を加え、室温にて 4 日間攪拌した。反応液に 5 %硫酸水素カリウム a q を加えた後、E t O A c にて抽出し、有機層を b r i n e にて洗浄後、硫酸ナトリウムで乾燥、溶媒を留去し、3 , 5 - ジフルオロ - 4 - (2 - メトキシエトキシ)安息香酸 1 . 7 6 g を得た。

参考例140

参考例94の化合物0.3gをTHF-MeOH混合溶媒10ml(1:1)に縣濁させ、室温にて1M NaOHaq1.5mlを加え、同温にて3日間攪拌した。反応液を減圧下濃縮し、水を加え1M HClaq1.5mlで中和することによって得られる固体を3過、乾燥することで2-カルバモイルキノリン-6-カルボン酸0.29gを得た。参考例141

参考例130の化合物410mg、ピリジン10m1溶液に無水酢酸0.24m1を加え 室温で15時間攪拌した。反応液を留去しEtOAcを加え、1M HC1aq、水、b rineにて有機層を洗浄後、硫酸ナトリウムで乾燥した。溶媒を留去後、残渣をシリカ 10

20

30

40

ゲルカラムクロマトグラフィー(溶離液:クロロホルム - M e O H = 1 0 0 : 1 ~ 5 0 : 1)にて精製し、3 5 1 m g の 4 - [2 - (アセチルオキシ)エトキシ] - 3 - メチル安息香酸を得た。

上記参考例141の方法と同様にして表9に示す参考例142を、対応する原料を使用して製造した。

参考例 1 4 3

2 - クロロイソニコチン酸 2 . 0 0 g に、エチレングリコール 1 5 m 1 、カリウム t e r t - ブトキシド 4 . 2 8 g を加え、 1 5 0 にて 6 日間攪拌した。反応液を 5 %硫酸水素カリウム a q にあけた後、 E t O A c にて抽出し、有機層を b r i n e にて洗浄後、 M g S O 4 で乾燥、溶媒を留去し、 2 - (2 - ヒドロキシエトキシ)イソニコチン酸 0 . 5 4 g を得た。

参考例144

 $1 - \{4 - [(アリルオキシ)カルボニル]フェニル \} ピペリジン - 4 - カルボン酸エチルエステル4 . 7 4 gのTHF75m <math>1$ 溶液にモルホリン 2 . 1 0 m 1 、テトラキス(トリフェニルホスフィン)パラジウム 3 9 0 m gを加え、 6 0 で 1 . 5 時間攪拌した。減圧下溶媒を留去したのちEtOAcを加え、飽和NaHCO $_3$ a q に濃HC1 を加え、生じた沈殿を濾取し減圧下乾燥し、 4 - [4 - (エトキシカルボニル)ピペリジン - 1 - 1 - 1 子の書を酸 1 の 1

上記参考例144の方法と同様にして表9に示す参考例145を、対応する原料を使用して製造した。

参考例 1 4 6

参考例 9 9 の化合物 1 . 4 2 g を塩化メチレン 5 m 1 に溶解させ、氷冷下にてトリフルオロ酢酸 5 m 1 を加え、室温にて 1 日間攪拌した。反応液を減圧下濃縮し、水を加え N a O H a q で中和することによって得られる固体をろ過、乾燥することで 3 - クロロ - 4 - (4 - エトキシカルボニルピペリジノ)安息香酸 1 . 1 6 g を得た。

上記参考例146の方法と同様にして表9に示す参考例147を、対応する原料を使用して製造した。

参考例148

参考例 1.4.4 の化合物 1.1.2 g の D M F 2.0 m 1 溶液にN - プロモスクシンイミド 7.7 5 m g を加え、室温で 7.0 分間、 5.0 で 2 時間攪拌した。減圧下溶媒を留去したのち水を加え生じた沈殿を濾取した。飽和 N a H C O $_3$ a q 、 E t O A c 、 H C 1 を加えた後クロロホルムで抽出し、M g S O $_4$ で乾燥した。減圧下溶媒を留去し得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム - メタノール = 1.0.0 : 1.0 にて精製し、 3.0 で 1.0 にて精製し、 1.0 で 1.0 で 1.0 に 1.0 で 1.0 の 1.0 の 1.0 で 1.0 の 1.0 で 1.0 の 1.0 で 1.0 の 1.0 の 1.0 で 1.0 の 1.0 で 1.0 の 1.0 で 1.0 の 1.0 で 1.0 の 1.0 の 1.0 で 1.0 の 1.0

(表 9)

Rf	structure	Data
114	CI HO ₂ C-\bigcore O_OTBS	MN;329.
115	HO ₂ C-OOMe	MN;213.
116	CI HO ₂ C — O OMe	MN;229.

20

10

30

Rf	り続き) structure	Data	
117	Br HO ₂ C O OTBS	MN;373,375.	
118	HO ₂ C-CI O_OTBS	NMR(CDCl ₃);0.05-0.15(6H,m),0.85-0.92(9H,m),3 .97(2H,t,J=5.2Hz),4.32-4.37(2H,m),7.73(1H,dd,J= 2.0,11.2Hz),7.93(1H,t,J=2.0Hz).	
119	CI HO ₂ C-COTBS	MN;363.	10
120	HO ₂ C-CI	MN;343.	
121	HO ₂ C-Cl OtBu	MS;287.	
122	HO ₂ C-OMe	MN;199.	20
123	CI HO ₂ C-OMe	MS;217.	
124	HO ₂ C N-N OTBS	MN;297.	
125	HO ₂ C O	MS;257.	30
126	HO ₂ C O	MN;241	

Rf	がださり structure	Data	
127	HO ₂ C	NMR(CDCl ₃);1.41(3H,s),1.48(3H,s),4.00-4.25(4H,m),4.49-4.58(1H,m),6.99(1H,d,J=8.7Hz),7.99(1H,dd,J=2.0,8.7Hz),8.12(1H,d,J=2.0Hz).	
128	HO ₂ C N OtBu	MS;316.	10
129	HO ₂ C N Boc OMe	MN;342	
130	HO ₂ C OH	NMR(CD ₃ OD);2.17(3H,s),3.77-3.85(2H,m),3.97-4 .06(2H,m),6.86(1H,d,J=8.7Hz),7.68-7.78(2H,m).	
131	HO OtBu	MN;273.	20
132	HO ₂ C OTBS	MS;338.	
133	HO ₂ C — O	MN;296	30
134	HO ₂ C — OTBS	MN;368	
135	HO ₂ C CONH ₂	MN;281	40

Rf	structure	Data	
136	$\begin{array}{c c} & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	MS;285.	
137	HO ₂ C—CN	MN;281	10
138	HO ₂ C N N-Boc	MS;359.	
139	HO ₂ C OMe	MN;231.	
140	HO ₂ C — CONH ₂	MN;215.	20
141	HO ₂ C OAc	MS;239.	
142	HO ₂ C—OAc	MS;226.	30
143	HO ₂ C — OH	NMR;3.72(2H,t,J=5.0Hz),4.31(2H,t,J=5.0Hz),4.82 (1H,brs),7.18(1H,d,J=1.3Hz),7.38(1H,dd,J=5.1,1.3 Hz),8.31(1H,d,J=5.1Hz),13.56(1H,brs).	
144	HO ₂ C—CO ₂ Et	MS;278.	
145	F F F F F F	MS;314.	40

Rf	structure	Data
146	HO_2C \longrightarrow $-CO_2Et$	MN;310.
147	HO_2C N CO_2Et	MN;328
148	HO_2C N CO_2Et	MN;354,356.

参考例149

参考例 9 の化合物 2 . 0 0 g 、 4 - ホルミル安息香酸 1 . 1 4 g 、 D M F 3 0 m 1 の溶液 に、N-ヒドロキシベンゾトリアゾール(HOBt)992mg、WSC・HCl1.3 9 g を加え室温で一晩攪拌した。反応液を減圧留去後、飽和NaHCO¸a q を加え、ク ロロホルムで抽出、有機層をMgSO₄で乾燥後、溶媒を留去し、得られた残渣をクロロ ホルム:MeOH(100:1~30:1)を溶出溶媒とするシリカゲルカラムクロマト グラフィー及びヘキサン:EtOAc(5:1~1:1)を溶出溶媒とするシリカゲルカ ラムクロマトグラフィーにより精製し1.32gのN-[5-(4-シクロヘキシルピペ ラジン・1 - イル) - 4 - (4 - フルオロフェニル)チアゾール - 2 - イル] - 4 - ホル ミルベンズアミドを得た。

上記参考例149の方法と同様にして表10に示す参考例150を、対応する原料を使用 して製造した。

(表10)

Rf	structure	Data
149	N N O CHO	MS;493.

(表10続き)

Rf	structure	Data
150	EtO ₂ C OMe	MS;550.

実施例1

参考例9の化合物300mg、ピリジン5m1の溶液に氷冷下で4-シアノベンゾイルク ロリド280mgを加え、室温に昇温後3日間攪拌しその後50 で1日間攪拌した。反 応液を減圧留去しクロロホルムを加えた後、飽和NaHCOaag、brineで有機層 を洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧留去後、得られた残渣をEtOAcか 10

20

30

40

ら再結晶することで230mgのN-[5-(4-シクロヘキシルピペラジン-1-イル)-4-(4-フルオロフェニル)チアゾール-2-イル]-4-シアノベンズアミドを得た。この化合物80mgのEtOAc5ml溶液に、0.4M HCl-EtOAc溶液を0.4ml加え一晩攪拌した後ろ過し、57mgのN-[5-(4-シクロヘキシルピペラジン-1-イル)-4-(4-フルオロフェニル)チアゾール-2-イル]-4-シアノベンズアミド塩酸塩を得た。

実施例2

実施例3

参考例 2 8 の化合物 3 4 2 m g 、 D M F 1 0 m 1 溶液に、 2 - メトキシイソニコチン酸 3 0 6 m g 、 W S C ・ H C 1 3 8 3 m g 、 H O B t 2 7 0 m g 、 4 - (ジメチルアミノ)ピリジン 2 4 4 m g を加え、 5 0 にて 3 日間攪拌した。反応液を留去、 E t O A c を加え、 飽和 N a H C O $_3$ a q 、 b r i n e にて洗浄後、硫酸ナトリウムで乾燥した。溶媒を留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン - E t O A c = 8 : 1)に て精製、このものを E t O A c 3 0 m 1 に溶解し、 0 . 1 M H C 1 - E t O A c 溶液を 4 . 1 m 1 加えしばらく攪拌した後、 析出物を濾取、 1 2 0 m g の N - [4 - (5 - クロロチオフェン - 2 - イル) - 5 - (4 - プロピルピペリジン - 1 - イル)チアゾール - 2 - イル 1 - 2 - メトキシイソニコチンアミド塩酸塩を得た。

宝施例4

参考例 7 8 の化合物 1 . 7 2 g 、 M e O H 1 7 m l - T H F 1 0 m l の混合溶媒の溶液に 1M NaOHaq6mlを加え、室温にて3日間攪拌した。反応液に1M HClaq 5.5m1を加えた後、溶媒を減圧留去し、4-[2-(tert-ブチルジメチルシリ ルオキシ)エトキシ] - 3 - クロロ安息香酸の粗生成物を得た。このものに参考例 7 8 の 化合物 7 2 0 mg、 DMF 2 0 ml、 WSC·HCl 9 5 9 mg、 HOB t 6 7 6 mg、 4 - (ジメチルアミノ)ピリジン 6 1 1 mgを加え、5 0 にて 2 2 時間、9 0 0時間攪拌した。反応液を留去し、飽和NaHCO3aqを加えた後、EtOAcにて抽 出し、有機層を、飽和NaHCOgaq、brineにて洗浄後、硫酸ナトリウムで乾燥 した。溶媒を留去後、残渣をクロロホルム - M e O H (100:1~10:1)を溶出溶 媒とするシリカゲルカラムクロマトグラフィー及びヘキサン:EtOAc(2:1~1: 1)を溶出溶媒とするシリカゲルカラムクロマトグラフィーにて精製、3-クロロ-4-{ 2 - [3 - クロロ - 4 - (2 - ヒドロキシエトキシ)ベンゾイルオキシ]エトキシ} -N - [5 - (4 - シクロヘキシルピペラジン - 1 - イル) - 4 - (4 - フルオロフェニル) チアゾール - 2 - イル] ベンズアミド 3 8 m g を得た。このものに、M e O H 0 . 5 m 1、THF1m1、1M NaOHaq225μ1を加え、室温にて5日間攪拌した。反 応液にEtOAcを加えた後、飽和NaHCO₃aq、brineにて洗浄後、硫酸ナト リウムで乾燥した。溶媒を留去後、残渣をシリカゲルカラムクロマトグラフィー(クロロ ホルム - M e O H = 1 0 0 : 0 ~ 1 0 0 : 2) にて精製、このものをEtOAc5mlに 溶解し、0.1M HC1-EtOAc溶液を1.0m1を加えしばらく攪拌した後、析 出物を濾取、18mgの3-クロロ・N-[5-(4-シクロヘキシルピペラジン-1-イル) - 4 - (4 - フルオロフェニル) チアゾール - 2 - イル] - 4 - (2 - ヒドロキシ エトキシ)ベンズアミド塩酸塩を得た。

実施例5

10

20

30

20

30

40

50

参考例 4 1 の化合物 1 . 0 g、ピリジン 3 0 m 1 の溶液に、 5 , 6 - ジクロロニコチン酸 6 0 2 m g を加え、 - 2 5 においてオキシ塩化リン 0 . 2 7 m 1 を加え、室温に昇温後 4 時間攪拌した。反応液を減圧留去し、水、炭酸カリウムを加えた後、クロロホルムにて抽出、有機層を b r i n e で洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧留去後、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン - E t O A c = 2 0 0 : 1 ~ 1 0 0 : 1)にて精製し、 1 . 2 1 g の 5 , 6 - ジクロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] ニコチンアミドを得た。

実施例6

実施例 2 4 6 の化合物 1 0 0 m g の E t O H 5 m l 溶液に、 4 M H C 1 - E t O A c 溶液を 0 . 2 m l 加え、 2 7 時間攪拌した。反応液にクロロホルムを加えた後、飽和 N a H C O 3 a q、 b r i n e で有機層を洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧留去後、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム - M e O H = 1 0 0 : 1 ~ 5 : 1)にて精製、このものを M e O H 1 5 m l に溶解し、 4 M H C 1 - E t O A c 溶液を 1 0 m l 加えしばらく攪拌した後、溶媒を減圧留去、ジエチルエーテルで洗浄し 2 8 m g の 5 - クロロ・N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル] - 6 - ヒドロキシニコチンアミド塩酸塩を得た。

実施例7

実施例233の化合物183mgにトリフルオロ酢酸を5m1加え40時間攪拌後、溶媒を減圧留去、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム-MeOH=100:1~20:1)にて精製し、50mgの3-クロロ-N-[4-(4-クロロチオフェン-2-イル)-5-(4-シクロヘキシルピペラジン-1-イル)チアゾール-2-イル]-4-(1-ヒドロキシ-2-プロポキシ)ベンズアミドトリフルオロ酢酸塩を得た。

実施例8

実施例218の化合物0.34gをMeOH5mlに縣濁させ、氷冷下にて濃HCllmlを加え50で一晩攪拌した。反応液にさらに濃HCl0.5mlを加え、50にて5時間攪拌し、60にて一晩攪拌した。反応液を室温まで放冷し、析出する固体をろ過、乾燥することでN-[4-(4-クロロチオフェン-2-イル)-5-(4-シクロヘキシルピペラジン-1-イル)チアゾール-2-イル]-3-フルオロ-4-ヒドロキシベンズアミド塩酸塩0.33gを得た。

実施例9

実施例230の化合物187mgをMeOH10mlに溶解し、濃HClを3.5ml加え18時間攪拌した後、析出物を濾過、ジエチルエーテルで洗浄し90mgの3-クロロ-N-[4-(4-クロロチオフェン-2-イル)-5-(4-シクロヘキシルピペラジン-1-イル)チアゾール-2-イル]-4-(2-ヒドロキシエトキシ)ベンズアミド塩酸塩を得た。

実施例10

実施例 1 0 1 の化合物 5 . 2 3 gの T H F 1 0 0 m 1 溶液に 0 にて、水素化トリブチルスズ 1 7 . 0 gを加え、 - 7 8 に冷却、テトラキス(トリフェニルホスフィン)パラジウム 6 7 0 m gを加え、徐々に室温まで昇温し 1 . 5 時間攪拌した。反応液に酢酸 1 . 6 m 1 を加え、室温で 1 5 分間攪拌後、減圧下溶媒を留去、得られた残渣にヘキサンを加え、析出物を濾取、減圧下乾燥し 4 . 3 0 gの N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (ピペラジン - 1 - イル)チアゾール - 2 - イル] - 2 - メトキシイソニコチンアミド酢酸塩を得た。

実施例11

実施例136の化合物0.15gをTHF5.0mlに溶解させ、-78 にてプチルリチウム(1.55M)を計1.3ml加え、同温にてのべ4時間半攪拌し、原料の消失を確認した。酢酸0.5mlを加え反応を止め、室温まで昇温した。反応液に水を加え、炭

酸カリウムでアルカリ性として、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を濃縮することによって得られる残留物をシリカゲルカラムクロマトグラフィーで精製することによってN-[5-(4-シクロヘキシルピペラジン・1-イル)-4-(チオフェン・2-イル)チアゾール・2-イル]-2-メトキシイソニコチンアミド 0.12gを得た。得られた化合物をEtOAc2m1に溶解させ、氷冷下にて1MHC1-EtOAc溶液 0.25m1を加え、室温にて一晩攪拌した。析出する固体をろ過、乾燥することによってN-[5-(4-シクロヘキシルピペラジン・1-イル)-4-(チオフェン・2-イル)チアゾール・2-イル]-2-メトキシイソニコチンアミド塩酸塩98mgを得た。

実施例12

40%水素化ナトリウム 48 m g、 エチレングリコール 1 m 1 の溶液に、 室温下、実施例 5 の化合物 100 m g を加え、 50 に昇温後 4 日間攪拌した。反応液にクロロホルムを 加えた後、飽和 N a H C O $_3$ a q、 b r i n e で有機層を洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧留去後、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム - M e O H = 200:1~20:1)にて精製、このものを E t O A c 5 m 1 に溶解し、 0.1 M H C 1 - E t O A c 溶液を 0.8 m 1 加えしばらく攪拌した後、溶媒を 減圧留去、ジエチルエーテルで洗浄し、 34 m 1 g 1 の 1 -

実施例13

実施例 5 の化合物 7 5 0 m g、 T H F 1 0 m 1 の溶液に、室温下イソニペコチン酸エチル 2 . 1 m 1 を加え、5 0 に昇温後 5 時間攪拌した。反応液にクロロホルムを加えた後、飽和 N a H C O $_3$ a q、 b r i n e で有機層を洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧留去後、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム - M e O H = 2 0 0 : 1 ~ 1 0 0 : 1)にて精製し、8 8 1 m g の 1 - (3 - クロロ - 5 - { [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル]カルバモイル } - 2 - ピリジル)ピペリジン - 4 - カルボン酸エチルエステルを得た。

実施例14

実施例 1 0 の化合物 2 3 1 m g、ベンズアルデヒド 8 0 μ 1 を 1 , 2 - ジクロロエタン 9 m 1 - 酢酸 3 m 1 に溶解し、 0 で酢酸水素化ホウ素ナトリウムを 2 1 0 m g を加え、 0 で 3 0 分間、室温で 3 0 分間攪拌した。反応液に飽和 N a H C O $_3$ a q、 1 M N a O H a q を加え、アルカリ性にした後、クロロホルムにて抽出した。有機層を M g S O $_4$ で乾燥後、溶媒を減圧留去し、得られた残渣に酢酸 5 m 1、ベンズアルデヒド計 1 6 0 μ 1、酢酸水素化ホウ素ナトリウムを計 4 0 4 m g を加え、 5 0 で 4 時間攪拌した。溶媒を減圧留去し、得られた残渣に飽和 N a H C O $_3$ a q を加え、不溶物を濾取した。 クロロホルムを加え溶解し、飽和 N a H C O $_3$ a q を加え、クロロホルムにて抽出した。 有機層を M g S O $_4$ で乾燥後、溶媒を減圧留去し、得られた残渣にをシリカゲルカラムクロマトグラフィー(ヘキサン - E t O A c = 4 : 1)により精製した。このものを E t O A c に溶解後、 0 . 5 M H C 1 - E t O A c 溶液を加え、 析出物を濾取、 6 4 m g の N - [5 - (4 - ベンジルピペラジン - 1 - イル) - 4 - (4 - クロロチオフェン - 2 - イル)チアゾール - 2 - イル] - 2 - メトキシイソニコチンアミド塩酸塩を得た。

実施例15

実施例 2 4 3 の化合物 0 . 3 5 g、 E t O A c 5 m 1 の溶液に、氷冷下 4 M H C 1 - E t O A c を加え、室温で 1 日間攪拌した。析出する固体をろ過することで 3 4 5 m g の 4 - アミノメチル - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル]ベンズアミド塩酸塩を得た。

宝施例16

実施例13の化合物30mg、MeOH1m1の溶液に、室温下1M NaOHa q 0. 12mlを加え、24時間攪拌した。反応液を減圧留去後、得られた残渣をEtOAc5 10

20

20

40

20

30

40

50

(40)

m1に溶解し、1 M H C 1 a q 0 . 2 m 1 を加えしばらく攪拌した後、溶媒を減圧留去、ジエチルエーテルで洗浄し、2 0 m g の 1 - (3 - クロロ - 5 - { [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル]カルバモイル}ピリジン - 2 - イル)ピペリジン - 4 - カルボン酸塩酸塩を得た。

実施例17

実施例 1 4 3 の化合物 1 8 0 m g、 D M F 5 m 1 懸濁液に 1 , 1 , - カルボニルジイミダゾール 1 0 0 m g を加え、室温で 4 時間攪拌後、 2 8 % アンモニア水 1 m 1 を加え、室温で 1 時間半攪拌した。反応液に水を加えクロロホルムにて抽出した。 有機層を M g S O $_4$ で乾燥後、溶媒を減圧留去、 得られた残渣をエタノールで洗浄した。 このものを E t O H に懸濁後、 1 M H C 1 - E t O A c 溶液 0 . 3 5 m 1 を加え一晩攪拌し析出物を濾取、 1 5 1 m g の N - [4 - (4 - フルオロフェニル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 4 - カルバモイルメチルベンズアミド塩酸塩を 得た。

実施例18

実施例 1 4 7 の化合物 1 3 8 m g に水 3 m 1 、濃 H C 1 3 m 1 を加え 8 0 で 1 7 時間攪拌した。反応液を室温まで冷却後、沈殿を濾取し、水で洗浄、このものに 1 M N a O H a q、M e O H、ジエチルエーテルを加え、不溶物を濾去、得られた濾液をジエチルエーテル抽出後、水層に濃 H C 1 を加え、析出物を濾取、減圧下乾燥し 1 0 1 m g の N - [5 - (4 - シクロヘキシルピペラジン - 1 - イル) - 4 - (4 - フルオロフェニル)チアゾール - 2 - イル] - 4 - [(3,4 - ジオキソ - 2 - ヒドロキシシクロブタ - 1 - エン - 1 - イル)アミノ] ベンズアミド塩酸塩を得た。

実施例19

実施例198の化合物430mgに水15m1、濃HC115m1を加え80 で3.5時間攪拌した。反応液を0 に冷却後、水50m1加え、沈殿物を濾取、減圧下乾燥し101mgのN-[5-(4-シクロヘキシルピペラジン-1-イル)-4-(4-フルオロフェニル)チアゾール-2-イル]-2,3-ジヒドロキシキノキサリン-6-カルボキサミド塩酸塩を得た。

実施例20

参考例149の化合物100mg、MeOH5mlの溶液に、0 下水素化ホウ素ナトリウム24mgを加え室温で1時間攪拌、DMF2mlを加え1時間攪拌、水素化ホウ素ナトリウム36mgを加えさらに1時間攪拌した。反応液を1M HClagに注いだ後、飽和NaHCO₃agにて溶液をアルカリ性にし、クロロホルムで抽出、有機層をMgSO4で乾燥した。溶媒を減圧留去後、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム・MeOH=100:1~20:1)にて精製し、このものをEtOAcに溶解後、0.5M HC1・EtOAc溶液を加え、析出物を濾取し、73mgのN・[5・(4・シクロヘキシルピペラジン・1・イル)・4・(4・フルオロフェニル)チアゾール・2・イル]・4・ヒドロキシメチルベンズアミド塩酸塩を得た。

実施例21

実施例141の化合物279mg、トルエン10m1懸濁液にアジ化トリブチルスズ1.81gを加え、14時間加熱還流した。ジエチルエーテル、1M NaOHaa、EtOAc、濃HC1を加え、生じた沈殿を濾取、減圧下乾燥後、1M NaOHaa、MeOHを加え溶解し、ジエチルエーテルで洗浄した。0 冷却下水層に濃HC1を加え、析出物を濾取、138mgのN-[5-(4-シクロヘキシルピペラジン-1-イル)-4-(4-フルオロフェニル)チアゾール-2-イル]-4-(1H-テトラゾール-5-イルメチル)ベンズアミドを得た。

実施例22

実施例149の化合物0.15gをTHF10mlに溶解させ、氷冷下にてトリエチルアミン0.1ml、クロロ蟻酸メチル40mgのTHF2ml溶液を順に加え、室温で一晩攪拌した。反応液を濃縮し、水を加え、EtOAcで抽出した。得られる有機層をbri

