(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

2 October 2003 (02.10.2003) PCT

(10) International Publication Number

WO 03/081447 Al

(51) International Patent Classification”: GO6F 15/16
(21) International Application Number: PCT/US03/04879
(22) International Filing Date: 21 February 2003 (21.02.2003)
(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/364,639 18 March 2002 (18.03.2002) US
60/364,640 18 March 2002 (18.03.2002) US
10/368,443 20 February 2003 (20.02.2003) US

(71) Applicant: BUTTERFLY.NET, INC. [US/US]; 224 West
King Street, Martinsburg, WV 25401 (US).

(71) Applicants and

(72) Inventors: LEVINE, David, A. [US/US]; R.R. 1 Box 123,
Shepherdstown, WV 25443 (US). MINTON, Gabriel, D.
[US/US]; 4942 Red Hill Road, Keedysville, MD 21756
(US). WIRT, Mark, C. [US/US]; Rt. 2, Box 886, Shep-
herdstown, WV 25443 (US). WHITEBOOK, Barry, A.

[US/US]; 118 Southerly Lane, Charles Town, WV 25414-
9455 (US).

Agents: ALCORN, Linda, E. et al.; Sterne, Kessler,
Goldstein & Fox PL.L.C., 1100 New York Avenue, N.W.
- Suite 600, Washington, D.C. 20005-3934 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI,
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Title: COMPUTING GRID FOR MASSIVELY MULTIPLAYER ONLINE GAMES AND OTHER MULTI-USER IMMER-
SIVE PERSISTENT-STATE AND SESSION-BASED APPLICATIONS

03/081447 Al

Wintel Desktop

MAP LOCALES TO i
SERVER::PORT
SPECFICATIONS

-z DYNAMIC REMAPPING
- OF OBJECT TO

Embodiment of Record Interest

LOCALE THREAD
REGIONS 0 AND 1

LOCALE THREAD
FOR REGIONS 2, etc.
|

i

-

NEWLOCALE
AS WINTEL USER
MOVES FROM REGION O
TO REGION 2

Region of Embodiment of Record
Interest

Region of |
Pen computer

O (57) Abstract: A method of managing a collaborative process includes defining a plurality of locales on a plurality of servers,

creating a plurality of objects corresponding to players in the plurality of locales, and mediating object state of the objects between
the locales in a seamless manner so that the locales form a seamless world (figure 25).

WO 03/081447 AT |00 AHAOO 00 0000 A

— before the expiration of the time limit for amending the For two-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations” appearing at the begin-
amendments ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 03/081447 PCT/US03/04879

COMPUTING GRID FOR MASSIVELY MULTIPLAYER ONLINE
GAMES AND OTHER MULTI-USER IMMERSIVE PERSISTENT-STATE
AND SESSION-BASED APPLICATIONS

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates generally to computer network systems,
and more particularly to computer network systems that facilitate multi-person

interaction within multiple immersive environments.
Related Art

In recent decades, there has been rapid growth in the numbers of
computers, and thus people, connected to the Internet, a vast network of
computers connected by common communication protocols and data formats,
and the World-Wide Web (WWW), a layer of structured information
transmitted over the Internet. This increase of connectivity has allowed
computer users to access various types of information, disseminate
information, be participate in electronic commerce transactions, as well as
engage in various forms of social interaction and entertainment previously
limited by geographic and/or socio-political bounds.

Using the Internet, people can send electronic messages, play games
and collaborate on work projects concurrently with other users regardless of
terrestrial or extraterrestrial bounds. More particularly, there has been a
dramatic rise in the number of servers connected to the Internet through which
service providers offer users the opportunity to interact in an environment
mediated by a software application. That is, several people can
simultaneously provide inputs into a shared computer program and thus
participate in the shared computer program. Each participant’s actions,

decisions, etc. can affect the shared virtual environment and thus affect the

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-2

shared virtual environment for all participants. These programs are known as
multi-user, interactive applications.

Today, many of the computers connected to the Internet have the
ability to execute software programs that rapidly render and display data as
animated, interactive three-dimensional (3D) representations of scenes. As the
computer operator interacts with the 3D interface to the program, the computer
redraws the 3D representation rapidly enough to convey to the user the sense
of a continuous, ongoing reality in which the user is participating. The scenes
that comprise these applications are composed of many separate models, each
described by sets polygons. The dimensions of the polygons that make up the
models, and thus the scenes, are manipulated by the software and hardware in
end-user’s computer, frame after frame, according to rules that mediate that
inputs provided by the computer’s operator and by remote events
communicated to the portion of the software application resident on the local
computer over the network. These events may have been originated by
software processes (“daemons”) being executed independently on servers,
generated by inputs performed by other users of the application on remote
computers or caused by physical processes in the real world and translated to
digital computer-processed events by sensors. Software real-time 3D
renderers, such as DirectX (created by Microsoft), NetImmerse (created by
Numerical Design Limited), Renderware (created by Criterion) and Alchemy
(created by Intrinsic Graphics) and hardware 3D graphics acceleration cards,
such as the GeForce FX (created by NVIDIA) and the RADEON 9700 Pro
Visual Processing Unit (created by ATI), designed specifically for the
manipulation of 3D scenes, are typically utilized on the end-user’s computer
for applications that require interactive, sequential, real-time 3D scene
generation. In addition to manipulating the polygons that ‘. comprise the
successive scenes, these specialized hardware and software sub-systems
accelerate the rendering of elements that enhance the sense, or illusion, of a
virtual reality existing independently of the computer and network systems.

These elements may include z-buffering for efficient rendering and

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-3-

manipulation of the polygons, dynamic lighting, which allows the polygonal
models to act as sources of illumination or cast shadows in a realistic manner,
texture-maps which cover the polygonal models in photo-realistic graphics
and bump-maps which apply dynamic lighting and shadows to the texture-
maps to give a tactile sense of gouges, bumps or other irregularities in the
models. Interactive applications that can manipulate and present data at a rate
of 30 frames per second (FPS) or greater, which is sufficient to convey to the
user a sense of continuous reality, are known as immersive applications.

Many forms of multi-user, immersive applications exist to simulate
real-world phenomena within computer models. These interactive
applications, known as Simulations, are useful in a variety of fields and
support a number of disciplines, including energy (seismic analysis and
reservoir analysis), financial services (derivative analysis, statistical analysis,
portfolio risk analysis), manufacturing (mechanical/electric design, process
simulation, finite element analysis, failure analysis), life
sciences/bioinformatics (protein folding, drug discovery, protein sequencing),
telecommunications/information ~ technology (network and systems
management) and academic research (weather analysis, particle physics).
Simulations require accurate data and algorithms that describe real-world
phenomena, such as the physical properties (strength, elasticity, etc.) of the
materials used in a manufacturing process and the product to create a
simulation of the process and a simulation of the product in use. Simulations
can take numerous forms, including input as data in the form of text that
describes the state of the processes and products at the point when the
Simulation begins and output as text that describes the state of processes and
products being simulated at the time when the simulation ends. Simulations
that display successive 3D graphic renderings that represent real-world
processes and products are known as immersive Simulations.

Within the field of manufacturing, immersive Simulations are often
employed in the discipline that is loosely called Concurrent Engineering (CE)

or concurrent product/process development. Computing systems that support

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-4-

CE are generally comprised of many separate sub-systems that each support a
different aspect of the product design or manufacturing process. 3D
CAD/CAM (Computer Aided Design, Computer Aided Manufacturing) tools
allow design engineers to create 3D representations of the product or
component parts of the while referencing the attributes of elements used in the
design process culled from specialized databases, Product Description
Management (PDM) systems store the work product of portions of the design
process as files that that can be referencing by other engineers working on
other parts of the product or process and project management, collaboration or
workflow systems guide the engineering processes through the full life-cycle
from conception of the product or processes through de-commissioning of the
processes or end-of-lifing the product. In each of these systems, multi-user
interaction within the context of the simulation and the application
environment can be important.

Within the field of Concurrent Engineering, the state of the art tends to
provides only loose integration between the applications or subsystems that
provide multi-user interaction, the applications or subsystems that provide
immersive simulation and applications or subsystems that collect data from
sensors or otherwise interface with real-world processes and operations. While
collaborative systems exist that allow engineers to exchange data, and to work
on those data together, the majority of these systems are designed to merely
transfer data files. Meta-information about the relationship of those files is
stored (so that an interrelationship can be developed) in systems that are often
termed "knowledge-based." These systems aid in the management and
development of large projects, but they do not provide a uniform or holistic
view of the component data. The interactions of users with those data are
through multiple client programs, with no application providing a view of the
whole. Interaction among and between users of the system tends to be "out of
band," i.e., via email, instant messaging, Web-based discussion forums, etc.

These communication systems can be bundled into an application suites, but

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-5

the interactions take place outside the environment of the data models (the
Simulations) themselves.

Visualization systems for collaborative work also exist. In general,
these systems are data-file view utilities that allow users to view models
produced by various client software programs with a single program.
Additionally, they may allow users to annotate the files or modify them in
some way, but they often do not allow the users to change those data to the
same extent as the original authoring tools allow. These systems are
beneficial in that users need not master the intricacies of multiple authoring
tools to view different types of models, but again, they are not interactive.

Product and process life-cycle management systems (e.g., project
management systems) are another important area of multi-user systems.
These systems allow users to oversee the complete life-cycle, from conception
to decommissioning of a product or system, including the design,
manufacturing and operation of the product. Unfortunately these systems tend
not to be closely integrated with the systems that are actually used to perform
these discrete phases. They allow users to manage the system to an extent (by
providing an overview of the program). Life-cycle management systems can
also suffer from a common shortcoming in that real-time input that is germane
to the operation of the program does not update the data model in real-time.

In the operation of systems (be they a building, a manufacturing line,
etc.), embedded real-time systems are often employed. These systems employ
a real-time protocol stack (RTPS) to share data amongst various machines or
systems. These data can be control messages, environmental variable, status
messages, etc. Commonly, the controlling system either communicates
directly with the controlled devices, or publishes control messages that are
distributed via middleware to subscribing controlled devices. In such
applications reliability and time-responsiveness is very important, as a delay
or loss of information in transmission can cause costly errors.

Just as immersive Simulations provide a common, holistic, interactive

model of potential or historical real-world processes, Massively Multiplayer

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-6-

Online Games (MMOGs) provide an immersive, interactive model of
imaginary realms. MMOGs have become an important and popular form of
entertainment. MMOGs generally consist of a responsive, navigable 3D
representation of a fictional realm based on themes, rules, and roles taken from
literature, cinema, original concepts or stand-alone game franchises. The rules
of many MMOGs are based on paper and dice role-playing games popularized
in the dice game Dungeons and Dragons. They also contain a chat interface for
textual communications between players and to display messages generated by
the system (as represented by Non-Player Characters (NPCs)). MMOGs also
provide tools for customizing the interface, characters and environment. The
chat screen also provides a text window for messages generated by the system.
Because the game-world persists even after the player logs out, MMOGs are
also knows as Persistent-State World (PSW) games. MMOGs are also
typically distributed independently of multi-user environments on CD-ROM
or DVD or available for download over the Internet. These MMOGs connect
to their own servers. In addition, services such as BattleZone provide a
service for connecting players of session-based games. Unlike MMOGs,
session-based games do not maintain the state of the game after the players
have finished a game-playing session. Further examples of such online, multi-
player games include "EverQuest" from (Verant Interactive/Sony Computer
Entertainment America), "Ultima Online" from Electronic Arts, Inc.,
"Asheron’s Call" from the Microsoft Corporation, and the like.

A common characteristic of the tools employed in the design,
implementation, and operation of physical systems is that they are discrete:
the tools used to design a building (for example) are not the same tools that are
used to track the progress of the construction crews, which are in turn different
tools than are used by those who run the building day-to-day. While this is
understandable (and may be desirable owing to the specific nature of those
tools), what is lacking is a system that provides an integrated model of the
environment that takes data from disparate sources and allows users to interact

with one another and the system itself though this shared model.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-7-

One common characteristic (and short-coming) among the various
multi-person interactive applications is that they are based on the client-server
paradigm. This means that most of the processing involved in executing these
multi-person interactive applications is centralized on the server computers to
which the client computers are connected. This method of creating a virtual
community is not entirely scalable or reliable and does not provide for
decentralized management of users and devices. Typically, because of the
limited scalability, only a small subset of simultaneous users can interact with
one another at any time. Users can only interact with those connected to the
same server (i.e., in the same domain, or realm) so the model becomes
segmented.

Another common characteristic (and short-coming) among the various
multi-person, interactive applications is that the user (client) interface to the
server-based virtual environment is typically a personal computer, workstation
or terminal where the user must distinguish between the real world and the
virtual world. Consequently, users of multi-person interactive environments
employ terms- such as IRL ("in real life") to distinguish between their actual
physical location (e.g., "I’'m in my bedroom IRL."), and the virtual world (e.g.,
"I’m in the living room") which suggests that such a user is in the living room
in the MMOG interactive application program, and not in the living room of
their real house. In addition, the various multi-person interactive applications
is that users cannot interact or otherwise respond to events that occur in the
virtual (or real) environment when they are away from their personal
computers, workstations or terminals. That is, users can not participate in the
virtual, interactive, multi-person environment unless they are sitting at the
computer. A further shortcoming is that due to their design and inability to
cross technical platforms, current interactive applications are limited to a few
client bases.

Aside from personal computers, workstations and terminals connected
to the Internet, mobile phones, computer tablets, two-way pagers, personal

digital assistants (PDAs) and the like, are commonly owned and each

10

15

20

25

WO 03/081447 PCT/US03/04879

-8-

represent an opportunity to allow users to participate in multi-person,
interactive applications. Conventional multi-user interactive applications,
however, do not allow users to dccess the virtual environment using these
devices.

Finally, another shortcoming among the various multi-person,
interactive applications is that users cannot control physical devices such as
machinery, appliances and vehicles (IRL), through their interactions with
virtual world objects.

Given the foregoing, what is needed is a system, method and computer
program product for providing a multitude of scalable, reliable, and high-
performance persistent-state virtual worlds across a common infrastructure in
the context of real-time control, multi-user gaming, simulation, collaborative

engineering, and entertainment and e-commerce applications.
SUMMARY OF THE INVENTION

The present invention is directed to a system, method and computer
program product for a computing grid for massively Multiplayer on-line
games and simulations that substantially obviates one or more of the problems
and disadvantages of the related art.

Accordingly, in one aspect of the present invention there is provided a
method of managing a collaborative process including defining a plurality of
locales on a plurality of servers, creating a plurality of objects corresponding
to players in the plurality of locales, and mediating object state of the objects
between the locales in a seamless manner so that the locales form a seamless
world.

In another aspect there is provided a method of distributing object state
across a plurality of hosts including initiating a plurality of server processes on
the multiple hosts; defining a plurality of objects whose object state is
maintained by a corresponding server process; and mediating exchanges of

object state information between the plurality of objects such that the plurality

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-9.

of objects perceive a seamless world formed by the server processes residing
on multiple hosts.

In another aspect there is provided a method of distributing object state
across server process boundaries including initiating a plurality of server
processes; defining a plurality of objects whose object state is maintained by a
corresponding server process; initiating a message sink for the object state on
a first server process; and creating a message source for the object state on the
second server process such that the message source transmits the object state
of objects on the first server process to objects on the second server process.

In another aspect there is provided a method of distributing object state
across server process boundaries including initiating a plurality of server
processes; defining a plurality of objects whose object state is maintained by a
corresponding server process; marshalling the object state on a first server
process using a Network Protocol Stack (NPS) and at least one NPS packet;
transmitting the object state across a process boundary to a second server
process; and de-marshalling the object state on the second server.

In another aspect there is provided a method of managing a
collaborative process including defining a plurality of objects on a plurality of
servers, each server having a Network Protocol Stack; exchanging information
about state of the objects between the servers using their Network Protocol
Stacks, wherein, during the exchanging step, reliable packets and unreliable
packets are exchanged such that only dropped reliable packets are resent upon
notification from a corresponding Network Protocol Stack to a sender of a
dropped packet.

In another aspect there is provided a method of managing a
collaborative process including initiating a plurality of server processes;
initiating at least one gateway connected to the plurality of server processes;
directing data from a user to a server process by performing a discovery
process to match the user to the server process; and dynamically redirecting
the data from the user to another server process when a user moves from one

server process to the another server process.

10

15

20

25

WO 03/081447 PCT/US03/04879

-10 -

In another aspect there is provided a method of distributing object state
across locale boundaries including initiating a plurality of locale threads;
defining a plurality of objects whose object state is maintained in the locale
threads; changing the object state of at least one object in a first locale;
proxying marshaled data representing the changed object state through a proxy
sentinel at the first locale to its corresponding stub sentinel at a second locale;
distributing the marshaled data through the stub sentinel to a receiving object
at the second locale.

In another aspect there is provided a method of effecting a distributed
secure transaction including receiving a proposal for a transaction from a first
user; verifying that the proposal is genuine; securing the proposal against
tampering with a first password known only to the first user and the server;
embedding the sealed proposal in a secure message, the secure message being
sealed with a second password known only a second user; transmitting the
secure message to a second user; receiving the secure message fromv the
second user, wherein the authenticity of the secure message has been verified,
and the secure message has been countersigned by the second user; verifying
that the secure message has been properly countersigned; and executing the
transaction.

Further features and advantages of the invention as well as the
structure and operation of various embodiments of the present invention are

described in detail below with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

The features and advantages of the present invention will become more
apparent from the detailed description set forth below when taken in
conjunction with the drawings in which like reference numbers indicate
identical or functionally similar elements. Additionally, the left-most digit of
a reference number identifies the drawing in which the reference number first

appears.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-11-

FIG. 1 is a block diagram representing a system architecture of an
embodiment of the present invention, showing connectivity among the parts.

FIG. 2 is a block diagram representing the system architecture of an
embodiment of the present invention, highlighting the communications flow of
the present invention.

FIG. 3 is a block diagram representing an architecture of an
orientationally-aware peripheral (OAP) device according to an embodiment of
the present invention.

FIG. 4 shows an overall architecture of an operational environment, or
“Grid,” and the relationship of the hardware within the Grid.

FIG. 5 illustrates various components of the Grid.

FIG. 6 shows one embodiment of hardware use to embody the Grid.

FIG. 7 is an abstract representation of the Grid.

FIG. 8 illustrates a relationship among tables of the database of FIG.

4.

FIG. 9 illustrates a context agnostic aspect of the Grid.

FIG. 10 illustrates a palette of state choices available to a game
designer.

FIG. 11 illustrates an authentication packet used for logging into the
Grid.

FIG. 12 illustrates a response packet sent in response to the packet of
FIG. 11.

FIG. 13 illustrates a one-way hash encrypted packet.

FIG. 14 illustrates a process of logging into the Grid.

FIG. 15 illustrates dynamic routing of packets by a Gateway to
multiple Game Servers.

FIG. 16 illustrates in tabular form attributed relationships between
identities, accounts, avatars, and games.

FIG. 17 illustrates an Identity request process.

FIG. 18 illustrates an Avatar instantiation process.

FIG. 19 illustrates instant messaging packets.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-12-

FIG. 20 illustrates a message secure packet type.

FIG. 21 illustrates an example of a Locale topology.

FIG. 22 illustrates intelligent Locale design.

FIG. 23 illustrates multiple Game Servers running multiple Locales.

FIG. 24 illustrates an example of a packet used for moving
Embodiments of Record between Locales.

FIG. 25 illustrates movement across inter-server and intra-server
boundaries for Embodiments of Record.

FIG. 26 illustrates a taxonomy of object classification in a game.

FIG. 27 illustrates a taxonomy of a packet.

FIG. 28 illustrates a packet header.

FIG. 29A illustrates how players and sentinels interact across Locale
boundaries.

FIG. 29B illustrates Network Protocol Stack transmission protocol.

FIG. 30 illustrates a heartbeat packet beat speeding up after an interval
of inactivity.

FIG. 31 shows a case of two unreliable packets being sent followed by
two reliable packets.

FIG. 32 illustrates packet transmission from a receiver’s perspective.

FIG. 33 illustrates a dropped heartbeat.

FIG. 34 illustrates a receiver protocol for receiving packets from
clients.

FIG. 35 illustrates a scenario of a lost heartbeat packet in addition to
lost reliable packets.

FIG. 36 shows an example of a UDP packet used in one embodiment
of the present invention.

FIG. 37 shows a method of determining when packets have been lost
in transit.

FIG. 38 is a flowchart illustrating operation of a Network Protocol
Stack.

10

15

20

25

WO 03/081447 PCT/US03/04879

-13-

FIG. 39 shows a payload of packets used in the Network Protocol
Stack.

FIG. 40 shows how values are passed as data sub-blocks.

FIGs. 41 and 42 illustrate additional details of the Network Protocol
Stack packets.

FIG. 43 shows an example of a game object.

FIG. 44 shows a conceptual timeline for a dead reckoning model.

FIG. 45 illustrates terminology used in defining regions of interest of
objects.