20

30

40

50

neで洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を濃縮することによって得られる残留物をEtOAcから再結晶することによってN-[5-(4-シクロヘキシルピペラジン-1-イル)-4-(4-フルオロフェニル)チアゾール-2-イル]-4-(メトキシカルボニルアミノメチル)ベンズアミド0.12gを得た。得られた化合物をEtOAc5m1に縣濁させ、氷冷下にて0.4M HCl-EtOAc溶液0.6m1を加え一晩攪拌した。析出する固体をろ過、乾燥することによって115mgのN-[5-(4-シクロヘキシルピペラジン-1-イル)-4-(4-フルオロフェニル)チアゾール-2-イル]-4-(メトキシカルボニルアミノメチル)ベンズアミド塩酸塩を得た。実施例23

実施例149の化合物0.15gをTHF5m1に縣濁させ、氷冷下にてトリエチルアミン0.2m1、メタンスルホニルクロライド35mgのTHF2m1溶液を順に加え、室温で3時間攪拌した。反応液を濃縮し、水を加え、EtOAcで抽出した。得られた有機層をbrineで洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を濃縮することによってN‐[5‐(4‐シクロヘキシルピペラジン‐1‐イル)‐4‐(4‐フルオロフェニル)チアゾール‐2‐イル]‐4‐(メタンスルフォニルアミノメチル)ベンズアミド0.12gを得た。得られた化合物をEtOAc5m1に縣濁させ、氷冷下、1M-HC1‐EtOAc溶液0.2m1を加え一晩攪拌した。析出する固体をろ過、乾燥することによって11mgのN‐[5‐(4‐シクロヘキシルピペラジン‐1‐イル)‐4‐(4‐フルオロフェニル)チアゾール‐2‐イル]‐4‐(メタンスルフォニルアミノメチル)ベンズアミド塩酸塩を得た。

実施例24

実施例 1 6 8 の化合物 5 7 m g、ピリジン 2 m 1 溶液に 0 において塩化オキソ酢酸メチル 1 8 μ 1 を加え、 0 から室温にて 2 時間攪拌した。減圧下溶媒を留去後、飽和 N a H C O $_3$ a q を加え、クロロホルムにて抽出、有機層を M g S O $_4$ で乾燥後、溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム - M e O H = 1 0 0 : 1)により精製した。このものにジイソプロピルエーテルを加え、析出物を濾取、 1 9 m g のメチル N - (4 - { [5 - (4 - シクロヘキシルピペラジン - 1 - イル) - 4 - (4 - フルオロフェニル) チアゾール - 2 - イル] カルバモイル } フェニル) オキサマートを得た。

実施例25

実施例 1 6 8 の化合物 7 1 m g 、 D M F 5 m 1 の懸濁液に、 3 - メトキシプロピオン酸 7 1 m g 、 H O B t 1 2 0 m g 、W S C ・H C 1 1 8 0 m g を加え、室温から 5 0 にてのべ 2 9 日間攪拌した。減圧下溶媒を留去後、飽和 N a H C O $_3$ a q を加え、クロロホルムにて抽出、有機層を M g S O $_4$ で乾燥後、溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム・M e O H = 1 0 0 : 1 ~ 5 0 : 1)にて精製した。さらに M e O H 、 1 M H C 1 a q を加えた後、O D S カラムクロマトグラフィー(0 . 0 0 1 M H C 1 a q ・ M e O H = 2 : 1 ~ 1 : 1)にて精製後、飽和 N a H C O $_3$ a q を加え、クロロホルムで抽出した。有機層を M g S O $_4$ で乾燥後、溶媒を留去、ジイソプロピルエーテルを加え、生じた析出物を濾取、20 m g の N ・ [5 - (4 - シクロヘキシルピペラジン・1 - イル)・4 - (4 - フルオロフェニル)チアゾール・2 - イル] ・ 4 - [(3 - メトキシプロパノイル)アミノ] ベンズアミドを得た。

実施例26

実施例 8 3 の化合物 1 . 0 0 g の酢酸 1 5 m 1 溶液に水酸化パラジウム - 炭素(2 0 重量%)を計 8 8 6 m g 加え、水素雰囲気下、のべ 2 日間攪拌した。反応液をセライト濾過後、酢酸を留去、得られた残渣に飽和 N a H C O $_3$ a q を加え、析出物を濾取、減圧下乾燥し 5 0 5 m g の N - [4 - (4 - フルオロフェニル) - 5 - (ピペラジン - 1 - イル)チアゾール - 2 - イル] - 2 - メトキシイソニコチンアミドを得た。

実施例27

実施例26の化合物202mg、炭酸カリウム207mg、DMF15m1懸濁液に0

20

30

40

50

実施例28

実施例 5 6 の化合物 1 7 8 m g のクロロホルム 4 m 1 溶液に氷冷下m - クロロ過安息香酸(m C P B A) 9 0 m g を加え、室温で一晩攪拌した。 M e O H、飽和 N a H C O $_3$ a q 、クロロホルムを加え、不溶物を濾去したのち、クロロホルムで抽出した。 M g S O $_4$ で乾燥後、溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム - M e O H = 3 0 0 : 1 ~ 1 0 0 : 1)により精製した。このものをEtOAcに懸濁し、 0 . 5 M H C 1 - EtOAc溶液を加え、析出物を濾取し、 N - [4 - (4 - クロロ - 2 - チエニル) - 5 - (1 - オキシドチオモルホリノ)チアゾール - 2 - イル] - 2 - メトキシイソニコチンアミド塩酸塩 3 9 m g を得た。

実施例29

実施例 7 5 の化合物 1 8 5 m g の酢酸 4 m 1 溶液に過酸化水素水(3 0 %) 1 0 0 μ 1 を加え、室温で一晩攪拌した。飽和 N a H C O $_3$ a q 、 1 M N a O H a q 、 1 M H C 1 a q を加え、生じた沈殿を濾取した。このものにクロロホルム、M e O H を加え溶解したのち飽和 N a H C O $_3$ a q を加え、クロロホルムで抽出した。M g S O $_4$ で乾燥後、溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム・M e O H = 3 0 0 : 1 ~ 1 0 0 : 1)により精製した。このものを E t O A c に懸濁し、 0 . 5 M H C 1 - E t O A c 溶液を加え、析出物を濾取し、N - { 4 - (4 - クロロチオフェン - 2 - イル) - 5 - [4 - (1 - オキシドチオモルホリノ)ピペリジノ]チアゾール - 2 - イル } - 2 - メトキシイソニコチンアミド塩酸塩 4 7 m g を得た。

実施例3 0

参考例 4 1 の化合物 2 6 8 m g、ピリジン 8 m 1 の溶液に、参考例 1 2 7 の化合物 2 4 1 m g を加え、 - 2 5 下オキシ塩化リン 7 2 μ 1 を加え、 室温に昇温後 1 . 5 時間攪拌した。反応液を減圧留去し、水、炭酸カリウムを加えた後、クロロホルムにて抽出、有機層を b r i n e で洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧留去後、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム - M e O H = 2 0 0 : 1 ~ 1 0 0 : 1) にて精製し、このものを E t O A c に溶解後、 0 . 1 M H C 1 - E t O A c 溶液を加え、析出物を濾取し、 1 3 7 m g の 3 - クロロ - N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル) チアゾール - 2 - イル] - 4 - (2 , 3 - ジヒドロキシプロポキシ) ベンズアミド塩酸塩を得た。

実施例31

実施例 2 4 4 の化合物 1 3 2 m g、M e O H 5 m l の溶液に、炭酸カリウム 6 1 m g を加え、室温で 1 . 5 時間攪拌した。反応液を減圧留去し、水を加えた後、クロロホルムにて抽出、有機層を b r i n e で洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧留去後、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム - M e O H = 2 0 0 : 1 ~ 5 0 : 1)にて精製し、このものを E t O A c に溶解後、 0 . 1 M H C l - E t O A c 溶液を加え、析出物を濾取し、 7 7 m g の N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル] - 4 - (2 - ヒドロキシエトキシ) - 3 - メチルベンズアミド塩酸塩を得た。

実施例32

実施例 5 6 の化合物 2 5 5 m g のクロロホルム 1 0 m l 溶液にm C P B A 3 0 3 m g を加え、室温で 3 日間攪拌した。 M e O H、飽和 N a H C O $_3$ a q、クロロホルムを加え、不溶物を濾去したのち、クロロホルムで抽出した。 M g S O $_4$ で乾燥後、溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム - M e O H = 3 0

20

30

40

50

0:1)により精製した。このものを E t O A c に懸濁し、 0 . 5 M H C 1 - E t O A c 溶液を加え、析出物を濾取し、N - [4 - (4 - クロロ - 2 - チエニル) - 5 - (1 , 1 - ジオキシドチオモルホリノ)チアゾール - 2 - イル] - 2 - メトキシイソニコチンアミド塩酸塩 1 3 0 m g を得た。

実施例33

実施例 2 1 0 の化合物 0 . 3 5 g、 D M F 1 5 m 1 溶液に室温で、トリエチルアミン 0 . 2 m 1、ジフェニルフォスフィノフェロセン 3 2 m g、酢酸パラジウム 1 3 m g を加え、一酸化炭素雰囲気下 7 0 で一日間攪拌した。減圧下溶媒を留去後、水を加え、クロロホルムにて抽出、有機層をM g S O 4 で乾燥後、溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム - M e O H = 1 0 0 : 0 ~ 9 8 : 2)により精製した。このものをM e O H 5 m 1 に溶解し、4 M H C 1 - E t O A c 溶液 0 . 1 m 1 を加え、析出物を濾取、1 0 2 m g の N - [4 - (4 - クロロ - 2 - チエニル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル] - 2 - メトキシカルボニルキノリン - 6 - カルボキサミド塩酸塩を得た。

実施例34

実施例 2 1 3 の化合物 0 . 2 7 g、トリフルオロ酢酸 1 0 m 1 溶液に室温で、ペンタメチルベンゼン 0 . 3 6 gを加え、室温で 6 日間攪拌した。減圧下溶媒を留去後、水を加え、炭酸カリウムで中和した。クロロホルムにて抽出、有機層を M g S O $_4$ で乾燥後、溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム - M e O H = 1 0 0 : 0 ~ 9 7 : 3)により精製した。このものを E t O A c 5 m 1 に溶解し、1 M H C 1 - E t O A c 溶液 0 . 4 7 m 1 を加え、析出物を濾取、1 4 8 m g の N - [4 - (4 - クロロ - 2 - チエニル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル] - 7 - ヒドロキシキノリン - 3 - カルボキサミド塩酸塩を得た。実施例 3 5

実施例 2 1 7 の化合物 0 . 3 0 g、M e O H 5 m l 溶液に室温で、濃 H C l 2 . 0 m l を加え、7 0 で 3 日間攪拌した。室温まで放冷し、析出物を濾取、1 2 2 m g の 4 - アミノ・3 - クロロ・N - [4 - (4 - クロロ・2 - チエニル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イル)チアゾール - 2 - イル] ベンズアミド塩酸塩を得た。

実施例36

実施例 5 の化合物 3 5 0 m g に、 D M F 5 m 1、ピペリジン - 4 - イル酢酸エチルエステル 0 . 5 m 1、トリエチルアミン 1 . 0 m 1を加え 8 0 にて 8 . 5 時間攪拌した。反応液を留去し、水 4 0 m 1を加え、クロロホルムにて抽出し、有機層を b r i n e で洗浄した後、硫酸ナトリウムで乾燥、溶媒を留去した。このものに E t O H 1 0 m 1を加え溶解し、室温で 1 M N a O H a q 0 . 5 m 1を加え室温にて 2 日間攪拌したのち、 1 M N a O H a q 0 . 5 m 1を加え室温にて 5 時間攪拌した。反応液に室温で 1 M H C 1 a q 3 m 1を加えしばらく攪拌し、析出した固体を濾過、乾燥することによって 5 8 m g の [1 - (3 - クロロ - 5 - { [4 - (4 - クロロ - 2 - チェニル) - 5 - (4 - シクロへキシルピペリジン - 1 - イル)チアゾール - 2 - イル] カルバモイル } - 2 - ピリジル) - 4 - ピペリジル] 酢酸塩酸塩を得た。

実施例37

20

30

40

50

イル)チアゾール - 2 - イル]カルバモイル } - 2 - ピリジル)ピペラジン - 1 - カルボキサミド塩酸塩を得た。

実施例38

実施例 3 3 1 の化合物 1 . 2 0 g、 T H F 4 0 m 1 0 paragraphing properties at the second properties of the second the second prope

実施例39

実施例16の化合物300mg、THF6m1の溶液に、N・メチルモルホリン56μ1を加え、-15 にてクロロぎ酸イソブチル60μ1を加え2時間攪拌した。このものにメタンスルホンアミド219mg、THF4m1の溶液に、水素化ナトリウム74mgを加え室温下2時間攪拌した懸濁液に加え、室温にて2時間、50 にて20時間攪拌した。反応液を室温まで冷却し、析出した固体をろ取、THFにて洗浄した後、シリカゲルカラムクロマトグラフィー(クロロホルム-MeOH=100:0~5:1)にて精製した。このものをEtOHに懸濁させ、0.4M HC1-EtOAc溶液を加え、析出物を濾取、119mgの5-クロロ-N-[4-(4-クロロチオフェン-2-イル)-5-(4-シクロヘキシルピペラジン-1-イル)チアゾール-2-イル]-6-[4-N-メタンスルフォニルカルバモイル)ピペリジン-1-イル]ニコチンアミド塩酸塩を得た

実施例40

実施例16の化合物300mg、THF6m1の溶液に、N-メチルモルホリン56μ1を加え、-15 にてクロロぎ酸イソブチル60μ1を加え1.5時間攪拌した。このものに、メタンスルホンアミド96mg-THF4m1溶液、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン348μ1を加え室温下19時間、50 にて2日間攪拌した。反応液に飽和NaHC〇₃aqを加えた後、EtOAcにて抽出、brineで有機層を洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧留去後、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-THF=2:1~0:1)にて精製後、さらにシリカゲルカラムクロマトグラフィー(クロロホルム-MeOH=100:0~100:3)にて精製した。このものをクロロホルム-EtOHに溶解させ、0.1M HC1-EtOAc溶液を加え、溶媒を減圧留去、EtOH-ジエチルエーテルを加え析出物を濾取、30mgの5-クロロ-N-[4-(4-クロロチオフェン-2-イル)-5-(4-シクロヘキシルピペラジン-1-イル)チアゾール-2-イル]-6-(4-(3-[2-(メタンスルフォニルイミノ)アゼピン-1-イル]プロピルアミノカルボニルリジン-1-イル)ニコチンアミド塩酸塩を得た。

実施例41

実施例 1 6 の化合物の T H F 溶液(0 . 0 8 5 6 m M) 1 . 8 m 1 に、サルコシンエチルエステル塩酸塩 7 0 m g、 P S - D C C (1 . 3 5 m m o 1 / g) 3 4 2 m g、 H O B tの T H F 溶液(0 . 7 7 m M) 0 . 2 m 1、トリエチルアミン 6 0 μ 1 を加え、室温で一晩攪拌した。反応液に T H F 2 m 1、 P S - イソシアナート(1 . 2 5 m m o 1 / g) 3 7 0 m g、 P S - トリスアミン(3 . 7 5 m m o 1 / g) 2 0 5 m g を加え、室温で 1 時

間攪拌した。反応混合物を濾過し、得られた残渣をシリカゲルカラムクロマトグラフィー (クロロホルム - MeOH = 99:1~97:3)で精製した。このものをEtOAc2 m1に溶解し、室温で4M HCl-EtOAc1mlを加え、15分間攪拌し、析出し た固体を濾取した。このものをEtOH2mlに溶解し、室温で1M NaOHag0. 2 m l を加え、5 0 で 1 6 0 分攪拌したのち、室温で 1 M H C l a q 0 . 6 m l を加 え一晩攪拌した後、析出した固体を濾取し、49mgの「{「1-(3-クロロ-5-{ 「4-(4-クロロ-2-チエニル)-5-(4-シクロヘキシルピペラジン-1-イル) チアゾール - 2 - イル] カルバモイル } - 2 - ピリジル) - 4 - ピペラジル] カルボニ ル } (メチル)アミノ]酢酸塩酸塩を得た。

実施例42

実施例16の化合物のTHF溶液(0.0856mM)1.8mlに、モルホリン39m

g、PS-DCC(1.35mmol/g)342mg、HOBtのTHF溶液(0.7 7 m M) 0 . 2 m 1 を加え、室温で一晩攪拌した。反応液にTHF2m1、PS-イソシ アナート(1.25mmol/g)370mg、PS-トリスアミン(3.75mmol /g)205mgを加え、室温で1時間攪拌した。反応混合物を濾過し、得られた残渣を シリカゲルカラムクロマトグラフィー(クロロホルム - M e O H = 9 9 : 1 ~ 9 7 : 3) で精製した。このものをEtOAc2mlに溶解し、室温で4M HC1-EtOAc1 m 1 を加え、 1 5 分間攪拌し、析出した固体を濾取し、 8 4 m g の 5 - クロロ・N - [4 - (4 - クロロチオフェン - 2 - イル) - 5 - (4 - シクロヘキシルピペラジン - 1 - イ ル) チアゾール - 2 - イル] - 6 - [4 - (モルホリノカルボニル)ピペリジノ]ニコチ ンアミド塩酸塩を得た。

20

10

以下の表11~21に、実施例化合物の構造と物理的性状を示す。なお、表中の記号は以 下の意味を示す(以下同様)。

Ex:実施例番号(Exの欄に実施例番号のみが記載されている場合、その化合物が塩酸 塩であることを示し、実施例番号のあとに斜線(/)及び記号が記載されている場合、そ れぞれ、/AcOH:酢酸塩;/TFA:トリフルオロ酢酸塩;/free:フリー体; を示す)、Svn;製造方法(数字はその番号を実施例番号として有する実施例と同様に 合成したことを示す)、

30

R^A, R^B, R^C, R^D, R^E, R^F, R^G, R^H, R^I: 一般式中の置換基(n P e n : ノルマルペンチル、 c P e n : シクロペンチル、 v i n y l : ビニル、 n a p h : ナフ チル、Ms:メタンスルホニル、oxo:オキソ、Py:ピリジル)pra:ピラゾール - 3 - イル、 t t r z : テトラゾール - 5 - イル、 b i m i d : ベンゾイミダゾール - 1 - イル、oxido:オキシド、di及びtri:それぞれジ及びトリ(2つ又は3つの 該置換基が置換していることを示す)を示す。

(表11)

Ex	R ^A ; R ^B ; R ^C	Data
1	R ^A :4-cyano-Ph; R ^B :4-F-Ph; R ^C :4-cHex-pipa	490.
2	R ^A :2-MeO-4-py; R ^B :5-Cl-2-The; R ^C :4-cHex-pipa	518.
3	R ^A :2-MeO-4-py; R ^B :5-Cl-2-The; R ^C :4-nPr-pipe	477.
4	R ^A :3-Cl-4-HO(CH ₂) ₂ O-Ph; R ^B :4-F-Ph; R ^C :4-cHex-pipa	559.
5/free	R ^A :5,6-diCl-3-py; R ^B :4-Cl-2-The; R ^C :4-cHex-pipa	556.
6	R ^A :5-Cl-6-HO-3-py; R ^B :4-Cl-2-The; R ^C :4-cHex-pipa	538.
7/TFA	R ^A :3-Cl-4-HOCH ₂ CH(Me)O-Ph; R ^B :4-Cl-2-The; R ^C :4-cHex-pipa	595.
8	R ^A :3-F-4-HO-Ph; R ^B :4-Cl-2-The; R ^C :4-cHex-pipa	521.
9	R^A :3-Cl-4-HO(CH ₂) ₂ O-Ph; R^B :4-Cl-2-The; R^C :4-cHex-pipa	581.
10/AcOH	R ^A :2-MeO-4-py; R ^B :4-Cl-2-The; R ^C :pipa	436.
11	R ^A :2-MeO-4-py; R ^B :2-The; R ^C :4-cHex-pipa	484.
12	R ^A :5-Cl-6-HO(CH ₂) ₂ O-3-py; R ^B :4-Cl-2-The; R ^C :4-cHex-pipa	582.
13/free	R ^A :5-Cl-6-(4-(EtO ₂ C)-pipe)-3-py; R ^B :4-Cl-2-The; R ^C :4-cHex-pipa	677.
14	R ^A :2-MeO-4-py; R ^B :4-CI-2-The; R ^C :4-Bn-pipa	526.
15	R ^A :4-H ₂ NCH ₂ -Ph; R ^B :4-Cl-2-The; R ^C :4-cHex-pipa	516.
16	R^A :5-Cl-6-(4-(HO ₂ C)-pipe)-3-py; R^B :4-Cl-2-The; R^C :4-cHex-pipa	649.
17	R ^A :4-((H ₂ NOC)-CH ₂)-Ph; R ^B :4-F-Ph; R ^C :4-cHex-pipa	522.
18	R ^A : O O ; R ^B :4-F-Ph ; R ^C :4-cHex-pipa	576.
19	R ^A :2,3-diHO-quinoxalin-6-yl; R ^B :4-F-Ph; R ^C :4-cHex-pipa	549.
20	R ^A :4-HOCH ₂ -Ph; R ^B :4-F-Ph; R ^C :4-cHex-pipa	495.
21/free	R ^A :4-(ttrz-CH ₂)-Ph; R ^B :4-F-Ph; R ^C :4-cHex-pipa	547.
22	R ^A :4-((MeO ₂ C)-HNCH ₂)-Ph; R ^B :4-F-Ph; R ^C :4-cHex-pipa	552.
23	R ^A :4-MsHNCH ₂ -Ph; R ^B :4-F-Ph; R ^C :4-cHex-pipa	572.
24/free	R ^A :4-((MeO ₂ C)-OCHN)-Ph; R ^B :4-F-Ph; R ^C :4-cHex-pipa	566.
25/free	R ^A :4-(MeO(CH ₂) ₂ -(OCHN))-Ph; R ^B :4-F-Ph; R ^C :4-cHex-pipa	566.
26	R ^A :2-MeO-4-py; R ^B :4-F-Ph; R ^C :pipa	414.
27	R ^A :2-MeO-4-py; R ^B :4-F-Ph; R ^C :4-allyl-pipa	454.
28	R ^A :2-MeO-4-py; R ^B :4-Cl-2-The; R ^C :1-oxido-tmor	469.
29	R ^A :2-MeO-4-py; R ^B :4-Cl-2-The; R ^C :4-(1-oxido-tmor)-pipe	552.
30	R ^A :3-Cl-4-(HOCH ₂ CH(OH)CH ₂ O)-Ph; R ^B :4-Cl-2-The; R ^C :4-cHex-pipa	611.

10

20

30

(表11続き)

Ex	R ^A ; R ^B ; R ^C	Data
31	R^A :3-Me-4-HO(CH ₂) ₂ O-Ph; R^B :4-Cl-2-The; R^C :4-cHex-pipa	561.
32	R ^A :2-MeO-4-py; R ^B :4-Cl-2-The; R ^C :1,1-dioxido-tmor	485.
33	R ^A :2-MeO ₂ C-quinolin-6-yl; R ^B :4-Cl-2-The; R ^C :4-cHex-pipa	595.
34	R ^A :7-HO-quinolin-3-yl; R ^B :4-Cl-2-The; R ^C :4-cHex-pipa	554.
35	R ^A :3-Cl-4-H ₂ N-Ph; R ^B :4-Cl-2-The; R ^C :4-cHex-pipa	536.
36	R ^A :5-Cl-6-(4-((HO ₂ C)-CH ₂)-pipe)-3-py; R ^B :4-Cl-2-The; R ^C :4-cHex-pipa	663.
37	R^{A} :5-Cl-6-(4-(H ₂ NOC)-pipa)-3-py; R^{B} :4-Cl-2-The; R^{C} :4-cHex-pipa	649.
38	R ^A :5-Cl-6-(4-cyano-pipe)-3-py; R ^B :4-Cl-2-The; R ^C :4-cHex-pipa	630.
39	R ^A :5-Cl-6-(4-(MsHN-OC)-pipe)-3-py; R ^B :4-Cl-2-The; R ^C :4-cHex-pipa	726.
40	R ^A : ; R ^B :4-Cl-2-The; NMs R ^C :4-cHex-pipa	878.
41	R^A :5-Cl-6-(4-((HO ₂ C)-CH ₂ -(Me)NOC)-pipe)-3-py; R^B :4-Cl-2-The; R^C :4-cHex-pipa	720.
42	R ^A :5-Cl-6-(4-(mor-OC)-pipe)-3-py; R ^B :4-Cl-2-The; R ^C :4-cHex-pipa	718.