FIG. 46 shows interaction of objects located in different Locales, and
different servers.

FIG. 47 is an alternative representation of FIG. 46.

FIG. 48 shows dynamic interaction between two players located in
different Locales.

FIG. 49 illustrates a process of movement by a Thing in a game.

FIG. 50 illustrates transfer of Embodiment of Record between borders
of Locales. |

FIG. 51 illustrates event multiplexing in a Dead Reckoning model.

FIG. 52 illustrates an aspect of area of interest management.

FIG. 53 illustrates a python sub-block type.

FIG. 54 shows a client receiving a secure request for a transaction.

FIG. 55 shows a packet used for a Daemon Controller.

FIG. 56 shows a case of an object whose behavior is being determined
by the Daemon Controller.

FIG. 57 shows a finite state machine used by a Daemon Controller.

FIG. 58 is a flowchart depicting an embodiment of operation and
control flow of the multi-user bridging system of the present invention.

FIG. 59 is a block diagram of an exemplary computer system useful

for implementing the present invention.

10

15

20

25

WO 03/081447 PCT/US03/04879

-14 -

DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the preferred embodiments of
the present invention, examples of which are illustrated in the accompanying

drawings.

I. Overview

In embodiments of the present invention, the concept of object state, or
simply "state" can be utilized to facilitate collaborative environments. State,
as used herein, is an abstract quantity (or quality) that may include spatial,
temporal, physical, or logical states. The states are aggregated, mediated,
processed, and propagated based upon the values of these states and/or rules
applied to these states into a shared, virtual environment. Note that the term
“object state” does not refer to objects in the sense of object oriented
programming, but refers to objects that represent entities (e.g., people,
animals, castles, buildings, etc.).

The system of the present invention includes an application database
that stores state information about the users, objects, and entities participating
in the interactive, multi-user application. This state information includes both
intrinsic values associated with the objects and environments, and also
information about the types of client devices owned by each of the plurality of
users. The system of the present invention also includes one or more Game
Servers, each connected to the application database, for executing the
interactive, multi-user applications of the system of the present invention.
One or more Gateways, each connected to one of the Game Servers, are also
included in the system of the present invention for supporting connections
from the various types of client devices. The system further includes one or
more transportation networks, each connected to one of the Gateways, for
facilitating communications between the Gateways and the type of client

devices supported by each of the Gateways. The term client device, as used

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-15-

here, includes both communication devices used by users, as well as devices
that can input data into the environment in real time, but which need not be
controlled or used by a user. As an example, a temperature sensor could
communicate this a translator, which would communicate to the server to
update the state of the object associated with that temperature. In one
embodiment, the system also includes an orientationally-aware peripheral
device within the client devices for tracking the locating and orientation of
users within the system of the present invention.

The system of the present invention also includes a distributed
software architecture to connect all client devices and servers to form a bridge
between the real world and virtual environments or for extensibility,
reliability, scalability and performance optimization.

The method and computer program product involve users registering
with an application service provider (ASP) providing the system as described
herein. This registration involves receiving a request for presence within the
interactive, multi-user application from a first user and a second user. The
method then establishes a presence within the application. That is, a
computer-generated synthetic representation appropriate to the user’s context
is created for the first and second users within the application. Next, the
system stores in the application database state information about one or more
devices that the first user and the second user can use to gain access to the
application. Each of the users, as part of the registration process, may also
receive software updates of a multi-tier software framework, appropriate for
their client device types, in order to facilitate messages and other interactions
between them and the rest of the system (i.e., translators, servers, and
application database).

The system, method and computer program product of the present
invention accounts for both the physical and virtual location and context of the
participating devices and people. The system, method and computer program

product also provide for both synchronous and asynchronous communications

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-16 -

between people, computers, other devices and computers for the purpose of
coordinating activities in the real (i.e., physical) and virtual worlds.

One feature of the present invention is that it can combine both real
(non-virtual) and virtual environments while facilitating user interaction.

Another feature of the present invention is that it allows "X21"
communications and commerce, where X and Y can be any device, person or
organization. That is, universal access to the shared environment is allowed
via any device to which a client can be provided (e.g., mobile phones, video
game consoles, personal computers, personal digital assistants (PDAs), retinal
projection displays, ear pieces, etc.). This offers an advantage over previous
Internet application offerings.

Another feature of the present invention is that, aside from personal
computers, workstations and terminals connected to the Internet, it allows
mobile phones, wireless data devices, PDAs and the like, which are commonly
owned by today’s consumers, to represent opportunities to where users can
participate in multi-person, interactive applications.

Another feature of the present invention is that users’ locations can be
geographically tracked, via a Global Positioning Satellite (GPS) system, cell-
based triangulation, dead-reckoning (i.e., inertial tracking) or the like as
described herein, in order to provide more realistic content, more realistic
interactive experience to users, or data which is more contextually relevant to
the user.

The present invention is a distributed, platform-sensitive, location-
based, contextual system, method and computer program product for bridging
activities in real and virtual environments within the context of multi~user
gaming, entertainment, simulation, collaborative, and e-commerce
applications. In aggregate, it is referred to as the "Grid."

An application service provider (ASP), using the present invention,
would utilize an infrastructure of hardware components connected over
wireless networks and the Internet, and an infrastructure of telemetry,

metering, monitoring, remote control, signaling and visualization software to

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-17 -

create immersive, compelling and ubiquitous interactive, multi-user
applications for business, government and consumer markets. The present
invention takes advantage of low-cost, mass-marketed electronic devices,
public networks and readily available spectrum space to create new, powerful
capabilities that have not previously been envisioned or deployed. That is, the
ASP may utilize a combination of centralized data-processing capabilities,
software, personal computers, laptops, workstations, and autonomous agents
on mobile devices to create scenarios that bridge mobile and remote users of
the service with contextually relevant interfaces.

In one particular embodiment of the present invention, an organization
provides a server (or collection of servers) accessible via a Web site, that
facilitates an interactive, multi-user shared environment application. That is,
an ASP allows access, perhaps on a subscription or per-use basis, to a multi-
user bridging tool via the global Internet. The ASP would provide the
hardware (e.g., servers) and software (e.g., database) infrastructure,
application software, content files, customer support, and billing mechanism to
offer users (i.e., players) a new set of services and applications that bridge
real-life ("physical") entities, features, spaces and events with computer-
generated ("'synthetic") environments, logic and processes based on relative
position, motion and (real or virtual) orientation. Thus, the system of the
present invention allows all entities to have a unique identity and stores
synthetic entities in the same manner as physical entities.

In an embodiment of the present invention, an ASP may provide users
with access to the multi-user bridging tool of the present invention and charge
on a subscription or per-use basis.

In an alternate embodiment of the present invention, the multi-user
bridging tool of the present invention, instead of being accessed via the global
Internet, would run locally on proprietary equipment and be networked among
the local or wide area network (e.g., over an Fthernet, intranet, or extranet) of

an entity allowing multiple users (e.g., employees of a single company that

10

15

20

25

30

WO 03/081447. PCT/US03/04879

-18 -

owns proprietary equipment) to access and use the multi-user bridging tool of
the present invention.

In an alternate embodiment of the present invention, each user device
provides some or all of the functionality of the components of the multi-user
bridging tool of the present invention as described herein. Such devices, as
will be apparent to one skilled in the relevant art(s) after reading the
description herein, would allow for distributed implementations of the present
invention.

In an alternate embodiment of the present invention, the client devices
provide some or all of the functionality of the components of the content -
experience management tool as described herein. In such an alternate
embodiment, the client devices would maintain connectivity with a centrally-
managed, multi-user bridging tool or altcmatively the devices would share
data, as described herein, among multiple devices (i.e., a "peer-to-peer"
model).

The present invention is primarily described in terms of a gaming
example. This is for convenience only and is not intended to limit the
application of the present invention. After reading the following description,
it will be apparent to one skilled in the relevant art(s) how to implement the
following invention in alternative embodiments (e.g., multi-user interactive
applications focused on entertainment, simulations, project management, e-
commerce, collaborative engineering, etc.). For example, in an alternate
embodiment, a computer-aided design (CAD) application program executes
within the Grid while maintaining referential integrity between a real life
(physical) environment (e.g., a field engineer) and a computer-generated
(synthetic) environment (e.g., a remotely-located designer using a CAD
program). This allows the creation of synthetic models based on physically-
derived (or observed) data, the maintenance and enhancement of synthetic
models as change occurs in the physical world, and most importantly, the real-

time interaction between physical and synthetic entities (e.g., persons).

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-19-

The term "event" shall refer to an occurrence in the real world (i.e.,
physical world), and the term "signal" shall refer to an occurrence or user
stimulation that occurs in or originates from the virtual or synthetic world
(e.g., from an interactive, multi-person application).

The term "gaming" shall refer to any activity performed by a user on a
client device which provides some entertainment value. Such activity ranges
from participating in a synthetic environment with structured rules and roles,
to simply forwarding a content file to another for entertainment purposes.

The term "entity" shall refer to a physical user or any part of an
synthetic environment that can be manipulated within an environment.

The terms "user," "person,” "player ," "participant" and the plural form
of these terms are used interchangeably to refer to those who would access,
use, or benefit from the present invention.

In this description, the "host computer," or simply "host", refers to a
physical machine on which a process, or multiple processes, is running. Each
such process has a memory space, and possibly includes threads, which are
sub-elements of the process. The threads run concurrently, and all share the
same Process memory space.

A Gateway Server (hereafter usually referred to as “Gateway”), a
Hosting Environment (a “Game Server” in the case of a gaming application,
an “Application Server” in more generic contexts, a “Collaborative
Engineering Environment Server” in other contexts, or a “Context Server” if
the application were to be thought of as a “context™), and a Daemon Controller
(all discussed in detail below) are examples of processes, each of which may
be multi-threaded, and each of which runs on a physical host. These
processes, which collectively comprise a single application (e.g., a game) or
multiple applications, may run on a single host, or may be distributed across
multiple hosts. The discussion below is primarily framed in terms of game
applications for convenience, and thus typically refers to “Game Servers”, but
the invention is equally applicable to any number of distributed environments.

Each of these processes may also be replicated across multiple hosts.

10

15

20

25

WO 03/081447 PCT/US03/04879

-20 -

Collectively, Game Servers, Daemon Controllers and Gateways may be
referred to as “Process Servers.” It will be appreciated that collectively,
Context Servers, Daemon Controllers and Gateways perform the function of a
distributed operating system.

A Game Server has at least one, but frequently multiple Locale
Threads. Each Locale Thread, or simply "Locale," is part of the Game Server.
Some of the Locale Threads accept messages, and some of the Locale Threads
transmit messages. Thus, a Game Server is in a sense a superset of Locale
Threads plus other maintenance activity needed to permit the Locale Threads
and the objects within them to interact. The Game Server supports as many
Locale Threads as there is memory and other resources allocated to it. The
Locale Threads are bound to the Game Server in a dynamic fashion. For
example, one Game Server can drop Locale Threads, or it may dynamically
move them to another Game Server. An actual game includes at least one
Locale, and possibly many Locales, where all the Locales together form a

seamless "game world", or simply "world".

1L Example System Architecture

The Grid is a collection of hosts that decouples semantic and syntactic
context in a packet that is exchanged between clients (and that relates to the
game itself) from information that is in some sense "essential" to the Grid
itself. In other words, the Grid can mediate the state of the object(s) without
knowing what the states actually means. The Grid thus becomes a host for the
context of the application (i.e., game) while being agnostic about the context
itself.

FIG. 1 shows a block diagram illustrating the physical architecture of a
Grid system 100, according to an embodiment of the present invention. FIG. 1
also shows connectivity among the various components of Grid system 100. It
should be understood that the particular Grid system 100 in FIG. 1 (i.e., a Grid

system for an interactive, multi-player gaming application) is shown for

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-21-

illustrative purposes only and does not limit the invention. Other
implementations for performing the functions described herein will be
apparent to persons skilled in the relevant art(s) based on the teachings
contained herein, and the invention is directed to such other implementations.

As will be apparent to one skilled in the relevant art(s), all of the
components "inside" Grid system 100 are connected and communicate via a
communication medium such as a; local area network (LAN) or a wide area
network (WAN) 101.

Grid system 100 includes a plurality of application servers 102 (shown
as servers 102a-102n) that serve as the "middle-tier" (i.e., processing system)
of the present invention. Servers 102, as explained in detail below, include the
independent software components (e.g., rules enforcement, scripting, and state
update subsystems) that implements the multi-user shared operation of Grid
system 100. While a plurality of separate servers are shown in FIG. 1, it will
be apparent to one skilled in the relevant art(s) that the Grid system 100 may
utilize one or more servers in a distributed fashion (or possibly mirrored for
fault tolerance) connected via LAN 101 or the Internet.

Also connected to LAN 101 is an application database 104. This
database 104, as explained in more detail below, stores information related to
the players utilizing Grid system 100 and information related to the state of the
objects in the system. Such information includes player registration,
permission, ownership, and location information, as well as game
environments and rules.

Grid system 100 also includes a plurality of administrative
workstations 106 (shown as workstations 106a-106n) that may be used by the
Grid organization to update, maintain, monitor, and log statistics related to
servers 102 and Multi-User Bridging system 100 in general. Also,
administrative workstations 106 may be used "off-line" by ASP personnel in
order to enter configuration data and gaming rules, as described below, in

order to customize Grid system 100 performance.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-22 -

Grid system 100 also includes a translator 108 (a type of Gateway)
which acts as the interface between the servers 102 and the external (i.e.,
outside of the ASP’s infrastructure) devices. Consequently, translator 108 is
connected to a firewall 110. Generally speaking, a firewall, which is well-
known in the relevant art(s), is a dedicated Gateway machine with special
security precaution software. It is typically used, for example, to service
connections and protect a cluster of more loosely-administered machines
hidden behind it from an external invasion. Thus, firewall 110 serves as the
connection and separation between the LAN 101, which includes the plurality
of network elements (i.e., elements 102-108) "inside" of LAN 101, and a
transportation network 103 (e.g., the global Internet) "outside" of LAN 101.

Grid system 100 also includes a Daemon Controller 108 which acts as
a privileged client for managing the activities of elements of the application
not directly controlled by users, such as artificial intelligence or aspects of a
simulation that run on their own internal logic and react to other aspects of the
simulation.

Connected to the transportation network (e.g., global Internet 103),
outside of the LAN 101, includes a plurality of external client devices 112 that
allow users (i.e., players) to remotely access and use Grid system 100.
External client devices 112 would include, for example, a mobile phone 112a,
a video game console (with Internet connection) 112b, a personal digital
assistant 112c¢, a personal area network with retinal projection displays and/or
ear piece 112d, a laptop 112¢, and a desktop computer 112f.

While only one Gateway 108 is shown in FIG. 1, it will be apparent to
one skilled in the relevant art(s) that Grid system 100 may utilize one or more
Gateways in a distributed fashion (or possibly mirrored for fault tolerance)
connected via LAN 101. In such an embodiment, as will be apparent to one
skilled in the relevant art(s) after reading the description herein, each Gateway
108 may be dedicated to, and support connections from, a specific type of

external client device 112 using a different transportation network 103, or one

10

15

20

25

WO 03/081447 PCT/US03/04879

-23 .

gateway could support connections from multiple client devices capable of
producing similar communications protocols.

For example, in one embodiment of the present invention, translator
108 may be a Web server which sends out Web pages in response to Hypertext
Transfer Protocol (HTTP) requests from remote browsers (e.g., desktop
computers 112f). The Web server would provide the "front end" to the users
of the present invention. That is, the Web server would provide the graphical
user interface (GUI) to users of Grid system 100 in the form of Web pages.
Such users may access the Web server at the Multi-User Bridging
organization’s site via the transportation network 103 (e.g., the Internet and
thus, the World Wide Web).

Lastly, while one database 104 is shown in FIG. 1 for ease of
explanation, it will be apparent to one skilled in the relevant art(s) that Grid
system 100 may utilize databases physically located on one or more computers
which may or may not be the same as any of servers 102.

More detailed descriptions of Grid system 100 components, as well as

their functionality, are provided below.

II1. Communications Flow

Referring to FIG. 2, a block diagram 200 further illustrating the
physical architecture 100 according to an embodiment of Grid system 100 is
shown. More specifically, FIG. 2 illustrates a more simplified version of Grid
system 100 than that shown in FIG. 1 in order to highlight the
communications flow of the present invention.

During operation of an instance of an interactive, multi-player game
executing within Grid system 100, translator 108 acts as the interface between
the players’ client devices 112 (through transportation network 103 that is not
shown in FIG. 2). That is, translator 108 facilitates communications between
at least one of the servers 102 and the plurality of different client devices 112.

Thus, translator 108 is responsible for translating (and thus bridging) between

10

15

20

25

WO 03/081447 PCT/US03/04879

-24 .

the game’s signals and physical events into the protocol(s) being used by
client devices 112 in order to communicate player movements, game rules,
scene changes, player status, audio content, video displays, game score data,
etc. Such player movements, scene changes, player status, audio content,
video displays, etc. would be dictated by and/or stored in application database
104 in communication with servers 102.

As will be apparent to one skilled in the art(s) after reading the
description herein, one or more translator(s) 108 would be needed to handle
devices and software that do not natively communicate via (proprietary)
protocols over TCP/IP. These include both existing first generation (1G)
wireless data protocols such as Wireless Access Protocol (WAP), Cellular
Digital Packet Data (CDPD) and Mobitex, as well as current generation
technologies and standards (2.5G and 3G) such as General Packet Radio
Service (GPRS), Enhanced Data rates for Global Evolution (EDGE),
Universal Mobile Telecommunications System (UTMS), WiFi and Bluetooth.
Translators are also needed for, Internet protocols such as Simple Mail
Transfer Protocol (SMTP), HyperText Transfer Protocol (HTTP), Simple
Object Access Protocol (SOAP), Jini, Instant Messaging (IM), etc., in order
for servers 102 to communicate (via the appropriate protocol transportation
network 103) with the different types of client devices 112 (e.g., mobile
phones, video game consoles, personal data assistants, ear-pieces, retinal
projection display devices, etc.) and for clients 112 to communicate in a P2P

fashion within Grid system 100.

V. Location Awareness

Latitude, longitude and other sets of location data are often integral to
the applications executed within Grid system 100. Such location awareness
allows software agents to traverse physical terrains and physical entities such
as people, buildings and vehicles to be represented in virtual worlds.

Therefore, in addition to existing systems such as GPS and the like, inertial

10

15

20

25

30

WO 03/081447 PCT/US03/04879

=25

tracking can be used to track the location and orientation of players within
system 100.

In an embodiment of the present invention, an orientationally-aware
peripheral (OAP) device, described in detail below, may be included within
Grid system 100 within each client device 112.

Referring to FIG. 3, a block diagram representing the architecture of
an orientationally-aware peripheral (OAP) device 300 according to an
embodiment of the present invention is shown. OAP device 300 includes an
inertial tracking subsystem 330 and a communication subsystem 320. Inertial
tracking subsystem 330 employs six accelerometers that will track the
placement and orientation of the peripheral device in six degrees of freedom
("6-DOF"). Such a design eliminates the need for separate gyroscopic sensors
to determine orientation information. The six accelerometers are divided into
three groups of two sensors each (i.e., accelerometers pairs 302, 304 and 306)
oriented along each of three perpendicular axes. Each pair of accelerométers
is separated as far as is possible on the platform. By correctly integrating the
acceleration of all six sensors, both position and angular orientation can easily
be calculated.

The above-described arrangement of accelerometers allows for the
simple orientation and integration of the OAP device 300 in the client device
112, but should not be taken as a limitation of the invention. That is, other
possible arrangements exist for locating a client device (and thus, a player), as
will be apparent to persons skilled in the relevant art(s) based on the teachings ’
contained herein, and the invention is directed to such other implementations.

For example, in an alternate embodiment, the six accelerometers are
placed along the vertices of a triangular pyramid. Such an embodiment would
either be a closed- or open-pyramid, with the six accelerometers along the
vertices of the pyramid.

Inertial trackers tend to "drift" from the reference frame in time (via
systematic- or bias-errors). These errors are cumulative. They are also subject

to random errors (noise). Therefore, synchronization is important in ensuring

10

15

20

25

WO 03/081447 PCT/US03/04879

-26 -

OAP device 300 works in a wide range of environments. Synchronization
would occur when OAP device 300 is brought to a known location and the
system 100 is made aware of this fact. With OAP device 300 in a known
location, its position can be reset, while expunging any current positional
errors. Importantly, such synchronization can be brought into the narrative
context of the game, making it an integral part of the action (as opposed to a
distinct interruption).

For the pyramidal embodiment described above, synchronization can
be performed by placing OAP device 300 at a known location and in a known
orientation. Software code logic included in OAP device 300, in an
embodiment, would assume that it is synchronized when OAP device 300 has
not moved over a certain pre-selected time period.

Also, for certain applications offered by the ASP where accurate
orientation is needed but positional data is not essential, it is possible that OAP
device 300 could be self-synchronizing. That is, whenever the device is
stationary for a pre-selected time period, a correction is applied so that the
normal vector of the downward-facing face is aligned with the current
gravitation vector. As long as the device is placed on a flat surface fairly often
in a random orientation, these corrections will be often in every direction; the
net affect of these corrections would be a continual synchronization.

As mentioned. above, OAP device 300 also includes communication
subsystem 320, where the output of the inertial tracker is received by a data
translator 314 and communicated to other client devices 112 participating in
the same instance of the multi-player, interactive game. One embodiment of
the communication subsystem 320 would employ wireless communication
protocols (such as Bluetooth, IEEE 802.11 or the like) to communicate with a
nearby computer or base-station (and thus with translator 108) via a

transmitter 312.

10

15

20

25

30

WO 03/081447

=27 -

V. Application Database

Database 104 stores the various types of information that Grid system
100 would need to store in order to provide the bridging of activities in real
and virtual environments in the context of multi-user gaming, entertainment
and e-commerce applications. Such information, includes user registration
information (name, address, billing information, etc.), device 112 registrations,
device 112 capabilities (e.g., polygon rendering capability, media formats,
operating systems, available peripherals, color versus black-and-white display,
etc.), user permissions (e.g., who is allowed to access portions of the bridged
environment and what actions they may perform on those parts) and user
ownership of synthetic entities and environment objects, entity location
information, game environments, game rules, themes and roles, etc., as will be
apparent to one skilled in the relevant art(s) after reading the teachings herein.

In an embodiment of the present invention, application database 104 is
implemented using a relational database product (e.g., Microsoft® Access,
Microsoft® SQL Server, IBM® DB2%, ORACLE®, INGRES®, or the like). As
is well known in the relevant art(s), relational databases allow the definition of
data structures, storage and retrieval operations, and integrity constraints,
where data and relations between them are organized in tables. Further, tables
are a collection of records and each record in a table possesses the same fields.

In an alternate embodiment of the present invention, application
database 104 is implemented using an object database product (e.g., Ode
available from Bell Laboratories of Murray Hill, NJ, POET available from the
POET Software Corporation of San Mateo, CA, ObjectStore available from
Object Design, Inc. of Burlington, MA, and the like). As is well known in the
relevant art(s), data in object databases are stored as objects and can be
interpreted only using the methods specified by each data object’s class.

As will be appreciated by one skilled in the relevant art(s), whether
application database 104 is an object, relational, and/or even flat-files depends

on the character of the data being stored by the ASP which, in turn, is driven

PCT/US03/04879

10

15

20

25

WO 03/081447 PCT/US03/04879

-28 -

by the specific interactive, multi-user applications being offered by the ASP.
Server 102 includes specific code logic to assemble components from any
combination of these database models and to build the required answer to a
query. In any event, translator 108, client devices 112, and/or administration
workstation 106 are unaware of how, where, or in what format such data is

stored.

A. Database

Thus, at the center of every persistent-state, massively multi-player
game lies its database 104. The database 104 manages the persistence of
object state across the game world: from login to login, session to session,
Avatar to Avatar, property to property, it keeps a record of all significant state
changes. When a player picks up a sword, the database 104 must record this
fact and store it, otherwise the next time that player logs in they will wonder
where they lost it. When the player spends a gold coin, the database 104 must
debit their virtual bank account, so that the online economy can function
without embezzlement. The database 104 is the final authority on the state of
the world at any given moment.

The Grid preferably relies on the well-proven technology of the
relational database, though it is not bound tightly to any proprietary database
implementation. The database 104 may be created in a variety of professional
database platforms (including Oracle and DB2 instantiations). An important
element to successful Grid game design is the database schema: a blueprint for
the relations that govern the basic tabular data underlying its relational
database 104.

FIG. 4 represents the overall architecture of the Grid and the
relationship of the various servers. As shown in FIG. 4, there are a number of
Gateways 401a-401c (each a type of translator 108) through which users log
into the Grid. The database 104 maintains track of the state of the game, the

user logins, and the state of the objects playing the game. The Game Servers

10

15

20

25

WO 03/081447

-29 -

405a, 405b, 405c¢ (a type of server 102) are connected to the Gateway 401, and
to the database 104. Each of the Game Servers 405 may have multiple Locale
Threads (discussed in further detail below) running on it, as well as other
processes (e.g., daemon processes, discussed in further detail below).

FIG. § illustrates the various components of the Grid, and shows a
spectrum ranging from the back end (database servers 104), where the
persistence storage resides, to a number of clients and client libraries at the
top. Thus, as one moves upwards in the figure, there may be thousands of
clients and client libraries, but only one database server 104.

FIG. 6 is a diagram showing one particular embodiment of the
hardware that may be used to embody the Grid, and the overall topology of the
system. It will be appreciated that any number of hardware devices may be
used, and the invention is not limited to the particular hardware illustrated in
FIG. 6.

FIG. 7 is an abstract representation of the Grid. The "Grid" box on the
right hand side of the figure represents all the various elements that are
generally needed to play the game. On the left, the Network Protocol Stack
(NPS, discussed further below) is a mediator for data that comes into the host,
and data that goes out. Some of the packets coming into and out of the
Network Protocol Stack are delivered to/from outside the Grid, for example,
data exchanges with users. Other packets are exchanged within the Grid, and
represent exchange of data/state information between elements and objects of
the Grid. The State Propagation and State Aggregation blocks on the lower
left represent the Embodiment of Record management, and function as an
mediator between the Network Protocol Stack and the Game Servers 405 of
the Grid.

B. Grid Schema

The Grid schema is divided into a variety of tables, each of which

serves a particular purpose in defining what games are available to players

PCT/US03/04879

10

15

20

25

WO 03/081447 PCT/US03/04879

-30 -

with valid accounts, how those players are represented within the game, where
they can go, and what they can do. An overview of the most important tables
of database 104 follows, with the relationships among the major tables
illustrated in FIG. 8:

a) Games 801 — each game offered is named and numbered: the
currently running version of the game is specified as well.

b) Locales 802 — each geographical region of the game currently
available to players is defined: the boundaries of the Locale 802 define when
objects enter or leave each physical region.

c) Accounts 803 — basic control information for logging in and out
of the Grid: username and password information as well a uniquely generated
public_key to identify this account across the network.

d) Permissions 804 — determines the scope of what an account is
allowed to do, and what changes and account is authorized to make.
Distinguishes daemon accounts from client accounts.

e) Identities 805 — describes who the player can embody within
each game: associates Accounts with Avatars 806.

') Avatars 806 — defines a role for the player within a specific
game: associates a specific Thing representing the player with its most recent
Locale 802.

g) Things 807 — the basic description of an object in the game
world. The Thing table distinguishes active objects from passive objects.
Every Avatar 806 is a Thing 807, only some Things 807 are Avatars 806.

h) States (not shown in FIG. 8) — associated with each Thing 807,
states embody actual persistent game properties.

i) State Templates (not shown in FIG. 8) — not associated with
any actual Thing 807, state templates define which #ypes of Thing 807 may
possess which actual persistent properties. Associates States with State

Definitions.

10

15

20

25

WO 03/081447 PCT/US03/04879

-31-

i) State Definitions (not shown in FIG. 8) — virtual definitions for
each potential actual state: includes validation information, range limits, and
default values for each State Template.

k) Sentinels (not shown FIG. 8) — special entities that patrol
Locale 802 boundaries. Sentinels are responsible for forwarding object state
information from one Locale 802 to another Locale 802.

D Requests (not shown in FIG. 8) — a system-maintained list of
outstanding, unsatisfied secure transactions. Each Request record has a limited

lifespan.

C. Things

Each object in every game has an entry in the Thing table. The Thing
table controls the behavior of objects across the Grid, and maintains their
common basic states: position, orientation, range, presence, region of interest
type, whether they are active or passive in nature. It includes definitions for
the following properties:

a) Globally Unique ID (GUID) — a game specific identifier that
distinguishes one particular object from another. Two blue whales may exist
in the same game, but their Things will have different GUIDs.

b) Object Types — a game specific identifier that distinguishes one
class of objects from another. Two blue whales may have the same object
type, even if they possess different GUIDs.

c) Deleted Date — a marker that flags an object as baving been
"removed” from the game world. If this entry is NULL then the object is
currently in existence.

d) Position — where this object is located in the game world. Also
provided are Velocity and Acceleration for rectilinear motion.

e) Orientation — which way this object is pointed in the game
world. Also provided are Angular Velocity and Angular Acceleration.

10

15

20

25

WO 03/081447 PCT/US03/04879

-32-

f) Range — how far this object can "see" or the extent of its region
of interest.

g) Presence — how far this objects "extends" in space for collision
detection.

h) Region Type — normal regions of interest are spherical, but

more specialized boundary definitions are also possible.
1) Active vs. Passive Flag — whether this Thing responds to

stimuli (determines which objects act as a packet sink for state messages).

D. States

When designing a networked game (or collaborative environment), it is
usually necessary to define the states (or properties) that are initialized,
modified, distributed and saved as part of game play. However, since the Grid
is context agnostic (further discussed below), these object states must be
represented abstractly, so that the Game Servers 405 can initialize, modify,
distribute and save these properties without knowing directly what element
they represent within the game world. Just as state marshalling (discussed
below) allows an object state to be transmitted abstractly, the state tables in the
database 104 allow properties to be stored abstractly and manipulated with
standard methods for all game instances.

By way of example, suppose a client is logged into game #44, which is
known by its name "Bootleggers". This example game pits whisky smugglers
against the F.B.I in a massive smuggling operation during Prohibition. The
player’s Avatar (represented by a Thing of type 1) is a character called
"Sneaky666" and has the Globally Unique ID #666. In this game, each player
starts out carrying $1,000 in bribe money around just in case they get stopped
by the police.

Creating a new state for this character, the game designer assigns the
number #257 to a property known to the game code as "bribe money" and

gives it a type of PROPERTY_LONG (a long integer) and an initial value of

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-33.

1000. The designer creates a state Template which associates every 'object of
type 1 with the allowed state property #257.

When the Game Server 405 reads the database 104 for this Avatar,
although the Game Server 405 does not know directly what property #257
represents, it can associate this property with Thing #666, set its type to long
integer and initialize its value to 1000. Furthermore, using Grid packets
(discussed below), it can serialize this information and marshal it out all
players as a sub-block within a THING_NEW packet block. It is not required
or necessary for the Game Server 405 to interpret the semantic meaning of the
value 1000. As far as the Game Server 405 is concerned, the value might just
as well represent 1000 elephants as $1,000. This process of systematic
abstraction de-links the syntactic validation of each property from the
semantic interpretation of that state, and is the mechanism that allows the Grid
to remain game agnostic. In a broader sense (i.e., outside the game
applications), game agnosticism may be referred to as “context agnosticism.”

~In one particular implementation, position information is "hardwired"
as being non-game-agnostic into the Grid, because in the game context,
position information is usually of an "essential" nature and needs to be passed
with minimal overhead, such that the Grid can resolve the
conflicts/interference (see also discussion of Dead Reckoning below).
However, other information, for example, bank account balance, may be
"essential" in other context. Thus, position information is passed in a non-
context agnostic manner, while other state information is passed in a context
agnostic manner. Obviously, the “meaning” of “position” may be interpreted
by the game itself in any manner it wants.

FIG. 9 is an illustration of the context agnostic aspect of the Grid. As
shown in FIG. 9, top portion, the client updates its state by sending a signal to
the Gateway 401 "I am at X, Y, Z". The Gateway 401 responds with a
"change state B" back to the client. The packet construction, illustrated in the
bottom left of FIG. 9, has some properties of the full state that are context

agnostic (shaded gray), and some that are not (shaded white). In this manner,

10

15

20

25

WO 03/081447

-34 -

information is "marshaled" from the client to the server (see discussion of
marshaling state below). The context agnostic states are passed through the
Gateway 401 and the Game Server 405 to the game itself, without regard to
what exactly these values represent. Other information (e.g., position) is not
context agnostic in this example, and is illustrated in white.

There is no requirement for the client itself to be context agnostic.
When the client receives a THING NEW message, it knows that property
#257 represents the state "bribe money" and can display a graphical indication
(e.g., a green bar chart) that this player is flush with cash.

In the same way, other object states can be abstractly represented:

- A PROPERTY_FLOAT state could be a current percentage of
blood alcohol.

- A PROPERTY_VECTOR state could represent the direction in
which a game character’s gun is pointed.

- A PROPERTY_ENUM state could hold the color of an
Avatar’s hat.

— A PROPERTY_STRING state could hold the nickname of this
player.

Some networked games, especially first-person shooters, may get by
with only a handful of states, such as health, damage, and strength. Other,
more strategic games, will require an extensive list of special powers, items,
and abilities (the palette of choices available to the game designer is illustrated
in FIG. 10).

E. State Definitions

Thus, the persistent state database 104 needs to represent a variety of
state properties. It also needs to error check the values that are stored in order
to keep them consistent with the rules of the game. For the Game Servers 405
to remain context agnostic, special procedures must be integrated with the

database to perform these actions without excessive Game Server intervention:

PCT/US03/04879

10

15

20

25

WO 03/081447 PCT/US03/04879

-35.

a) Validation — values must remain of the correct type. A string
value should not be placed in a vector field.

b) Range Checking — values should not become too big or too
small. For example, the height of a character should never be negative.

c) Enumerated Types — legal values may be limited to a specific
set of predefined choices. An example is a color that may be color #1 (RED),
color #2 (GREEN) or color #3 (BLUE).

Associated with each State Template is a State Definition table that
determines these special limitations for each game property. Without these
definitions, the Game Server 405 would be unable to enforce the requirements
for consistency upon the game world. Using the templates and definitions to
filter good values from bad values, the Game Servers 405 can maintain

database 104 integrity according to the requirements of the game designer.

F. State Lists

In addition to the individual state properties, game objects may require
an associated set of states that has some larger sense of coherency. In this
case, the properties provide support for lists of states, subject to the restriction
that each individual list, when marshaled, may be no larger than the maximum
packet size.

In general, this restriction allows for up to 64 individual elements per
set that may be set, reset, and cleared individually. These list elements need
not be indexed contiguously, in other words the list set may be sparse (i.e.
indices 5, 7 and 9 may be set while all other index values are presumed to
contain NULL).

The list types mimic their primitive element counterparts:

- PROPERTY_LIST LONG - alist of 32 bit integer values.

- PROPERTY_LIST FLOAT - a list of single precision IEEE

floating point values.

10

15

20

25

WO 03/081447 PCT/US03/04879

-36 -

- PROPERTY_LIST VECTOR - a list of single precision IEEE
floating point types.

- PROPERTY LIST ENUM - a list of 16 bit integer
enumerated types.

- PROPERTY_LIST STRING - a list of UTF8 compatible
variable length strings (aggregate length of all string data must not exceed
MAXDATLEN).

- PROPERTY_LIST TOKEN - a list of TOKEN values (one 32
bit and two 32 bit data fields) useful for implementing inventory lists
containing a GUID, Object Type, and Specification Type for each element in

inventory.

VI. Software Architecture
A. General Considerations

In an embodiment of the present invention, servers 102 can be
implemented using Intel® x86 or Pentium® bardware running Microsofi®
Windows 2000 server platform or Linux, a Sun Ultra SPARC server running
the Solaris operating system or any other server platform that can execute
POSIX-compliant software. Servers 102 execute middle-tier software
applications implemented in a high level programming language such as Java,
C or the C++ programming languages. In an embodiment of the present
invention, the software application communicates with database 104 using a
Grid database handler implemented in C++, C or Java.

In an embodiment of the present invention, where transportation
network 103 is the Internet and translator 108 is a Web sever, a secure GUI
"front-end" for Multi-User Bridging system 100 is provided. The front-end
may be implemented as a fully-rendered C-++ environment, through a Web
translator using the Active Server Pages (ASP), Visual BASIC (VB) script,
and JavaScript server -side scripting environments that allow for the creation

of dynamic Web pages, or through a translator to another client device.

10

15

20

25

WO 03/081447 PCT/US03/04879

-37 -

A software framework for providing connectivity and maintaining
referential integrity between physical and synthetic entities is crucial for Grid
system 100 to support applications (e.g., interactive, multi-player games) that
take advantage of external client devices 112 that are: (1) high-polygon-count
hardware devices (e.g., game console 112b, etc.) to depict, navigate through,
point at and interact with synthetic models of physical spaces and events; and
(2) mobile, specialized devices for audio (e.g., MP3 player , etc.), video (e.g.,
digital video camera, videophone, etc.) and communications (e.g., mobile
phone, PDAs, etc.).

B. Distributed Software Framework

This section provides a top-level overview of the software framework
system.

To support on-line, multi-user shared environments, the system is
conceptually divided into four main subsystems:

(1) Database 104

2) Game Servers 405

(3) Gateways 401

(4) End-user Interfaces

While these components are treated as being physically separate, it is
important to keep in mind that these are functional divisions, and (with the
exception of the end-user device) this architecture makes no assumptions as to
the division of physical machines. However, the architecture will scale well if
these functional divisions are observed.

The database 104 provides persistence and constancy for all objects
within an environment. It will also provide some state information which will
be necessary for the operation of the application. The database 104 provides a
place where objects are identified, stored, and instantiated. If also provides

the front-end processing necessary to interface with the Process Servers.

10

15

20

25

30

WO 03/081447

-38-

Central to the operation of the database 104 is the concept of the
object. An object is a "physical" item that is part of a shared environment.
Along with generic data about the object (such as object type and attributes
which are common to all objects of that type), the database 104 also captures
data which are unique to a particular object’s instantiating. Unique identifiers
and descriptions are important in this context.

Because objects will be displayed different end-user platforms, each
object may have a multiplicity of descriptions. What is appropriate for one
platform may not be appropriate for another. For example, a geometric
description of an object and associated texture maps may be required to
display it on a high-resolution console platform. However, an SMS platform
may require a simple textual description. Both describe the same object.

The database 104 will also store state information about a particular
object. This will include all state information which is necessary to bring the
object into the environment.

The Game Servers 405 provide many functions, including:

a) An interface to the object store which objects to be brought into

the environment;

b) Communications between "peers," i.e., end-users;

c) Computation and object manipulation in support of the
application;

d) Aggregation and mediation of state information pertaining to

the objects in the environment;

e) Application of rules pertaining to the objects and state of those
objects within the environment; and

f) Distribution of control information.

In general terms, the Game Servers 405 is where the environment is
manipulated, and the state information is processed. This state information is
propagated to the end-users via the Gateways 401 (discussed below). The
database 104 includes object descriptions, the end-user devices can perform

rendering and provide a user an interface to the environment, but the Game

PCT/US03/04879

10

15

20

25

30

WO 03/081447

-30.

Servers 405 are necessary to tie Things together into the context of the
environment. It will interface with end-user devices in providing data streams
necessary for participation. It will also interface with the database 104 both
for the instantiating of objects (from the end-user perspective) and the
updating of an objects state information when that state information changes
as a result of changes to the internal environment or as a result of data entering
the system from external sources. Positional state information (the location of
objects within the environmental geometry) will be preferably tracked at the
Game Server level.

The Gateway 401 provides an interface between the end-user device
and other Game Servers 405. Note that in many cases this is not necessary;
the Game Server 405 will work with generic UDP (User Datagram
Protocol)/IP connections, and many client devices are capable of making and
using these connections. In general, it is the lower-end platforms which will
require a specialized version of the Gateway 401 to allow them to interoperate.
A WAP phone, for example, needs two levels of translation to interoperate
with network-connected devices: a WAP Gateway to translate its native
protocol to TCP/IP, and a WML server to format requests and displays in a
form which can be displayed by the device. Players can use their service
provider’s Gateway, but the WML requests may be translétted into a more
generic network protocol by which the process servers operate.

The Gateway 401 will only be necessary to provide service to devices
that cannot make general UDP/IP connections. If such devices are to be
supported in a given application, general design considerations typically
necessitate placing this functionality in separate servers, and not trying to
custom-code to each device APIL.

Users can use the system with a variety of end-user devices. These
devices will be responsible for providing the users with an interface to the
system, and to provide rendering which is applicable to the platform in
question. For computer-based platforms (general-purpose computers and

high-end console devices), three-dimensional, high-resolution rendering is

PCT/US03/04879

10

15

20

25

WO 03/081447 PCT/US03/04879

-40 -

required. Less powerful devices will require rendering that is consistent with
their performance.

End-user devices will also be capable of passing general messages
between one another. From the user’s perspect%ve this will be peer-to-peer,

but in actuality the messages will be mediated by the Process Server.

1. Gateway

The function of the Gateway 401 is to act as a single point-of-entry to a
section or region of the Grid. Since the Grid is protected behind a firewall, the
Gateway 401 hides the internal structure of the game configuration from the
clients outside the firewall. Gateway 401 interact with other system elements
by sending and receiving information in marshaled form. Gateways 401
subscribe to the process of discovery that identifies other Gateways 401, other
servers, and other related Grid resources. They dynamically redirect
information, including telling the user to "go look at another Gateway". The
Gateway 401 identifies the Game Server 405 to which the user should be
logged in, and then begins directing information to that Game Server 405 from
the user and from the server to the user. Gateways 401 do not need to match
users to users, they match users to Game Servers 405.