(表12)

Ex	R ^A	R ^B	R ^c	MS	Syn
43	3,5-diMeO-Ph	4-F-Ph	-N(Me)((CH2)2OMe)	446.	2
44	3,5-diMeO-Ph	4-F-Ph	-N(Me)((CH2)2NMe2)	459.	2
45	3,5-diMeO-Ph	4-F-Ph	-N(Me)((CH2)3NMe2)	473.	2
46	3,5-diMeO-Ph	4-F-Ph	-N(Me)((CH2)2N(Me)(cHex))	527.	2
47	3,5-diMeO-Ph	4-F-Ph	-N(Me)((CH ₂) ₂ -pipe)	499.	2
48	2-MeO-4-py	4-Cl-2-The	-N(Me)((CH2)3-mor)	508.	5
49	2-MeO-4-py	4-Cl-2-The	-N(Me)(1-nBu-pyrrolidin-3-yl)	506.	5
50	2-MeO-4-py	4-Cl-2-The	-N(Me)(1-nBu-piperidin-4-yl)	520.	5
51	2-MeO-4-py	4-Cl-2-The	-N(Me)(quinuclidin-3-yl)	490.	5
52	2-MeO-4-py	4-Cl-2-The	$-N(cHex)((CH_2)_2-mor)$	562.	5

10

20

30

(表13)

Ex	R ^A	R ^B	R ^c	MS	Syn
53	2-MeO-4-py	4-F-Ph	imid	396.	2
54	2-MeO-4-py	4-F-Ph	4-Ph-imid	472.	2
55	2-MeO-4-py_	4-F-Ph	3-pipe-azet	468.	2
56	2-MeO-4-py	4-CI-2-The	tmor	453.	5
57	2-MeO-4-py	4-Cl-2-The	3-(4-nPr-pipe)-azet	532.	5
58	quinolin-6-yl	4-Cl-2-The	mor	457.	5

(表14)

 \mathbb{R}^{A} R^B R^{D} Ex MS Syn 59 2-MeO-4-py 4-F-Ph 4-nPr 455. 3 60 2-MeO-4-py 4-F-Ph 4-nPrO 471. 3 61 4-F-Ph 4-mor 498. 2 2-MeO-4-py 4-Ph-4-AcHN 62 2-MeO-4-py 4-F-Ph MM;545. 3 63 quinolin-6-yl 4-F-Ph 4-nPr 475. 2 64 3-F-4-HO-Ph 4-Cl-2-The 4-nPr 480. 8 3-F-4-MeOCH₂O-65/free 4-Cl-2-The 4-nPr 524. .5 Ph 66 2-MeO-4-py 4-Cl-2-The 4-nPr 5 477. 67 quinolin-6-yl 4-Cl-2-The 4-nPr 497. 5 68 2-MeO-4-py 4-Cl-2-The $2-((Me_2N)-CH_2)$ 492. 5 69 4-Cl-2-The 5 2-MeO-4-py $3-((Me_2N)-CH_2)$ 492. 70 2-MeO-4-py 4-Cl-2-The 4-(Me)(nPr)N 5 506. 71 2-MeO-4-py 4-Cl-2-The 4-(Me)(cHex)N 546. 5 72 2-MeO-4-py 4-Cl-2-The 4-(Me)((F₃C)-CH2)N 546. 5 73 2-MeO-4-py 4-Cl-2-The $4-(Me)((F_3C)-(CH_2)_2)N$ 560. 5 74 4-Cl-2-The 2-MeO-4-py 4-mor 520. 5 75 2-MeO-4-py 4-Cl-2-The 4-tmor 536. 5 76 4-CI-2-The 5 2-MeO-4-py 4-pipe 518. 5 77/free 4-Cl-2-The 556,558. 5,6-diCl-3-py 4-pipe 5 78/free 5,6-diCl-3-py 4-Cl-2-The 4-(3-F-pyrr) 560. 3 79 quinolin-6-yl 5-Cl-2-The 4-nPr 497. 80 quinolin-6-yl 5-Cl-2-The 495. 3

10

20

30

(表15)

Ex	R ^A	R^{B}	R ^E	MS	Syn
81/free	2-MeO-4-py	4-F-Ph	4-((HO ₂ C)-CH ₂)	472.	16
82/free	2-MeO-4-py	4-F-Ph			27
83	2-MeO-4-py	4-F-Ph	4-BnO ₂ C	547.	2
84	2-MeO-4-py	4-F-Ph	4-(cyano-CH ₂)	MM;452.	27
85	2-MeO-4-py	4-F-Ph	4-((Me ₂ N)-(CH ₂) ₂)	485.	27
86	2-MeO-4-py	4-F-Ph	(trans)-2,5-diMe-4-nBu	498.	3
87	2-MeO-4-py	4-Cl-2-The	3-oxo	450.	5
88	2-MeO-4-py	4-Cl-2-The	4-nPr	478.	5
89	2-MeO-4-py	4-C1-2-The	4-nBu	492.	14
90	2-MeO-4-py	4-C1-2-The	(3R*,5S*)-3,5-diMe-4-nPr	506.	5
91/free	2-MeO-4-py	4-C1-2-The	4-((HO ₂ C)-CH ₂)	494.	16
92	2-MeO-4-py	4-Cl-2-The	4-((EtO ₂ C)-CH ₂)	522.	14
93	2-MeO-4-py	4-C1-2-The	4-((Me ₂ NOC)-CH ₂)	521.	25
94	2-MeO-4-py	4-C1-2-The	4-((pipe-OC)-CH ₂)	561.	25
95	2-MeO-4-py	4-Cl-2-The	4-((2-py)-CH ₂)	527.	14
96	2-MeO-4-py	4-Cl-2-The	4-((2-The)-CH ₂)	532.	14
97	2-MeO-4-py	4-Cl-2-The	4-((2-oxo-pyrr)-(CH ₂) ₂)	547.	27
98	2-MeO-4-py	4-Cl-2-The	4-cPen	504.	14
99	2-MeO-4-py	4-Cl-2-The	4-(4-Et-cHex)	546.	14
100	2-MeO-4-py	4-Cl-2-The	4-cHept	532.	5
101	2-MeO-4-py	4-Cl-2-The	4-(allyl-O ₂ C)	519.	5
102	2-MeO-4-py	4-CI-2-The	4-(tetrahydro-2H-pyran-4-y 1)	520.	14
103	3-Cl-4-HO(C H ₂) ₂ O-Ph	4-Cl-2-The	4-nPr	541.	9
104/free	5,6-diCl-3-py	4-Cl-2-The	4-nPr	516.	5
105	5-Cl-6-HO(C H ₂) ₂ HN-3-py	4-Cl-2-The	4-nPr	541.	13

20

(表16)

Ex	R ^A	R ^B	MS	Syn
106	2-MeO-4-py	3-F ₃ C-Ph	546.	5
107	2-MeO-4-py	4-F ₃ C-Ph	546.	2
108	2-MeO-4-py	4-HO ₂ C-Ph	522.	16
109	2-MeO-4-py	4-H ₂ NOC-Ph	521.	17
110	2-MeO-4-py	3-cyano-Ph	503.	5
111	2-MeO-4-py	4-cyano-Ph	503.	2
112	2-MeO-4-py	4-Me ₂ N-Ph	521.	2
113	2-MeO-4-py	4-O ₂ N-Ph	523.	2
114/free	5,6-diCl-3-py	3-Cl-Ph	550.	5
115/free	5,6-diCl-3-py	3-F ₃ C-Ph	584.	5
116	2-MeO-4-py	5-Me-2-Fur	482.	2
117	2-MeO-4-py	3-F-2-The	502.	5
118	2-MeO-4-py	4-F-2-The	502.	5
119	2-MeO-4-py	5-F-2-The	502.	5
120	2-MeO-4-py	3-Cl-2-The	518.	5
121	3-F-4-HO-Ph	5-Cl-2-The	521.	8
122/free	3-F-4-MeOCH ₂ O-Ph	5-Cl-2-The		5
123	3-F-4-MeO(CH ₂) ₂ O-Ph	5-Cl-2-The	579.	3
124	3,5-diF-4-MeO(CH ₂) ₂ O-Ph	5-Cl-2-The	597.	3
125	3-Cl-4-HO(CH ₂) ₂ O-Ph	5-Cl-2-The	581.	9
126	3-Cl-4-MeO(CH ₂) ₂ O-Ph	5-Cl-2-The	595.	3
127/free	3-CI-4-TBSO(CH ₂) ₂ O-Ph	5-Cl-2-The	695	5
128	2-Cl-6-Me-4-py	5-Cl-2-The	536.	3
129	2-C1-6-MeO-4-py	5-Cl-2-The	552.	3
130	5-MeO-3-py	5-Cl-2-The	518.	3
131	2-MeO-6-Me-4-py	5-Cl-2-The	532.	3
132/free	2,6-diMeO-pyrimidin-4-yl	5-C1-2-The	549.	3
133	quinolin-6-yl	5-Cl-2-The	538.	3
134	2-MeO-4-py	5-C1-3-The	518.	5
135	2-MeO-4-py	4-Br-2-The	562,564.	5
136	2-MeO-4-py	5-Br-2-The	562,564.	2
137	2-MeO-4-py	4-F-5-Cl-2-The	536.	5
138	2-MeO-4-py	4,5-diCl-2-The	552.	5
139	2-MeO-4-py	4-Me-2-The	498.	5
140	2-MeO-4-py	5-Me-2-The	498.	2

20

30

(表17)

 R^A MS Syn Ex 141 504. 2 4-(cyano-CH₂)-Ph 523. 16 142 3-((HO₂C)-CH₂)-Ph 143 4-((HO₂C)-CH₂)-Ph 523. 16 537. 5 144 $3-((MeO_2C)-CH_2)-Ph$ 5 537. 145 $4-((MeO_2C)-CH_2)-Ph$ 17 3-((H₂NOC)-CH₂)-Ph 522. 146 604. 2 147 ÒΕt 2 148/free 4-AcOCH₂-Ph 537. 494. 15 149 4-H2NCH₂-Ph 536. 2 150 4-AcHNCH₂-Ph 2 151/free 4-BocHNCH2-Ph 594. 2 537. 152 4-((H₂NOC)-HNCH₂)-Ph 573. 2 153 4-((H₂NO₂S)-HNCH₂)-Ph 2 154 580. 4-HO-3-(mor-CH₂)-Ph 562. 2 155 4-((2-oxo-pyrr)-CH₂)-Ph 5 156 4-(cyano-(CH₂)₂)-Ph 518. 157 4-((E)-2-cyanovinyl)-Ph 516. 5 551. 1 3-F-4-F₃C-Ph 158 540. 2 159 3-F-4-((Me₂N)-CH₂)-Ph 490. 1 160 3-cyano-Ph 573. 16 161 $3-CI-4-((HO_2C)-CH_2O)-Ph$ 587. 2 162 $3-Cl-4-((MeO_2C)-CH_2O)-Ph$ 573. 2 163 3-Cl-4-MeO(CH₂)₂O-Ph2 540. 164 $3-F-4-((Me_2N)-(CH_2)_2O)-Ph$ 557. 2 165 4-PhO-Ph 166 573. 8 4-(4-HO-PhO)-Ph 167/free 617. 5 4-(4-MeOCH₂O-PhO)-Ph 480. 9 168/free $4-H_2N-Ph$ 580. 2 4-BocHN-Ph 169/free 558. 170 4-MsHN-Ph

10

20

30

20

30

40

(表17続き)

Ex	R ^A	MS	Syn
171	4-((HO ₂ C)-CH ₂ HN)-Ph	538.	16
172/free	4-((EtO ₂ C)-CH ₂ HN)-Ph	566.	14
173/free	4-(MeOCH ₂ -(OCHN))-Ph	552.	24
174	4-((HO ₂ C)-(OCHN))-Ph	552.	16
175	4-mor-Ph	550.	5
176	4-pipa-Ph	549.	15
177	4-(4-Me-pipa)-Ph	563.	14
178	4-(4-Ac-pipa)-Ph	591.	5
179/free	4-(4-Boc-pipa)-Ph	649.	5
180/free	4-HO₃S-Ph	545.	2
181	2-naph	515.	1
182	6-HO-2-naph	531.	2
183/free	5,6-diCl-3-py	534.	5
184	1,3-benzodioxolan-5-yl	509.	1
185	3-oxo-3,4-dihydro-2H-1,4-benzoxazin-7-yl	536.	5
186/free	1H-indol-5-yl	MM;503.	2
187	2-Me-isoindolin-5-yl	520.	2
188	5-bimid	505.	2
189	quinolin-2-yl	516.	2
190	quinolin-3-yl	516.	2
191	quinolin-4-yl	516.	5
192	quinolin-6-yl	516.	2
193	quinolin-7-yl	516.	5
194	2-HO-quinolin-6-yl	532.	2
195	2-MeO-quinolin-6-yl	546.	5
196	isoquinolin-3-yl	516.	2
197	isoquinolin-7-yl	516.	5
198/free	2,3-diBnO-quinoxalin-6-yl	729.	5
199	imidazo[1,2-a]pyridin-6-yl	505.	2

(表18)

Ex	R ^A	MS	Syn
200	5-Me-1-HO(CH ₂) ₃ -pra	549.	9
201/free	5-Me-1-TBSO(CH ₂) ₃ -pra	663.	5

(表18%			
Ex	R ^A	MS	Syn
202	3-oxo-3,4-dihydro-2H-1,4-benzoxazin-7-yl	558.	5
203	2-oxo-2,3-dihydrobenzoxazol-5-yl	544.	5
204	2-oxo-2,3-dihydrobenzoxazol-6-yl	544.	5
205	2-oxo-3-HO(CH ₂) ₂ -2,3-dihydrobenzoxazol-6-yl	588.	9
206/free	2-oxo-3-TBSO(CH ₂) ₂ -2,3-dihydrobenzoxazol-6-yl	702.	5
207	quinolin-3-yl	538.	5
208	quinolin-6-yl	538.	5
209	quinolin-7-yl	538.	5
210/free	2-Br-quinolin-6-yl	615,617.	5
211	2-HO ₂ C-quinolin-6-yl	MN;580.	16
212	2-H ₂ NOC-quinolin-6-yl	581.	5
213/free	7-BnO-quinolin-3-yl	644.	5
214	isoquinolin-6-yl	538.	5
215	isoquinolin-7-yl	538.	5
216	imidazo[1,2-a]pyridin-7-yl	527.	5
217	3-Cl-4-((1,4-dioxa-8-azaspiro[4.5]dec-8-yl)-Ph)	662.	5
218/free	3-F-4-MeOCH ₂ O-Ph	565.	5
219	3,5-diF-4-HO(CH ₂) ₂ O-Ph	583.	7
220	3,5-diF-4-tBuO(CH ₂) ₂ O-Ph	639.	5
221	3,4,5-triF-Ph	541.	5
222	3-Cl-5-F-4-HO(CH ₂) ₂ O-Ph	599.	9
223/free	3-C1-5-F-4-TBSO(CH ₂) ₂ O-Ph	713.	5
224	3-C1-4-MeO(CH ₂) ₂ HNCH ₂ -Ph	608.	15
225/free	3-Cl-4-MeO(CH ₂) ₂ N(Boc)CH ₂ -Ph	708.	5
226	3-CI-4-HO-Ph	537.	8
227/free	3-Cl-4-MeOCH ₂ O-Ph	581.	5
228	3-Cl-4-((tetrahydro-2-fur)-CH ₂ O)-Ph	621.	5
229	3-C1-4-MeO(CH ₂) ₂ O-Ph	595.	5
230/free	3-Cl-4-TBSO(CH ₂) ₂ O-Ph	695.	5
231	3-Cl-4-H ₂ N(CH ₂) ₂ O-Ph	580.	15
232/free	3-CI-4-BocHN(CH ₂) ₂ O-Ph	680.	5
233	3-Cl-4-tBuOCH ₂ CH(Me)O-Ph	651.	5
234	3-Cl-4-HO(CH ₂) ₃ O-Ph	595.	9
235/free	3-CI-4-TBSO(CH ₂) ₃ O-Ph	709.	5
236	3-Cl-4-(tetrahydro-3-fur-O)-Ph	607.	5
237	3,5-diCl-4-HO-Ph	571	5
238	3,5-diCl-4-HO(CH ₂) ₂ O-Ph	615.	9
239/free	3,5-diCl-4-TBSO(CH ₂) ₂ O-Ph	729.	5
240	3-Br-4-HO(CH ₂) ₂ O-Ph	625,627.	9
241/free	3-Br-4-TBSO(CH ₂) ₂ O-Ph	739,741.	5
242	4-((Me ₂ N)-CH ₂)-Ph	544.	14
243/free	4-BocHNCH ₂ -Ph	616.	5

(表18続き)

Ex	R ^A	MS	Syn
244	3-Me-4-AcO(CH ₂) ₂ O-Ph	603.	5
245	2-MeO-4-py	518.	5
246	5-CI-6-MeO-3-py	552.	5
247	2-EtO-4-py	532.	5
248	5-Cl-6-(HO(CH ₂) ₂)(Me)N-3-py	595.	13
249	5-Cl-6-HO(CH ₂) ₂ HN-3-py	581.	13
250	5-C1-6-HO(CH ₂) ₃ O-3-py	596.	12
251	2-AcO(CH ₂) ₂ O-4-py	590.	5
252	2-HO(CH ₂) ₂ O-4-py	548.	31
253	5-C1-6-HO(CH ₂) ₃ HN-3-py	595.	13
254	5-C1-6-MeO(CH ₂) ₃ HN-3-py	609.	13
255	5-Cl-6-(1-Me-pyrrolidin-2-yl-(CH ₂) ₂ O)-3-py	649.	12
256	5-Cl-6-(HO(CH ₂) ₂) ₂ N-3-py	625.	13
257	5-Cl-6-HOCH(Me)CH ₂ HN-3-py	595.	13
258	5-Cl-6-((4-(4-F-Bn)-morpholin-2-yl)CH ₂ HN)-3-py	744.	13
259	5-Cl-6-((MeO ₂ C)-CH ₂ HN)-3-py	609.	13
260	5-Cl-6-H2N(CH ₂)₃HN-3-py	594.	13
261	5-C1-6-(4-HO-cHex)HN-3-py	635.	13
262	5-Cl-6-H ₂ NCH ₂ CH(OH)CH ₂ HN-3-py	610.	13
263	5-Cl-6-(2-HO-cHex)HN-3-py	635.	13
264	5-Cl-6-HOCH ₂ CH(OH)CH ₂ HN-3-py	611.	13
265 .	5-Cl-6-((HO ₂ C)-CH ₂ HN)-3-py	595.	16
266	5-C1-6-(3-Me-oxetan-3-yl-CH ₂ O)-3-py	622.	12
267	5-Cl-6-(tetrahydro-3-Fur-CH ₂ O)-3-py	622.	12
268	5-Cl-6-MeO(CH ₂) ₂ HN-3-py	595.	13

(表19)

Ex	X	R ^F	R ^B	R ^c	MS	Syn
269	CH	4-cyano-pipe	4-Cl-2-The	4-nPr-pipa	589.	5
270	CH	4-HO ₂ C-pipe	4-C1-2-The	4-nPr-pipa	608.	16
271	CH	4-EtO ₂ C-pipe	4-Cl-2-The	4-nPr-pipa	636.	5
272	CH	4-H ₂ NOC-pipe	4-Cl-2-The	4-nPr-pipa	607.	_ 7
273/free	CH	4-(PhC(Me) ₂ -(HNO	4-Cl-2-The	4-nPr-pipa	725.	25
21,5/1166	_	C))-pipe			123.	23
274	CH	4-HO-pipe	4-Cl-2-The	4-nPr-pipa	580.	9
275/free	СН	4-TBSO-pipe	4-Cl-2-The	4-nPr-pipa	694.	5
276	N	4-HO ₂ C-pipe	4-F-Ph	4-cHex-pipa	627.	16
277/free	N	4-EtO ₂ C-pipe	4-F-Ph	4-cHex-pipa	655.	13

10

20

30

(表19続き)

Ex	Х	R ^F	R ^B	R ^C	MS	Syn
278	N	4-HO ₂ C-pipe	3-Cl-Ph	4-cHex-pipa	643	16
279	N	4-EtO ₂ C-pipe	3-Cl-Ph	4-cHex-pipa	671.	13
280	N	4-HO ₂ C-pipe	3-F ₃ C-Ph	4-cHex-pipa	677.	16
281	N	4-EtO ₂ C-pipe	3-F ₃ C-Ph	4-cHex-pipa	705.	13
282	N	4-HO ₂ C-pipe	4-Cl-2-The	4-nPr-pipa	609.	16
283/free	N	4-EtO ₂ C-pipe	4-Cl-2-The	4-nPr-pipa	637.	13
284	N	4-H ₂ NOC-pipe	4-Cl-2-The	4-nPr-pipa	608.	13
285	N	4-HO-pipe	4-Cl-2-The	4-nPr-pipa	581.	13
286	N	4-HO ₂ C-pipe	4-Cl-2-The	4-(3-F-pyrr)-pipe	653.	16
287/free	N	4-EtO ₂ C-pipe	4-Cl-2-The	4-(3-F-pyrr)-pipe	681.	13
288	N	4-H ₂ NOC-pipe	4-Cl-2-The	4-pipe-pipe	648.	13

(表20)

 R^H R^G Syn Ex MS 629. 289 C1 CH-cyano 5 Η 290 C1CH-CO₂H 648. Η 16 291 C1 \mathbf{H} CH-CO₂Et 676. 5 292 ClH CH-CONH₂ 647. 17 293 Cl Η CH-OH 620. 9 294/free CI Η CH-OTBS 734. 5 295 Η Br CH-CO₂H 694. 16 296/free Br H 722. 5 CH-CO₂Et 297 Η 693. 25 Br CH-CONH₂ 298 F F 631. 5 CH-cyano 299 F F CH-CO₂H 650. 16 300/free F F 5 CH-CO₂Et 678. 301 F F 649. 25 CH-CONH₂ 302 F C1CH-cyano 647. 5 303 F ClCH-CO₂H 666. 16 304 F 694. CICH-CO₂Et 5 305 F 7 CI664. CH-CONH₂ 306/free F 783. 25 Cl CH-CONH-C(Me)₂Ph 307/free F C1623. 15 NH 308 F Cl N-(2-HO-Bn) 729. 14

10

20

30

(表20続き)

Ex	R ^G	R ^H	Υ	MS	Syn
309	F	CI	N-CH ₂ -CO ₂ H	681.	16
310/free	F	Cl	N-CH ₂ -CO ₂ Et	709.	14
311	F	CI	N-CH ₂ -CONH ₂	680.	25
312/free	F	Cl	N-Boc	723.	5
313	F	CI	N-CO-CH ₂ OMe	695.	24
314	F	CI	N-CO-CO ₂ H	695.	16
315/free	F	CI	N-CO-CO ₂ Et	723.	24
316	F	Cl	N-SO ₂ NH ₂	702.	15
317/free	F	Cl	N-SO ₂ NHBoc	802.	23

(表21)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

R'MS Ex Syn 593. 13 318 3-HO-azet 609. 319 3-F-pyrr 13 (S)-2-HOCH₂-pyrr 320 621. 13 321 (R)-2-HOCH₂-pyrr 621. 13 13 322 3-HO-pyrr 607. 323 13 (R)-3-HO-pyrr 607. 324 634. 13 3-Me₂N-pyrr 325 673. 21 4-ttrz-pipe 326 623. 13 4-F-pipe 327 13 3-HOCH₂-pipe 635. 328 4-HOCH₂-pipe 635. 13 329 2-HO(CH₂)₂-pipe 649. 13 330 689. 13 CO₂Et 4-H₂NOC-pipe 331 648. 13 332 662. 25 4-(MeHNOC)-pipe 333 4-(nPrHNOC)-pipe 690. 42 334 4-(nPenHNOC)-pipe 718. 42 335 730. 42 4-(cHexHNOC)-pipe 4-(BnHNOC)-pipe 738. 42 336 4-((cHex-CH₂)-(HNOC))-pipe 337 744. 42

10

20

30

(表21続き)

(n)	<u> </u>		
Ex	R'	MS	Syn
338	4-(MeO(CH ₂) ₂ -(HNOC))-pipe	706.	42
339	4-(EtO(CH ₂) ₂ -(HNOC))-pipe	720.	42
340	4-(MeO(CH ₂) ₃ -(HNOC))-pipe	720.	42
341	4-(Me ₂ N(CH ₂) ₃ -(HNOC))-pipe	733.	42
342	4-(Me ₂ N(CH ₂) ₄ -(HNOC))-pipe	747.	42
343	4-(Me ₂ N(CH ₂) ₆ -(HNOC))-pipe	775.	42
344	4-Me ₂ NOC-pipe	676.	25
345	4-((Me)(nPr)N-OC)-pipe	704.	42
346	4-(MeO(CH ₂) ₂ -((Me)NOC))-pipe	720.	42
347	4-(pipe-OC)-pipe	716.	42
348	4-(tmor-OC)-pipe	734.	42
349	3-HO-pipe	621.	13
350	4-HO-pipe	621.	13
351	4-H ₂ N-pipe	620.	15
352	4-BnHN-pipe	710.	13
353	4-AcHN-pipe	662.	24
354/free	4-BocHN-pipe	720.	13
355	4-MsHN-pipe	698.	23
356	pipa	606.	13
357	3-HOCH ₂ -4-Me-pipa	650.	13
358	4-((HO ₂ C)-CH ₂)-pipa	664	16
359/free	4-((EtO ₂ C)-CH ₂)-pipa	692	13
360	4-HO(CH ₂) ₂ -pipa	650.	13
361	4-MeO(CH ₂) ₂ -pipa	664.	13
362	3-oxo-pipa	620.	13
363	3,5-dioxo-pipa	634.	13
364	4-Ac-pipa	648.	13
365/free	4-EtO ₂ C-pipa	678.	13
366	4-((4-Me-pipa)-OC)-pipe	731.	25
367	4-Ms-pipa	684.	23
368	mor	607.	13
369	tmor	623.	13
370	1,4-diazepan-1-yl	620,	13
371	4-Ac-1,4-diazepan-1-yl	662.	13
372	5-oxo-1,4-diazepan-1-yl	634.	13
373	5-HO ₂ C-isoindolin-2-yl	683.	16
374	5-MeO ₂ C-isoindolin-2-yl	697.	13