Many systems are built around the philosophy of the "trusted client".
In these systems, many of them on private networks or in a peer-to-peer
configuration, assume that only valid or "vanilla" client software will be
accessing the game and rely on the administrator to limit access to those
players who exhibit goodwill by not cheating or otherwise causing system
problems. In these games, it is not uncommon for players of an aggressive
bent to program bots (automated game drivers) to bend or break the limitations
embedded in the trusted client code as provided from the authorized
developerts.

The Grid, however, is a true multi-tiered client/server configuration

that does not trust the client to enforce the rules in all cases, and, as such, the

10

15

20

25

WO 03/081447

-41 -

Gateways 401 provide the first defense against unscrupulous or crafty players
whose goal is to bend or break the rules.

Clients are authenticated at the Gateway 401, their game session is
managed at the Gateway 401, and their packets are validated and routed by the
Gateway 401. In short, the Gateway 401 acts as a proxy for the client within
the Grid.

a. Client Authentication and the Login Thread

Before the Gateway 401 agrees to host a session for any client, it first
enforces a standard protocol for determining if the client is authentic. Every
authentic client shares a password associated with that client’s login name
with the Gateway 401. But when the time comes for the client to prove that it
knows the password, it would be insecure for a packet to be sent to the
Gateway 401 that includes the password itself. A malicious user might sniff
out the packet as is was routed around the Internet to the Gateway 401, and
steal this that password.

Password thieves might also intercept packets from the Gateway 401
en route to the authentic user, and masquerade as the Gateway 401 itself (this
is known as a man-in-the-middle attack), rendering many password encryption
schemes useless. To foil unscrupulous third parties from obtaining any
information about the password itself, the password can never be transmitted
over the wire to or from the client, even in encrypted form.

How can the authentic client prove that he/she knows the password (or
some “secret”) without transmitting the password itself? To authenticate, the
user initiates a Challenge/Response protocol with the Gateway Login Thread,
by forwarding an AUTHENTICATE :: CHALLENGE INIT packet to the
login port published by the Grid as the point-of-entry to the firewall. The only
significant information that this initialization packet passes is the client’s login
name and a return address to which network packets may pass back to the

client as the protocol progresses (see FIG. 11).

PCT/US03/04879

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-42.

In response to this initial packet, the Gateway 401 passes the packet to
its Login Thread for the purposed of client authentication. The Login Thread
begins by creating a Challenge object to control the authentication protocol. A
Challenge object has two basic parts: a seed of 16 pseudo-random bytes and a
lifetime timeout that specifies the period within which this challenge is
presumed to be valid. The 16 byte random seed value is formatted into an
AUTHENTICATE :: CHALLENGE_RQST packet and the seed is transmitted
back to the login client by the Gateway’s Network Protocol Stack (see
FIG. 12).

Now the login client has a random number to work with: of course, the
rest of the world may have this number too, as the packet may have been
intercepted as various points along its route. However, such a pseudo-random
"seed" value is of little use to anyone intercepting it: the next login to come
along will get a different seed value.

What can the client do with this value to prove that he/she knows the
shared password? A technique known as hashing produces another 16 byte
response that depends only upon the seed and the shared password. The hash
value, to all intents and purposes, appears to be another pseudo-random value,
and while it is easy to determine knowing the seed and the password, the
function to calculate it is a one-way function and cannot be reversed easily to
determine the password from the hash even if one knows the seed value used
in its creation.

In one example, the method that the Grid uses to create such a strong
hash value is known as the MD5 (or Message Digest 5) algorithm. This
algorithm is described in the publicly available Internet specification RFC
1321. The algorithm takes as input a message of arbitrary length and produces
as output a 128-bit "fingerprint" or "message digest" of the input. It is
conjectured that it is computationally infeasible to produce two messages
having the same message digest, or to produce any message having a given

pre-specified target message digest. (Rivest, R., Request for Comments: 1321,

10

15

20

25

WO 03/081447 PCT/US03/04879

-43 -

MIT Laboratory for Computer Science and RSA Data Security, Inc.,
April 1992)

To generate an MD5 hash from the pseudo-random seed value, the
client authentication code writes that seed to a buffer, concatenates the
password value entered by the user, and calls the MD5 code to produce a 128-
bit (16 byte) output value. By responding to the Gateway 401 with this one-
way hash, the client can prove to the Gateway 401 that it knows the secret
authentication value, even though that password is never transmitted over the
wire at all in the AUTHENTICATE :: CHALLENGE RESP packet (see
FIG. 13).

A client that authenticates successfully receives a PASS message from
the Gateway 401, those that provide an incorrect hash receive a FAIL message
in return.

FIG. 14 illustrates the login process in flow chart form, with the
arrows designating process flow, showing the process of logging in,
authentication and embodying one's Avatar. FIG. 14 should also be viewed in
conjunction with other figures describing the Gateway 401 and the figures

illustrating the Game Server 405 (see description below).

b. Active Sessions and Session Management

With the client has successfully authenticated, the Gateway 401 creates
a Session object to represent the client’s current connection to the Grid and to
mediate activity between the client and the game itself.

If the client is already logged in from a different access point (for
example: what if a user is logged in from the office PC and leaves for lunch
carrying my portable notebook computer to log in from a local coffee shop), it
would be inconvenient to receive a message from the system saying "sorry,
yoﬁ have to go back to the office to log out before logging in from here". If the

client has not logged out of the previous session and logs in from another

10

15

20

25

30

WO 03/081447 PCT/US03/04879

.44 -

access point there could be duplicate sessions active for a single client (which
would allow any number of customers to log in using the same account).

To prevent this, the login Gateway 401 initiates a multicast protocol
across all the Gateway 401 currently processing incoming packets and sends
an exit message designed to log out duplicate sessions before instantiating the
current active session. Clients having previously left an active session open on
another (or the same) Gateway 401, that Gateway 401 will save the previous
state of the client to the persistent state database 104, and the old session can
then exit gracefully.

Note that authenticated client processes are sessions, and not
connections. The packet protocol underlying the Network Protocol Stack is
UDP, and UDP is a connectionless protocol. Any number of clients may be
simultaneously forwarding packets to and receiving packets from any
particular Gateway 401 publicly accessible port: UDP is indiscriminate.
However, transmitted as part of the packet is a session key to distinguish
backets belonging to one client session from another. This key, multiplexed in
the transmitter IP (TIP) field of the Packet Header and in conjunction with
other packet information such as the Internet address of the sender, the serial
number, and the inter-packet period of the packet itself are used by the
Gateway Session Manager thread to validate incoming packets. Using this
information the Session Manager can manage their lifetime and to route them
to the remainder of the Grid quickly and efficiently.

FIG. 15 illustrates how a single Gateway 401 dynamically routes
packets to multiple Game Servers 405. The circled numbers (1, 2, 3, 4)
represent messages that need to be routed. The message to Game 0 Player 3
(GOP3) is proxied for that player to Server 1 Game 1 (S1G1). In this case, the
message is to update value Y, an abstract state that has meaning within the
game itself, but not to the context agnostic Grid. The dark line on the left of
the figure represents the path of the message through the Gateway 401 to
Server 0. The clients themselves receives messages through client UDP ports

on the Gateway 401.

10

15

20

25

WO 03/081447 PCT/US03/04879

- 45 -

On Game Server 0 there is a Locale 0, which is proxied on that Game
Server, and which represents the portion of the space of the game defined by
the boundaries of Locale 0. Note that the Locale numbering may be
discontinuous, i.e., Game Server 0 may support, e.g., Locale 0, Locale 1,
Locale 4 and Locale 7.

C. Game Avatar Selection

It is not enough for the Gateway 401 just to log the client into the Grid:
it must take an active role in discovering which games are available for the
client to enter and play, and which roles the client can assume in each game
currently available. To accomplish this task, the Gateway 401 follows a
multicast Embodiment Protocol.

As soon as the client passes the authentication process, the Gateway
401 generates a SELECT :: IDENTITY_NULL packet to multicast among the
Game Servers 405, telling them that this Session represents a user account that
is not currently bound to any selected Identity and is looking for Games in
which it can assume the role of some fully functioning user Avatar. An
Identity is an attributed relationship between an Account, an Avatar, and a
Game (see FIG. 16).

There may be several such attributed relationships currently available
for each client. For example, the client under the Account "bart" may have the
Identity "knight of the realm" for the Avatar "lancelot" available in the Game
"medieval fantasies"; the Identity "rocketjockey" for the Avatar "spacey" in
the Game "star quest"; and the Identity "bodhisattva" for the Avatar "r. rose
sélavy" in the Game of "enlightenment".

The Game Servers 405 that support individual Locales hosting each
game are tasked with responding to the multicast discovery protocol with an
SELECT :: IDENTITY_INIT packet that notifies the client code that that
Game Server 405 can participate in the Avatar Selection Protocol. These

packets are forwarded by the login Gateway 401 to the client, which can then

10

15

20

25

WO 03/081447 PCT/US03/04879

- 46 -

issue SELECT :: IDENTITY RQST packets through the proxy Gateway 401
(see FIG. 17), |

When the client has decided on the user’s choice of Game/Avatar
combination (based on the SELECT :: IDENTITY_ RESP packets received)
for this Session, the client takes this Identity by issuing a SELECT ::
IDENTITY_ BIND packet to the Gateway 401. From this point on, the client
is beginning the process of the embodiment of this specific Avatar in this

particular Game.

d. Embodiments and Session Bindings

Each authenticated user selects an Identity (an attributed relationship
between an Account, Game and Avatar) and then binds the Gateway Session
to this specific Identity to begin Game play. Since the Gateway 401 acts as a
proxy for the player within the Grid, it must become aware of at least two
pieces of information: (a) where to forward messages from the client to the
Game Server 405 servicing the Locale containing the Thing that embodies the
chosen Avatar, and (b) the network address to which replies, transactions, and
instant messages can be sent so that the client will receive feedback about the
user’s progress within the Game (i.e., "binding").

In addition to this routing information, some useful measurements can
also be associated with the Session at this time. In particular, an expiration
time can be associated with the Session to automatically log the player out of
the game after some specified period of inactivity, or if the flow of data is
interrupted by unexpected loss of network support services. Additionally,
quotas can be established for this Session to prevent unethical users from
flooding the Grid with an intentional or unintentional barrage of packets, or
performing a denial-of-service attack. Statistics may be maintained on the
number of packets forwarded on behalf of this client and/or, on the volume of

replies returned. Lastly, the session provides a means to control the

10

15

20

25

WO 03/081447 PCT/US03/04879

-47 -

checkpoint of the user’s Avatar to the persistent state database on a periodic
basis so that object state will not be lost if the Session is closed prematurely.

For other users to interact with the user’s Avatar on the Grid, however,
an instantiation or embodiment of a specific type of game Thing must be
performed. The Gateway 401 forwards an EMBODY :: AVATAR_INIT
message to the Game Server of Record for this Identity to begin the
Embodiment Protocol.

A reply is generated by the specific Game Server 405 that is currently
able to service this particular Avatar, and is routed back to the client by the
Gateway Session as an EMBODY :: AVATAR REQUEST packet that details
the initial state of this Avatar for the client — where it is located, what direction
it is facing, what the Avatar’s range of interest should be, whether the Avatar
is active, and all the game specific properties for this Avatar at the instant of
its embodiment. A representation of this Avatar is kept ready and waiting in a
staging area of the Grid until the client finalizes the instantiation of this Avatar
with one of two messages to the Gateway 401 (see FIG. 18):

- EMBODY :: AVATAR DONE - the Avatar exists on the
client and is ready to take part in the game, OR

- EMBODY :: AVATAR FAIL — the Avatar could not be
created on the client and cannot participate in the game at this time.

If and only if the Gateway 401 receives an AVATAR DONE packet
from the client does it forward a message to the Game Server 405 that the
Server Thing (discussed further below) that embodies this Avatar in the world
can be moved from the temporary staging area and into the world at large. At
this point, the player has entered the game and is visible to all the other players
in the Locale(s) where this embodiment is "in range". From here on, the
primary responsibility of the Gateway Session is to validate and route packets

from the client as expeditiously as possible throughout the Grid.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-48 -

e. Validation, Filtering and Packet Routing

In addition to the basic structural validation enforced on incoming
packets by the Network Protocol Stack (NPS) (which guarantees that received
packets are "well formed" before being passed on to the Grid, see discussion
of the NPS below), the Gateway 401 performs an important role in validating,
filtering and routing packets both to and from the client.

Validation of packets takes place at the Game Manager level.
Incoming packets are first sorted by game into first-in/first-out (FIFO) game
queues, which are associated with their most current game revision level (e.g.
version); each game queue is then processed concurrently by an individual
Game Manager thread. The Game Manager inspects each packet’s key value,
which was submitted at the time the packet was processed by the source NPS
and has been demultiplexed and provided by the local Network Protocol
Stack. By matching this key value against a hash table containing all the
currently authenticated sessions, the Game Manager can quickly retrieve the
Internet address and port number of the client for this session from the
session’s login_token. If the address and port combination of the incoming
packet matches that of the token (or matches that of some internally generated
secure Grid port) then the packet is placed in the session buffer for further
asynchronous processing.

Filtering the game packets occurs at the level of the Game Manager
threads. After checking the ratio of incoming packets to a dynamically
generated quota to avoid overloading the system and prevent denial-of-service
attacks, each session manager inspects a packet’s user headers and determines
if the version field of each user header matches the current revision level of
the game. Any packet payload whose version does not match can be
immediately discarded. Only clients who are at the current revision level of
the game are allowed to play. Next, the message level of the packet payload is
determined, based on the block type of each payload message block. Some

block types can be processed locally on the Gateway 401 (such as LOGIN or

10

15

20

25

WO 03/081447 PCT/US03/04879

-49 -

LOGOUT); others must be proxied by the Gateway 401 to the Game Server
405 that is currently bound to this particular session (ACTIVATE commands),
still others are required to be multicast across the Grid as a whole (e.g., some
SELECT messages). This filtering and categorizing of packets provides a
flow-of-control for the session manager to follow in routing the packets on to
their final destination.

Routing of packets is primarily controlled by the kost_token bound to
this user session. This token represents the current Grid instance running the
current game and supporting the current Locale for the client’s Avatar. Note
that this Game Server 405 is not a fixed destination. Depending upon
geography, game-play and load of the client’s Avatar can be handed off from
one Game Server 405 to another on a dynamic basis over time. Nonetheless,
the most current Game Server 405 is referenced by the session’s host _token
and provides the game ID, Internet address, and port number needed to
connect this session to its Grid enabled counterpart. On the return trip, reply
packets are routed along the reverse path: validating that they have arrived
consistently with the session’s Aost token and ending up at the destination

specified by the user’s login_token.

f Instant Messaging

Instant Messages are one particular class of Grid packets, and a
subclass of packets whose block type is that of MESSAGE (see FIG. 19), and
whose block subtypes are as follows:

- MESSAGE_FIND - Request game port/IP address for
‘usrname’; provide the GUID of the client who is asking the Gateway 401 to
find the user by name, and receive a MESSAGE_PING packet in return if the
usrname can be found, containing the public_key of the user.

- MESSAGE_PING - Ping game port/IP address and public key
for ‘usrname’; provide the game port/ip address and public_key of a user to

test their online status, and receive a MESSAGE_PING in return if the user for

10

.15

20

25

WO 03/081447 PCT/US03/04879

-50-

that key is currently logged into the Grid; otherwise receive a
MESSAGE_NULL from the Gateway 401 in response.

- MESSAGE_SEND — Send message body to game port/IP
address for public_key; send an instant message the user currently associated
with this address and key. Provides a mechanism for mediated peer-to-peer
transport of arbitrary packet data of variable length, subject to overall packet
size constraints.

Instant Messages may be used in the Grid for several purposes. They
allow one user to ‘chat’ with any other user playing the same game within the
Grid. The Instant Message protocol allows discovery of which of the player’s
friends are currently online. Game rules can automatically generate Instant
Messages for distribution to clients representing transient events or one-shots
(such as an explosion), or to trigger audio cues when the client’s Avatar
approaches a particular location. Instant Messages can also be used to pass
URL (universal resource locator) information about new resources available

for download from a central repository.

g. Secure Messages and Distributed Transactions

Instant Messages are also flexible and extensible. Built on top of the
Instant Message framevs}ork is support for a fourth type of message: a secure
protocol that provides the basis for distributed transaction management.
Using a special form of Instant Message (MESSAGE_SECURE), the
interactions among a group of users are guaranteed to be safely and reliably
distributed across the virtual network.

As noted above, the Grid provides a means to distribute object state
among a community of users in a reliable way. The object state updates
represent the changes that occur as the result of a user’s actions or choices.
The clients interact with each other based on their own and the other player’s
object states. This is enforced by a set of rules determined by the game

designer and implemented across the hosts in a context agnostic manner.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-51 -

Often these interactions are also interrelated. That is, the rules say that one
change cannot occur without the other. When the changes must succeed or
fail as a set, they are known as a transaction.

A simple example of a transaction is a "buy a duck" example. Player 1
has two ducks, and Player 2 offers to buy a healthy duck for two gold coins.
Players 1 and 2 wish to engage in a transaction. This proposed transaction
involves Player 1 and his object state and Player 2 and his object state.
Players 1 and 2 desire to get to the final object state where they each have one
duck and two coins. However, this proposed transaction may have a few
problems in practice.

If Player 1 asks Player 2 to give him the two gold coins first, Player 2
might be concerned that Player 1 will take the coins and run without
relinquishing the duck. If, on the other hand, Player 2 asks Player 1 to give
him the duck first, Player 1 may wonder if he can trust Player 2 to pay the full
amount (perhaps Player 2 will only give one coin, or none at all).

Also, since Players 1 and 2 are in a distributed environment, Player 1
may not be able to examine Player 2's purse to see if he actually has two gold
coins. Player 2 may not know that Player 1 sold his healthy duck last week,
and all he has right now are two sick ducks. For the transaction to remain
secure and honest, some sort of "honest broker" has to guarantee the results.

The Grid itself becomes such an honest broker. Since the object state is
distributed across the Grid, a Grid transaction is a distributed transaction. And
since cheating is not allowed, these interrelated changes of state become a
form of secure distributed trénsaction. The Grid validates that (a) the
transaction has been approved by both parties, (b) that the object states in
question really exist, and (c) that the final results are consistent with the intent
of the original proposal. Thus, distributed transaction management becomes
possible.

The interdependent actions, choices and changes comprising a secure

distributed transaction must preserve four essential qualities:

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-52-

a) Atomicity — they must take place among a group of players

either simultaneously or not at all.

b) Consistency — nothing can be lost afterwards that was not
accounted for beforehand.
c) Isolation — and no outside influences should affect the

predictability of the results.

d) Durability — the changes must have a lasting effect on the
world.

Normally, any transaction protocol as described above should be
approved in advance by the parties whose states may be effected by this set of
proposed changes. Also, the protocol must prevent unauthorized changes to
the proposed transaction after approval and before execution (that is, if Player
1 agrees to sell a duck for 2 coins, then Player 2 can’t change the contract after
Player 2 has signed it so that Player 2 only has to pay one coin). This is the
function of the packet MESSAGE SECURE. The MESSAGE SECURE
packet type includes several interrelated elements, which are illustrated in
FIG. 20.

The secure messaging protocol is built on, and embeds within, a
PYTHON_SCRIPT protocol, which is the mechanism by which remote
actions are invoked on objects in the Grid. While the Python scripting
protocol will be discussed in detail in the Game Server section and the Area of
Interest Management section below, invoking a Python script is one means of
rules enforcement in a context agnostic manner. By embedding a Python
script inside a secure message, and digitally signing it, the Grid guarantees that
the actions that the script represents have been authorized by the system and
that nobody has tampered with the terms of a proposed transaction.

In addition, the secure message includes a DIALOG or user prompts to
present the proposed transaction to the user in a succinct way, and a digital
signature and countersignature to prevent packet tampering.

When the client receives such a message, the client is presented the

dialog, and agrees to approve this transaction, then the transaction is

10

15

20

25

WO 03/081447 PCT/US03/04879

-53-

countersigned the secure message. This guarantees that if any third party
tampers with this transaction, the Gateway 401 will be able to detect the
modifications and abort the transaction before it commits the transaction to the

persistent state world.

h. Handling Denial-of-Service Attacks

Besides validation, filtering and packet routing, each Gateway 401
fulfills an important other purpose — protecting the Grid against malicious
clients, hackers and infiltrators. One of the simplest and most effective
techniques for compromising system integrity is the denial-of-service attack
where a flood of incoming requests swamps the capability of an Internet server
to keep up, bringing the system to its knees. |

The Gateway 401 is in an ideal position to defend against such attacks.
Functioning as a gatekeeper to the Grid, the session management software can
establish packet quotas for individual clients, dynamically redirect packets or
ignore them altogether, and throttle and regulate the flow of data among the
various hosts. Thus, the Gateways 401 can present a unified defense against

the malicious client.

2. Game Server

The Game Servers 405 are at the core of command and control, the
middle of the multi-player model, and the geographic center of the Grid. In
short, the Game Server 405 provide clients with a truly believable
entertainment experience. As part of a fully distributed system, the Game
Servers 405 maintain the illusion of "no boundaries" and bind the broken
"shards" (Locales) of the online universe into a single apparently unlimited

domain. Within the Grid, a user can always get there from here.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-54 -

a. Initializing Locales

A Locale is a convex region in three dimensional space, that provides a
stage or environment that supports the interactions of one or more Server
Things. A Locale represents a place to establish a specific presence as part of
the larger game universe. Although a Locale does not have to be rectangular
in boundary, in one embodiment, discussed below, it has to fit within a region
with the maximum dimension of 65536 * 65536 * 65536, as shown in
FIG.21.

The Locale is the atomic unit of geography in the game world, and is
defined in terms of world coordinates. These values correspond to the
POSITION state values transmitted in packets as part of object state (see also
discussion of Network Protocol Stack below).

World coordinates are expressed as single precision floating point
numbers, as defined according to IEEE Standard 754 and can convey values
approximately + 10°¥53. The value NaN (Not a Number) is used to represent
a value that does not represent a real number (such numbers may be generated
with a divide-by-zero for example). It is important to remember that although
a Locale can be positioned anywhere in world space, in one embodiment, in
this embodiment, the range of a Locale cannot span a region larger than 65536
integer units in any direction.

The range of a Locale is specified by the game designer as part of the
game design process. The designer is free to size his or her Locales
appropriately to the needs of the specific game world in which it resides. The
shape of the Locale is also up to the game designer, as long as the region
which it defines is convex in shape. However, in order to balance packet
overhead and Game Server load, a Locale should be on the order of magnitude
of a small town or village in maximum dimension, and its boundaries should
not be designed to run through any major thoroughfares or other high-traffic
areas. For example, a small tropical Island would make a good Locale, as

would a walled Castle with a moat 'around it.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-55-

It is preferable to avoid designing Locales that are too small (room
sized), too large (metropolitan sized) or too congested about the periphery
(such as a park bounded by city streets). Care taken in intelligent design will
go a long way to make the player’s experience more enjoyable, with less lag
and more rapid response times. Preferably, the Locale should be designed on
the model of the "Locale region," on the order of magnitude of a few buildings
or a city block with limitations on the ways in which traffic can logically enter
or leave the region, as shown in FIG. 21. These recommendations should
only be taken as a general guideline.

The Grid universe consists of many Locales, each belonging to a
specific game. At initialization time, a configuration file apportions each
Locale to one and only one Game Server 405, though each Game Server 405
may host many Locales within one or across several games. These Locales
are regions defined by planar boundaries (or hyperplanes) in three dimensional
space and must be convex. That is, they cannot contain holes or other
concavities and they must be simply connected. Locales do not have to be
contiguous to one another, but if they are then they should never overlap. Most
game designers will want to tile their universe with Locales in a more or less
regular fashion. These worlds might look like a honeycomb of hexagonal
regions, for instance. In a tiled world, the first order of business when a client
logs into the Grid is to discover which host for which Game Server 405 is
currently servicing the Locale tile into which the new Avatar will initially be
placed.

FIG. 22 is an illustration of intelligent Locale design. If the Locales
are hexagonal in shape, the best case scenario is on the left of the figure,
where e_ach player has his own Locale. In other words, all of the Avatars are
on the same physical host, but have their own Locales. This requires the least
overhead. The typical case shown on the right, where some players are in
their own Locales, others are at the boundaries between Locales, and still
others have regions of presence that intersect. With this Locale design, unless

the designer puts walls between the Locales, there is no control over what

10

15

20

25

30

WO 03/081447 PCT/US03/04879

- 56 -

happens to the Avatars. Thus, adding walls around some Locales may be a
more intelligent choice, to minimize cross-server overhead.

FIG. 15, discussed previously, illustrates additional detail of how
Locale Threads are hosted on Game Servers. For example, in the upper left-
hand corner of FIG. 15, Server 0 is illustrated, which has a Game Manager
process running within it. The Game Manager manages Game 1, which has
within it a Locale manager with a thread for Locale 1.2. FIG. 23 is an
illustration of how each Game Server 405 may have a Game Manager that in
turn manages multiple games (i.e., multiple processes corresponding to
multiple games). It will be appreciated that there could be a number of games,
and a number of Locales within each game. The processes running on Server
0 communicate with other processes through game ports (game port 0, game
port 1 in the case of FIG. 23). In one embodiment, a network socket layer
may be used as game ports 0 and 1 to connect through a particular process on
the Server 0. The bottom half of FIG. 23 represents the Gateway 401.

When a client’s Avatar is embodied, it is assigned (or bound) to
whichever Locale its region of presence is positioned in, that is, the Locale
within whose boundary hyperplanes it is completely contained. After
discovery of the host location, the Gateway 401 directs (or proxies) client
communications to this Game Server of Record. In turn, the Game Server of
Record creates an Embodiment-of-Record (called a Server Thing) in the
specified Locale and which represents the Avatar within its current context.
This binding of the client to Server Thing is dynamic, and as the client roams
throughout the Grid, its embodiment can move out of one Locale and into
another, as shown in FIG. 24.

Sometimes the client will move another Locale on the same host
(across an intra-Server boundary), and at other times their embodiment will
transition to a different Locale distributed to a physically distinct host, or
across an inter-Server boundary, as shown in FIG. 25.

As the client moves across Game Servers, his/her embodiment-of-

record is removed from the old host and is re-created on the new host. A new

~

10

15

20

25

WO 03/081447 PCT/US03/04879

-57-

Server Thing is instantiated on the new Game Server of Record. From this
point on, all data packets that target their embodiment-of-record are proxied
by the Gateway 401 to and from the new Game Server of Record across the
Grid.

Since Locales are 3-dimensional in extent, and since they are delimited
by hyperplanes, they do not have to be closed regions. If desired, they can
extend to the sky.

b. Embodiments of Record

Important to distributed state management is the concept of the
embodiment-of-record. This is the authoritative object that represents the
current state of the Avatar, as long as he or she is logged onto the system.
There may be other copies of this state distributed across the Grid and over the
network to many clients, but those objects are not authoratitive ones. At any
given instant, there is only one (or none, if the user is not logged in)
embodiment-of-record for any Server Thing in the Grid. It is initialized from
the persistent state database 104 when it is created, and flushed from the
database 104 when it is destroyed. While it exists, it is the one true copy of
any Server Thing.

Some Server Things, like Avatars, are fully active and serve as a
source of packets for propagating state to many others. Some are defined
instead as passive objects that only funnel incoming information back to a
single client. All are embodiments-of-record.

FIG. 26 illustrates the taxonomy of object classification that may be
present in the game, in this case, a war game. An example of an atomic active
material object is a soldier, a type of combatant. An example of an atomic
active material object is civilian, which may be an observer. A group of
soldiers may form a molecular type of combatant called the army. A group of
civilians may form a molecular type of civilian called a crowd. Other objects

may be purely passive, such as trees or rubble. Yet other objects may be

10

15

20

25

WO 03/081447 PCT/US03/04879

-58-

disembodied objects, relating to events, for example explosions, fusillades,

rain, consciousness, etc.

C. Propagating State

Each Locale is controlled by a single Locale Thread in the Game
Server 405. Packets forwarded by the Gateway 401 are routed by a proxy
session on the Locale Thread of Record to the Locale Thread itself. This
session represents the current binding of the client to a specific Locale on this
particular Game Server 405, and takes a role in validating, filtering and
routing packets based on the session key embedded in each packet. FIG. 27
illustrates a taxonomy of a packet. At the top left is a representation of the
Packet Header, also shown in FIG. 28. At the bottom right of FIG. 27 is an
illustration of how clients send information to the Game Server 405. At the
bottom left of FIG. 27 is an illustration of how system information may be
added to the packet.

In addition to validating, filtering and routing packets, the Locale
Thread plays a central role in propagating client state by duplicating and
distributing packets to other clients. The producer of these duplicated packets
is referred to as a packet source, and the consumer of the distributed packets is
called a packet sink.

As game packets arrive at the Game Server 405, they are sorted by the
Session Manager and forwarded to the appropriate Locale Thread for
processing, where their proxy object (the Server Thing acting as their
embodiment-of-record) functions as a packet source with a region-of-presence
that controls the flow of information about this object to other objects within
range. Each object nearby represents an embodiment-of-record for some other
Server Thing, and functions as a packet sink for outgoing messages to other
clients. Information about the changing state of the client is transmitted to all

others Server Things whose area-of-interest overlaps the client’s region-of-

10

15

20

25

WO 03/081447 PCT/US03/04879

-59.

presence. In this way, the client state (i.e., object state) is propagated
throughout the Grid.

d. Server Things

There are four major types of Server Things involved in propagating
object state across the Grid:

a) Avatars — client controlled objects that operate as a single
source of packets to others and provide a single sink for packets from others.
The originator of Avatar packets is the client itself. As the client operates the
game controls, packets flow through the Gateway 401 to the Game Server 405,
and thence to their Locale Thread and their embodiment-of-record. Their
Server Thing provides a single source of packets to other clients. Any object
ultimately connected to a real human player is an Avatar.

b) Active Objects (NPCs) — non-player controlled objects that
operate as multiple sources of packets to others and proviae a single sink for
packets from others. The originator of NPC packets is the daemon (discussed
below), a computer controller login account for each Locale with special
privileges. The daemon manipulates active objects within a specific Locale,
and their embodiments-of-record provides a multiple sources of packets to
other clients. An example of an active object might be a Dragon or a Troll.

c) Passive Objects — non-controlled objects that operate as
multiple sinks of packets to the Locale daemon and do not provide packets to
others. The daemon listens to passive objects within a specific Locale. The
embodiments-of-record of passive objects provide multiple sinks of packets
for the daemon client. An example of a passive object might be an
Enchanted Castle.

d) Sentinels — a sentinel is a software construct within the server
process that allows the seamless one world implementation. The sentinel acts
as a proxy for Server A on another server B. Server A will create sentinels on

other (for example, adjacent) servers (B and C), and those sentinels will

10

15

20

25

30

WO 03/081447 PCT/US03/04879

- 60 -

become conduits for messages. Thus, the sentinels will feed information back
to server A that created them. Server A will in turn redistribute the
messages/information to the Things that live on Server A, e.g., the players
logged into Server A.

Thus, the sentinel becomes the "eyes and ears" of a particular Locale,
when it is placed on another server (including the case where the other server
is on a different physical host). Phrased another way, the sentinel sends
information back to server A that launched it, about the state of the objects on
server B where the sentinel is located. If server A launches a sentinel into
server B, the sentinel will send information back to server A about the state of
the objects on server B. The communication between server A that launches
the sentinel and the sentinel itself is an example of inter-process
communication, and occurs through the Network Protocol Stack. This also
includes the case where a communication is remote, for example, over a LAN,
WAN or the Internet. The system allows for considerable flexibility,
especially in the case of distributed physical resources.

FIG. 29A illustrates how players and sentinels interact across Locale
boundaries. Note that the Game Servers 405 that support the Locale Threads
are behind a firewall, and as such are trusted. Thus, it is assumed that they
cannot launch a malicious sentinel into another Game Server 405. Sentinels
are proxy objects that operate as a stub sink and proxy source of packets
across Locale boundaries. Sentinels are akin to windows that allow players in
one Locale on one Game Server 405 to "see" players in another Locale on a
different Game Server 405. Sentinels come in matched sets, with a single
sentinel-of-record known as the master (proxy_source) sentinel. Multiple
sentinels-of-interest are known as slaves (stub_sinks). They are typically
positioned on or near Locale boundaries.

Because object data distributed across multiple Game Servers 405 and
multiple hosts, and possibly across large-scale networks, the process of
discovery is used to bind the proxies to the stub. The proxy sentinel and the

stub sentinel communicate in a unicast manner, but only after a multicast

10

15

20

25

30

WO 03/081447 ‘ PCT/US03/04879

-61 -

process of discovery takes place, to identify the relevant participants in the
communication. The discovery process is how the Grid finds out on which
physical machine (host) a particular sentinel is on. In other words, each Game
Server 405 using the discovery mechanism, has to figure out where each
sentinel is, and where the messages should be directed to (i.e., which physical
host). The remote sentinel (proxy sentinel) and the local sentinel (stub
sentinel) have to find each other, using a matchmaker. The matchmaking
process is also distributed.

Consider two players, one in Cambodia, and one in the United States.
The sentinel in Cambodia is, in effect, a trip wire. The other end of the trip
wire is in the United States. When something touches the trip wire in
Cambodia, a signal is sent back to the United States, and the end of the trip
wire in the United States "vibrates". The proxy sentinel is in Cambodia. The
proxy sentinel is the transmitter of state information, and the stub sentinel is
the receiver of the information.

The proxy sentinel in Cambodia thus acts as a proxy for all the objects
in Cambodia. The stub sentinel in the U.S. is a master proxy for all the objects
that touch the trip wire in Cambodia. At the receiver (stub sentinel) many
"ghost" objects are created to correspond to the objects in Cambodia, and the
ghosts in turn become proxies. Having established minimum necessary
information for the ghost to interact with other objects on the stub sentinel, the
ghost can now send the information further up the chain (e.g., to the client)
without interpreting it. Phrased another way, the object state information of
objects in Cambodia that touch the tripwire is passed in a context agnostic
manner to a player “located” in the United States.

Note that client objects (which reside on the client itself, outside the
Grid) are fundamentally different than any Server Thing. Since client objects
are controlled directly on the player’s computer (e.g., a Wintel computer, a
handheld digital assistant, or a game console), they may be implemented in a
heterogeneous fashion with a priori knowledge about their specific game.

Server Things must interoperate in a conmtext agnostic manner, and must

10

15

20

25

WO 03/081447 PCT/US03/04879

-62 -

provide a general mechanism for representing object state without any such

limitations.

3. The Network Protocol Stack

The preferred embodiment employs a transmission protocol designed
to be reliable, while mitigating the latencies associated with many protocols.

At a basic level, data communications are usually carried out with
TCP/IP or UDP/IP as the data level protocol. Unfortunately, both of these
protocols have inherent weaknesses. TCP/IP, for example, guarantees reliable
and ordered delivery, but at the expense of potentially large latencies.
UDP/IP, on the other hand, does not hold packets for delivery, but also does
not guarantee packet delivery.

To obviate these problems, the preferred embodiment employs its own
network protocol that is layered upon UDP/IP and allows packets to be
flagged for reliable transmission.

The Network Protocol Stack (NPS) employed in this embodiment uses
a protocol such that most state information needed by the system is deduced
by the receiving end. In other words, the transmitter is more-or-less stateless.
This is accomplished through the transmission of heartbeat packets. The NPS
is thus a thin layer on top of the UDP protocol. The Network Protocol Stack is
implemented in one embodiment that allows some packets to be sent reliably,
and others to be sent unreliably.

In normal transmission, packets that are flagged as reliable are stored
in an output buffer by the transmission NPS as they are transmitted.
Furthermore, Packet Header information in the heartbeat packets gives the
receiver the number of reliable packets transmitted since the last heartbeat. As
the receiver can deduce the timing of heartbeats, it will either receive the
heartbeat packets, or ask for the re-transmission of these packets if one is
overdue. The receiver will also know (by examining the heartbeats) if reliable

packets have been missed. If this is the case, a re-transmission request will be

10

15

20

25

WO 03/081447

=63 -

made, and the transmitter will pull packets from the buffer and re-transmit
them in the next heartbeat group. The size of the buffer, the timing of
heartbeat packets, and other parameters can be adjusted to maximize
performance for a given transmission media.

By employing such a system, a reliable transmission channel can be
established between the transmitter and the receiver without the need for
positive acknowledgment from the transmitter (as is common for the case of
the transmission of reliable packets). This has the advantage of keeping
overhead low when the media of transmission is performing reliably, but still
affording the retransmission of packets when the upper level protocols require
the delivery of packets. It has a further advantage in that the state-machine of
the transmitter is simplified and easy to implement, which is an important

consideration when the client devices may have limited resources.

a. Principles of Operation

If the Grid is the embodiment of a distributed game system, the
Network Protocol Stack is its circulatory system. At its core, the NPS provides
the system its heartbeat, pumping messages out to different parts of the Grid
and pooling messages received in return. .

The flow of messages changes in response to the level of system
activity. When the state of many players is changing rapidly, a multitude of
packets are pumped out to transmit the changes in the state to the Game
Servers 405. After the race, only the NPS system heartbeat remains to keep
the channels of communication flowing freely. As time goes by and activity
slows, this heartbeat slows down too until only a faint pulse remains.

This dynamically adaptive quality is an important element of the NPS.
Unlike the mechanical transmission of a fixed heartbeat every 0.8 seconds or
so (which might be likened to a pacemaker set to a fixed rhythm), the Grid
transmits heartbeat packets as are generated dynamically on demand. These

heartbeat packets contain special information that the system requires to

PCT/US03/04879

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-64 -

provide a thin reliability layer on top of the underlying networking protocol
(e.g., RFC 768).

The‘ principles of the Network Protocol Stack are as follows:

a) Essentially stateless protocol, packets are processed

independently of each other.

b) No positive acknowledgment of successfully received data.

c) Serial numbering provides unique identifier for each bit of data.

d) Lazy heartbeat generation tries to maximize the time between
heartbeats.

e) Maintaining group counts provides a way to know what has

already arrived.

f) Receiver reliable protocol puts burden of checking for missing
data on receiver.

g) Retransmission requests contain only the knowledge of which
the receive is sure

Since the network protocol underlying the Network Protocol Stack is
that of the User Datagram Protocol (UDP), there are a few restrictions on the
NPS. In one embodiment, the UDP packet size cannot be larger than 512
bytes, including all headers as well as the game data payload itself. Most
routing hardware on the Internet can only guarantee that packets up to 512
‘bytes in total size will NOT be fragmented or broken up into smaller pieces
along the way to delivery. Obviously, once routing hardware can guarantee
that larger packets will not be fragmented, larger packets can be transmitted.

Since UDP packets are not guaranteed reliable, some may be lost due
to network congestion and may need to be resent. In addition, the order of
packet delivery is not guaranteed, so some means of determining the order in
which received packets were originally sent is desirable.

FIGs. 29B-35 provide an overview of NPS operation as follows:

FIG. 29B illustrates the NPS transmission protocol, and more
specifically, a sequence of packets being sent from clients 0 and 3 to Game

Server 405. In this case, both packets were unreliable, i.e., "false". This

10

15

20

25

WO 03/081447

-65-

figure illustrates the protocol of how packets are divided into heartbeats, when
heartbeats are sent, and how the heartbeats slow down when no additional
packets are sent.

FIG. 30 illustrates the situation of what happens when more packets
are sent after an interval. In FIG. 29B, the heartbeats were slowing down,
since no packets were sent. With new packets being sent, the heartbeat
interval drops back down to the smallest increment of time.

FIG. 31 shows the situation of two unreliable packets being sent (on
the left of the figure) followed by two reliable packets being sent (center of the
figure). In other words, FIG. 31 illustrates the case of reliable transmission of
packets.

FIG. 32 illustrates packet transmission from the receiver's perspective.
The first two packets received are unreliable, and the second two packets are
reliable. In other words, FIG. 32 shows the receiver being notified of the
existence of a lost packet, and the receiver therefore placing the request for
that packet into the queue to be sent to the client, requesting that the packet be
sent again.

FIG. 33 illustrates the situation where a heartbeat wés "dropped" by
the system, and needs to be regenerated.

FIG. 34 illustrates the basic receiver protocol for receiving packets
from clients. The left portion of FIG. 34 represents the conventional case of
packet transmission. The center portion of the figure represents the case of no
lost packets (here, no lost reliable packets). The right portion of the figure
shows what happens in the case of a lost reliable packet. See also FIG. 32 for
additional illustration.

. FIG. 35 is a illustration of a variation on the scenario of FIG. 31, with

the addition of a lost heartbeat packet in addition to lost reliable packets.

PCT/US03/04879

10

15

20

25

WO 03/081447 PCT/US03/04879

- 66 -

b. The Packet Header

In one embodiment, every Grid packet is a UDP packet, and begins
with a standard UDP header of 8 bytes containing the port from which it was
sent, the port to which it was directed, the length of the packet in OCTETS
(multiples of 8 bytes) and a checksum to validate that the contents of the
packet have not been intentionally changes or otherwise modified en route.
User Datagram Packets do not restrict the remaining data contained within the
packet in any way other than length. However, in order to structure and
interpret the game packets, and to distinguish them from any other UDP data,
Packet Headers are used.

To build a more robust protocol on top of UDP, the Grid adds 24 bytes
of overhead to each packet sent, containing just data required to maintain
reliability on demand. These 24 bytes define the Packet Header, a data
structure particularly useful in distributed online gaming.