以下の表22に、いくつかの実施例化合物のNMRデータを示す。

(表22)

Ex	NMR NMR	
8	1.05-1.20(1H,m),1.21-1.36(2H,m),1.38-1.55(2H,m),1.58-1.68(1H,m),1.82-1.91(2H, m),2.14-2.25(2H,m),3.20-3.40(7H,m),3.55-3.65(2H,m),7.11(1H,dd,J=8.3,8.8Hz),7.4 9(1H,s),7.56(1H,s),7.83(1H,dd,J=1.4,8.3Hz),8.21(1H,dd,J=1.4,12.6Hz),10.95(1H,brs),12.50(1H,brs).	
9	1.06-1.20(1H,m),1.22-1.36(2H,m),1.43-1.56(2H,m),1.59-1.68(1H,m),1.80-1.92(2H, m),2.17-2.27(2H,m),3.20-3.44(7H,m),3.54-3.63(2H,m),3.78(2H,t,J=4.9Hz),4.21(2H,t,J=4.9Hz),7.33(1H,d,J=8.8Hz),7.50(1H,d,J=1.5Hz),7.57(1H,d,J=1.5Hz),8.08(1H,dd,J=2.0,8.8Hz),8.24(1H,d,J=2.0Hz),10.89(1H,brs),12.61(1H,brs).	
16	1.06-1.20(1H,m),1.22-1.36(2H,m),1.40-1.55(2H,m),1.58-1.70(3H,m),1.78-2.00(4H, m),2.15-2.25(2H,m),2.50-2.58(1H,m),2.98-3.09(2H,m),3.23-3.40(7H,m),3.54-3.66(2 H,m),3.93-4.02(2H,m),7.48(1H,d,J=1.5Hz),7.57(1H,d,J=1.5Hz),8.40(1H,d,J=1.9Hz),8.83(1H,d,J=1.9Hz),10.98(1H,brs),12.28(1H,brs),12.68(1H,s).	10
36	1.08-1.20(1H,m),1.21-1.38(4H,m),1.38-1.55(2H,m),1.60-1.68(1H,m),1.74-2.00(4H, m),2.16-2.22(5H,m),2.87(2H,t,J=12.2Hz),3.20-3.34(9H,m),4.04(2H,d,J=13.2Hz),7.5 0(1H,s),7.57(1H,s),8.39(1H,d,J=2.0Hz),8.83(1H,d,J=2.0Hz),10.34(1H,brs),12.09(1H,brs),12.66(1H,brs).	
42	1.14-1.20(1H,m),1.21-1.32(2H,m),1.38-1.53(2H,m),1.60-1.77(5H,m),1.81-1.92(2H, m),2.14-2.25(2H,m),2.88-3.08(3H,m),3.30-3.37(2H,m),3.42-3.50(2H,m),3.52-3.64(4 H,m),3.76-3.88(9H,m),4.05-4.12(2H,m),7.49(1H,d,J=1.5Hz),7.58(1H,d,J=1.5Hz),8.4 0(1H,d,J=1.9Hz),8.83(1H,d,J=1.9Hz),10.77(1H,brs),12.67(1H,brs).	20
66	0.90(3H,t,J=6.8Hz),1.22-1.49(7H,m),1.75-1.85(2H,m),2.63-2.71(2H,m),3.06-3.16(2 H,m),3.92(3H,s),7.42(1H,d,J=2.0Hz),7.43(1H,s),7.51(1H,d,J=2.0Hz),7.54(1H,d,J=5.4Hz),8.36(1H,d,J=5.4Hz),12.80(1H,brs).	20
103	0.95(3H,t,J=7.3Hz),1.71-1.82(2H,m),3.11-3.36(8H,m),3.60(2H,d,J=10.3Hz),3.78(2H,t,J=5.2Hz),4.21(2H,t,J=4.9Hz),7.33(1H,d,J=8.8Hz),7.50(1H,d,J=1.9Hz),7.58(1H,d,J=2.0Hz),8.08(1H,dd,J=2.0Hz,J=8.8Hz),8.24(1H,d,J=2.0Hz),10.73(1H,brs),12.62(1H,s).	
105	0.90(3H,t,J=7.3Hz),1.72-1.82(2H,m),3.11-3.33(8H,m),3.55-3.61(6H,m),7.22(1H,brs),7.49(1H,d,J=1.5Hz),7.57(1H,d,J=1.5Hz),8.28(1H,d,J=1.9Hz),8.74(1H,d,J=2.0Hz),1,0.88(1H,brs),12.48(1H,s).	
125	1.07-1.20(1H,m),1.22-1.36(2H,m),1.42-1.55(2H,m),1.60-1.68(1H,m),1.81-1.91(2H, m),2.16-2.26(2H,m),3.20-3.29(7H,m),3.56-3.65(2H.m),3.78(2H,t,J=4.9Hz),4.21(2H, t,J=4.9Hz),7.12(1H,d,J=3.9Hz),7.33(1H,d,J=8.8Hz),7.47(1H,d,J=3.9Hz),8.08(1H,dd, J=8.8,2.0Hz),8.23(1H,d,J=2.0Hz),10.93(1H,brs),12.63(1H,brs).	30
204	1.07-1.20(1H,m),1.22-1.36(2H,m),1.41-1.55(2H,m),1.59-1.68(1H,m),1.82-1.92(2H, m),2.14-2.24(2H,m),3.27-3.35(7H,m),3.55-3.65(2H,m),7.24(1H,d,J=8.3Hz),7.50(1H,d,J=1.5Hz),7.57(1H,d,J=1.5Hz),7.97(1H,dd,J=1.5,8.3Hz),8.06(1H,s),10.74(1H,brs), 12.13(1H,s),12.63(1H,brs).	
208	1.03-1.20(1H,m),1.21-1.36(2H,m),1.38-1.55(2H,m),1.60-1.68(1H,m),1.82-1.91(2H,m),2.18-2.25(2H,m),3.22-3.40(7H,m),3.55-3.65(2H,m),7.52(1H,s),7.58(1H,s),7.76(1H,dd,J=4.2,8.3Hz),8.21(1H,d,J=8.8Hz),8.40(1H,dd,J=1.5,8.8Hz),8.67(1H,d,J=8.3Hz),8.89(1H,d,J=1.5Hz),9.11(1H,d,J=4.2Hz),11.05(1H,brs),12.96(1H,brs).	40

Ex	NMR	
214	1.03-1.20(1H,m),1.21-1.36(2H,m),1.40-1.55(2H,m),1.60-1.68(1H,m),1.82-1.91(2H, m),2.18-2.28(2H,m),3.20-3.43(7H,m),3.52-3.65(2H,m),7.52(1H,s),7.59(1H,s),8.33-8 .40(2H,m),8.50(1H,d,J=8.8Hz),8.73(1H,d,J=5.8Hz), 8.90(1H,s),9.78(1H,s),11.20(1H,brs),13.12(1H,brs).	
222	1.07-1.20(1H,m),1.21-1.36(2H,m),1.41-1.54(2H,m),1.58-1.68(1H,m),1.80-1.92(2H, m),2.14-2.25(2H,m),3.25-3.37(7H,m),3.56-3.64(2H,m),3.73(2H,t,J=4.9Hz),4.24(2H,t,J=4.9Hz),7.50(1H,d,J=1.0Hz),7.58(1H,d,J=1.0Hz),8.01(1H,dd,J=2.0,11.7Hz),8.11(1H,brs),10.77(1H,brs),12.77(1H,brs).	
226	1.06-1.20(1H,m),1.21-1.36(2H,m),1.42-1.56(2H,m),1.59-1.68(1H,m),1.81-1.91(2H, m),2.16-2.26(2H,m),3.20-3.45(7H,m),3.54-3.63(2H,m),7.17(1H,d,J=8.8Hz),7.49(1H,d,J=1.4Hz),7.56(1H,d,J=1.4Hz),7.94(1H,dd,J=2.4,8.8Hz),8.19(1H,d,J=2.4Hz),11.26 (1H,brs),12.51(1H,brs).	10
229	1.06-1.20(1H,m),1.22-1.36(2H,m),1.44-1.56(2H,m),1.58-1.68(1H,m),1.80-1.92(2H, m),2.15-2.26(2H,m),3.17-3.47(7H,m),3.35(3H,s),3.56-3.63(2H,m),3.73(2H,t,J=3.9H z),4.31(2H,t,J=3.9Hz),7.33(1H,d,J=8.8Hz),7.49(1H,d,J=0.9Hz),7.56(1H,d,J=0.9Hz),8.08(1H,dd,J=1.9,8.8Hz),8.24(1H,d,J=1.9Hz),11.31(1H,brs),12.61(1H,brs).	
234	1.08-1.20(1H,m),1.22-1.36(2H,m),1.41-1.55(2H,m),1.58-1.68(1H,m),1.82-1.90(2H,m),1.92(2H,t,J=6.3Hz),2.19-2.22(2H,m),3.21-3.37(7H,m),3.55-3.63(4H,m),4.25(2H,t,J=6.3Hz),7.32(1H,d,J=8.8Hz),7.50(1H,s),7.57(1H,s),8.09(1H,dd,J=2.0,8.8Hz),8.24(1H,d,J=2.0Hz),10.83(1H,brs),12.62(1H,brs).	20
238	1.07-1.20(1H,m),1.22-1.36(2H,m),1.44-1.56(2H,m),1.60-1.68(1H,m),1.83-1.91(2H, m),2.17-2.26(2H,m),3.20-3.42(7H,m),3.56-3.63(2H,m),3.78(2H,t,J=4.9Hz),4.13(2H,t,J=4.9Hz),7.49(1H,s),7.57(1H,s),8.21(2H,s),11.18(1H,brs),12.79(1H,brs).	20
240	1.07-1.20(1H,m),1.22-1.36(2H,m),1.42-1.56(2H,m),1.60-1.67(1H,m),1.81-1.90(2H, m),2.18-2.25(2H,m),3.17-3.43(7H,m),3.55-3.65(2H,m),3.78(2H,t,J=4.9Hz),4.20(2H, t,J=4.9Hz),7.29(1H,d,J=8.8Hz),7.49(1H,d,J=1.5Hz),7.56(1H,d,J=1.5Hz),8.12(1H,dd, J=2.4,8.8Hz),8.39(1H,d,J=2.4Hz),11.19(1H,brs),12.61(1H,brs).	
245	1.08-1.20(1H,m),1.21-1.34(2H,m),1.40-1.53(2H,m),1.60-1.68(1H,m),1.82-1.89(2H, m),2.14-2.24(2H,m),3.22-3.45(7H,m),3.55-3.65(2H,m),3.95(3H,s),7.44(1H,s),7.50(1 H,s),7.54(1H,d,J=4.9Hz),7.56(1H,s),8.37(1H,d,J=4.9Hz),10.61(1H,brs),12.95(1H,brs).	
250	1.06-1.20(1H,m),1.22-1.36(2H,m),1.41-1.54(2H,m),1.60-1.68(1H,m),1.82-1.95(2H, m),1.92(2H,t,J=6.4Hz),2.15-2.24(2H,m),3.22-3.36(7H,m),3.55-3.63(2H,m),3.58(2H, t,J=6.4Hz),4.51(2H,t,J=6.4Hz),7.49(1H,d,J=1.5Hz),7.57(1H,d,J=1.5Hz),8.53(1H,d,J=2.0Hz),8.82(1H,d,J=2.0Hz),10.83(1H,brs),12.78(1H,s).	30
253	1.05-1.20(1H,m),1.22-1.36(2H,m),1.42-1.54(2H,m),1.60-1.68(1H,m),1.70-1.77(2H, m),1.82-1.92(2H,m),2.15-2.25(2H,m),3.20-3.40(7H,m),3.45-3.65(4H,m),3.49(2H,t,J =6.3Hz),7.39(1H,brs),7.48(1H,d,J=1.5Hz),7.56(1H,d,J=1.5Hz),8.27(1H,d,J=2.0Hz),8.74(1H,d,J=2.0Hz),10.98(1H,brs),12.45(1H,s).	
264	1.06-1.20(1H,m),1.22-1.36(2H,m),1.40-1.54(2H,m),1.59-1.68(1H,m),1.80-1.91(2H, m),2.13-2.24(2H,m),3.24-3.33(9H,m),3.55-3.45(2H,m),3.54-3.65(2H,m),3.68-3.75(1 H,m),7.01-7.07(1H,m),7.49(1H,d,J=1.5Hz),7.56(1H,d,J=1.5Hz),8.29(1H,d,J=1.9Hz),8.74(1H,d,J=1.9Hz),10.68(1H,brs),12.48(1H,s).	40

Ex	NMR	
267	1.07-1.20(1H,m),1.22-1.36(2H,m),1.39-1.54(2H,m),1.60-1.75(2H,m),1.82-1.92(2H, m),1.98-2.08(1H,m),2.13-2.24(2H,m),2.68-2.78(1H,m),3.22-3.37(4H,m),3.41-3.51(4 H,m),3.54-3.71(3H,m),3.76-3.82(2H,m),4.32-4.45(2H,m),7.50(1H,d,J=1.5Hz),7.58(1H,d,J=1.5Hz),8.55(1H,d,J=2.0Hz),8.82(1H,d,J=2.0Hz),10.60(1H,brs),12.80(1H,s).	
270	0.93(3H,t,J=7.3Hz),1.42-1.81(4H,m),1.90-2.00(2H,m),2.40-2.48(1H,m),2.72-2.86(2 H,m),2.80-3.70(12H,m),7.24(1H,d,J=8.8Hz),7.48(1H,brs),7.55(1H,brs),8.03(1H,dd,J=1.9,8.8Hz),8.18(1H,d,J=1.9Hz),10.68(1H,brs),12.25(1H,brs),12.58(1H,s).	
272	0.95(3H,t,J=7.8Hz),1.68-1.88(6H,m),2.23-2.34(1H,m),2.70-2.79(2H,m),3.10-3.19(2 H,m),3.20-3.35(5H,m),3.40-3.53(3H,m),3.56-3.64(2H,m),6.80(1H,brs),7.24(1H,d,J=8.3Hz),7.33(1H,brs),7.50(1H,d,J=1.5Hz),7.58(1H,d,J=1.5Hz),8.03(1H,dd,J=2.0,8.3Hz),8.18(1H,d,J=2.0Hz),10.86(1H,brs),12.61(1H,s).	10
274	0.94(3H,t,J=7.3Hz),1.51-1.63(2H,m),1.71-1.82(2H,m),1.83-1.92(2H,m),2.81-2.90(2 H,m),3.10-3.17(2H,m),3.17-3.37(8H,m),3.55-3.63(2H,m),3.63-3.72(1H,m),7.24(1H,d,J=8.3Hz),7.50(1H,d,J=1.5Hz),7.58(1H,d,J=1.5Hz),8.03(1H,dd,J=1.9,8.3Hz),8.18(1 H,d,J=1.9Hz),10.92(1H,brs),12.61(1H,s).	
276	1.05-1.20(1H,m),1.22-1.37(2H,m),1.40-1.52(2H,m),1.60-1.75(3H,m),1.80-1.97(4H, m),2.15-2.24(2H,m),2.50-2.52(1H,m),3.04(2H,t,J=10.8Hz),3.17-3.38(7H,m),3.47-3. 60(2H,m),3.98(2H,d,J=13.2Hz),7.27(2H,t,J=8.8Hz),8.15(2H,dd,J=5.8,8.8Hz),8.40(1 H,d,J=2.0Hz),8.84(1H,d,J=2.0Hz),10.85(1H,brs),12.28(1H,brs),12.59(1H,brs).	
278	1.08-1.20(1H,m),1.22-1.36(2H.m),1.38-1.52(2H,m),1.58-1.75(3H,m),1.81-1.99(4H, m),2.11-2.22(2H,m),2.50-2.52(1H,m),2.98-3.08(2H,m),3.19-3.35(7H,m),3.48-3.64(2 H,m),3.92-4.22(2H,m),7.34-7.41(1H,m),7.49(1H,d,J=7.8Hz),8.09-8.11(1H,m),8.12-8 .17(1H,m),8.41(1H,d,J=2.0Hz),8.84(1H,d,J=2.0Hz),10.55(1H,brs),12.28(1H,brs),12.59(1H,brs).	20
280	1.08-1.20(1H,m),1.21-1.38(2H,m),1,39-1.51(2H,m), 1.60-1.73(3H,m),1.80-2.00(4H,m),2.10-2.22(2H,m),2.50-2.52(1H,m),2.99-3.10(2H, m),3.22-3.40(7H,m),3.52-3.62(2H,m),3.94-4.03(2H,m),7.67-7.74(2H,m),8.40(2H,d,J =2.0Hz),8.48-8.50(1H,m),8.85(1H,d,J=2.0Hz),10.49(1H,brs),12.28(1H,brs),12.63(1 H,brs).	
282	0.90(3H,t,J=7.3Hz),1.51(2H,brs),1.64-1.73(2H,m),1.91-1.99(2H,m),2.33-3.38(13H, m),3.97(2H,d,J=13.2Hz),7.45(1H,d,J=1.5Hz),7.53(1H,d,J=1.0Hz),8.40(1H,d,J=1.9H z),8.83(1H,d,J=2.0Hz),12.00-12.50(1H,br),12.58(1H,brs).	30
284	0.95(3H,t,J=7.3Hz),1.63-1.83(6H,m),2.33-2.41(1H,m),2.95(2H,t,J=11.5Hz),3.13-3.4 2(8H,m),3.60(2H,d,J=10.8Hz),4.07(2H,d,J=13.2Hz),6.80(1H,s),7.32(1H,s),7.50(1H,d ,J=1.5Hz),7.58(1H,d,J=1.5Hz),8.40(1H,d,J=1.9Hz),8.84(1H,d,J=1.9Hz),10.65(1H,br s),12.68(1H,s).	
285	0.95(3H,t,J=7.3Hz),1.47-1.55(2H,m),1.72-1.91(4H,m),3.12-3.34(10H,m),3.59-3.86(5H,m),7.50(1H,d,J=1.5Hz),7.58(1H,d,J=1.5Hz),8.39(1H,d,J=1.9Hz),8.82(1H,d,J=1.9Hz),10.80(1H,brs),12.66(1H,s).	
289	1.10-1.20(1H,m),1.22-1.36(2H,m)1.40-1.55(2H,m),1.59-1.68(1H,m),1.81-1.94(4H, m),2.00-2.09(2H,m),2.15-2.24(2H,m),2.98-3.07(2H,m),3.07-3.16(1H,m),3.18-3.35(4 H,m),3.55-3.74(7H,m),7.28(1H,d,J=8.3Hz),7.49(1H,d,J=1.5Hz),7.57(1H,d,J=1.5Hz),8.04(1H,dd,J=1.9,8.3Hz),8.18(1H,d,J=1.9Hz),10.82(1H,brs),12.63(1H,s).	40

(表22続き)

Ex	2 2 統き) NMR	
<u> </u>	1.06-1.20(1H,m),1.22-1.50(4H,m),1.56-2.30(9H,m),2.39-2.48(1H,m),2.75-2.86(2H,	
290	m,2.80-3.80(11H,m),	
	7.23(1H,d,J=8.3Hz),7.48(1H,brs),7.56(1H,brs),8.03(1H,dd,J=1.9,8.3Hz),8.18(1H,d,J	
	=1.9Hz),10.50(1H,brs),12.28(1H,brs),12.68(1H,s).	
	1.08-1.20(1H,m),1.21-1.35(2H,m),1.38-1.55(2H,m),1.58-1.90(7H,m),2.10-2.25(2H,	
292	m),2.22-2.36(1H,m),2.68-2.79(2H,m),3.20-3.37(7H,m),3.42-3.49(2H,m),3.50-3.70(2	
	H,m),6.82(1H,brs),7.25(1H,d,J=8.8Hz),7.33(1H,brs),7.49(1H,brs),7.56(1H,brs),8.03(
	1H,dd,J=1.9,8.8Hz),8.18(1H,d,J=1.9Hz),10.62(1H,brs),12.61(1H,s).	1.0
293	1.08-1.20(1H,m),1.20-1.36(2H,m)1.36-1.53(2H,m),1.53-1.68(3H,m),1.80-1.93(4H,	10
	m),2.15-2.25(2H,m),2.80-2.91(2H,m),3.20-3.40(9H,m),3.55-3.63(2H,m),3.63-3.71(1	
	H,m),7.24(1H,d,J=8.3Hz),7.49(1H,d,J=1.5Hz),7.57(1H,d,J=1.5Hz),8.02(1H,dd,J=1.9	
	8.3Hz),8.18(1H,d,J=1.9Hz),10.98(1H,brs),12.60(1H,s).	
	1.11-1.20(1H,m),1.22-1.36(2H,m),1.38-1.50(2H,m),1.64(1H,d,J=12.2Hz),1.69-1.80(
295	2H,m),1.87(2H,d,J=12.2Hz),1.91-2.00(2H,m),2.17(2H,d,J=10.3Hz),2.42-3.42(12H, m),3.62(2H,d,J=9.7Hz),7.24(1H,d,J=8.3Hz),7.50(1H,d,J=1.9Hz),7.58(1H,d,J=1.4Hz)	
290	10,5.02(2H,d,J=9.7112),7.24(1H,d,J=0.5H2),7.30(1H,d,J=1.5H2),7.36(1H,d,J=1.4112) 12,8.08(1H,dd,J=1.9,8.3Hz),8.36(1H,d,J=1.9Hz),9.99(1H,brs),12.27(1H,brs),12.65(1H,d,J=1.9Hz),9.99(1H,brs),12.27	
	S).	
	1.06-1.19(1H,m),1.29(2H,q,J=13.2Hz),1.48(2H,q,J=11.2Hz),1.64(1H,d,J=12.7Hz),1.	
007	71-1.91(6H,m),2.19-2.33(3H,m),2.67-2.83(2H,m),3.22-3.46(9H,m),3.60(2H,d,J=7.4	
297	Hz),6.81(1H,s),7.25(1H,d,J=8.3Hz),7.34(1H,s),7.50(1H,d,J=1.5Hz),7.57(1H,d,J=1.5	20
ļ	Hz),8.08(1H,dd,J=2.2,8.6Hz),8.36(1H,d,J=1.9Hz),10.86(1H,brs),12.64(1H,s).	20
	1.14-1.19(1H,m),1.29(2H,q,J=11.7Hz),1.48(2H,q,J=11.2Hz),1.64(1H,d,J=12.7Hz),1.	
298	78-1.91(4H,m),1.96-2.01(2H,m),2.20(2H,d,J=10.2Hz),3.09-3.35(12H,m),3.60(2H,d,	
200	J=8.8Hz),7.49(1H,d,J=1.5Hz),7.57(1H,d,J=1.5Hz),7.80-7.86(2H,m),10.96(1H,brs),1	
	2.68(1H,s).	
}	1.07-1.18(1H,m),1.29(2H,q,J=12.8Hz),1.47(2H,q,J=11.2Hz),1.59-1.72(3H,m),1.82-1	
299	94(4H,m),2.19(2H,d,J=10.2Hz),2.42-2.46(1H,m),3.13(2H,d,J=11.3Hz),3.26-3.41(9	
	H,m),3.60(2H,brs),7.49(1H,d,J=1.5Hz),7.57(1H,d,J=1.5Hz),7.77-7.86(2H,m),10.72(1H,brs),12.27(1H,brs),12.65(1H,s).	
	1.07-1.19(1H,m),1.29(2H,q,J=12.9Hz),1.47(2H,q,J=11.0Hz),1.57-1.72(3H,m),1.72-1	
ļ	.81(2H,m),1.86(2H,d,J=13.1Hz),2.18-2.33(3H,m),3.09(2H,t,J=11.7Hz),3.22-3.44(9H	
301	m),3.59(2H,brs),6.81(1H,s),7.31(1H,s),7.50(1H,d,J=1.5Hz),7.57(1H,d,J=1.4Hz),7.7	30
	7-7.86(2H,m),10.70(1H,brs),12.66(1H,s).	
	1.08-1.20(1H,m),1.21-1.36(2H,m),1.40-1.55(2H,m),1.59-1.68(1H,m),1.78-1.91(4H,	
302	m),1.95-2.05(2H,m),2.14-2.25(2H,m),3.09-3.21(3H,m),3.21-3.45(9H,m),3.55-3.65(2	
302	H,m),7.50(1H,d,J=1.5Hz),7.57(1H,d,J=1.5Hz),7.93(1H,dd,J=2.0,12.7Hz),8.07(1H,br	
	s),10.81(1H,brs),12.73(1H,s).	
303	1.08-1.20(1H,m),1.22-1.37(2H,m),1.42-1.55(2H,m),1.59-1.76(3H,m),1.81-1.95(4H,	
	m),2.16-2.25(2H,m),2.40-2.48(1H,m),3.08-3.17(2H,m),3.24-3.36(7H,m),3.46-3.65(4	
	H,m),7.49(1H,d,J=1.4Hz),7.57(1H,d,J=1.4Hz),7.89(1H,dd,J=2.0,13.2Hz),8.06(1H,d,	
	J=2.0Hz),10.90(1H,brs),12.25(1H,brs),12.72(1H,s).	
305	1.08-1.20(1H,m),1.20-1.35(2H,m),1.38-1.52(2H,m),1.58-1.90(7H,m),2.10-2.24(2H, m), 2.25-2.36(1H,m), 2.03-2.14(2H,m), 2.25-2.36(1H,m), 2.03-2.14(2H,m), 2.25-2.36(1H,m), 2.03-2.14(2H,m), 2.25-2.36(1H,m), 2.03-2.14(2H,m), 2.25-2.36(1H,m), 2.25-2.36	
	m),2.25-2.36(1H,m),3.03-3.14(2H,m),3.15-3.35(9H,m),3.50-3.70(2H,m),6.80(1H,brs),7.30(1H,brs),7.48(1H,brs),7.56(1H,brs),7.90(1H,dd,J=2.0,13.8Hz),8.06(1H,brs),10.	40
	80(1H,brs),12.69(1H,s).	
L	00(111,010),12.02(111,0).	

Ex	NMR	
309	1.07-1.20(1H,m),1.21-1.35(2H,m),1.38-1.53(2H,m),1.58-1.67(1H,m),1.80-1.92(2H,	
	m),2.08-2.24(2H,m),2.75-2.88(4H,m),3.16-3.92(15H,m),7.49(1H,d,J=1.4Hz),7.53(1 H,d,J=1.4Hz),7.92(1H,dd,J=2.0,13.2Hz),8.06(1H,s),12.7(1H,s).	
	1.08-1.18(1H,m),1.22-1.35(2H,m),1.42-1.56(2H,m),1.58-1.68(1H,m),1.82-1.92(2H,	
311	m),2.18-2.26(2H,m),3.24-3.50(9H,m),3.51-3.68(8H,m),4.04(2H,s),7.50(1H,d,J=1.5H)	
	z),7.58(1H,d,J=1.5Hz),7.72(1H,s),7.95(1H,dd,J=1.9,12.7Hz),8.05(1H,s),8.10(1H,s),8	
	.32(1H,s),10.33(1H,brs),11.10(1H,brs),12.8(1H,s).	
	1.05-1.08(1H,m),1.24-1.35(2H,m)1.43-1.52(2H,m),1.60-1.69(1H,m),1.82-1.92(2H,	
	m),2.12-2.22(2H,m),3.13-3.24(4H,m),3.31(3H,s),3.26-3.35(3H,m),3.46-3.64(10H,m)	10
313	,4.14(2H,s),7.50(1H,d,J=1.4Hz),7.58(1H,d,J=1.4Hz),7.94(1H,dd,J=2.2,12.9Hz),8.09(İ
ł	1H,s),1011(1H,brs),12,76(1H,brs).	1
	1.01-1.20(1H,m),1.21-1.37(2H,m),1.41-1.57(2H,m),1.58-1.67(1H,m),1.75-1.92(2H,	
316	m),2.14-2.28(2H,m),3.03-3.15(4H,m),3.21-3.44(11H,m),3.55-3.64(2H,m),6.88(2H,	
310	m),7.49(1H,d,J=1.4Hz),7.57(1H,d,J=1.4Hz),7.95(1H,dd,J=2.0,12.7Hz),8.08(1H,brs),	ĺ
	11.2(1H,brs),12.7(1H,brs).	
	1.06-1.20(1H,m),1.22-1.36(2H,m),1.40-1.54(2H,m),1.58-1.68(1H,m),1.81-2.00(4H,	
322	m),2.14-2.24(2H,m),3.20-3.38(7H,m),3.54-3.64(3H,m),3.73-3.81(1H,m),3.82-3.91(2	
322	H,m),4.33-4.39(1H,m),7.49(1H,d,J=1.5Hz),7.56(1H,d,J=1.5Hz),8.29(1H,d,J=2.0Hz),	
	8.74(1H,d,J=2.0Hz),10.70(1H,brs),12.51(1H, s).	
	1.05-1.20(1H,m),1.22-1.36(4H,m),1.41-1.55(2H,m),1.58-1.70(2H,m),1.73-1.81(2H,	20
328	m),1.82-1.91(2H,m),2.17-2.26(2H,m),2.90(2H,t,J=11.2Hz),3.23-3.36(9H,m),3.60(2	
	H,d,J=9.8Hz),4.08(2H,d,J=12.7Hz),7.49(1H,d,J=1.4Hz),7.56(1H,d,J=1.4Hz),8.38(1	
	H,d,J=2.0Hz),8.82(1H,d,J=2.0Hz),11.03(1H,brs),12.65(1H,brs).	
	1.05-1.20(1H,m),1.22-1.36(2H,m),1.41-1.54(2H,m),1.58-1.74(3H,m),1.77-1.92(4H,	
224	m),2.16-2.24(2H,m),2.34-2.42(1H,m),2.95(2H,t,J=12.2Hz),3.25-3.36(7H,m),3.52-3. 64(2H,m),4.07(2H,d,J=12.2Hz),6.80(1H, s),7.32(1H,	
331	s),7.49(1H,d,J=1.5Hz),7.57(1H,d,J=1.5Hz),8.40(1H,d,J=2.4Hz),8.83(1H,d,J=2.4Hz),	
	10.73(1H,brs),12.67(1H,s).	
	1.08-1.19(1H,m),1.29(2H,q,J=13.0Hz),1.47(2H,q,J=11.2Hz),1.60-1.82(5H,m),1.87(2	i
	H,d,J=13.2Hz),2.19(2H,d,J=10.7Hz),2.32-2.41(1H,m),2.58(3H,d,J=4.4Hz),2.94(2H,t	ı
332	J=11.5Hz),3.24-3.66(9H,m),4.08(2H,d,J=12.7Hz),7.49(1H,d,J=1.5Hz),7.57(1H,d,J=	l
002	1.5Hz),7.79(1H,q,J=4.6Hz),8.40(1H,d,J=1.9Hz),8.83(1H,d,J=1.9Hz),10.68(1H,brs),1	30
	2.67(1H,s).	
	0.84(3H,t,J=7.3Hz),1.08-1.21(1H,m),1.22-1.34(2H,m),1.35-1.54(4H,m),1.59-1.82(5	•
333	H,m),1.83-1.92(2H,m),2.14-2.23(2H,m),2.34-2.43(1H,m),2.90-2.99(2H,m),3.01(2H,	
	q,J=6.9Hz),3.20-3.60(7H,m),3.55-3.65(2H,m),4.04-4.12(2H,m),7.50(1H,d,J=1.5Hz),	
	7.58(1H,d,J=1.5Hz),7.83(1H,t,J=5.8Hz),8.40(1H,d,J=2.4Hz),8.83(1H,d,J=2.4Hz),10.	
	53(1H,brs),12.68(1H,brs).	
	1.13-1.20(1H,m),1.21-1.35(2H,m),1.42-1.55(2H,m),1.58-1.74(7H,m),2.16-2.23(2H,	
338	m),2.38-2.46(1H,m)2.88-3.00(2H,m),3.18-3.36(7H,m),3.25(3H,s),3.48-3.68(6H,m),4	
	.08-4.13(2H,m),7:49(1H,d,J=1.4Hz),7.56(1H,d,J=1,4Hz),7.94(1H,t,J=5.8Hz),8.39(1	
	H,d,J=2.0Hz),8.83(1H,d,J=2.0Hz),10.81(1H,brs),12.66(1H,brs).	

Ex	NMR	
	1.11(3H,t,J=6.9Hz),1.07-1.21(1H,m),1.23-1.36(2H,m),1.42-1.52(2H,m),1.60-1.91(7	
	H,m),2.14-2.27(2H,m)2.35-2.48(1H,m),2.87-3.00(2H,m),3.20(2H,q,J=5.8Hz),3.20-3	
339	.42(9H,m),3.43(2H,q,J=6.9Hz),3.54-3.66(2H,m),4.00-4.14(2H,m),7.49(1H,d,J=1.4H	
	z),7.58(1H,d,J=1.4Hz),7.92(1H,t,J=5.8Hz),8.40(1H,d,J=1.9Hz),8.82(1H,d,J=1.9Hz),	
	11.00(1H,brs),12.67(1H,brs).	
	1.04-1.20(1H,m),1.23-1.36(2H,m),1.46-1.56(2H,m),1.57-1.92(7H,m),1.63(2H,t,J=6.	
	9Hz),2.16-2.28(2H,m)2.32-2.42(1H,m),2.85-2.98(2H,m),3.06-3.13(2H,m),3.22(3H,s	
340),3.21-3.45(9H,m),3.54-3.67(2H,m),4.02-4.20(2H,m),7.49(1H,d,J=1.5Hz),7.56(1H,d,	
	J=1.5Hz),7.88(1H,t,J=5.5Hz),8.39(1H,d,J=2.0Hz),8.82(1H,d,J=2.0Hz),11.27(1H,brs)	
	,12.65(1H,brs).	
	1.07-1.19(1H,m),1.29(2H,q,J=12.1Hz),1.48(2H,q,J=11.2Hz),1.60-1.78(5H,m),1.86(2	
344	H,d,J=12.7Hz),2.20(2H,d,J=10.2Hz),2.83(3H,s),2.89-3.06(3H,m),3.07(3H,s),3.22-3.	
J44	38(7H,m),3.60(2H,d,J=7.8Hz),4.09(2H,d,J=13.2Hz),7.49(1H,d,J=1.4Hz),7.57(1H,d,J	
	=1.4Hz),8.39(1H,d,J=2.5Hz),8.83(1H,d,J=2.4Hz),10.88(1H,brs),12.66(1H,s).	
	1.07-1.20(1H,m),1.22-1.36(2H,m),1.41-1.56(4H,m),1.60-1.67(1H,m),1.80-1.92(4H,	
350	m),2.15-2.24(2H,m),3.13-3.37(9H,m),3.55-3.63(2H,m),3.68-3.76(1H,m),3.79-3.87(2	
000	H,m),7.49(1H,d,J=1.4Hz),7.57(1H,d,J=1.4Hz),8.38(1H,d,J=2.4Hz),8.82(1H,d,J=2.4	
	Hz),10.92(1H,brs),12.66(1H,s).	
	1.06-1.20(1H,m),1.22-1.37(2H,m),1.42-1.57(4H,m),1.59-1.68(1H,m),1.81(3H,s),1.8	
353	2-1.90(4H,m),2.16-2.26(2H,m),3.07(2H,t,J=11.2Hz),3.21-3.41(7H,m),3.54-3.64(2H,	
	m),3.82-4.08(3H,m),7.49(1H,d,J=1.4Hz),7.57(1H,d,J=1.4Hz),7.90(1H,d,J=7.8Hz),8.	
	40(1H,d,J=1.9Hz),8.84(1H,d,J=1.9Hz),11.06(1H,brs),12.67(1H,s).	
	1.05-1.20(1H,m),1.21-1.36(2H,m),1.42-1.55(2H,m),1.57-1.67(1H,m),1.81-1.92(2H,	
358	m),2.18-2.24(2H,m),2.94-3.03(4H,m),3.18-3.80(15H,m),7.49(1H,d,J=1.4Hz),7.57(1	
	H,d,J=1.4Hz),8.42(1H,d,J=2.2Hz),8.88(1H,d,J=2.2Hz),11.16(1H,brs),12.71(1H,brs).	
	1.06-1.20(1H,m),1.22-1.36(2H,m),1.40-1.54(2H,m),1.58-1.69(1H,m),1.81-1.92(2H,	
362	m),2.13-2.24(2H,m),3.23-3.38(9H,m),3.57-3.63(2H,m),3.77(2H,t,J=5.4Hz),4.05(2H,	
	brs),7.49(1H,d,J=1.5Hz),7.57(1H,d,J=1.5Hz),8.05(1H,brs),8.45(1H,d,J=1.9Hz),8.86(
	1H,d,J=1.9Hz),10.62(1H,brs),12.73(1H,s).	
070	1.07-1.21(1H,m),1.20-1.37(2H,m),1.37-1.52(2H,m),1.60-1.77(1H,m),1.83-1.92(2H,	
372	m),2.10-2.23(2H,m),2.53-2.54(2H,m),3.15-3.37(9H,m),3.57-3.68(6H,m),7.50(1H,s),	
	7.57(1H,s),7.63-7.70(1H,m),8.43(1H,s)8.82(1H,s),10.26(1H,brs),12.68(1H,brs).	

以下の表23~33に、他の本発明化合物の構造を示す。これらは、上記の製造法や、実施例記載の方法、若しくは当業者にとって自明である方法、又はこれらの変法を用いることにより容易に製造することができる。

なお、表中、Noは化合物番号を示し、R $^{
m J}$, R $^{
m K}$, R $^{
m L}$, R $^{
m M}$, R $^{
m N}$, R $^{
m O}$, R $^{
m P}$, R $^{
m Q}$, R $^{
m R}$, R $^{
m S}$, R $^{
m T}$, R $^{
m A}$ A , R $^{
m B}$ B , R $^{
m C}$ C , R $^{
m D}$ D , R $^{
m E}$ E , R $^{
m F}$ F , R $^{
m G}$ G は H 公式中の置換基を示す。従って、例えば表 2 3 において「(No:R $^{
m J}$) = (A 0 0 0 1 : H O - C H $_2$ - O)」とは、「化合物番号 A 0 0 0 1 の化合物は一般式中の置換基 R $^{
m J}$ としてヒドロキシメトキシ基を有する」ことを示す。

10

20

(表23)

 $(No:R^{J})=$ (A0001;HO-CH₂-O),(A0002:MeO-CH₂-O),(A0003:EtO₂C-CH₂-O),(A0004:HO₂C-CH 2-O),(A0005:H2NOC-CH2-O),(A0006:cyano-CH2-O),(A0007:MeHNOC-CH2-O),(A00 08:Me₂NOC-CH₂-O),(A0009:F₃C-CH₂-O),(A0010:HO-(CH₂)₂-O),(A0011:MeO-(CH₂) 2-O), (A0012:EtO₂C-(CH₂)₂-O), (A0013:HO₂C-(CH₂)₂-O), (A0014:H₂NOC-(CH₂)₂-O), (A0015:cvano-(CH2)₂-O),(A0016:MeHNOC-(CH₂)₂-O),(A0017:Me₂NOC-(CH₂)₂-O),(A0018:F₃C-(CH₂)₂-O),(A0019:HO-(CH₂)₃-O),(A0020:MeO-(CH₂)₃-O),(A0021:EtO₂C $-(CH_2)_3-O)$, $(A0022:HO_2C-(CH_2)_3-O)$, $(A0023:H_2NOC-(CH_2)_3-O)$, $(A0024:cyano-(CH_2)_3-O)$ ₃-O),(A0025:MeHNOC-(CH₂)₃-O),(A0026:Me₂NOC-(CH₂)₃-O),(A0027:F₃C-(CH₂)₃-O),(A0028:1-HO-cHex-O),(A0029:1-MeO-cHex-O),(A0030:1-EtO₂C-cHex-O),(A00 31:1-HO₂C-cHex-O),(A0032:1-H₂NOC-cHex-O),(A0033:1-cyano-cHex-O),(A0034: 1-MeHNOC-cHex-O), (A0035:1-Me₂NOC-cHex-O), (A0036:1-F₃C-cHex-O), (A0037:1-MeHNOC-cHex-O)) 2-HO-cHex-O),(A0038:2-MeO-cHex-O),(A0039:2-EtO₂C-cHex-O),(A0040:2-HO₂CcHex-O),(A0041:2-H₂NOC-cHex-O),(A0042:2-cyano-cHex-O),(A0043:2-MeHNOCcHex-O),(A0044:2-Me₂NOC-cHex-O),(A0045:2-F₃C-cHex-O),(A0046:3-HO-cHex-O).(A0047:3-MeO-cHex-O),(A0048:3-EtO₂C-cHex-O),(A0049:3-HO₂C-cHex-O),(A 0050:3-H2NOC-cHex-O),(A0051:3-cyano-cHex-O),(A0052:3-MeHNOC-cHex-O),(A 0053:3-Me₂NOC-cHex-O),(A0054:3-F₃C-cHex-O),(A0055:4-HO-cHex-O),(A0056:4 -MeO-cHex-O),(A0057:4-EtO₂C-cHex-O),(A0058:4-HO₂C-cHex-O),(A0059:4-H₂N OC-cHex-O),(A0060:4-cyano-cHex-O),(A0061:4-MeHNOC-cHex-O),(A0062:4-Me2 NOC-cHex-O),(A0063:4-F₃C-cHex-O),(A0064:3-HO-cPen-O),(A0065:3-MeO-cPen -O),(A0066:3-EtO₂C-cPen-O),(A0067:3-HO₂C-cPen-O),(A0068:3-H₂NOC-cPen-O), (A0069:3-cyano-cPen-O),(A0070:3-MeHNOC-cPen-O),(A0071:3-Me2NOC-cPen-O),(A0072:3-F₃C-cPen-O),(A0073:3-HO-cBu-O),(A0074:3-MeO-cBu-O),(A0075:3-Et O_2C -cBu-O),(A0076:3-H O_2C -cBu-O),(A0077:3-H $_2$ NOC-cBu-O),(A0078:3-cyano-cBu-O) u-O),(A0079:3-MeHNOC-cBu-O),(A0080:3-Me₂NOC-cBu-O),(A0081:3-F₃C-cBu-O) ,(A0082:2-HO-cPr-O),(A0083:2-MeO-cPr-O),(A0084:2-EtO₂C-cPr-O),(A0085:2-HO ₂C-cPr-O),(A0086:2-H₂NOC-cPr-O),(A0087:2-cyano-cPr-O),(A0088:2-MeHNOC-c Pr-O),(A0089:2-Me₂NOC-cPr-O),(A0090:2-F₃C-cPr-O),(A0091:HO-CH₂-HN),(A009 2:MeO-CH₂-HN),(A0093:EtO₂C-CH₂-HN),(A0094:HO₂C-CH₂-HN),

10

20

30

(表23続き)

(A0095:H₂NOC-CH₂-HN), (A0096:cvano-CH₂-HN), (A0097:MeHNOC-CH₂-HN), (A00 $98:Me_2NOC-CH_2-HN)$, (A0099: F₃C-CH₂-HN), (A0100: HO-(CH₂)₂-HN), (A0101: MeO-($CH_2)_2$ -HN),(A0102:EtO₂C-(CH_2)₂-HN),(A0103:HO2C-(CH_2)₂-HN),(A0104:H₂NOC-(HCH₂)₂-HN),(A0105:cyano-(CH₂)₂-HN),(A0106:MeHNOC-(CH₂)₂-HN),(A0107:Me2N OC-(CH₂)₂-HN),(A0108:F₃C-(CH₂)₂-HN),(A0109:HO-(CH₂)₃-HN),(A0110:MeO-(CH₂))₃-HN), (A0111:EtO2C-(CH₂)₃-HN), (A0112:HO₂C-(CH₂)₃-HN), (A0113:H₂NOC-(CH₂)₃ -HN),(A0114:cyano-(CH₂)₃-HN),(A0115:MeHNOC-(CH₂)₃-HN),(A0116:Me₂NOC-(C H₂)₃-HN),(A0117:F₃C-(CH₂)₃-HN),(A0118:1-HO-cHex-HN),(A0119:1-MeO-cHex-HN),(A0120:1-EtO₂C-cHex-HN),(A0121:1-HO₂C-cHex-HN),(A0122:1-H₂NOC-cHex-H N),(A0123:1-cyano-cHex-HN),(A0124:1-MeHNOC-cHex-HN),(A0125:1-Me2NOC-c Hex-HN),(A0126:1-F₃C-cHex-HN),(A0127:2-HO-cHex-HN),(A0128:2-MeO-cHex-H N).(A0129:2-EtO₂C-cHex-HN),(A0130:2-HO₂C-cHex-HN),(A0131:2-H₂NOC-cHex-HN),(A0132;2-cyano-cHex-HN),(A0133;2-MeHNOC-cHex-HN),(A0134;2-Me₂NOCcHex-HN),(A0135:2-F3C-cHex-HN),(A0136:3-HO-cHex-HN),(A0137:3-MeO-cHex-HN),(A0138:3-EtO₂C-cHex-HN),(A0139:3-HO₂C-cHex-HN),(A0140:3-H₂NOC-cHex -HN),(A0141:3-cyano-cHex-HN),(A0142:3-MeHNOC-cHex-HN),(A0143:3-Me₂NOC -cHex-HN),(A0144:3-F₃C-cHex-HN),(A0145:4-HO-cHex-HN),(A0146:4-MeO-cHex-HN),(A0147:4-EtO₂C-cHex-HN),(A0148:4-HO₂C-cHex-HN),(A0149:4-H₂NOC-cHex -HN),(A0150:4-cyano-cHex-HN),(A0151:4-MeHNOC-cHex-HN),(A0152:4-Me₂NOC -cHex-HN),(A0153:4-F₃C-cHex-HN),(A0154:3-HO-cPen-HN),(A0155:3-MeO-cPen-HN),(A0156:3-EtO₂C-cPen-HN),(A0157:3-HO₂C-cPen-HN),(A0158:3-H₂NOC-cPen -HN),(A0159:3-cyano-cPen-HN),(A0160:3-MeHNOC-cPen-HN),(A0161:3-Me2NOC -cPen-HN),(A0162:3-F₃C-cPen-HN),(A0163:3-HO-cBu-HN),(A0164:3-MeO-cBu-H N),(A0165:3-EtO₂C-cBu-HN),(A0166:3-HO₂C-cBu-HN),(A0167:3-H₂NOC-cBu-HN), (A0168:3-cyano-cBu-HN),(A0169:3-MeHNOC-cBu-HN),(A0170:3-Me₂NOC-cBu-H N),(A0171:3-F₃C-cBu-HN),(A0172:2-HO-cPr-HN),(A0173:2-MeO-cPr-HN),(A0174: 2-EtO₂C-cPr-HN),(A0175:2-HO₂C-cPr-HN),(A0176:2-H₂NOC-cPr-HN),(A0177:2-cv ano-cPr-HN),(A0178:2-MeHNOC-cPr-HN),(A0179:2-Me2NOC-cPr-HN),(A0180:2-F ₃C-cPr-HN),(A0181:HO-CH₂-MeN),(A0182:MeO-CH₂-MeN),(A0183:EtO₂C-CH₂-Me N),(A0184:HO₂C-CH₂-MeN),(A0185:H₂NOC-CH₂-MeN),(A0186:cyano-CH₂-MeN),($A0187:MeHNOC-CH_2-MeN)$, $(A0188:Me_2NOC-CH_2-MeN)$, $(A0189:F_3C-CH_2-MeN)$. (A0190:HO-(CH₂)₂-MeN),(A0191:MeO-(CH₂)₂-MeN),(A0192:EtO₂C-(CH₂)₂-MeN),(A 0193: $HO_2C-(CH_2)_2-MeN$),(A0194: $H_2NOC-(CH_2)_2-MeN$),(A0195:cyano-(CH₂)₂-MeN) (A0196:MeHNOC-(CH₂)₂-MeN), (A0197:Me₂NOC-(CH₂)₂-MeN), (A0198:F₃C-(CH₂)₂-MeN),(A0199:HO-(CH₂)₃-MeN),(A0200:MeO-(CH₂)₃-MeN),(A0201:EtO₂C-(CH₂)₃-MeN),(A0202:HO₂C-(CH₂)₃-MeN),(A0203:H₂NOC-(CH₂)₃-MeN),(A0204:cyano-(CH 2)3-MeN),(A0205:MeHNOC-(CH₂)3-MeN),(A0206:Me₂NOC-(CH₂)3-MeN),

10

20

30

(表23続き)