Immediately following the standard UDP header, every packet
therefore maintains a Packet Header with the following fields (see FIG. 28):

SID (serial identifier): a monotonically increasing 32 bit serial number
uniquely identifying this packet.

GID (group identifier): a monotonically increasing 16 bit serial number
identifying the heartbeat group to which this packet belongs.

INP (interval to next packet): a 16 bit field that indicates the maximum
number of milliseconds remaining until the next data or heartbeat packet is
expected to arrive. When the system is quiescent and no game packets have
been generated since the last heartbeat, this inter-packet period is doubled each
time another heartbeat is sent, up to a fixed maximum, further reducing the
average overhead associated with system traffic.

TIM (time stamp): this 32 bit field specifies which millisecond of the
current week this packet was initially transmitted. Legal values for this field

range from 0 to 604,799,999 decimal (from 0x0 to 0x240C83FF hexadecimal).

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-67 -

TIP (transmitter IP address): 32 bit IP address of the sender of the
packet. Together with the 16 bit source port from the UDP header, uniquely
identifies where to send replies to this packet, if necessary.

RIP (receiver IP address): 32 bit IP address of the receiver of the
packet. Together with the 16 bit destination port from the UDP header,
uniquely identifies the intended route by which the packet was directed to this
receiver (note that multicast packets will have a class D IP address 224.0.0.1
rather than the actual IP address).

SYS (system control): an 8 bit field that indicates the type of packet.
This field is NULL for a system packet (which includes heartbeats). Some
other values include PACKET GAME (for reliable packets) and
PACKET USER (for unreliable transmission).

NUM (multipurpose count): a 16 bit field that is used for various
counts. For heartbeat (SYS==NULL) packets this is the number of reliable
packets that were transmitted in the previous heartbeat group, including the
previous heartbeat itself. For retransmission requests, this count is the group
identifier of the requested re-send. For normal, everyday game packets, this
field includes the game identifier (a non-zero number assigned by butterfly.net
that uniquely identifies the current game to which this Packet is being
directed.

RTC (retry count): an 8 bit field that is only non-zero when this packet
represents the retransmission of a packet that had been previously lost.

The inter-packet period thus determines how much system overhead
must be devoted to transmitting heartbeat packets relative to game (reliable)
and user (unreliable) packets. Every time a game or user (data) packet is
received, its inter-packet period field signifies how long the system can safely
wait without hearing from the sender (see FIG. 36).

The system expects either another data packet within INP milliseconds
or else a heartbeat packet within the same period. Recording the serial
numbers (SIDs) of the game and heartbeat packets as they arrive, the system

can keep a count of how many reliable packets were received within the

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-68 -

current group (GID). As long as the time gap between data packets is less
than INP and the current group is not full, no heartbeat packets need to be
received at all. Only when there is no additional data for INP milliseconds is a
heartbeat packet generated and transmitted by the sending NPS process, thus
to be received by the NPS listening at the destination port.

This leads directly to a method to determine when packets have been
dropped or lost in transit and for the receiver NPS process to request
retransmission of lost packets. For every heartbeat packet that arrives, the
NPS first determines how many reliable packets were transmitted in the
previous heartbeat group (see FIG. 37). This information is provided in the
NUM field of each heartbeat packet. Next, the NPS compares its running
count of how many reliable packets were received for that group. If the two
counts are the same, no packets have been lost.

If the NPS recorded the serial numbers of fewer packets than indicated
for the preceding group, it can send a retransmission request (a special type of
system packet) back to the original transmitter’s IP and PORT combination.
The body of this retransmission request is just a list of serial numbers of the
packet that were successfully received. Those serial numbers that are not in
this list were either those of one of the unreliable transmitted packets (user
packets) or are those of reliably transmitted packets that were dropped in
transit. The receiver has no way of determining the serial numbers of which
packets were dropped, only those that made it through all right.

However, the sender NPS is quite capable of discriminating between
accidentally lost and intentionally unreliable packets. When it gets a
retransmission request, it can and does send the missing serial numbered
packets again, as part of the first new outgoing group available, incrementing
the retransmit field (RTC) as it does so. It can preserve the original serial
number of the retransmitted packets as long as the retransmission field is set to
a non-zero value, allowing the NPS client at the final destination to insert the

missing packet into the original data-stream as required.

10

15

20

25

30

WO 03/081447

- 69 -

This demand based heartbeat group generation and packet
retransmission protocol overcomes one of the basic limitations of any positive
acknowledgment scheme. By selectively generating retransmission requests at
the receiver, the "nominal" case generates the least overhead: only when
retransmission is required is additional burden incurred. In other words, only
when additional heartbeats are required are they generated at all. And the
longer the system maintains a quiet state, the quieter system traffic becomes.

As long as the receiver is satisfied that everything important has
arrived satisfactorily, it keeps quiet. As soon as it determines that something is
missing, it gives the transmitter useful feedback in summary form. When the
receiver has done what it can to provoke the retransmission of the missing
information, it is free to forget totally about the retransmission request until
either the missing information appears in the next data group or until the
sender requests a re-send of the retransmission request itself.

With this process, except for simple housekeeping, the protocol is
essentially stateless. As each incoming packet arrives, the receiver checks
whether it is a data packet, a heartbeat, or a retransmission request. If the
packet is reliable, its serial number is entered into the current group. If the
packet is a heartbeat, the current group count is compared against the reliable
count provided. If they don’t match, the serial numbers are formatted as a
retransmission request and sent right back to the original sender. Then the
NPS goes back to waiting for the next incoming packet, and processing starts
again (see FIG. 38).

By allowing selected individual packets to be marked reliable, the NPS
strikes a balance between overhead (both in usage of buffer memory and in
maintaining state) and overall reliability: packets that make a substantial
difference to the object state (‘bang bang you’re dead’) are guaranteed
delivery, while those that are superficial (‘it’s only a flesh wound’) can be
sactificed if need be in the name of bandwidth mitigation.

The game designer decides which packets are non-essential for game-

play purposes under circumstances of high load or network lag. The Network

PCT/US03/04879

10

15

20

25

WO 03/081447

=70 -

Protocol Stack is context agnostic, and does not impose a restriction on how
many reliable packets may be sent, or in what order. Game developers who
wish to make every detail of their world essentially reliable at all times will
obviously incur more overhead that those who are willing to sacrifice a step or
two along the way, as long as any errors along the way cancel themselves out
in the end. The key elements to consider here are the timeliness and priority

of the message.

C. Packet Payloads

Thus, every packet includes a Packet Header, as discussed above with
reference to FIG. 28. In order to pass game data (properties, commands,
messages, etc.) through the Network Protocol Stack each data packet requires
one or more payloads as well. A payload is a "wrapper" around actual game .
data itself.

The payload is game data formatted in a particular way. The Network
Protocol Stack is able to validate the format of individual packet payload
without knowing or caring what the contents actually represent. The invariant
properties of packets are the means that allow the syntactic validation (is the
data "well-formed"?) of packet payload without requiring semantic validation
(is the data meaningful?) below the level of the game itself.

As long as the packet meets the invariant criteria for being well-

formed, it can carry any message whatever: whatever the game designer can

‘imagine, whatever the game developer can code, whatever the user can enter

at the keyboard. The first invariant property has already been discussed:
packets should not be more that 512 bytes in length, until the next iteration of
the Internet (Ipv6) becomes a reality.

A payload begins and ends with a User Header and continues with one
or more blocks of data (see FIG. 39).

The User Header itself server two purposes: versioning and routing.

The validation mechanism in a User Header uses a non-zero 16 bit "version"

PCT/US03/04879

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-71 -

field in each User Header. This version field indicates the revision level of the
payload itself. Unless this version number exactly matches the run-time
(currently executing) version of the game at the time it was launched on the
Game Server 405, this payload will be considered "out-of-date". If the
payload version passes this validation test, the remainder of the User Header
includes routing information (an IP address and port number) relating to the
data contained within the payload itself. Replies regarding the data in this
particular payload can be sent via this route back to the originator of the data.

The User Header doesn’t say how many data blocks the payload
includes, but merely tells the Network Protocol Stack to expect one or more
data blocks (conforming to a particular game version) immediately following
this header.

The data blocks contained within the payload are self-describing: each
block BEGINS with a block-length field stating how many bytes of data are
contained within the block itself, including the block-length field.

The last block in each payload begins with a special length of 0,
indicating that it is "empty". Thus, without knowing in advance the type of
data contained within each block or even how many blocks are contained
within this payload as a whole, the NPS can scan through the payload,
validating that the data blocks are "well-formed" without any a priori
knowledge of their meaning within the context of a specific game. If the sum
of all the headers and the individual block lengths found in this packet exceed
512 bytes, something is wrong and the packet is not well-formed. The
likelihood of random, or garbage data being recognized as "well-formed" by
mistake becomes exponentially small the larger the number of blocks in the
payload becomes.

If the NPS has well-formed User Headers and well-formed data blocks,
the NPS accepts the packet as a valid packet and passes it on to the game
itself, which can then perform the more rigorous work of semantic validation

at its leisure.

10

15

20

25

WO 03/081447

-7 -

d. Block Formatting

As indicated above, the Network Protocol Stack does not need to
interpret the contents of the actual blocks of payload data as they are
circulated through the system: it performs basic syntactic validation (is the
data the right size? does it conform to the current version?) without needing to
know what object state the packet data represents. This is necessary to
maintain the state of being context agnostic.

However, even though proper packet syntax is necessary, it is not
sufficient from the standpoint of a useful game system. After all, the purpose
of the payload is to carry information from client to Gateway 401, Game
Server 405 to Game Server 405, Game Server 405 to client, and so forth.

If the Grid were not context agnostic, it might be reasonable to assume
that the format of the data blocks could be left completely free and
unrestricted. However, at a game system level, it is important to recognize the
need for interoperability and extensibility. Thus, the Block Data is used to
marshal object state throughout the Grid.

Referring again to FIG. 39, the format of a data block may include:

a) Block Length (2 bytes): a field specifying how many bytes of
packet space this block occupies. This field is an even value, and includes
itself when specifying the block extent. A block length of 0 indicates that this
is the NULL (or terminal) block in a list of consecutive data blocks. This is
the only part of the block data that the NPS is actually concerned with. It
assumes that if the Block Length conforms to all other packet size and
alignment restrictions, then the remaining block data can be safely buffered
and passed on to the client, who is expected to semantically validate and
interpret that following fields.

b) Block Type (2 bytes): a field indicating the main category of
this block data. Examples are AUTHENTICATE, SELECT, EMBODY,
ACTIVATE, SYNCHRONISE, and LOG data block types. A block type of

PCT/US03/04879

10

15

20

25

WO 03/081447 PCT/US03/04879

-73 -

BLOCK_NULL indicates that this is the NULL (or empty) data block and can
be safely dropped or ignored.

c) Block Subtype (2 bytes); a field describing the particular
purpose of this block data. For example, if the Block Type of this block was
[EMBODY], the Block Subtype might be AVATAR_INIT, AVATAR_SAVE
or AVATAR _EXIT. A block subtype of AVATAR NULL is provided to
round out the choices.

d) Block Data (from a minimum of 0 to a maximum of
MAXBLKLEN bytes): This field is the actual Block Data itself and its
meaning will vary based on the combination of Block Type and Block
Subtype specified above. For example, in the case of
[EMBODY::AVATAR _SAVE] the Block Data is the globally unique
identifier (GUID) of the Avatar needs to be saved in the persistent-state
database.

With these additional restrictions on the format of the payload block
data, the Network Protocol Stack can perform its job quickly and efficiently.
The NPS can receive, transmit, and validate packets. It can discriminate
between essential and non-essential data; it can request retransmission of data
that has become lost or corrupted in transit. It can guarantee that only
properly versioned and formatted packets are forwarded to the game itself. It
can do all this in a context agnostic manner, leaving the interpretation of the
actual object state to the specific games that are up and running in the current

environment.

e. Game Buffers and the NPS Game List

The Network Protocol Stack also needs to pass incoming packets to the
game itself. The NPS Game List provides this mechanism to clients.

The NPS buffers the packets in a CGameBuffer object for the client to
process as soon as it has the time. Since the Network Protocol Stack operates

asynchronously to the client code itself, this buffering mechanism provides a

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-74 -

way for incoming messages to be stored until they are no longer needed and

may be deleted to free additional memory space in the system.

etk o ok ok ok oo koo koo ke s ol e ok ek ok s o ko /
*An example of interfacing with the Network Protocol Stack via the

CGameBuffer

ok stk ok okok kool dok sk ook skl kb skok ok sk ok ok skokok okl ook ok ok ok skskokok sk kkok sk kok ok /

#define THIS. GAME_NUMBER 1 // my first game
CNPS *nps = new CNPS("mothGrid.butterfly.net","9632"); /I create
the NPS

CGameBuffer *game p = new CGameBuffer(nps); /I get GameBuffer
game p->setID (THIS_GAME_NUMBER); /I mark for
my game

nps->game_list p->addTail(game p); // add it to
the nps list

game_p->bufferOn (); /| allow it
to fill up...

/***/

The CGameBuffer forms a first-in first-out (FIFO) queue of packets,
which are stored in a SafeList structure for multi-threaded safe list processing.
The SafeList is a doubly linked list that includes internally buffered ListNodes
and that allows recursive locking by a single thread at a time. Access to nodes
in the list is arbitrated by creating a SafeList Iterator (listIter) and processing

the nodes in order until calling nextNode on the listIter returns NULL.

/**/

* An example of processing the GameBuffer list in a multi-threaded

environment

**/
while (Inps->abort_flag)

{
CGameBufferListlter *game_list iter; // multi-threaded SafeList iterator

WO 03/081447 PCT/US03/04879

-75 -

if ((game_list_iter = nps->game _list_p->listlter()) != NULL) // list locked

here
{
while ((game p = game _list_iter->nextNode()) !=NULL)
5 {
if (game_p->getID () == THIS_ GAME_NUMBER)
{
game_p->drain(process_packet); // call process on each packet
drained
10 }
}
delete game list iter; /I deleting the listIter unlocks the
list
}
15 sleep (100); /l wait a bit before trying
again...
}

/**/

The CGameBuffer mechanism adheres to the classical
20 producer/consumer model for handling messages between threads. The NPS
asynchronously receives packets as they arrive at the system port; by
definition the arrival of new packet data is unpredictable (while a heartbeat is
guaranteed within the expiration of the current inter-packet period, new packet
data may arrive at any time). By placing the incoming messages in a FIFO

25 queue, the Network Protocol Stack assumes the role of data producer.
The client, on the other hand, is the ultimate consumer of packet data.
By draining the GameBuffer packet queue periodically, the processed packets
are removed from the message queue freeing space for more data to arrive.
While there is no hard limit on how many packets may be stored in the queue
30 at any one time, the more packets are maintained on the internally buffered

queue lists, the more high-water memory allocation for this process requires.

10

15

20

25

WO 03/081447 PCT/US03/04879

-76 -

For that reason, it preferred that the client thread drains the NPS packet buffers

on a regular basis and discards the processed messages as soon as possible.

4, The Object state Propagation Subsystem

The transmission and mediation of object state is an important sub-
system in establishing a shared, high-performance environment.

In one embodiment of this invention, the object state can be gathered
from users of the system, from monitoring devices, etc., and will need to be re-
transmitted to other subscribers of the system. To support this in a scalable
way, the embodiment described herein uses the Gateway 401 to act as
"intelligent routers" of object state information.

As a client connects to the grid, they can connect to any Gateway 401
that is in service. After authentication and authorization, the Gateway 401 acts
as proxy for the client to the Game Servers 405. There can be a plurality of
Game Servers 405, each of which are responsible for the management of a
segment of the environment. If, in the course of using the Grid, the
participant's state changes in such a way that they need to be served from a
different Game Server 405, a MOVE request can be transmitted to the
Gateway 401 (from the current Game Server 405), at which point the Gateway
401 will begin its proxied communications to the new Game Server 405. This
process is transparent to the client device or user. As the NPS in this
embodiment employs a UDP-based protocol, the overhead associated w1th' the
termination of a session with one Game Server 405 and the establishment of a
session with another Game Server 405 is negligible. On the back channel,
communicaﬁons between the Game Servers 405 can prepare the Game Server
405 that is to take over communications with a given client, so that it is ready
(and expects) the transmissions from the client when the change takes place.

This embodiment partitions the environment, and allows a plurality of
Game Servers 405 to manage and mediate the problem space, but the object

state propagation system makes this segmentation transparent to the end user.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-77-

Object state information can be transmitted between the Game Servers 405
when object state resident on one Game Server 405 is needed by a client that
is proxied to another Game Server 405. To better explain this, an example
based upon geography will be presented.

If the environment is partitioned geographically, different geographical
regions can be assigned to different Game Servers 405. In this embodiment,
space is partitioned into convex polyhedra, as it is computationally easy to
determine whether an object lies within such a polyhedra. One need only
determine that the object in question lies on the correct side of each bounding
plane to determine that the object lies within the bounding region. It should be
apparent to those skilled in the relevant arts that the constraint of keeping the
polyhedra convex is a computational nicety (because such a containment fest
is not true for an arbitrary polytope) and can aid in scalability of the system,
but such a constraint is not a limitation of the present invention.

Furthermore, in the embodiment, adjacent Game Servers 405 will
create "sentries" (sentinels) along the border between adjacent bounding
regions. The sentinels act as message sinks for object state information that is
relevant to the geographical area. The sentinels allow the object state
information to flow from Game Server 405 to Game Server 405 across what
could otherwise be an arbitrary partition. For performance reasons, the
implementer of such a system would choose bounding regions to minimize
cross-server communications, but by allowing this flow of object state
information, the Game Servers 405 act in concert to form a system that is
seamless and arbitrarily extensible.

The sentinels (i.e., message sinks) can be extended to end-clients, and
are herein described as "Embodiments of Interest." A wuser has a
communication port into the Game Server 405 that is controlling the portion of
the environment that includes the representation of the user (which is referent
to as their "Embodiments of Record"), but these Embodiments of Interest act
as channels for the transmission of object state to users from Game Servers

405 to which they are not directly proxied. To extend the geographical

10

15

20

25

WO 03/081447 PCT/US03/04879

-78 -

example, as a user moves within a virtual environment, he approaches the
sentries of servers that control adjacent regions. If the application logic
dictates, the Game Servers 405 will create an Embodiment of Interest for the
user on themselves, and these embodiment will be utilized to send object state
from the Game Server 405 in question to the client device or user. If the user
crosses into the bounding region of the Game Server, the embodiments are
swapped: the Embodiment of Record now becomes the embodiment on the
new Game Server 405, and the Gateway 401 is instructed to now proxy to the
new Game Server 405.

While a geographical example is presented above, it should be
apparent to those skilled in the relevant arts, that this concept can be applied to
an abstract state-space. For performance and partitioning reasons, this abstract
space should preferably have the following attributes: 1) a distance metric
should be available or constructed, and 2) the propagation of object state
should be in some way dependent upon rules applied to this metric. If these
criteria cannot be met, cross-server communication will adversely affect the

scalability of the system.

a. Marshalling Object State

When clients' states are widely dispersed, the object state of objects
needs to be transmitted and maintained over the network while respecting the
requirement that their essential identities are carefully preserved. The end
result is that the appearance and behavior of the object at the receiving end is
the same as that at the transmitting end. Thus, each game character or object
can play the same role and obey the same rules for every client, no matter how
remote they are distributed in space.

To achieve this, objects themselves need not be transported. Rather it
is their state (the individual values that measure and describe their appearance
or behavior) that must be transmitted across the wire. However, there is a

conflict between the Grid remaining context agnostic and yet not trusting the

10

15

20

25

WO 03/081447

=79

client to transmit legal object state, that is, not trusting the client to enforce the
rules. The Game Server 405 cannot restrict the appearance or limit the
behavior of any particular game. At the same time, it must validate that the
values that represent object state are limited, and legal values are restricted to
an acceptable range.

Every "Thing" is defined to be an assemblage of basic building blocks,
and every block is numbered and labeled with its essential "type" (out of a
small list of basic types). Thus its essential configuration is cataloged at the
transmitting end. This catalog is divided into reasonable chunks and is then
stuffed into individual packages (packets) that in a sense carry the "identity" of
the object. Somewhere at the receiving end, the reconstituted catalog may be
followed as a recipe for creating up a new object. Since the building blocks
that make up the reassembled object are identical to those that constituted the
original "Thing," its appearance and behavior should conform to that of its
model. At the same time, the number and base type of each building block
may validated for authenticity against the small list of basic types mentioned

above. This is divide-and-conquer strategy in action.

b. Passing Values as Data Sub-Blocks

Values that describe the appearance or behavior of individual game
objects are marshaled in the Grid as data blocks, typically within packets of
block type:

- ACTIVATE::THING_NEW (for newly instantiated objects) or

- ACTIVATE:THING_SET (to modify the properties of
existing objects).

Each block of sub-type THING SET begins with a 32-bit "cookie"
with a Globally Unique Identifier (GUID) for the Thing to which the
following property sub-blocks apply, as shown in FIG. 40.