(A0207:F₃C-(CH₂)₃-MeN),(A0208:1-HO-cHex-MeN),(A0209:1-MeO-cHex-MeN),(A 0210:1-EtO₂C-cHex-MeN),(A0211:1-HO₂C-cHex-MeN),(A0212:1-H₂NOC-cHex-Me N),(A0213:1-cyano-cHex-MeN),(A0214:1-MeHNOC-cHex-MeN),(A0215:1-Me2NO C-cHex-MeN), (A0216:1-F₃C-cHex-MeN), (A0217:2-HO-cHex-MeN), (A0218:2-MeOcHex-MeN),(A0219:2-EtO₂C-cHex-MeN),(A0220:2-HO₂C-cHex-MeN),(A0221:2-H₂ NOC-cHex-MeN),(A0222:2-cyano-cHex-MeN),(A0223:2-MeHNOC-cHex-MeN),(A0 224:2-Me₂NOC-cHex-MeN),(A0225:2-F₃C-cHex-MeN),(A0226:3-HO-cHex-MeN),(A0227:3-MeO-cHex-MeN),(A0228:3-EtO₂C-cHex-MeN),(A0229:3-HO₂C-cHex-Me N),(A0230:3-H2NOC-cHex-MeN),(A0231:3-cyano-cHex-MeN),(A0232:3-MeHNOCcHex-MeN),(A0233:3-Me2NOC-cHex-MeN),(A0234:3-F3C-cHex-MeN),(A0235:4-H O-cHex-MeN),(A0236:4-MeO-cHex-MeN),(A0237:4-EtO2C-cHex-MeN),(A0238:4-H O₂C-cHex-MeN),(A0239:4-H₂NOC-cHex-MeN),(A0240:4-cyano-cHex-MeN),(A024 1:4-MeHNOC-cHex-MeN),(A0242:4-Me₂NOC-cHex-MeN),(A0243:4-F₃C-cHex-Me N).(A0244:3-HO-cPen-MeN),(A0245:3-MeO-cPen-MeN),(A0246:3-EtO₂C-cPen-Me N),(A0247:3-HO₂C-cPen-MeN),(A0248:3-H₂NOC-cPen-MeN),(A0249:3-cyano-cPe n-MeN),(A0250:3-MeHNOC-cPen-MeN),(A0251:3-Me2NOC-cPen-MeN),(A0252:3-F₃C-cPen-MeN),(A0253:3-HO-cBu-MeN),(A0254:3-MeO-cBu-MeN),(A0255:3-EtO₂ C-cBu-MeN), (A0256:3-HO₂C-cBu-MeN), (A0257:3-H₂NOC-cBu-MeN), (A0258:3-cy ano-cBu-MeN),(A0259:3-MeHNOC-cBu-MeN),(A0260:3-Me2NOC-cBu-MeN),(A02 61:3-F₃C-cBu-MeN),(A0262:2-HO-cPr-MeN),(A0263:2-MeO-cPr-MeN),(A0264:2-Et O₂C-cPr-MeN),(A0265:2-HO₂C-cPr-MeN),(A0266:2-H₂NOC-cPr-MeN),(A0267:2-cy ano-cPr-MeN),(A0268:2-MeHNOC-cPr-MeN),(A0269:2-Me2NOC-cPr-MeN),(A0270 :2-F₃C-cPr-MeN),(A0271:(oxetan-3-yl)-O),(A0272:(tetrahydrofuran-3-yl)-O),(A0273 :(tetrahydro-2H-pyran-3-yl)-O),(A0274:(tetrahydro-2H-pyran-4-yl)-O),(A0275:(oxeta n-2-vI)- CH_2-O), (A0276: (oxetan-3-vI)- CH_2-O), (A0277: (tetrahydrofuran-2-yI)- CH_2-O), (A0278:(tetrahydrofuran-3-yl)- CH_2 -O),(A0279:(tetrahydro-2H-pyran-2-yl)- CH_2 -O),(A0280:(tetrahydro-2H-pyran-3-yl)-CH₂-O),(A0281:(tetrahydro-2H-pyran-4-yl)-CH₂-O),(A0282:(morpholin-2-yl)-CH₂-O),(A0283:(morpholin-3-yl)-CH₂-O),(A0284:mor-C H_2 -O), (A0285: (1,4-dioxan-2-yl)-C H_2 -O), (A0286: (oxetan-2-yl)-(C H_2)₂-O), (A0287: (ox etan-3-yl)-HN),(A0288:(tetrahydrofuran-3-yl)-HN),(A0289:(tetrahydro-2H-pyran-3-yl)-HN),(A0290:(tetrahydro-2H-pyran-4-yl)-HN),(A0291:(oxetan-2-yl)-CH₂-HN),(A029 2:(oxetan-3-yl)-CH₂-HN),(A0293:(tetrahydrofuran-2-yl)-CH₂-HN),(A0294:(tetrahydr ofuran-3-yl)-CH₂-HN),(A0295:(tetrahydro-2H-pyran-2-yl)-CH₂-HN),(A0296:(tetrahy dro-2H-pyran-3-yl)-CH₂-HN),(A0297:(tetrahydro-2H-pyran-4-yl)-CH₂-HN),(A0298:($morpholin-2-yl)-CH_2-HN), (A0299: (morpholin-3-yl)-CH_2-HN), (A0300: mor-CH_2-HN), (A0$ A0301:(1,4-dioxan-2-yl)-CH₂-HN),(A0302:(oxetan-3-yl)-MeN),(A0303:(tetrahydrofur an-3-vl)-MeN),(A0304:(tetrahydro-2H-pyran-3-yl)-MeN),

10

20

30

(表23続き)

(A0305:(tetrahydro-2H-pyran-4-yl)-MeN),(A0306:(oxetan-2-yl)-CH₂-MeN),(A0307:(oxetan-3-yl)-CH₂-MeN),(A0308:(tetrahydrofuran-2-yl)-CH₂-MeN),(A0309:(tetrahydr ofuran-3-yl)-CH₂-MeN),(A0310:(tetrahydro-2H-pyran-2-yl)-CH₂-MeN),(A0311:(tetra hydro-2H-pyran-3-yl)-CH₂-MeN),(A0312:(tetrahydro-2H-pyran-4-yl)-CH₂-MeN),(A0 313:(morpholin-2-yl)-CH₂-MeN),(A0314:(morpholin-3-yl)-CH₂-MeN),(A0315:mor-C H₂-MeN),(A0316:(1,4-dioxan-2-yl)-CH₂-MeN),(A0317:HO₂C-CH₂CH(OH)-O),(A031 $8: H_2NOC-CH_2CH(OH)-O), (A0319: cyano-CH_2CH(OH)-O), (A0320: HO_2C-CH_2CH(OH)-O), (A0320: HO_2C-CH_2$ Me)-O),(A0321:H₂NOC-CH₂CH(OMe)-O),(A0322:cyano-CH₂CH(OMe)-O),(A0323: HO-CH₂CH(OH)CH₂-O),(A0324:MeO-CH₂CH(OH)CH₂-O),(A0325:HO₂C-CH₂CH(O H)CH₂-O),(A0326:H₂NOC-CH₂CH(OH)CH₂-O),(A0327:cyano-CH₂CH(OH)CH₂-O),(A0328:HO-CH₂CH(OMe)CH₂-O),(A0329:MeO-CH₂CH(OMe)CH₂-O),(A0330:HO₂C -CH₂CH(OMe)CH₂-O),(A0331:H₂NOC-CH₂CH(OMe)CH₂-O),(A0332:cyano-CH₂CH (OMe)CH₂-O),(A0333:HO₂C-CH₂CH(OH)-HN),(A0334:H₂NOC-CH₂CH(OH)-HN),(A 0335:cyano-CH2CH(OH)-HN),(A0336:HO2C-CH2CH(OMe)-HN),(A0337:H2NOC-C H₂CH(OMe)-HN),(A0338:cyano-CH₂CH(OMe)-HN),(A0339:HO-CH₂CH(OH)CH₂-H N),(A0340:MeO-CH₂CH(OH)CH₂-HN),(A0341:HO₂C-CH₂CH(OH)CH₂-HN),(A0342: H₂NOC-CH₂CH(OH)CH₂-HN),(A0343:cyano-CH₂CH(OH)CH₂-HN),(A0344:HO-CH₂ CH(OMe)CH₂-HN),(A0345:MeO-CH₂CH(OMe)CH₂-HN),(A0346:HO₂C-CH₂CH(OM e)CH₂-HN),(A0347:H₂NOC-CH₂CH(OMe)CH₂-HN),(A0348:cyano-CH₂CH(OMe)CH 2-HN),(A0349:HO2C-CH2CH(OH)-MeN),(A0350:H2NOC-CH2CH(OH)-MeN),(A0351 :cvano-CH₂CH(OH)-MeN),(A0352:HO₂C-CH₂CH(OMe)-MeN),(A0353:H₂NOC-CH₂ CH(OMe)-MeN),(A0354:cyano-CH₂CH(OMe)-MeN),(A0355:HO-CH₂CH(OH)CH₂- $MeN), (A0356: MeO-CH_2CH(OH)CH_2-MeN), (A0357: HO_2C-CH_2CH(OH)CH_2-MeN), (A0356: MeO-CH_2CH(OH)CH_2-MeN), (A0356: MeO-CH_2CH(OH)CH_2-MeN), (A0356: MeO-CH_2CH(OH)CH_2-MeN), (A0357: MeO-CH_2CH(OH)C$ A0358:H₂NOC-CH₂CH(OH)CH₂-MeN),(A0359:cyano-CH₂CH(OH)CH₂-MeN),(A036 0:HO-CH₂CH(OMe)CH₂-MeN),(A0361:MeO-CH₂CH(OMe)CH₂-MeN),(A0362:HO₂ C-CH₂CH(OMe)CH₂-MeN),(A0363:H₂NOC-CH₂CH(OMe)CH₂-MeN),(A0364:cyano-CH₂CH(OMe)CH₂-MeN),(A0365:HO-(CH2)₂-(HO(CH₂)₂)N),(A0366:MeO-(CH₂)₂-(H $O(CH_2)_2)N)$, $(A0367:HO_2C-(CH_2)_2-(HO(CH_2)_2)N)$, $(A0368:H_2NOC-(CH_2)_2-(HO(CH_2)_2)N)$ N),(A0369:cyano-(CH₂)₂-(HO(CH₂)₂)N),(A0370:HO-(CH₂)₃-(HO(CH₂)₂)N),(A0371:M $eO-(CH_2)_3-(HO(CH_2)_2)N), (A0372:HO_2C-(CH_2)_3-(HO(CH_2)_2)N), (A0373:H_2NOC-(CH_2)_3-(HO(CH_2)_2)N), (A0373:H_2NOC-(CH_2)_2)N), (A0373:H_2NOC-(CH_2)_2)N)$ $)_{3}$ -(HO(CH₂)₂)N),(A0374:cyano-(CH₂)₃-(HO(CH₂)₂)N),(A0375:HO-(CH₂)₂-(MeO(CH₂)₃-(HO(CH₂)₂)N))) $)_{2})N),(A0376:MeO-(CH_{2})_{2}-(MeO(CH_{2})_{2})N),(A0377:HO_{2}C-(CH_{2})_{2}-(MeO(CH_{2})_{2})N),(A0376:MeO-(CH_{2})_{2}-(MeO(CH_{2})_{2})N)),(A0376:MeO-(CH_{2})_{2}-(MeO(CH_{2})_{2})N)),(A0376:MeO-(CH_{2})_{2}-(MeO(CH_{2})_{2})N)),(A0377:HO_{2}C-(CH_{2})_{2}-(MeO(CH_{2})_{2})N)),(A0377:HO_{2}C-(CH_{2})_{2}-(MeO(CH_{2})_{2})N)),(A0377:HO_{2}C-(CH_{2})_{2}-(MeO(CH_{2})_{2})N)),(A0377:HO_{2}C-(CH_{2})_{2}-(MeO(CH_{2})_{2})N)),(A0377:HO_{2}C-(CH_{2})_{2}-(MeO(CH_{2})_{2})N)),(A0377:HO_{2}C-(CH_{2})_{2}-(MeO(CH_{2})_{2})N)),(A0377:HO_{2}C-(CH_{2})_{2}-(MeO(CH_{2})_{2})N)),(A0377:HO_{2}C-(CH_{2})_{2}-(MeO(CH_{2})_{2})N)),(A0377:HO_{2}C-(CH_{2})_{2}-(MeO(CH_{2})_{2})N)),(A0377:HO_{2}C-(CH_{2})_{2}-(MeO(CH_{2})_{2})N)),(A0377:HO_{2}C-(CH_{2})_{2}-(MeO(CH_{2})_{2})N)),(A0377:HO_{2}C-(CH_{2})_{2}-(MeO(CH_{2})_{2})N))),(A0377:HO_{2}C-(CH_{2})_{2}-(MeO(CH_{2})_{2})N))))$ $0378: H_2NOC-(CH_2)_2-(MeO(CH_2)_2)N), (A0379: cyano-(CH_2)_2-(MeO(CH_2)_2)N), (A0380: CH_2)_2-(MeO(CH_2)_2)N), (A0380: CH_2)_2-(MeO(CH_2)_2-(MeO(CH_2)_2)N), (A0380: CH_2)_2-(MeO(CH_2)_2-(MeO(CH_2)_2)N), (A0380: CH_2)_2-(MeO(CH_2)_2-(MeO(CH_2)_2-(MeO(CH_2)_2-(MeO(CH_2)_2-(MeO(CH_2)_2-(MeO(CH_2)_2-(MeO(CH_2)_2-(MeO(CH_2)_2-(MeO(CH_2)_2-(MeO(CH_2)_2-(MeO(CH_2)_$ $HO\text{-}(CH_2)_3\text{-}(MeO(CH_2)_2)N), (A0381:MeO\text{-}(CH_2)_3\text{-}(MeO(CH_2)_2)N), (A0382:HO_2C\text{-}(CH_2)_3\text{-}(MeO(CH_2)_2)N), (A0382:HO_2C\text{-}(CH_2)_2)N), (A0382:HO_2C\text{-}(CH_2)_2)N)$ $_2$)3-(MeO(CH₂)₂)N),(A0383:H₂NOC-(CH₂)3-(MeO(CH₂)₂)N),(A0384:cyano-(CH₂)3-(MeO(C $eO(CH_2)_2)N).$

10

20

30

(表24)

 $(No:R^K)=$

(A0385:3-HO-pyrr),(A0386:3-MeO-pyrr),(A0387:3-HO₂C-pyrr),(A0388:3-H₂NOC-pyrr),(A0389:3-cyano-pyrr),(A0390:3-MeHNOC-pyrr),(A0391:3-Me₂NOC-pyrr),(A0392:3-F₃C-pyrr),(A0393:3-F-pyrr),(A0394:3-oxo-pyrr),(A0395:3-H₂NO2S-pyrr),(A0396:3-HO₃S-pyrr),(A0397:3-ttrz-pyrr),(A0398:3-HOCH₂-pyrr),(A0399:3-MeOCH₂-pyrr),(A0400:3-HO₂CCH₂-pyrr),(A0401:3-H₂NOCCH₂-pyrr),(A0402:3-(cyano-CH₂)-pyrr),(A0403:3-HO₂CCH₂O-pyrr),(A0404:3-H₂NOCCH₂O-pyrr),(A0405:3-HO-pipe),(A0406:3-MeO-pipe),(A0407:3-HO₂C-pipe),(A0408:3-H₂NOC-pipe),(A0409:3-cyano-pipe),(A0410:3-MeHNOC-pipe),(A0411:3-Me₂NOC-pipe),(A0412:3-F₃C-pipe),(A0413:3-F-pipe),(A0414:3-oxo-pipe),(A0415:3-H₂NO₂S-pipe),(A0416:3-HO₃S-pipe),(A0417:3-ttrz-pipe),(A0418:3-HOCH₂-pipe),(A0419:3-MeOCH₂-pipe),(A0420:3-HO₂CCH₂-pipe),(A0421:3-H₂NOCCH₂-pipe),(A0422:3-(cyano-CH₂)-pipe),(A0423:3-HO₂CCH₂O-pipe),(A0424:3-H₂NOCCH₂O-pipe),(A0425:4-HO-pipe),(A0426:4-MeO-pipe),(A0436:4-HO₃S-pipe),(A0437:4-ttrz-pipe),(A0438:4-pipe),(A0436:4-HO₃S-pipe),(A0437:4-ttrz-pipe),(A0438:4-Pipe),(A0436:4-HO₃S-pipe),(A0437:4-ttrz-pipe),(A0438:4-Pipe),(A0436:4-HO₃S-pipe),(A0437:4-ttrz-pipe),(A0438:4-Pipe),(A0436:4-HO₃S-pipe),(A0437:4-ttrz-pipe),(A0438:4-Pipe),(A0436:4-HO₃S-pipe),(A0437:4-ttrz-pipe),(A0438:4-Pipe),(A0436:4-HO₃S-pipe),(A0437:4-ttrz-pipe),(A0438:4-Pipe),(A0436:4-HO₃S-pipe),(A0437:4-ttrz-pipe),(A0438:4-Pipe),(A0436:4-HO₃S-pipe),(

4-HOCH₂-pipe),(A0439:4-MeOCH₂-pipe),(A0440:4-HO₂CCH₂-pipe),(A0441:4-H₂N OCCH₂-pipe),(A0442:4-(cyano-CH₂)-pipe),(A0443:4-HO₂CCH₂O-pipe),(A0444:4-H

(表25)

2NOCCH2O-pipe).

 $(NO:R^{L})=$

(A0445:HO-CH₂-O), (A0446:MeO-CH₂-O), (A0447:EtO₂C-CH₂-O), (A0448:HO₂C-CH₂-O), (A0449:H₂NOC-CH₂-O), (A0450:cyano-CH₂-O), (A0451:HO-(CH₂)₂-O), (A0451:HO-(CH₂)₂-O), (A0450:cyano-CH₂-O), (A0451:HO-(CH₂)₂-O), (A0450:cyano-CH₂-O), (A0450:cyano-CH₂-O), (A0450:CH₂-O), (A0450:CH₂

10

20

30

(表25続き)

 $(A0452:MeO-(CH_2)_2-O), (A0453:EtO_2C-(CH_2)_2-O), (A0454:HO_2C-(CH_2)_2-O), (A0455:H_2NOC-(CH_2)_2-O), (A0456:cyano-(CH_2)_2-O), (A0457:HO-(CH_2)_3-O), (A0458:MeO-(CH_2)_3-O), (A0459:EtO_2C-(CH_2)_3-O), (A0460:HO_2C-(CH_2)_3-O), (A0461:H_2NOC-(CH_2)_3-O), (A0462:cyano-(CH_2)_3-O), (A0463:HO-CH_2-HN), (A0464:MeO-CH_2-HN), (A0465:EtO_2C-CH_2-HN), (A0466:HO_2C-CH_2-HN), (A0467:H_2NOC-CH_2-HN), (A0468:cyano-CH_2-HN), (A0469:HO-(CH_2)_2-HN), (A0470:MeO-(CH_2)_2-HN), (A0471:EtO_2C-(CH_2)_2-HN), (A0472:HO_2C-(CH_2)_2-HN), (A0473:H_2NOC-(CH_2)_2-HN), (A0474:cyano-(CH_2)_2-HN), (A0475:HO-(CH_2)_3-HN), (A0476:MeO-(CH_2)_3-HN), (A0477:EtO_2C-(CH_2)_3-HN), (A0478:HO_2C-(CH_2)_3-HN), (A0479:H_2NOC-(CH_2)_3-HN), (A0480:cyano-(CH_2)_3-HN), (A0481:HO-CH_2-MeN), (A0482:MeO-CH_2-MeN), (A0483:EtO_2C-CH_2-MeN), (A0484:HO_2C-CH_2-MeN), (A0485:H_2NOC-CH_2-MeN), (A0486:cyano-CH_2-MeN), (A0487:HO-(CH_2)_2-MeN), (A0488:MeO-(CH_2)_2-MeN), (A0486:cyano-CH_2-MeN), (A0491:H_2NOC-(CH_2)_2-MeN), (A0492:cyano-(CH_2)_2-MeN), (A0493:HO-(CH_2)_3-MeN), (A0494:MeO-(CH_2)_3-MeN), (A0495:EtO_2C-(CH_2)_3-MeN), (A0496:HO_2C-(CH_2)_3-MeN), (A0497:H_2NOC-(CH_2)_3-MeN), (A0498:cyano-(CH_2)_3-MeN), (A0497:H_2NOC-(CH_2)_3-MeN), (A0498:cyano-(CH_2)_3-MeN), (A0496:HO_2C-(CH_2)_3-MeN), (A0497:H_2NOC-(CH_2)_3-MeN), (A0498:cyano-(CH_2)_3-MeN), (A0497:H_2NOC-(CH_2)_3-MeN), (A0498:cyano-(CH_2)_3-MeN). (A0497:H_2NOC-(CH_2)_3-MeN), (A0498:cyano-(CH_2)_3-MeN). (A0497:H_2NOC-(CH_2)_3-MeN), (A0498:cyano-(CH_2)_3-MeN). (A0497:H_2NOC-(CH_2)_3-MeN), (A0498:cyano-(CH_2)_3-MeN). (A0497:H_2NOC-(CH_2)_3-MeN), (A0498:cyano-(CH_2)_3-MeN). (A0498:HO-(CH_2)_3-MeN), (A0498:HO-(CH_2)_3-$

(表26)

CI—S O R

$(No:R^{M})=$

 $(A0499:2-HO_2C-azet), (A0500:2-H_2NOC-azet), (A0501:2-cyano-azet), (A0502:2-Me HNOC-azet), (A0503:2-Me_2NOC-azet), (A0504:2-(MeO(CH_2)_2-(HNOC))-azet), (A0505:2-(MeO(CH_2)_3-(HNOC))-azet), (A0506:2-(mor-OC)-azet), (A0507:2-F_3C-azet), (A0506:2-(mor-OC)-azet), (A0507:2-F_3C-azet), (A0508:2-oxo-azet), (A0509:2-H_2NO_2S-azet), (A0510:2-HO_3S-azet), (A0511:2-ttrz-azet), (A0512:2-HOCH_2-azet), (A0513:2-MeOCH_2-azet), (A0514:2-HO_2CCH_2-azet), (A0515:2-H_2NOCCH_2-azet), (A0516:2-(cyano-CH_2)-azet), (A0517:2-HO(CH_2)_2-azet), (A0518:2-MeO(CH_2)_2-azet), (A0519:2-HO_2C(CH_2)_2-azet), (A0520:2-H_2NOC(CH_2)_2-azet), (A0521:2-(cyano-(CH_2)_2)-azet), (A0522:3-HO-azet), (A0520:3-MeO-azet), (A0524:3-HO 2C-azet), (A0525:3-H_2NOC-azet), (A0526:3-cyano-azet), (A0527:3-MeHNOC-azet), (A0528:3-Me_2NOC-azet), (A0529:3-(MeO(CH_2)_2-(HNOC))-azet), (A0530:3-(MeO(CH_2)_3-(HNOC))-azet), (A0531:3-(mor-OC)-azet), (A0536:3-HO_3S-azet), (A0537:3-ttrz-azet), (A0538:3-HOCH_2-azet), (A0539:3-MeOCH_2-azet), (A0540:3-HO_2CCH_2-azet), (A0538:3-HOCH_2-azet), (A0539:3-MeOCH_2-azet), (A0540:3-HO_2CCH_2-azet), (A0540:3-HO_2CCH_2$

10

20

30

(A0541:3-H₂NOCCH₂-azet),(A0542:3-(cyano-CH₂)-azet),(A0543:3-HO(CH₂)₂-azet), (A0544:3-MeO(CH₂)₂-azet), (A0545:3-HO₂C(CH₂)₂-azet), (A0546:3-H₂NOC(CH₂)₂-azet)zet),(A0547:3-(cyano-(CH₂)₂)-azet),(A0548:3-HO₂CCH₂O-azet),(A0549:3-H₂NOCC H₂O-azet),(A0550:2-HO₂C-pyrr),(A0551:2-H₂NOC-pyrr),(A0552:2-cyano-pyrr),(A05 53:2-MeHNOC-pyrr),(A0554:2-Me₂NOC-pyrr),(A0555:2-(MeO(CH₂)₂-(HNOC))-pyrr),(A0556:2-(MeO(CH₂)₃-(HNOC))-pyrr),(A0557:2-(mor-OC)-pyrr),(A0558:2-F₃C-pyr)r),(A0559:2-oxo-pyrr),(A0560:2-H₂NO₂S-pyrr),(A0561:2-HO₃S-pyrr),(A0562:2-ttrz-p yrr),(A0563:2-HOCH₂-pyrr),(A0564:2-MeOCH₂-pyrr),(A0565:2-HO₂CCH₂-pyrr),(A0 566:2-H₂NOCCH₂-pyrr),(A0567:2-(cyano-CH₂)-pyrr),(A0568:3-HO-pyrr),(A0569:3-MeO-pyrr),(A0570:3-HO₂C-pyrr),(A0571:3-H₂NOC-pyrr),(A0572:3-cyano-pyrr),(A0 573:3-MeHNOC-pyrr),(A0574:3-Me₂NOC-pyrr),(A0575:3-(MeO(CH₂)₂-(HNOC))-pyr r),(A0576:3-(MeO(CH₂)₃-(HNOC))-pyrr),(A0577:3-(mor-OC)-pyrr),(A0578:3-F₃C-py rr),(A0579:3-F-pyrr),(A0580:3-oxo-pyrr),(A0581:3-H₂NO₂S-pyrr),(A0582:3-HO₃S-py rr),(A0583:3-ttrz-pyrr),(A0584:3-HOCH₂-pyrr),(A0585:3-MeOCH₂-pyrr),(A0586:3-H O₂CCH₂-pyrr),(A0587:3-H₂NOCCH₂-pyrr),(A0588:3-(cyano-CH₂)-pyrr),(A0589:3-H O₂CCH₂O-pyrr),(A0590:3-H₂NOCCH₂O-pyrr),(A0591:2-HO₂C-pipe),(A0592:2-H₂N OC-pipe),(A0593:2-cyano-pipe),(A0594:2-MeHNOC-pipe),(A0595:2-Me2NOC-pipe),(A0596:2-(MeO(CH₂)₂-(HNOC))-pipe),(A0597:2-(MeO(CH₂)₃-(HNOC))-pipe),(A0596:2-(MeO(CH₂)₃-(MeO(CH 98:2-(mor-OC)-pipe),(A0599:2-F₃C-pipe),(A0600:2-oxo-pipe),(A0601:2-H₂NO₂S-pi pe),(A0602:2-HO₃S-pipe),(A0603:2-ttrz-pipe),(A0604:2-HOCH₂-pipe),(A0605:2-Me OCH₂-pipe),(A0606:2-HO₂CCH₂-pipe),(A0607:2-H₂NOCCH₂-pipe),(A0608:2-(cyan o-CH₂)-pipe),(A0609:2-HO(CH₂)₂-pipe),(A0610:3-HO-pipe),(A0611:3-MeO-pipe),(A 0612:3-HO₂C-pipe),(A0613:3-H₂NOC-pipe),(A0614:3-cyano-pipe),(A0615:3-MeHN OC-pipe),(A0616:3-Me₂NOC-pipe),(A0617:3-(MeO(CH₂)₂-(HNOC))-pipe),(A0618:3 $-(MeO(CH_2)_3-(HNOC))-pipe),(A0619:3-(mor-OC)-pipe),(A0620:3-F_3C-pipe),(A0621)$:3-F-pipe),(A0622:3-oxo-pipe),(A0623:3-H₂NO₂S-pipe),(A0624:3-HO₃S-pipe),(A06 25:3-ttrz-pipe),(A0626:3-HOCH₂-pipe),(A0627:3-MeOCH₂-pipe),(A0628:3-HO₂CC H₂-pipe),(A0629:3-H₂NOCCH₂-pipe),(A0630:3-(cyano-CH₂)-pipe),(A0631:3-HO₂C CH_2O -pipe),(A0632:3- H_2NOCCH_2O -pipe),(A0633:4-HO-pipe),(A0634:4-MeO-pipe) ,(A0635:4-HO₂C-pipe),(A0636:4-H₂NOC-pipe),(A0637:4-cyano-pipe),(A0638:4-Me HNOC-pipe),(A0639:4-Me₂NOC-pipe),(A0640:4-(MeO(CH₂)₂-(HNOC))-pipe),(A064 1:4-(MeO(CH₂)₃-(HNOC))-pipe),(A0642:4-(mor-OC)-pipe),(A0643:4-F₃C-pipe),(A0 644:4-F-pipe),(A0645:4-oxo-pipe),(A0646:4-H₂NO₂S-pipe),(A0647:4-HO₃S-pipe),(A0648:4-ttrz-pipe),(A0649:4-HOCH₂-pipe),(A0650:4-MeOCH₂-pipe),(A0651:4-HO₂ CCH₂-pipe),(A0652:4-H₂NOCCH₂-pipe),(A0653:4-(cyano-CH₂)-pipe),(A0654:4-HO ₂CCH₂O-pipe),(A0655:4-H₂NOCCH₂O-pipe),(A0656:2-HO₂C-pipa),(A0657:2-H₂NO C-pipa),(A0658:2-cyano-pipa),(A0659:2-MeHNOC-pipa),(A0660:2-Me₂NOC-pipa),

10

20

30

(A0661:2-(MeO(CH₂)₂-(HNOC))-pipa),(A0662:2-(MeO(CH₂)₃-(HNOC))-pipa),(A066 $3:2-(mor-OC)-pipa),(A0664:2-F_3C-pipa),(A0665:2-oxo-pipa),(A0666:2-H_2NO_2S-Pipa),(A0666:2-H_2NO_2S-Pipa),(A0666:2-H_2NO_2S-Pipa),(A0666:2-H_2NO_2S-Pipa),(A0666:2-H_2NO_2S-Pipa),(A0666:2-H_2NO_2S-Pipa),(A0666:2-H_2NO_2S-Pipa),(A0666:2-H_2NO_2S-Pipa),(A0666:2-H_2NO_2S-Pipa),(A0666:2-H_2NO_2S-Pipa),(A0666:2-H_2NO_2S-Pipa),(A0666:2-H_2NO_2S-Pipa),(A0666:2-H_2NO_2S-Pipa),(A0666:2-H_2NO_2S-Pipa),(A0666:2-H_2NO_2S-Pipa),(A0666-H_2NO_2S-Pipa),(A0665-H_2NO_2S-Pipa),(A0666-H_2NO_2S-Pipa),$ a),(A0667:2-HO₃S-pipa),(A0668:2-ttrz-pipa),(A0669:2-HOCH₂-pipa),(A0670:2-MeO CH₂-pipa),(A0671:2-HO₂CCH₂-pipa),(A0672:2-H₂NOCCH₂-pipa),(A0673:2-(cyano-CH₂)-pipa),(A0674:3-HO₂C-pipa),(A0675:3-H₂NOC-pipa),(A0676:3-cyano-pipa),(A 0677:3-MeHNOC-pipa),(A0678:3-Me₂NOC-pipa),(A0679:3-(MeO(CH₂)₂-(HNOC))-p ipa),(A0680:3-(MeO(CH₂)₃-(HNOC))-pipa),(A0681:3-(mor-OC)-pipa),(A0682:3-F₃Cpipa),(A0683:3-oxo-pipa),(A0684:3-H₂NO₂S-pipa),(A0685:3-HO₃S-pipa),(A0686:3-t trz-pipa),(A0687:3-HOCH₂-pipa),(A0688:3-MeOCH₂-pipa),(A0689:3-HO₂CCH₂-pipa),(A0690:3-H₂NOCCH₂-pipa),(A0691:3-(cyano-CH₂)-pipa),(A0692:4-H₂NOC-pipa),(A0693:4-MeHNOC-pipa), $(A0694:4-Me_2NOC-pipa)$, $(A0695:4-(MeO(CH_2)_2-(HNOC))$ -pipa),(A0696:4-(MeO(CH₂)₃-(HNOC))-pipa),(A0697:4-(mor-OC)-pipa),(A0698:4-F₃ C-pipa),(A0699:4-H₂NO₂S-pipa),(A0700:4-EtO₂C-pipa),(A0701:4-HO₂CCH₂-pipa),(A0702:4-H₂NOCCH₂-pipa),(A0703:4-(cyano-CH₂)-pipa),(A0704:2-HO₂C-mor),(A07 05:2-H₂NOC-mor),(A0706:2-cyano-mor),(A0707:2-MeHNOC-mor),(A0708:2-Me₂N OC-mor),(A0709:2-(MeO(CH₂)₂-(HNOC))-mor),(A0710:2-(MeO(CH₂)₃-(HNOC))-mo r),(A0711:2-(mor-OC)-mor),(A0712:2-F₃C-mor),(A0713:2-oxo-mor),(A0714:2-H₂NO ₂S-mor),(A0715:2-HO₃S-mor),(A0716:2-ttrz-mor),(A0717:2-HOCH₂-mor),(A0718:2-MeOCH₂-mor),(A0719:2-HO₂CCH₂-mor),(A0720:2-H₂NOCCH₂-mor),(A0721:2-(cya no-CH₂)-mor),(A0722:3-HO₂C-mor),(A0723:3-H₂NOC-mor),(A0724:3-cyano-mor),(A0725:3-MeHNOC-mor),(A0726:3-Me₂NOC-mor),(A0727:3-(MeO(CH₂)₂-(HNOC))mor),(A0728:3-(MeO(CH₂)₃-(HNOC))-mor),(A0729:3-(mor-OC)-mor),(A0730:3-F₃C -mor),(A0731:3-oxo-mor),(A0732:3-H₂NO₂S-mor),(A0733:3-HO₃S-mor),(A0734:3-tt rz-mor),(A0735:3-HOCH₂-mor),(A0736:3-MeOCH₂-mor),(A0737:3-HO₂CCH₂-mor), (A0738:3-H₂NOCCH₂-mor),(A0739:3-(cyano-CH₂)-mor),(A0740:2-HO₂C-tmor),(A0 741:2-H₂NOC-tmor),(A0742:2-cyano-tmor),(A0743:2-MeHNOC-tmor),(A0744:2-Me $_{2}$ NOC-tmor),(A0745:2-(MeO(CH₂)₂-(HNOC))-tmor),(A0746:2-(MeO(CH₂)₃-(HNOC)) -tmor),(A0747:2-(mor-OC)-tmor),(A0748:2-F₃C-tmor),(A0749:2-oxo-tmor),(A0750:2 -H₂NO₂S-tmor),(A0751:2-HO₃S-tmor),(A0752:2-ttrz-tmor),(A0753:2-HOCH₂-tmor),(A0754:2-MeOCH₂-tmor),(A0755:2-HO₂CCH₂-tmor),(A0756:2-H₂NOCCH₂-tmor),(A 0757:2-(cyano-CH₂)-tmor),(A0758:3-HO₂C-tmor),(A0759:3-H₂NOC-tmor),(A0760:3 -cyano-tmor),(A0761:3-MeHNOC-tmor),(A0762:3-Me2NOC-tmor),(A0763:3-(MeO($CH_2)_2$ -(HNOC))-tmor),(A0764:3-(MeO(CH₂)₃-(HNOC))-tmor),(A0765:3-(mor-OC)-t mor),(A0766:3- F_3 C-tmor),(A0767:3-oxo-tmor),(A0768:3- H_2 NO₂S-tmor),(A0769:3- H_2 NO₂S-tmor) O₃S-tmor),(A0770:3-ttrz-tmor),(A0771:3-HOCH₂-tmor),(A0772:3-MeOCH₂-tmor),(A 0773:3-HO₂CCH₂-tmor),(A0774:3-H₂NOCCH₂-tmor),(A0775:3-(cyano-CH₂)-tmor),(A0776:1-oxido-tmor),(A0777:1,1-dioxido-tmor),(A0778:4-HO-cHex),

10

20

30

(A0779:4-MeO-cHex),(A0780:4-HO₂C-cHex),(A0781:4-H₂NOC-cHex),(A0782:4-cy ano-cHex),(A0783:4-MeHNOC-cHex),(A0784:4-Me2NOC-cHex),(A0785:4-(MeO(C H_2)₂-(HNOC))-cHex),(A0786:4-(MeO(CH₂)₃-(HNOC))-cHex),(A0787:4-(mor-OC)-c Hex),(A0788:4-F₃C-cHex),(A0789:4-F-cHex),(A0790:4-oxo-cHex),(A0791:4-H₂NO₂ S-cHex),(A0792:4-HO₃S-cHex),(A0793:4-ttrz-cHex),(A0794:4-HOCH₂-cHex),(A079 5:4-MeOCH₂-cHex),(A0796:4-HO₂CCH₂-cHex),(A0797:4-H₂NOCCH₂-cHex),(A079 8:4-(cyano-CH₂)-cHex),(A0799:4-HO₂CCH₂O-cHex),(A0800:4-H₂NOCCH₂O-cHex) ,(A0801:1-H₂NOC-piperidin-4-yl),(A0802:1-MeHNOC-piperidin-4-yl),(A0803:1-Me₂ NOC-piperidin-4-yl),(A0804:1-(MeO(CH₂)₂-(HNOC))-piperidin-4-yl),(A0805:1-(MeO (CH₂)₃-(HNOC))-piperidin-4-yl),(A0806:1-(mor-OC)-piperidin-4-yl),(A0807:1-F₃C-pi peridin-4-yl),(A0808:1-H₂NO₂S-piperidin-4-yl),(A0809:1-EtO₂C-piperidin-4-yl),(A08 10:1-HO₂CCH₂-piperidin-4-yl),(A0811:1-H₂NOCCH₂-piperidin-4-yl),(A0812:1-(cvan o-CH₂)-piperidin-4-yl).(A0813:2-HO₂C-4-HO-pipe),(A0814:2-H₂NOC-4-HO-pipe),(A 0815:2-cvano-4-HO-pipe).(A0816:2-HOCH₂-4-HO-pipe),(A0817:3-HO-4-HO-pipe),(A0818:3-MeO-4-HO-pipe),(A0819:3-HO₂C-4-HO-pipe),(A0820:3-H₂NOC-4-HO-pip e),(A0821:3-cvano-4-HO-pipe),(A0822:3-HOCH₂-4-HO-pipe),(A0823:4-HO-4-HO-p ipe),(A0824:4-MeO-4-HO-pipe),(A0825:4-HO₂C-4-HO-pipe),(A0826:4-H₂NOC-4-H O-pipe),(A0827:4-cyano-4-HO-pipe),(A0828:2-HO₂C-4-MeO-pipe),(A0829:2-H₂NO C-4-MeO-pipe),(A0830:2-cyano-4-MeO-pipe),(A0831:2-HOCH₂-4-MeO-pipe),(A08 32:3-HO-4-MeO-pipe),(A0833:3-MeO-4-MeO-pipe),(A0834:3-HO₂C-4-MeO-pipe),(A0835:3-H₂NOC-4-MeO-pipe),(A0836:3-cyano-4-MeO-pipe),(A0837:3-HOCH₂-4-M eO-pipe),(A0838:4-HO-4-MeO-pipe),(A0839:4-MeO-4-MeO-pipe),(A0840:4-HO₂C-4-MeO-pipe),(A0841:4-H₂NOC-4-MeO-pipe),(A0842:4-cyano-4-MeO-pipe),(A0843: 2-HO₂C-4-HO₂C-pipe),(A0844:2-H₂NOC-4-HO₂C-pipe),(A0845:2-cyano-4-HO₂C-pi pe),(A0846:2-HOCH₂-4-HO₂C-pipe),(A0847:3-HO-4-HO₂C-pipe),(A0848:3-MeO-4- HO_2C -pipe),(A0849:3- HO_2C -4- HO_2C -pipe),(A0850:3- H_2NOC -4- HO_2C -pipe),(A0851 :3-cyano-4-HO₂C-pipe),(A0852:3-HOCH₂-4-HO₂C-pipe),(A0853:4-HO-4-HO₂C-pip e).(A0854:4-MeO-4-HO₂C-pipe),(A0855:4-HO₂C-4-HO₂C-pipe),(A0856:4-H₂NOC-4 -HO₂C-pipe),(A0857:4-cyano-4-HO₂C-pipe),(A0858:2-HO₂C-4-H₂NOC-pipe),(A085 9:2-H₂NOC-4-H₂NOC-pipe),(A0860:2-cyano-4-H₂NOC-pipe),(A0861:2-HOCH₂-4-H 2NOC-pipe),(A0862:3-HO-4-H₂NOC-pipe),(A0863:3-MeO-4-H₂NOC-pipe),(A0864: $3-HO_2C-4-H_2NOC$ -pipe),(A0865:3-H₂NOC-4-H₂NOC-pipe),(A0866:3-cyano-4-H₂N OC-pipe),(A0867:3-HOCH₂-4-H₂NOC-pipe),(A0868:4-HO-4-H₂NOC-pipe),(A0869: 4-MeO-4-H₂NOC-pipe),(A0870:4-HO₂C-4-H₂NOC-pipe),(A0871:4-H₂NOC-4-H₂NO C-pipe),(A0872:4-cyano-4-H2NOC-pipe),(A0873:2-HO2C-4-cyano-pipe),(A0874:2-H₂NOC-4-cyano-pipe),(A0875:2-cyano-4-cyano-pipe),(A0876:2-HOCH₂-4-cyano-pi pe),(A0877:3-HO-4-cyano-pipe),(A0878:3-MeO-4-cyano-pipe),

10

20

30

(A0879:3-HO₂C-4-cyano-pipe),(A0880:3-H₂NOC-4-cyano-pipe),(A0881:3-cyano-4cyano-pipe),(A0882:3-HOCH2-4-cyano-pipe),(A0883:4-HO-4-cyano-pipe),(A0884:4 -MeO-4-cyano-pipe),(A0885:4-HO₂C-4-cyano-pipe),(A0886:4-H₂NOC-4-cyano-pip e).(A0887:4-cvano-4-cvano-pipe),(A0888:2-HO₂C-4-(HOCH₂)-pipe),(A0889:2-H₂N OC-4-(HOCH₂)-pipe),(A0890:2-cyano-4-(HOCH₂)-pipe),(A0891:2-HOCH₂-4-(HOC H₂)-pipe),(A0892:3-HO-4-(HOCH₂)-pipe),(A0893:3-MeO-4-(HOCH₂)-pipe),(A0894: 3-HO₂C-4-(HOCH₂)-pipe),(A0895:3-H₂NOC-4-(HOCH₂)-pipe),(A0896:3-cyano-4-(H OCH₂)-pipe),(A0897:3-HOCH₂-4-(HOCH₂)-pipe),(A0898:4-HO-4-(HOCH₂)-pipe),(A 0899:4-MeO-4-(HOCH₂)-pipe),(A0900:4-HO₂C-4-(HOCH₂)-pipe),(A0901:4-H₂NOC-4-(HOCH₂)-pipe),(A0902:4-cyano-4-(HOCH₂)-pipe),(A0903:2-HO₂C-4-HO-pyrr),(A 0904:2-H₂NOC-4-HO-pyrr),(A0905:2-cyano-4-HO-pyrr),(A0906:2-HOCH₂-4-HO-py rr),(A0907:3-HO-4-HO-pyrr),(A0908:3-MeO-4-HO-pyrr),(A0909:3-HO₂C-4-HO-pyrr) .(A0910:3-H2NOC-4-HO-pyrr),(A0911:3-cyano-4-HO-pyrr),(A0912:3-HOCH2-4-HOpvrr).(A0913:2-HO₂C-4-MeO-pvrr),(A0914:2-H₂NOC-4-MeO-pyrr),(A0915:2-cyano-4-MeO-pyrr),(A0916:2-HOCH₂-4-MeO-pyrr),(A0917:3-HO-4-MeO-pyrr),(A0918:3-M eO-4-MeO-pyrr),(A0919:3-HO₂C-4-MeO-pyrr),(A0920:3-H₂NOC-4-MeO-pyrr),(A09 21:3-cvano-4-MeO-pyrr),(A0922:3-HOCH₂-4-MeO-pyrr),(A0923:2-HO₂C-4-HO₂C-p vrr).(A0924:2-H2NOC-4-HO2C-pyrr),(A0925:2-cyano-4-HO2C-pyrr),(A0926:2-HOC H_2 -4- HO_2 C-pyrr),(A0927:3- HO_2 C-pyrr),(A0928:3- MeO_2 C-pyrr),(A0929: 3-HO₂C-4-HO₂C-pyrr),(A0930:3-H₂NOC-4-HO₂C-pyrr),(A0931:3-cyano-4-HO₂C-py rr),(A0932:3-HOCH₂-4-HO2C-pyrr),(A0933:2-HO₂C-4-H₂NOC-pyrr),(A0934:2-H₂N OC-4-H₂NOC-pyrr),(A0935:2-cyano-4-H₂NOC-pyrr),(A0936:2-HOCH₂-4-H₂NOC-py rr),(A0937:3-HO-4-H₂NOC-pyrr),(A0938:3-MeO-4-H₂NOC-pyrr),(A0939:3-HO₂C-4-H₂NOC-pyrr),(A0940:3-H₂NOC-4-H₂NOC-pyrr),(A0941:3-cyano-4-H₂NOC-pyrr),(A 0942:3-HOCH₂-4-H₂NOC-pyrr),(A0943:2-HO₂C-4-cyano-pyrr),(A0944:2-H₂NOC-4cyano-pyrr),(A0945:2-cyano-4-cyano-pyrr),(A0946:2-HOCH₂-4-cyano-pyrr),(A0947 :3-HO-4-cyano-pyrr),(A0948:3-MeO-4-cyano-pyrr),(A0949:3-HO₂C-4-cyano-pyrr),(A0950:3-H2NOC-4-cyano-pyrr),(A0951:3-cyano-4-cyano-pyrr),(A0952:3-HOCH2-4 $cyano-pyrr), (A0953:2-HO_2C-4-(HOCH_2)-pyrr), (A0954:2-H_2NOC-4-(HOCH_2)-pyrr), (A0954:2-H_2NOC-4-(HOCH_2)-H_2NOC-4-(HOCH_2)-H_2NOC-4-(HOCH_2)-H_2NOC-4-(HOCH_2)-H_2NOC-4-(HOCH_2)-H_2NOC-4-(HOCH_2)-H_2NOC-4-(HOCH_2)-H_2NOC-4-(HOCH_2)-H_2NOC-4-$ A0955:2-cyano-4-(HOCH₂)-pyrr),(A0956:2-HOCH₂-4-(HOCH₂)-pyrr),(A0957:3-HO- $4-(HOCH_2)-pyrr), (A0958:3-MeO-4-(HOCH_2)-pyrr), (A0959:3-HO_2C-4-(HOCH_2)-pyrr)$,(A0960:3-H₂NOC-4-(HOCH₂)-pyrr),(A0961:3-cyano-4-(HOCH₂)-pyrr),(A0962:3-HO CH₂-4-(HOCH₂)-pyrr),(A0963:2-HO₂C-3-HO-pyrr),(A0964:2-H₂NOC-3-HO-pyrr),(A 0965:2-cyano-3-HO-pyrr),(A0966:2-HOCH₂-3-HO-pyrr),(A0967:3-HO-3-HO-pyrr),(A0968:3-MeO-3-HO-pyrr),(A0969:3-HO₂C-3-HO-pyrr),(A0970:3-H₂NOC-3-HO-pyrr),(A0971:3-cyano-3-HO-pyrr),(A0972:2-HO₂C-3-MeO-pyrr),(A0973:2-H₂NOC-3-Me O-pvrr).(A0974:2-cyano-3-MeO-pyrr),(A0975:2-HOCH₂-3-MeO-pyrr),

10

20

30

(A0976:3-HO-3-MeO-pyrr),(A0977:3-MeO-3-MeO-pyrr),(A0978:3-HO₂C-3-MeO-pyr r),(A0979:3-H₂NOC-3-MeO-pyrr),(A0980:3-cyano-3-MeO-pyrr),(A0981:2-HO₂C-3-HO₂C-pyrr),(A0982:2-H₂NOC-3-HO₂C-pyrr),(A0983:2-cyano-3-HO₂C-pyrr),(A0984: 2-HOCH₂-3-HO₂C-pyrr),(A0985:3-HO-3-HO₂C-pyrr),(A0986:3-MeO-3-HO₂C-pyrr),(A0987:3-HO₂C-3-HO₂C-pyrr),(A0988:3-H₂NOC-3-HO₂C-pyrr),(A0989:3-cyano-3-H O₂C-pvrr),(A0990:2-HO₂C-3-H₂NOC-pyrr),(A0991:2-H₂NOC-3-H₂NOC-pyrr),(A099 2:2-cyano-3-H₂NOC-pyrr),(A0993:2-HOCH₂-3-H₂NOC-pyrr),(A0994:3-HO-3-H₂NO C-pyrr),(A0995:3-MeO-3-H₂NOC-pyrr),(A0996:3-HO₂C-3-H₂NOC-pyrr),(A0997:3-H 2NOC-3-H2NOC-pyrr),(A0998:3-cyano-3-H2NOC-pyrr),(A0999:2-HO2C-3-cyano-pyr r),(A1000:2-H₂NOC-3-cyano-pyrr),(A1001:2-cyano-3-cyano-pyrr),(A1002:2-HOCH₂ -3-cyano-pyrr),(A1003:3-HO-3-cyano-pyrr),(A1004:3-MeO-3-cyano-pyrr),(A1005:3-HO₂C-3-cyano-pyrr),(A1006:3-H₂NOC-3-cyano-pyrr),(A1007:3-cyano-3-cyano-pyrr),(A1008:2-HO₂C-3-(HOCH₂)-pyrr),(A1009:2-H₂NOC-3-(HOCH₂)-pyrr),(A1010:2-cy ano-3-(HOCH₂)-pyrr),(A1011:2-HOCH₂-3-(HOCH₂)-pyrr),(A1012:3-HO-3-(HOCH₂)pyrr),(A1013:3-MeO-3-(HOCH₂)-pyrr),(A1014:3-HO₂C-3-(HOCH₂)-pyrr),(A1015:3- $H_2NOC-3-(HOCH_2)-pyrr), (A1016:3-cyano-3-(HOCH_2)-pyrr), (A1017:8-azaspiro[4.5]$ dec-8-yl),(A1018:1-oxa-8-azaspiro[4,5]dec-8-yl),(A1019:2'-oxo-(piperidine-4-spiro-3'-pyrrolidine)-1-yl),(A1020:1'-methyl-2'-oxo-(piperidine-4-spiro-3'-pyrrolidine)-1-yl), (A1021:1-phenyl-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl),(A1022:(piperidine-4-spiro-5' -hydantoin)-1-yl),(A1023:(1,3-dihydroisobenzofuran-1-spiro-4'-piperidin)-1'-yl),(A10 24:3-oxo-(1,3-dihydroisobenzofuran-1-spiro-4'-piperidin)-1'-yl).