Following the Thing GUID are one or more data sub-blocks, each
beginning with a sub-block length and continuing with the PROPERTY

PCT/US03/04879

10

15

20

25

30

WO 03/081447

-80-

keyword and the sub-block type, as shown in FIG. 41. The building blocks for
the Grid data sub-blocks are these basic sub-types:

- PROPERTY LONG (32 bits) — a signed integer value

- PROPERTY FLOAT (32 bits) — IEEE single precision floating
point number.

- PROPERTY VECTOR - an ordered triplet of IEEE single
precision floating point numbers.

- PROPERTY ENUM (16 bits) — an unsigned short integer
value.

-~ PROPERTY STRING (variably sized) — UTF8 compatible,
non-null terminated counted string value.

- PROPERTY_TOKEN (64 bits) —two 16 bit and one 32 bit data
field (special purpose).

In addition to the basic data types, other lists of basic types are also
supported:

- PROPERTY_ LIST LONG — a list of property_long

- PROPERTY LIST FLOAT - alist of property float

- PROPERTY LIST VECTOR - a list of property_vector

- PROPERTY LIST ENUM - a list of property _enum

- PROPERTY_ LIST STRING —a list of property_string

- PROPERTY_LIST TOKEN - a list of property_token

Furthermore, in addition to game properties specified by the game
designer, every Thing additionally subscribes to specific properties that are
common to every Grid game object, as shown in FIG. 42:

- POSITION (vector) — Euclidian position for this object.

- ORIENTATION (vector) — rotation for this object..

- VELOCITY (vector) — linear motion for this object.

- ANGULAR_VELOCITY (vector) — rate of roll.

- ACCELERATION (vector) — rate of change in velocity.

- ANGULAR_ACCELERATION (vector) — change of rate of

roll.

PCT/US03/04879

10

15

20

25

WO 03/081447 PCT/US03/04879

-81-

- RANGE (float) — perceptive extent of this object.

- PRESENCE (float) — bodily extent of this object.

- ACTIVE (long) -- sensitivity to the environment (does this
object receive messages and act upon them independently)

- REGION _TYPE (enum) — shape of extent (by default, a
spherical region centered on the object itself).

Note that these properties, while possible for every Grid object in
every Grid game, are not present in every packet transmitted. Only those
properties that are "dirty" (or have changed) since the last state update are
scheduled for serialization and transmission to clients. This process of
transmitting a primarily "dirty" object state is one of several mechanisms used
to minimize the number of bytes in each packet and the number of packets

sent overall in the interest of minimizing network bandwidth requirements.

C. Passing References in Packets

Objects within a game have their own unique identifying number
known as a GUID, or Globally Unique Identifier. The GUID value, 32 bits in
length, is sufficient to distinguish one Thing from another. Every different
instance of a #ype Thing has its own GUID assigned to it, which is invariant
for the lifetime of the game world. Every sword has its own GUID, every
dragon has its own GUID, even every tree (as long as it is a game object, even
if it never moves or performs any particular action) has its own GUID. All
these GUIDs are distinct from one another. Thus, with 32 bits, there can never
be more than about 4 billion game objects (2°%) within a given game.

FIG. 43 shows an example of a game object of type 2. Being context
agnostic, this Thing reference doesn’t make any assumptions about what type
2 might represent in this game world. It might be a rabbit, or it might be a
carrot, or it might be the earth that the carrot is growing in. The Grid

framework doesn’t know and doesn’t care what the semantics of a type 2

10

15

20

25

WO 03/081447 PCT/US03/04879

-82-

game object are — it only cares about the properties of this object and that its
GUID is 0x12345678.

The client, on the other hand, knows everything there is to know about
fype 2 objects in general and can display a picture of such a Thing at the given
position with which the user may interact by clicking the mouse, angling the
joystick, or pressing the trigger button. In other words, while the Grid is
context agnostic, the client was designed to handle Things for this particular
game, and it can evaluate the marshaled information in the game packet and
respond appropriately. Every packet referring to GUID 0x12345678 can be
assumed to carry state update information for this particular Thing and this

object alone.

5. The State Aggregation Subsystem

The needs for state update between participants in an environment vary
based of logical, geographical, or other considerations. For example, a human
participant in a shared environment may need frequent state updates on objects
in his or her immediate environment, but could get less frequent updates on
objects that are more distant. In an abstract state-space, these considerations
could be logical in nature, or they could be based on different distance metrics,
but either way, object state should not be transmitted helter-skelter.

This embodiment employs a state aggregation subsystem to alleviate
bandwidth and other performance considerations. Rules are applied based
upon logical and distance metrics, and object states are aggregated for
transmission when they meet these rules. This lowers per-packet overhead
without adversely affecting the performance of the system. While this
embodiment employs such a system for performance considerations, it should
be apparent to those skilled in the art that object states need not be aggregated,

provided that overall system performance can still achieve acceptable levels.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-83-

6. Rules Enforcement Engine

"Rules enforcement" is a term that is applied to the mediation and
transmission of object state based upon logic (rules) as applied to object states
and identities of the participants of the grid. Not all participants (be they
human or machine) need or should be allowed to subscribe to all object states.
Furthermore, rules enforcement can be used to constrain the object state of
participants within the virtual environment.

The present embodiment uses a general scripting engine that has access
to state of all objects on a Game Server 405, and can filter or constrain the
transmission of object state based upon these values. An important function of
rules enforcement is the prevention of a client from reporting their object state
to be disallowed values. In an environment where the clients cannot be trusted
(for example within a game or a security system), these rules become even
more important.

As an example (which is meant to be illustrative and should not be
taken to be a limitation of the present invention), a virtual environment can
contain a terrain in which the participants move. This terrain can constrain the
altitude of a virtual participant based upon their geographical location.

This embodiment takes this terrain and recursively subdivides it into
smaller and smaller areas. For each subdivision, a minimum value of the
terrain's altitude is calculated, as well as the equation of the best-fitting plane
that describes the data-points within the region. If the error associated with
the best-fitting plane is within acceptable bounds, the sub-area is not further
divided. If it is not within acceptable bounds, the area is recursively divided
until each area is acceptable.

The data thus generated are placed in a Quad-space Partitioning tree
(which should be familiar to those versed in the relevant arts) and is in turn
placed into a memory structure that allows efficient traversal. Thus, the tree
can be traversed to find if an altitude reported by a client is acceptable. The

described system has the advantage of graceful degradation: if server load

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-84 -

prevents a full traversal, the tree can be descended as far as load allows. The
further the traversal, the more accurate the answer as deduced by the Rules
Enforcement Engine.

While the above example is presented in terms of a terrain, it will be
apparent to those skilled in the relevant arts that this system can be applied to
any scalar or non-scalar field. Provided that the field is sufficiently analytic or
continuous, such a subsystem could provide great performance and scalability
benefits.

Another example can be taken from the movement within a physical
structure in a virtual environment (for example, walking within the
representation of a building). The rooms of the building are decomposed into
convex polyhedra (again, for a performance consideration and not as a
limitation of the invention), and the location of these polyhedra are placed into
a Binary Space Partition (BSP) tree. The tree can be constructed such that any
partition of space has an acceptably small number of resident polyhedra. Thus
is becomes computationally tractable to determine the containment relation for
any participant (the containment of thousands of users is not difficult to
manage with such a system using modern hardware). If the client reports a
state update that changes their containment, the Rules Enforcement Engine
can see if the transition is allowable. For example, if the client moves into a
new room, the Rules Enforcement Engine can insure that they have sufficient
authorization to be in that room, or even if there is a passageway connecting
the room with their previous location.

From the above discussion, it should be apparent to those skilled in the
relevant arts that the Rules Enforcement Engine described herein is flexible,
high-performance, and useful in the mediation of state for a variety of problem
domains.

Thus, the role of the Rules Enforcement Engine is to determine legal
versus illegal client behavior. The rule might be as simple as "you can’t have

your dessert until you finish your dinner" or as complex as "unless you pay us

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-85 -

a protection fee every month your next-of-kin can kiss their toenails goodbye,"
but unless the Game Server 405 says it’s so, it isn’t so.

The client cannot decide the rules, since he can only be trusted to be
untrustworthy when potential adversaries or hackers are at the controls. The
Grid itself also cannot decide the rules, because that would make the rules of
the game part of the Grid itself (i.e., non-context agnostic), and every time a
rule changed, the Grid would have to be stopped, rebuilt, and restarted.
Another mechanism is required to decide rules that modify the Server Things,
while being flexible for testing and development, and bound at run-time rather
than compiled into the Grid itself.

As one embodiment, the Grid has embedded the Python interpreter
(see discussion below) as the core technology for the Rules Enforcement
Engine. Python is an interpreted, interactive and object-oriented programming
language, similar to Java. Python is powerful, portable, and flexible. Being an
interpreted language, it meets the requirements for run-time binding of method
invocations. Interactivity provides the means to be as flexible in the process
of game development. Object-oriented programming means that Python is
easy to access and powerful in performance.

Additionally, software development tools such ‘as SWIG (a sofiware
interface generator) are available to connect programs written in C and C++
with scripting languages including Python. SWIG works by taking the
declarations found in the header files of the Butterfly system, and using them
generates wrappers that allow Python‘to access the underlying C/C++ code.
Using such development tools allows embedding the core Python interpreter
within the Grid.

Methods in Python are invoked according to a regular pattern:

module.function (arg0, argl, ...)

Here are some examples:

utilities.grab (...) — invoke the grab function in the utilities module to

pick up an object and transfer it into your inventory.

10

15

20

25

WO 03/081447 PCT/US03/04879

- 86 -

butterfly.buy_a_duck (...) — invoke the buy_a_duck function in the
butterfly module to create a secure distributed transaction between buyer and
seller.

These methods are bound dynamically to script files of the form
module.py that reside on the Game Server 405 in a run-time Python directory.
Each time the module. function(...) is invoked, the Python interpreter checks
the run-time directory to see if the definition of the function has changed.
This allows the game developer to edit, test, or tune the Rules Enforcement

Engine without recompiling any game code whatever.

7. Dead Reckoning System

The dead reckoning system is used to mitigate bandwidth needs in the
transinission of object state. Each participant knows their current object state
at any time, but they also maintain a model of themselves that mirrors models
maintained by other participants. At any time, they not only know their own
object state, but they also can deduce the perception of themselves by others.
If at some point their true object state deviates sufficiently from the perceived
object state, they will transmit a object state update that will in turn be rel:-
transmitted by the Game Servers 405 to the appropriate subscribers. The
model that describes the change in state in time for a given object class is the
same for all participants. Thus, synchronization is assured.

FIG. 44 conceptually illustrates a timeline for the dead reckoning
model. The right-most four balls in FIG. 44 represent the assumption of first
user about a second user's motion (i.e., the assumption is that the motion is in a
straight line). When the second user starts to diverge from the predicted
straight line motion, and the difference between the predicted position and
actual position diverges by more than some epsilon (see region 4 in FIG. 44),
then a packet is sent to the first user, informing the first user that the second

user is really at position 5. For regions 2, 3 and 4, no message is needed to be

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-87-

sent, because the deviation (epsilon) as small enough. This allows conserving
bandwidth, and minimizing message traffic.

As other examples of dead reckoning, a temperature sensor could be
modeled as having a constant reading, or a mobile robot could be modeled as
having a constant velocity. If the temperature changes or the robot turns, these
will be dissonance between true state and perception, so that the sensor or
robot will transmit its updated state, and other participants will begin
reckoning based upon this new state. The temperature sensor need not
constantly transmit data which is unchanging, and the occasional heartbeat
packet from the NPS will assure the Game Servers 405 that the sensor is still
functional and on-line.

It should be apparent that the dead reckoning system of this example
embodiment is useful in conserving the bandwidth needed for communication
to client devices and helps to reduce server load, but it is not a limitation of the
present invention.

FIG. 45 is an illustration of how the terms "region of interest", "region

"nn

of presence," "personal space", etc. are used throughout this discussion and in
particular as they relate to Dead Reckoning. FIG. 45 should be viewed in
conjunction with FIGs. 46 and 47, and is also discussed below in the Area-of-
Interest Management section.

FIG. 46 shows a Game Server of Record 4601 that includes a Locale
of Record 4602 with a sniper standing inside the Locale of Record 4602. Box
4603 represents the sniper's region of presence, and box 4604 represents the
sniper's region of interest. In other words, it is analogous to the sniper being
as big as box 4603, and being able to see as far out as the boundaries of box
4604. The bicyclist seen in the lower left of 4604 is actually hosted on another
host, on server 4605. The bicyclist is touching the region of presence 4603 of
the sniper. Messages are routed about the bicyclist colliding with the sniper.
In this figure, "updates of record" refer to a new user logging in. "Updates of

interest" refer to one user "seeing" another user. "Updates of presence”

illustrate collision events. Thus, FIG. 46 illustrates how packets are

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-88 -

prioritized and routed based on interaction of Embodiments of Record that are
on two different Game Servers 4601, 4605.

FIG. 47 is an alternative representation of FIG. 46, focusing on how a
user may be playing a game using a Palm Pilot, and what the user will see on
his Palm Pilot.

FIG. 48 illustrates the dynamic interaction between two players
located on different Locales and/or different Game Servers 405. In FIG. 48,
Player 0 moves from right to left, as shown by the dotted line. The tag
S0.L0.ER0.T0.0 in the figure refers to the following: SO refers to Game Server
0, LO refers to Locale Thread 0, ERO refers to Embodiment of Record 0, and
T0.0 refers Time0.0. The other tags in FIG. 48 have a similar format. Player
1 is a "white figure against a black background"”, and Player 2 is a "black
figure against a white background", initially at Locale 0, Server 1. The two
Embodiments of Record gradually approach each other such that their regions
of interest intersect. The circle around Player 0, for example, is the region of
interest around the Embodiment of Record 0 of Player 0. When the
Embodiment of Record 0 moves to a point where its region of interest touches
the region of interest of Player 1 (i.e., of Embodiment of Record 1), a message
is sent to Embodiment of Record 1, notifying it of that fact, and vice versa.
Thus, this is how the Embodiment of Record 1 "sees" Embodiment of Record
0 walking towards it. In other words, Thing 0 is new to Thing 1, and a
message needs to be propagated to reflect that fact.

Furthermore, in addition to Grid-definable Dead Reckoning models,
the user or the game designer may define his own Dead Reckoning models,
whose parameters would also be passed in a context agnostic manner. In
certain contexts, there may be a benefit to having users define their own Dead
Reckoning model, from the perspective of bandwidth conservation.

FIG. 49 illustrates one implementation of the process of movement by
a Thing (THING_MOVE) in the game by a user. FIG. 49 is meant to
illustrate, in flowchart form, the progression of steps that effect the movement,
in order from 4901, 4902, 4903, 4904, 4905, 4906... 4922,

10

15

20

25

WO 03/081447 PCT/US03/04879

-89 -

The end result of the process of FIG. 49 is that the Thing is flushed
into the database 104 by Game Server 1, and this information is then sent to
Server 2 as an update. Thus, when a player moves from one Locale to
another, the information related to that user is flushed from the database 104
for Game Server 1, and is added to the database 104 for Game Server 2.

FIG. 50 illustrates transfer of the Embodiment of Record between
borders of Locales. Each square in FIG. 50 represents a Locale. The original
Embodiment of Record moves from location 1 to location 2, where it comes in
contact with a sentinel. By the time the Embodiment of Record moves from
location 1 to location 3, a new Embodiment of Record will be created on
Game Server B, and the old Embodiment of Record on Game Server A is
deleted. Note that Game Server A and Game Server B may be on different
physical hosts. Thus, FIG. 50 illustrates the movement of an Embodiment of
Record corresponding to a user moving from one host to another, ultimately
enabling the user to be anywhere in the world defined by the entire game. The
sentinel, via a handshaking mechanism, allows for the Embodiment of Record
to be transferred from one Game Server to another, including the situation of
seamlessly transferring from one physical host machine to another.

FIG. 51 illustrates event multiplexing as it relates to Dead Reckoning.
As shown in FIG. 51, UDP packets are coming in into network I/O, input
events (such as a joystick movement by the user) are coming in at user input,
and the Predictive Modeler/Dead Reckoning process makes sure that the

various Embodiments of Record interact with each other properly.

8. Area of Interest Management

The Area of Interest Management (AIM) subsystem applies state
aggregation and filtering rules based upon the object states and identifications
of the participants of the system. It works in concert with the state
aggregation system, the Rules Enforcement Engine, and the authorization

subsystem to mediate state transmissions.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-90-

FIG. 52 illustrates one aspect of area of interest management, and in
particular, one example of the topology where a player is located at a center
Locale, and eight other Locales come in contact with the center Locale, and
therefore need to be managed properly under this topology. Further, to the
extent that the player can only "see" into half of the adjacent square, the
Things that can affect that player may only be a subset of the Things present in
the adjacent Locales, which are shown in black in F1G. §2.

Each Server Thing (see discussion above) interacts with others in its
proximity through its area-of-interest. For example, each object on the Game
Server 405 can have a range of vision (of block data subtype RANGE) within
which other objects are visible, and a presence (of subtype PRESENCE) with
which other objects can collide. These complementary range/presence values
form the basis for area-of-interest management (as shown in FIG. 45,
discussed in part previously).

In the example shown in FIG. 45, the area-of-interest of the "sniper"
Server Thing is the region centered about the POSITION of the embodiment-
of-record of that Avatar on its Server-of-Record in its Locale. The range of
this area of this area-of-interest is defined by its RANGE and the type of
region of the area-of-interest by its REGION_TYPE. The extent of a smaller
region, the Avatar’s region-of-presence, is define by the state value of
PRESENCE. Being Grid properties, they are shared by each Game Server
object, so every Server Thing becomes a potential source of packet interaction.

The list of packet sinks that are currently receptive to perceiving this
Server Thing are kept internal to the embodiments-of-record. Each element on
the list of packet sinks is a Server ThingRef that can be used for routing source
packets to their corresponding sink(s).

In the example of FIG. 45, there would be a reference to the "sniper”
Avatar on the list corresponding to the walking "victim" Avatar, and another
reference to the "sniper" on the list corresponding to the bicycling "courier"
Avatar. In order for the "sniper" to see the "victim", he or she must receive

messages as the walking Avatar moves back and forth. This implies that the

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-9] -

victim is a packet source for messages to the sniper, which becomes a packet
sink for messages about the changes in state of the Server Thing representing
the walking Avatar. For the "sniper" to collide with the courier, it must receive
messages as the bicycling Avatar pedals here and there. This implies that the
courier is a packet source for messages to the sniper, which becomes a packet
sink for messages about changes in state of the Server Thing representing the
bicycling Avatar. Thus, there is a Server ThingRef maintained on the internal
list of the victim and the courier that is used to route messages from these
Server Things (as sources) to the sniper Avatar (as sinks). Packets routed in
this way and rebroadcast to the Gateway 401 handling the login session for the
sniper Avatar, and are proxied back to the client controlling the sniper.

As long as the victim is "in range" of the sniper, the area-of-interest
manager continues to route packet information (ACTIVATE :: THING_SET
messages) about the victim to the sniper. As long as the courier is "in the
presence" of the sniper, the area-of-interest manager continues to route packet
information (ACTIVATE :: THING_HERE messages) to the sniper. And
whenever either the victim or the courier moves beyond the area-of-interest of
the sniper, the area-of-interest manager routes notification (ACTIVATE ::
THING DROP messages) from the server -of-record, back through the
Gateway 401 to the client controlling the sniper.

This process of area-of-interest management is not totally symmetrical.
Note that the victim and the courier each have their own area-of-interest,
whose shape and extent may differ from that of the sniper (the victim may be
nearsighted, while the sniper may have a rifle scope). Thus, depending on the
intent of the game designer, the flow of information of one Server Thing about
another can be tuned and adjusted dynamically by the system.

In terms of computation complexity, area-of-interest management is
essentially an O (n®) process, since each Server Thing in a region may
potentially interact with every other Server Thing in that region. Every time
some Avatar takes a step, they may come into range, collide with, or drop out

of sight of some other object. However, many state changes do not involve

10

15

20

25

WO 03/081447 PCT/US03/04879

-92.

changes that affect the Server ThingRef list of current packets sinks for this
Avatar. For example, picking up a gold coin, striking a sword blow, losing
stamina, or exchanging goods or services do not necessarily affect the norm or
distance metric between two players. In these cases, incoming packets at the
packet source are simply routed directly to the existing list of packet sinks: no
recalculation of the Server ThingRef list is required. In other cases, dividing
Server Things into sorted or partitioned lists can reduce potential candidates
for interaction to a more manageable number. In the end, the complexity of
area-of-interest management becomes effectively O (n log n) and allows for

real-time interactions between Grid clients.

9. Instant Messaging and Clients

Packet source and packet sinks are useful for Locale interaction
between clients, but clients that are otherwise out-of-range of each other also
need to communicate. Since player-to-player chat forms such an important
element of online gaming, the Grid provides a robust mechanism for instant
messaging that allows packets to be proxied between clients while still
maintaining the benefits of dynamic message management. This is unlike
peer-to-peer systems, where a direct connection is established between trusted
clients who communicate without any mediation at all.