(表27)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

$(No:R^N,R^O,R^P)=$

 $(A1025:H,HO,H), (A1026:H,HO-(CH_2)_2-O,H), (A1027:H,HO-(CH_2)_3-O,H), (A1028:H,4-HO-pipe,H), (A1029:H,3-HO-pyrr,H), (A1030:H,4-HO_2C-pipe,H), (A1031:H,4-(cyano)-pipe,H), (A1032:H,4-Ac-pipa,H), (A1033:H,3-oxo-pipa,H), (A1034:F,HO,H), (A1035:F,HO-(CH_2)_2-O,H), (A1036:F,HO-(CH_2)_3-O,H), (A1037:F,4-HO-pipe,H), (A1038:F,3-HO-pyrr,H), (A1039:F,4-HO_2C-pipe,H), (A1040:F,4-(cyano)-pipe,H), (A1041:F,4-Ac-pipa,H), (A1042:F,3-oxo-pipa,H), (A1043:F,HO,F), (A1044:F,HO-(CH_2)_2-O,F), (A1045:F,HO-(CH_2)_3-O,F), (A1046:F,4-HO-pipe,F), (A1047:F,3-HO-pyrr,F),$

10

20

30

(表27続き)

(A1048:F,4-HO₂C-pipe,F),(A1049:F,4-(cyano)-pipe,F),(A1050:F,4-Ac-pipa,F),(A105 1:F,3-oxo-pipa,F),(A1052:F,HO,CI),(A1053:F,HO-(CH₂)₂-O,CI),(A1054:F,HO-(CH₂)₃-O,CI),(A1055:F,4-HO-pipe,CI),(A1056:F,3-HO-pyrr,CI),(A1057:F,4-HO₂C-pipe,CI),(A 1058:F,4-(cyano)-pipe,CI),(A1059:F,4-Ac-pipa,Cl),(A1060:F,3-oxo-pipa,Cl),(A1061: $F, HO, Br), (A1062:F, HO-(CH_2)_2-O, Br), (A1063:F, HO-(CH_2)_3-O, Br), (A1064:F, 4-HO-pip), (A1065:F, 4-HO-pip), (A1065:F, 4-HO-pip), (A1065:F, 4-HO-pip), (A1065:F, 4-HO-pip), (A1065:F, 4-HO-pip)$ $e, Br), (A1065:F, 3-HO-pyrr, Br), (A1066:F, 4-HO_2C-pipe, Br), (A1067:F, 4-(cyano)-pipe, Br$ r),(A1068:F,4-Ac-pipa,Br),(A1069:F,3-oxo-pipa,Br),(A1070:F,HO,Me),(A1071:F,HO- $(CH_2)_2$ -O,Me), $(A1072:F,HO-(CH_2)_3$ -O,Me),(A1073:F,4-HO-pipe,Me),(A1074:F,3-HO-Pipe,Me)-pyrr,Me),(A1075:F,4-HO₂C-pipe,Me),(A1076:F,4-(cyano)-pipe,Me),(A1077:F,4-Ac $pipa, Me), (A1078:F, 3-oxo-pipa, Me), (A1079:F, HO, HO), (A1080:F, HO-(CH_2)_2-O, HO), (A1080:$ A1081:F,HO-(CH₂)₃-O,HO),(A1082:F,4-HO-pipe,HO),(A1083:F,3-HO-pyrr,HO),(A10 84:F,4-HO₂C-pipe,HO),(A1085:F,4-(cyano)-pipe,HO),(A1086:F,4-Ac-pipa,HO),(A10 87:F,3-oxo-pipa,HO),(A1088:F,HO,MeO),(A1089:F,HO-(CH₂)₂-O,MeO),(A1090:F,H O-(CH₂)₃-O,MeO),(A1091:F,4-HO-pipe,MeO),(A1092:F,3-HO-pyrr,MeO),(A1093:F,4 -HO₂C-pipe,MeO),(A1094:F,4-(cyano)-pipe,MeO),(A1095:F,4-Ac-pipa,MeO),(A109 6:F,3-oxo-pipa,MeO),(A1097:Cl,HO,Cl),(A1098:Cl,HO-(CH₂)₂-O,Cl),(A1099:Cl,HO-(CH₂)₃-O,Cl),(A1100:Cl,4-HO-pipe,Cl),(A1101:Cl,3-HO-pyrr,Cl),(A1102:Cl,4-HO₂Cpipe,Cl),(A1103:Cl,4-(cyano)-pipe,Cl),(A1104:Cl,4-Ac-pipa,Cl),(A1105:Cl,3-oxo-pip a,CI),(A1106:CI,HO,Br),(A1107:CI,HO-(CH₂)₂-O,Br),(A1108:CI,HO-(CH₂)₃-O,Br),(A1 $109: CI, 4-HO-pipe, Br), (A1110: CI, 3-HO-pyrr, Br), (A1111: CI, 4-HO_2C-pipe, Br), (A1112: Cl,4-(cyano)-pipe,Br),(A1113:Cl,4-Ac-pipa,Br),(A1114:Cl,3-oxo-pipa,Br),(A1115:Cl, HO,Me),(A1116:CI,HO-(CH₂)₂-O,Me),(A1117:CI,HO-(CH₂)₃-O,Me),(A1118:CI,4-HOpipe,Me),(A1119:Cl,3-HO-pyrr,Me),(A1120:Cl,4-HO₂C-pipe,Me),(A1121:Cl,4-(cyano)-pipe,Me),(A1122:Cl,4-Ac-pipa,Me),(A1123:Cl,3-oxo-pipa,Me),(A1124:Cl,HO,HO),(A1125:CI,HO-(CH₂)₂-O,HO),(A1126:CI,HO-(CH₂)₃-O,HO),(A1127:CI,4-HO-pipe,HO),(A1128:Cl,3-HO-pyrr,HO),(A1129:Cl,4-HO₂C-pipe,HO),(A1130:Cl,4-(cyano)-pipe, HO),(A1131:Cl,4-Ac-pipa,HO),(A1132:Cl,3-oxo-pipa,HO),(A1133:Cl,HO,MeO),(A11 34:CI,HO-(CH₂)₂-O,MeO),(A1135:CI,HO-(CH₂)₃-O,MeO),(A1136:CI,4-HO-pipe,MeO),(A1137:CI,3-HO-pyrr,MeO),(A1138:Cl,4-HO₂C-pipe,MeO),(A1139:Cl,4-(cyano)-pip e,MeO),(A1140:CI,4-Ac-pipa,MeO),(A1141:CI,3-oxo-pipa,MeO),(A1142:Br,HO,H),(A1143:Br,HO-(CH₂)₂-O,H),(A1144:Br,HO-(CH₂)₃-O,H),(A1145:Br,4-HO-pipe,H),(A1 146:Br,3-HO-pyrr,H),(A1147:Br,4-HO₂C-pipe,H),(A1148:Br,4-(cyano)-pipe,H),(A114 9:Br,4-Ac-pipa,H),(A1150:Br,3-oxo-pipa,H),(A1151:Me,HO,H),(A1152:Me,HO-(CH₂) ₂-O,H),(A1153:Me,HO-(CH₂)₃-O,H),(A1154:Me,4-HO-pipe,H),(A1155:Me,3-HO-pyrr ,H),(A1156:Me,4-HO₂C-pipe,H),(A1157:Me,4-(cyano)-pipe,H),(A1158:Me,4-Ac-pipa ,H),(A1159:Me,3-oxo-pipa,H),(A1160:HO,HO,H),(A1161:HO,HO-(CH₂)₂-O,H),(A116 $2: HO, HO-(CH_2)_3-O, H), (A1163: HO, 4-HO-pipe, H), (A1164: HO, 3-HO-pyrr, H),\\$

10

20

30

(表27続き)

(A1165:HO.4-HO₂C-pipe,H),(A1166:HO,4-(cyano)-pipe,H),(A1167:HO,4-Ac-pipa,H) ,(A1168:HO,3-oxo-pipa,H),(A1169:MeO,HO,H),(A1170:MeO,HO-(CH₂)₂-O,H),(A117 1:MeO,HO-(CH₂)₃-O,H),(A1172:MeO,4-HO-pipe,H),(A1173:MeO,3-HO-pyrr,H),(A1 174:MeO,4-HO₂C-pipe,H),(A1175:MeO,4-(cyano)-pipe,H),(A1176:MeO,4-Ac-pipa, H),(A1177:MeO,3-oxo-pipa,H),(A1178:H,H,HO),(A1179:H,H,HO-(CH₂)₂-O),(A1180: H.H.HO-(CH₂)₃-O),(A1181:H,H,4-HO-pipe),(A1182:H,H,3-HO-pyrr),(A1183:H,H,4-H O₂C-pipe),(A1184:H,H,4-(cyano)-pipe),(A1185:H,H,4-Ac-pipa),(A1186:H,H,3-oxo-pi pa),(A1187:F,H,HO),(A1188:F,H,HO-(CH₂)₂-O),(A1189:F,H,HO-(CH₂)₃-O),(A1190:F, H,4-HO-pipe),(A1191:F,H,3-HO-pyrr),(A1192:F,H,4-HO₂C-pipe),(A1193:F,H,4-(cyan o)-pipe),(A1194:F,H,4-Ac-pipa),(A1195:F,H,3-oxo-pipa),(A1196:Cl,H,HO),(A1197:Cl ,H,HO-(CH₂)₂-O),(A1198;Cl,H,HO-(CH₂)₃-O),(A1199;Cl,H,4-HO-pipe),(A1200;Cl,H, 3-HO-pyrr),(A1201:CI,H,4-HO₂C-pipe),(A1202:Cl,H,4-(cyano)-pipe),(A1203:Cl,H,4-Ac-pipa),(A1204:Cl,H,3-oxo-pipa),(A1205:Br,H,HO),(A1206:Br,H,HO-(CH₂)₂-O),(A1 207:Br,H,HO-(CH₂)₃-O),(A1208:Br,H,4-HO-pipe),(A1209:Br,H,3-HO-pyrr),(A1210:B r,H,4-HO₂C-pipe),(A1211:Br,H,4-(cyano)-pipe),(A1212:Br,H,4-Ac-pipa),(A1213:Br,H ,3-oxo-pipa),(A1214:Me,H,HO),(A1215:Me,H,HO-(CH₂)₂-O),(A1216:Me,H,HO-(CH₂)₂-O)))₃-O),(A1217:Me,H,4-HO-pipe),(A1218:Me,H,3-HO-pyrr),(A1219:Me,H,4-HO₂C-pip e),(A1220:Me,H,4-(cyano)-pipe),(A1221:Me,H,4-Ac-pipa),(A1222:Me,H,3-oxo-pipa) ,(A1223:HO,H,HO),(A1224:HO,H,HO-(CH₂)₂-O),(A1225:HO,H,HO-(CH₂)₃-O),(A12 26:HO,H,4-HO-pipe),(A1227:HO,H,3-HO-pyrr),(A1228:HO,H,4-HO₂C-pipe),(A1229 :HO.H.4-(cyano)-pipe),(A1230:HO,H,4-Ac-pipa),(A1231:HO,H,3-oxo-pipa),(A1232: $MeO,H,HO),(A1233:MeO,H,HO-(CH_2)_2-O),(A1234:MeO,H,HO-(CH_2)_3-O),(A1235:MeO,H,HO-(CH_2)_3-O))$ eO,H,4-HO-pipe),(A1236:MeO,H,3-HO-pyrr),(A1237:MeO,H,4-HO₂C-pipe),(A1238: MeO,H,4-(cyano)-pipe),(A1239:MeO,H,4-Ac-pipa),(A1240:MeO,H,3-oxo-pipa).

10

(表28)

 $(No:R^Q,R^R)=$

10

(A1241:H,HO),(A1242:H,HO-(CH₂)₂-O),(A1243:H,HO-(CH₂)₃-O),(A1244:H,4-HO-pi pe),(A1245:H,3-HO-pyrr),(A1246:H,4-HO₂C-pipe),(A1247:H,4-(cyano)-pipe),(A124 8:H,4-Ac-pipa),(A1249:H,3-oxo-pipa),(A1250:F,HO),(A1251:F,HO-(CH₂)₂-O),(A125 2:F,HO-(CH₂)₃-O),(A1253:F,4-HO-pipe),(A1254:F,3-HO-pyrr),(A1255:F,4-HO₂C-pip e),(A1256:F,4-(cyano)-pipe),(A1257:F,4-Ac-pipa),(A1258:F,3-oxo-pipa),(A1259:Br, HO),(A1260:Br,HO-(CH₂)₂-O),(A1261:Br,HO-(CH₂)₃-O),(A1262:Br,4-HO-pipe),(A12 63:Br,3-HO-pyrr),(A1264:Br,4-HO₂C-pipe),(A1265:Br,4-(cyano)-pipe),(A1266:Br,4-Ac-pipa),(A1267:Br,3-oxo-pipa),(A1268:Me,HO),(A1269:Me,HO-(CH₂)₂-O),(A1270: Me, HO-(CH₂)₃-O), (A1271:Me, 4-HO-pipe), (A1272:Me, 3-HO-pyrr), (A1273:Me, 4-HO₂ C-pipe),(A1274:Me,4-(cyano)-pipe),(A1275:Me,4-Ac-pipa),(A1276:Me,3-oxo-pipa),(A1277:HO,HO),(A1278:HO,HO-(CH₂)₂-O),(A1279:HO,HO-(CH₂)₃-O),(A1280:HO,4-HO-pipe),(A1281:HO,3-HO-pyrr),(A1282:HO,4-HO₂C-pipe),(A1283:HO,4-(cyano)-p ipe),(A1284:HO,4-Ac-pipa),(A1285:HO,3-oxo-pipa),(A1286:MeO,HO),(A1287:MeO $,HO-(CH_2)_2-O),(A1288:MeO,HO-(CH_2)_3-O),(A1289:MeO,4-HO-pipe),(A1290:MeO,4-HO-pipe),$ 3-HO-pyrr),(A1291:MeO,4-HO₂C-pipe),(A1292:MeO,4-(cyano)-pipe),(A1293:MeO, 4-Ac-pipa),(A1294:MeO,3-oxo-pipa),(A1295:HO,H),(A1296:HO-(CH₂)₂-O,H),(A129 7:HO-(CH₂)₃-O,H),(A1298:4-HO-pipe,H),(A1299:3-HO-pyrr,H),(A1300:4-HO₂C-pip e,H),(A1301:4-(cyano)-pipe,H),(A1302:4-Ac-pipa,H),(A1303:3-oxo-pipa,H).

20

(表29)

 $(No:R^S,R^T)=$

(A1304:H,H),(A1305:H,HO-(CH₂)₂-O),(A1306:H,HO-(CH₂)₃-O),(A1307:H,4-HO-pip e),(A1308:H,3-HO-pyrr),(A1309:H,4-HO₂C-pipe),(A1310:H,4-(cyano)-pipe),(A1311: H,4-Ac-pipa),(A1312:H,3-oxo-pipa),(A1313:CI,HO-(CH₂)₂-O),(A1314:CI,HO-(CH₂)₃-O),(A1315:CI,4-HO-pipe),(A1316:CI,3-HO-pyrr),(A1317:CI,4-HO₂C-pipe),(A1318:CI,4-(cyano)-pipe),(A1319:CI,4-Ac-pipa),(A1320:CI,3-oxo-pipa),(A1321:Me,HO-(CH₂)₂-O),(A1322:Me,HO-(CH₂)₃-O),(A1323:Me,4-HO-pipe),(A1324:Me,3-HO-pyrr),(A1325:Me,4-HO₂C-pipe),(A1326:Me,4-(cyano)-pipe),(A1327:Me,4-Ac-pipa),(A1328:Me,3-oxo-pipa),(A1329:MeO,HO-(CH₂)₂-O),(A1330:MeO,HO-(CH₂)₃-O),(A1331:MeO,4-HO-pipe),(A1332:MeO,3-HO-pyrr),(A1333:MeO,4-HO₂C-pipe),(A1334:MeO,4-(cyano)-pipe),(A1335:MeO,4-Ac-pipa),(A1336:MeO,3-oxo-pipa).

(表30)

(No:RAA,RBB)=

 $(A1337:H,HO), (A1338:H,HO-(CH_2)_2-O), (A1339:H,HO-(CH_2)_3-O), (A1340:H,4-HO-pipe), (A1341:H,3-HO-pyrr), (A1342:H,4-HO_2C-pipe), (A1343:H,4-(cyano)-pipe), (A1344:H,4-Ac-pipa), (A1345:H,3-oxo-pipa), (A1346:F,HO), (A1347:F,HO-(CH_2)_2-O), (A1348:F,HO-(CH_2)_3-O), (A1349:F,4-HO-pipe), (A1350:F,3-HO-pyrr), (A1351:F,4-HO_2C-pipe), (A1352:F,4-(cyano)-pipe), (A1353:F,4-Ac-pipa), (A1354:F,3-oxo-pipa), (A1355:CI,HO), (A1356:CI,HO-(CH_2)_2-O), (A1357:CI,HO-(CH_2)_3-O), (A1358:CI,4-HO-pipe), (A1359:CI,3-HO-pyrr), (A1360:CI,4-HO_2C-pipe), (A1361:CI,4-(cyano)-pipe), (A1362:CI,4-Ac-pipa), (A1363:CI,3-oxo-pipa), (A1364:Br,HO), (A1365:Br,HO-(CH_2)_2-O), (A1366:Br,HO-(CH_2)_3-O), (A1367:Br,4-HO-pipe), (A1368:Br,3-HO-pyrr), (A1369:Br,4-HO_2C-pipe), (A1370:Br,4-(cyano)-pipe), (A1371:Br,4-Ac-pipa), (A1372:Br,3-oxo-pipa), (A1372:Br,$

10

20

30

(表30続き)

 $(A1373:Me,HO), (A1374:Me,HO-(CH_2)_2-O), (A1375:Me,HO-(CH_2)_3-O), (A1376:Me,4-HO-pipe), (A1377:Me,3-HO-pyrr), (A1378:Me,4-HO_2C-pipe), (A1379:Me,4-(cyano)-pipe), (A1380:Me,4-Ac-pipa), (A1381:Me,3-oxo-pipa), (A1382:HO,HO), (A1383:HO,HO-(CH_2)_2-O), (A1384:HO,HO-(CH_2)_3-O), (A1385:HO,4-HO-pipe), (A1386:HO,3-HO-pyrr), (A1387:HO,4-HO_2C-pipe), (A1388:HO,4-(cyano)-pipe), (A1389:HO,4-Ac-pipa), (A1390:HO,3-oxo-pipa), (A1391:MeO,HO), (A1392:MeO,HO-(CH_2)_2-O), (A1393:MeO,HO-(CH_2)_3-O), (A1394:MeO,4-HO-pipe), (A1395:MeO,3-HO-pyrr), (A1396:MeO,4-HO_2C-pipe), (A1397:MeO,4-(cyano)-pipe), (A1398:MeO,4-Ac-pipa), (A1399:MeO,3-oxo-pipa).$

(表31)

 $(No:R^{CC},R^{DD})=$

 $(A1400:H_2N,HO), (A1401:H_2N,HO-(CH_2)_2-O), (A1402:H_2N,HO-(CH_2)_3-O), (A1403:H_2N,4-HO-pipe), (A1404:H_2N,3-HO-pyrr), (A1405:H_2N,4-HO2C-pipe), (A1406:H_2N,4-(cyano)-pipe), (A1407:H_2N,4-Ac-pipa), (A1408:H_2N,3-oxo-pipa), (A1409:MeHN,HO), (A1409:MeHN,HO-(CH_2)_2-O), (A1411:MeHN,HO-(CH_2)_3-O), (A1412:MeHN,4-HO-pipe), (A1413:MeHN,3-HO-pyrr), (A1414:MeHN,4-HO_2C-pipe), (A1415:MeHN,4-(cyano)-pipe), (A1416:MeHN,4-Ac-pipa), (A1417:MeHN,3-oxo-pipa), (A1418:HO,HO), (A1419:HO,HO-(CH_2)_2-O), (A1420:HO,HO-(CH_2)_3-O), (A1421:HO,4-HO-pipe), (A1422:HO,3-HO-pyrr), (A1423:HO,4-HO_2C-pipe), (A1424:HO,4-(cyano)-pipe), (A1425:HO,4-Ac-pipa), (A1426:HO,3-oxo-pipa), (A1427:MeO,HO), (A1428:MeO,HO-(CH_2)_2-O), (A1429:MeO,HO-(CH_2)_3-O), (A1430:MeO,4-HO-pipe), (A1431:MeO,3-HO-pyrr), (A1432:MeO,4-Cyano)-pipe), (A1434:MeO,4-Ac-pipa), (A1435:MeO,3-oxo-pipa), (A1436:CI,HO), (A1437:CI,HO-(CH_2)_2-O), (A1438:CI,HO-(CH_2)_3-O), (A1430:CI,4-HO-pyrr), (A1441:CI,4-HO_2C-pipe), (A1442:CI,4-(cyano)-pipe), (A1443:CI,4-Ac-pipa), (A1444:CI,3-oxo-pipa).$

10

20

(表32)

 $(No:R^{EE},R^{FF})=$

 $(A1445:H,HO-(CH_2)_2),(A1446:H,HO-(CH_2)_3),(A1447:F,HO-(CH_2)_2),(A1448:F,HO-(CH_2)_3),(A1449:CI,HO-(CH_2)_2),(A1450:CI,HO-(CH_2)_3),(A1451:Me,HO-(CH_2)_2),(A1452:Me,HO-(CH_2)_3),(A1453:HO,HO-(CH_2)_2),(A1454:HO,HO-(CH_2)_3),(A1455:MeO,HO-(CH_2)_2),(A1456:MeO,HO-(CH_2)_3).$

(表33)

(No:R^{GG})=

(A1457:5-F-2-The),(A1458:5-Cl-2-The),(A1459:5-Br-2-The),(A1460:5-Me-2-The),(A1461:5-F₃C-2-The),(A1462:4-F-2-The),(A1463:4-Cl-2-The),(A1464:4-Br-2-The),(A1465:4-Me-2-The),(A1466:4-F₃C-2-The),(A1467:4-F-5-Cl-2-The),(A1468:4,5-diCl-2-The),(A1469:4-Br-5-Cl-2-The),(A1470:4-Me-5-Cl-2-The),(A1471:4-F₃C-5-Cl-2-The) e),(A1472:4-F-Ph),(A1473:4-Cl-Ph),(A1474:4-Br-Ph),(A1475:4-Me-Ph),(A1476:4-F ₃C-Ph),(A1477:3-F-Ph),(A1478:3-Cl-Ph),(A1479:3-Br-Ph),(A1480:3-Me-Ph),(A1481 :3-F₃C-Ph),(A1482:2-F-Ph),(A1483:2-Cl-Ph),(A1484:2-Br-Ph),(A1485:2-Me-Ph),(A 1486:2-F₃C-Ph),(A1487:3,4-diF-Ph),(A1488:3-Cl-4-F-Ph),(A1489:3-Br-4-F-Ph),(A1 490:3-Me-4-F-Ph),(A1491:3-F₃C-4-F-Ph),(A1492:5-Me-2-Py),(A1493:6-Me-3-Py),(A1494:4-Py),(A1495:2-pyrimidinyl),(A1496:2-Me-4-pyrimidinyl),(A1497:2-Me-5-pyri midinyl),(A1498:4-pyridazinyl),(A1499:6-Me-3-pyridazinyl),(A1500:5-Me-2-pyraziny I).(A1501:4-Me-2-Fur).(A1502:1-Me-3-pyrrolyl),(A1503:4-Me-2-thiazolyl),(A1504:4-CI-2-thiazolyl),(A1505:4-F₃C-2-thiazolyl),(A1506:5-Me-2-thiazolyl),(A1507:2-Me-5-t hiazolyl),(A1508:5-Me-2-oxazolyl),(A1509:2-Me-5-oxazolyl),(A1510:4-Me-2-imidaz olyl),(A1511:2-Me-4-imidazolyl),(A1512:1-Me-4-imidazolyl),(A1513:5-Me-3-isothiaz olyl),(A1514:3-Me-5-isothiazolyl),(A1515:5-Me-3-isoxazolyl),

(表33続き)

(A1516:3-Me-5-isoxazolyl),(A1517:5-Me-3-pyrazolyl),(A1518:1-Me-4-pyrazolyl),(A1519:1-Me-3-pyrazolyl),(A1520:5-Me-1,3,4-thiadiazol-2-yl),(A1521:5-Me-1,3,4-oxadiazol-2-yl),(A1522:5-Me-1,2,4-triazol-3-yl),(A1523:1-Me-1,2,4-triazol-3-yl),(A1524:5-Me-1,2,4-thiadiazol-3-yl),(A1525:3-Me-1,2,4-thiadiazol-5-yl),(A1526:5-Me-1,2,4-oxadiazol-3-yl),(A1527:3-Me-1,2,4-oxadiazol-5-yl),(A1528:1-Me-1,2,3-triazol-4-yl).

10

20

30

0 8 A

フロントページの続き

(51) Int.CI.			FI
A 6 1 K	31/496	(2006.01)	A 6 1 K 31/498
A 6 1 K		(2006.01)	A 6 1 K 31/5377
	31/5377	(2006.01)	A 6 1 K 31/541
A 6 1 K		(2006.01)	A 6 1 K 31/55
A 6 1 K		` ,	
		(2006.01)	
A 6 1 P		(2006.01)	C 0 7 D 417/04
C 0 7 D		(2006.01)	C 0 7 D 417/12
C 0 7 D		(2006.01)	C 0 7 D 417/14
C 0 7 D		(2006.01)	C 0 7 D 453/02
C 0 7 D		(2006.01)	C 0 7 D 471/04 1
C 0 7 D	471/04	(2006.01)	
/70\₹¥⊓□±×	茶河 形性		
(72)発明者	菅沢 形造		
TV = 17 ± 1		ば市御幸が丘21	山之内製薬株式会社内
(72)発明者	四月朔日	晋	
		ば市御幸が丘21	山之内製薬株式会社内
(72)発明者	古賀 祐司		
	茨城県つく	ば市御幸が丘21	山之内製薬株式会社内
(72)発明者	長田宏		
	茨城県つく	ば市御幸が丘21	山之内製薬株式会社内
(72)発明者	小櫃 和義		
	茨城県つく	ば市御幸が丘21	山之内製薬株式会社内
(72)発明者	若山 竜太	郎	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ば市御幸が丘21	山之内製薬株式会社内
(72)発明者	平山 復志		
(. =) > 0 - 13 [ば市御幸が丘21	山之内製薬株式会社内
(72)発明者	鈴木 健一		山之门 3 秋水 1 7 2 1 2 1 7 3
(12)7641日		ば市御幸が丘21	山之内製薬株式会社内
	次拠示 ノ 、	18小师十万工2 1	山之内表来你以去性的
審杳官	安藤 倫世		
844		•	
(56)参考文庫	# 国際公開	第01/05326	57(WO A1)
(00) 5 5 7 10		1 - 152276	
		5 - 155871	
		第00/01717	
		3 - 0 6 8 5 6 7 (
		3 - 173876	
		第02/06277	
		第02/04229	
		第02/06279	
	国際公開	第01/00742	23(WO,A1)
(58)調査した	:分野(Int.C	I., D B名)	
	C07D		
	A61K		
	0.015/05		

CAOLD(STN)
CAplus(STN)

REGISTRY(STN)