There are reasons why having the Grid intermediate in the
dissemination of Instant Messages provides a distinct advantage to a multi-
player platform:

- Security — clients may not wish to divulge their Internet
addresses to one another directly.

- Portability — clients may log in from another location at will, so
the destination address may change without notice.

- Reliability — clients may attempt to flood others in a denial-of-
service attack, so the Grid may need to throttle their rate of messages down to

a level that may be reliably handled.

10

15

20

25

WO 03/081447 PCT/US03/04879

-03 .

- Discovery — one client may need to determine if another is
currently online. The essential element supporting Instant Messaging is a one-
to-one mapping between a client’s username and their access_key. If the
client is online their access_key will be available to route packets throughout
the Grid to their final destination.

- Rules Enforcement — some messages may be special, secure, or
restricted in scope. Having the Game Server 405 involved in the processing of
these Instant Messages allows bringing all the intelligence of the game

designer to bear upon the final outcome.

a. Instant Messaging and Rules Enforcement

Instant Messages also provide a unique mechanism for the Game
Server 405 to interact with clients directly, i.e., through Secure Messages, to
implement distributed transaction management (discussed in more detail
above in reference to the Gateway 401). The sole originator of Secure
Messages is the Game Server 405. It has access to the digital signatures of all
the parties involved through its direct contact with the database 104. Thus, it
can create, register, request, route, validate and execute Secure Messages to
represent the current state of a distributed transaction as it flows across
the Grid.

In addition, Instant Messages are generated by the Rules Enforcement
Engine (an embedded Python code interpreter with a context agnostic Server
interface) to notify clients of transient activity like explosions, sound effects

and other such impermanent or one-shot events.

b. Python packets

In order for the Rules Enforcement Engine to be invoked, the client
must first issue a Python packet to request some sort of server -side game

activity to take place. A Python packet has block type ACTIVATE ::

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-94 -

THING SCRIPT and with a sub-block type of PYTHON, as shown in
FIG. 53.

There are several related parts to any Python packet, which provide a
generic interface to the Rules Enforcement Engine:

a) Specifying the Python module as a sub-block of type PYTHON
:: MODULE is required.

b) Specifying the Python function as a sub-block of type
PYHTON :: FUNCTION is required.

c) Passing Python parameters as sub-blocks of type PYTHON ::
GUID, PYTHON :: LONG, PYTHON :: FLOAT, PYTHON :: VECTOR,
PYTHON :: ENUM or PYTHON :: STRING are optional and vary depending
upon which function is invoked. The provided parameters will be packed and
passed with a format string to the function itself before being executed on the
server. It is the game designer’s responsibility to decide which parameters are
expected by each function, and in what order the parameters are to be
provided.

The GUID, or Globally Unique ID of the caller is also a required part
of the script packet, and becomes the zero(th) parameter passed to each Python
invocation. This allows the called Python function invoked on the Server to
determine if the calling GUID represents a client that has permission to invoke
this function: typically a client can only invoke a function upon itself or a
limited number of other client objects or only at certain times; while a daemon
client (a process with special permissions that controls all the non-player
characters within a given Locale, discussed below) is allowed to invoke any
function upon any client unconditionally.

When the invoking GUID of the client is that of a player who does not
have pre-approval to execute a given function, the askApprovalByGUID (...)
method can be from the executing Python script to seek system permission for
rules enforcement to be take place. If approval is granted, the permitted
activity becomes a distributed transaction and either takes place atomically, or

not at all.

10

15

20

25

30

WO 03/081447 PCT/US03/04879
-95.

Upon exit from the invocation of any Python function, those Game
Server objects whose GUIDs are referenced explicitly in the optional packet
parameters are updated in the database 104 and checkpointed. This assures
that all scripted changes will be persistent within the game world. By
carefully designing the logic of rules enforcement scripts, the game designer
can thus control the permissible actions on the Game Server 405 and thus
within the overall game world itself.

For details of Python structure and syntax, see "Python Essential
Reference, Second Edition" or any available Python reference manual. Below
is example code for the module’s buy_a_duck function, with a few comments
added:

HHHHHHHHHHHHHAHHH R begin python example code
#1/usr/Locale/bin/python

butterfly.py — example python script

#

import sys

import types

from struct import *

from server import *

#all parameters to python functions are passed

#as a format string, followed by the packet parameters..
#use the utility "unpack" to extract these parameters into
#an argument list for processing by the python code...
#arguments passed to python routine "buy_a_duck"

#

#arg0 -- caller GUID (passed in by system)

#argl -- GUID of the particular duck to buy

#arg2 -- Thing_type of duck (animal type)

#arg3 -- GUID of prospective purchaser of the duck
#arg4 -- Thing_type of purchaser (Avatar type)

#arg$ -- PropertylD of the purchaser's inventory list

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-96 -

def buy_a_duck(format,parameters):
args = unpack(format,parameters)
sys.stderr. write("python.buy_a duck%s\n" % str(args))
check there are enough args and they are of correct types
if len(args) > 5\
and isinstance(args[1],types.IntType) \
and isinstance(args[2],types.IntType) \
and isinstance(args[3],types.IntType) \
and isinstance(args[4],types.IntType) \
and isinstance(args[5],types.IntType) :
properties as arguments to ...ByGUID()
methods are passed in CTHINGATTRIBUTEVALUEBUFFER
value = CThingAttributeValueBuffer()
value.m_Attribute.Type = PROPERTY_STRING
value.m_typeObject =0
value.m_bDirty =0
value.bufferString(17,"wanna buy a duck?")
ask the purchaser if they want to buy the duck
this may generate a secure dialog with the user
askApprovalByGUID(args[3],value)
askApproval returns GUID of authorized purchaser
if (value.m_Attribute.Type != PROPERTY_LONG)\
or not(value.m_bDirty):
sys.stderr.write\
("need authorisation to buy duck %d\n" \
%o args[1])
return
if we make it this far we have received approval
from the prospective purchaser of the duck (arg3)
sys.stderr.write("got approval %d " % value.m_bDirty)
sys.stderr.write("from guid %d\n" \

10

15

20

25

WO 03/081447 PCT/US03/04879

-97-

9% value.m_Attribute.Value.lLong)
the grabByGUID() method attempts to stuff the duck
into the purchaser's inventory list: it returns the
former location of the duck if the operation succeeds.
value.m_Attribute. Type = PROPERTY_VECTOR
value.m_idState = POSITION
value.m_typeObject =0
value.m_bDirty =0
value.m_Attribute.Value.vVector.x =0
value.m_Attribute.Value.vVector.y =0
value.m_Attribute.Value.vVector.z=0
grabyGUID \
args[1], args[2], args[3] ,args[4], args[5], value)
check the resulting value for the former location and
print out the result of this secure transaction....
if value.m_Attribute. Type != PROPERTY_VECTOR:
sys.stderr.write("failed to buy duck %d\n" \
% args[1])
else:
sys.stderr.write("bought duck %ld " % args[1])
sys.stderr.write("located at %of " % \
value.m_Attribute.Value.vVector.x)
sys.stderr.write(" , %f" % \
value.m_Attribute.Value.vVector.y) .
sys.stderr.write(" , %f" % \
value.m_Attribute.Value.vVector.z)
sys.stderr.write("\n")
return
HHHHHEHHHHEHH R end python example code

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-98 -

C. Creating Python Scripts

Of particular interest in the example Python module above is the
definition of the function

def buy a_duck(format, parameters):
that requires two arguments, a format argument and a parameters argument.
All rules enforcement script functions take these two arguments exactly. The
format argument is a text string that, using special control characters,
describes the order and type of the parameters that are packed into the second
text string argument.

The standard Python function unpack (provided in the struct module)
processes these two argument and produces a new fuple (an object containing
a variable list of values). The values contained in this tuple of unpacked
parameters are the unpacked arguments that will be processed by the function
itself:

args = unpack(format, parameters)

sys.stderr.write("python.buy_a_duck%s\n" % str(args)) ~ # print the
list

of unpacked

arguments

To find out how many unpacked arguments have been passed as
parameters the example calls len(...) to return the size of the list contained in
this new tuple. Each individual argument of this fuple may be referenced
singly using an index:

isinstance (args[1], types.IntType)

In this case the standard isinstance function (provided in the new
module) determines if unpacked argument number one is of type integef.

Rules enforcement scripts run on the Game Servers 405, as part of the
execution environment, and are bound to the Game Server 405 with interface
code that allows certain server functions written in C++ to be accessed by

callbacks from the Python scripts themselves, such as:

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-99 .

askApprovalByGUID(... , ...)

This C++ server method is called by the buy a duck function to
generate an approval dialog with the seller of the ‘duck’, whose response will
control whether or not the transfer actually takes place. If the approval for this
action is received, the script will call another C++ server method,
grabByGUID(...), which will attempt to stuff the purchased ‘duck’ into the
buyer’s inventory list.

In addition to the above utility methods, the Game Server 405 provides
other basic C++ bindings for interacting with objects and object state.
Validation of object types is accomplished via the callback method

getTypeByGUID (BNGUID Thing_id, CThingAttributeValue * value)

This C++ Server method returns the specified type of the object
specified by its Thing_id argument in a field of the CThingAttributeValue
class referenced by the value argument.

Interacting with object state is performed via the callback methods

setStateByGUID (BNGUID Thing_id, CThingAttributeValue * value)
and

" getStateByGUID (BNGUID Thing_id, CThingAttributeValue * value)

These C++ Server methods modify (set) and retrieve (get) the state
properties for a specific object by means of the CThingAttributeValue class
referenced by the value argument.

The CThingAttributeValue class is a special in/out parameter that
provides a variety of information about each state property. The fields of the
CThingAttributeValue class are provided here for reference:

class CThingAttributeValue

(:

public:

STATEID m_idState; // which specific state #
BNOBJECTTYPE m_typeObject; // object type referenced
FLAG m_bDirty; // has the value changed?
CTHINGATTRIBUTE m_Attribute; // the attribute value itself

10

15

20

25

WO 03/081447 PCT/US03/04879

- 100 -

3

Note that the m_Attribute field is itself an instance of the struct
CTHINGATTRIBUTE that includes within it a union of the LONG / FLOAT /
VECTOR / ENUM / STRING / TOKEN types. This allows the
CThingAttributeValue argument to represent any one of the primitive types
used for marshalling data to and from Server Things. It provides the means for
Python scripts to pass information into and receive information out of the C++
Server callback methods using a single, integrated mechanism regardless of
the underlying type of data transferred.

Using these and other C++ Server methods available for Python
callback allows the Rules Enforcement Engine to validate that the calling
object has the state properties to enable it to perform valid actions. The
Python script may check that the caller really has two gold coins before
allowing them to ‘buy_a duck’, and that the vendor is actually in possession

of a ‘duck’ to sell. In this way any set of rules may be correctly enforced.

d. Secure Requests, Dialogs, and Transactions

An important extension to the invocation of Python functions on the
Game Server 405 is the generation of secure requests, dialogs, and approved
transactions. The process of generating a secure request begins when the
Rules Enforcement Engine executes a Python script that requires obtaining
client approval for a particular action to take place. In the example Python
code for the buy_a duck () function, this process is initiated with the
execution of the callback function askApprovalByGUID () that transmits a
secure request to the prospective purchaser that includes the dialog prompt
"wanna buy a duck?" Embedded in the secure request is a copy of the original
Python packet that generated the request. Each secure request is numbered,
registered, and digitally signed twice (once with the signature of the originator
of the request, and once with the signature of the recipient of the request). The

first signature guarantees that the receiver cannot modify or tamper with the

[

10

15

20

25

WO 03/081447 PCT/US03/04879

-101 -

original request undetected, and the second signature vouches that the secure
request was generated by a trusted source (that is, some agent that shares a
secret/password with the recipient client).

Given these pieces of structured information, the client who receives a
secure request can perform validation to determine the authenticity and
accuracy or the request, as shown in FIG. 54. The client can display the text
prompt to the user whose approval is being sought. The client can (if that
approval is granted) indicate that the yes option was selected, can countersign
the request to make the selection binding. The client can reply to the request
by transmitting that countersigned packet back to its source Game Server to
complete the transaction and seal the deal.

When the source Game Server processes the approved, returned,
countersigned, and validated secure request packet, it additionally; checks to
make sure that the request number is valid, that it is still registered with the
system and has not already been satisfied, and that this request has not yet
expired. If all these conditions are true, the embedded Python invocation is

resubmitted for final execution.

10. Session Management Subsystem

As some participants will be transient (connecting and disconnecting to
the system), session management is employed to save and restore state

between sessions.

11. Daemon Controller
a. Enthralling Active Objects

Normally in the massively multi-player world, there are a multitude of
objects. Avatar objects are Things connected to clients (real people pushing
buttons and twitching joysticks somewhere out there on the Internet). Passive

objects are Things that can be manipulated but aren’t connected to any other

10

15

20

25

WO 03/081447 PCT/US03/04879

- 102 -

form of control mechanism (gold coins that can be picked up and put into
inventory, flags to capture, etc). Sentinels are specialized system objects that
intercept and rebroadcast messages from Game Server to Game Server across
Locale boundaries. The remaining objects form a special class: Active
Objects.

Active Objects are objects, some of which are also known as Non-
Player Characters (NPCs) that may have an independent life of their own; that
walk and talk, or run and hide, or perform other changes of state actively of
their own accord. These Non-Player Characters are not necessarily human
characters. They may be animals, enchanted swords, or magic portals that
take some positive role in directing game play. Some sort of Artificial
Intelligence (Al) is attributed to this class of objects, and their object state
changes appear to be directed by some sort of intelligent agent. Those
changes of object state do not have to be physical ones. They may range from
a proximity alarm that sounds a warning beacon if an Avatar approaches too
closely to a morning glory that furls its petals at the setting of the sun. In other
words, Active objects do something on their own or respond to external
stimuli without having to be controlled by a real person sitting at the controls.

Something, however, needs to direct the object state changes of these
Active objects. Packets to and from these objects need to be directed to an
intelligent agent acting for the control of each NPC in the game. Within the
Grid, that something is the Daemon Controller: an independent process (or
privileged proxy client) that logs into each Locale and manipulates the state of
every Active Thing within that Locale.

In other words, each Active object is enthralled by the Daemon
Controller, and behaves something like a zombie when the daemon is present.
Messages from each thrall flow to the daemon. Messages to each thrall flow
from the daemon. Each enthralled object is directed by the daemon to behave

according to the rules of each individual game.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-103 -

Note that each Non-Player Character may thus behave differently in
different situations and according to different personal properties within the
same game.

Since the Daemon Controller is performing as a proxy client, it has
complete access to the internal state of each enthralled NPC. If the Non-Player
Character is low on health points, the daemon knows it. If it is carrying an
axe, the Daemon Controller can swing it. Also, since messages from each
enthralled NPC are redirected to the Daemon Controller, the daemon sees
what the NPC sees. If a panther approaches the Non-Player Character, the
Daemon Controller is aware of it; if an eclipse covers the sun the Daemon
Controller senses the encroaching darkness. In this way, the daemon acts for
the interests of its enthralled Active objects.

Assigning the function of control of Non-Player Characters to a
privileged proxy client solves an additional problem as well: how to maintain
context agnosticism in the integration of Al into each Locale. Since it is
necessary to restrict the a priori knowledge of the Grid with respect to how
NPCs interact within any specific game, the general purpose mechanism of the
privileged proxy client is used to divide the world into pre-compiled and run-
time regimes: while the pre-compiled Game Servers must host multiple games
without modification, the run-time binding of objects to their controlling
agents is provided to incorporate game-specific logic into the virtual world.

The independent processes comprising the Daemon Controllers for
Grid Locales may reside anywhere: on dedicated hosts behind the firewall, on
client machines out in the community, even on a handheld device carried in
the system administrator’s pocket (although for reasons or performance this
last alternative is not preferred). Since the Daemon Controller process logs in
to the Grid just like any other client process, it can potentially be running
anywhere and on any machine connected to the Internet. It can be written in
any language, compiled or interpreted. It can be hosted on any processor, and

more powerful processing support can be provided at any time it becomes

10

15

20

25

WO 03/081447 PCT/US03/04879

-104 -

necessary or available. In short, the Daemon Controller is a flexible process

for directing the Artificial Intelligence of the Grid.

b. Demultiplexing Daemon Packets

The daemon provided with the Grid is, in one embodiment, a multi-
threaded process with support for packet demultiplexing. In one embodiment,
it is written in C++ and provides a framework for implementing game specific
logic packages within the context of a simple control protocol for sorting and
directing packets to their proper logical destination. In order to understand
how packets for NPCs within a given Locale are formatted and multiplexed
together by the Game Server 405 for transmission to the Daemon Controller,
and thus how the daemon demultiplexes these packets for processing, the User
Header for enthralled objects is discussed below (see also FIG. 55):

The User Header for the packets representing NPCs (or enthralled
objects) has special information passed in the general purpose fields PIP and
PRT. The PIP (Player IP) field includes the Globally Unique ID of the Active
object that generated this payload. The PRT (Player Port) field of this User
Header includes the object type of the Active object that the GUID represents.
The Daemon Controller shell code divides the incoming streams of payload
messages first by object type, and then by GUID.

During the process of demultiplexing, all messages of a given type are
divided by object type, to be handled by the same daemon Jogic module (for
example, all objects of type ANIMAL are handled by the module
ANIMAL _LOGIC). Within a given object type, objects of different GUIDs
are handled by individual confext elements (that is, each individual Active
object has its own LOCALE_CONTEXT). Each unique combination of
object type and GUID gets its own finite-state machine, which is called
asynchronously to process those payloads that are destined to it.

The packet payloads are divided up, parsed for content (block) type,

and symbolically represented by lexical tokens that are queued as input to each

10

15

20

25

WO 03/081447 PCT/US03/04879

- 105 -

finite-state machine based on the block type of each individual payload.
Additional tokens representing time relationships are inserted into the input
queue as well, to make certain that every finite-state machine is invoked at
least once every clock tick. When the finite-state machine for each Active
object is invoked, it is these synthetically generated tokens that drive the
transition from object state to object state, resulting in activity for each
individual thrall. As the input queue for each finite-state machine (see
FIG. 57) is processed, it changes the LOCALE_CONTEXT for that Active
object. When the input queue for each finite-state machine has been fully

drained, the logic_module waits for additional packet payload to arrive.

c. Daemon Events

Input payloads are parsed in the main event loop of the Daemon
Controller, producing input tokens or daemon events. Each daemon event
becomes one of several types, the most important being EVENT NEW,
EVENT SET, EVENT HERE, and EVENT DROP. Each daemon event
includes the Globally Unique ID of its primary target Thing (the object that
received this payload) and specific information about the secondary object that
originated this payload and the object type or that other object, as well as an
indication of which type of event this token represents, a pointer to the
Locale_state for the primary object, and a packet time stamp.

class CDaemonEvent

{
public:
BNGUID Thing;
BNGUID other;
BNTYPE otype;
ULONG event;
void * state;

CPacketTime timer;

10

15

20

25

30

WO 03/081447

- 106 -

ClInternalListNode<CDaemonEvent *> m_node;

35

The basic event types are:

- EVENT _NEW - this Thing has received a message about the
appearance of a new secondary object with Globally Unique ID other and type
otype.

- EVENT_SET — the properties of an existing secondary object
have been modified, and this Thing has been notified of the changes.

- EVENT_HERE - this Thing is in close proximity to an existing
secondary object: a collision is immanent.

- EVENT_DROP - the secondary object with Globally Unique
ID other and object type ofype has moved out-of-range: it is no longer within
this Thing’s region of interest.

- EVENT _TICK - a specific amount of time has elapsed since
the last token was generated: this Thing may continue to processes states that
are triggered by specific sequences of input events and are intended to
continue for a given period.

As a primary object (an Active object controlled directly by the
daemon) changes its state, it comes within range of other, secondary objects.
Depending on it region of interest, messages are generated about the
secondary object and forwarded to the Daemon Controller. Parsing these
input payloads, the daemon generates Daemon Events and passes the
secondary information through to the state logic module for the primary
object.

Every so often a tick event is generated synthetically and inserted into
the token stream. This allows periodic processing of state changes whether or
not a specific input trigger is found (for example, a barking dog may stop
barking after a few seconds of inactivity).

As an example, consider a case of just one such primary object "dog"
(of type animal) with the Globally Unique ID #1234 whose behavior is being
determined by the Daemon Controller (see FIG. 56).

PCT/US03/04879

10

15

20

25

WO 03/081447

-107 -

This Active object is walking along controlled by the daemon process.
It comes within range of a secondary object "flower" with Globally Unique ID
#5678 and type PLANT. As the dog approaches the flower, it receives its first
Daemon Event (of type NEW). Continuing to stroll, the dog brushes against
the flower, and receives a series of Daemon Events (of type HERE) as long as
it is in contact with that other object. In this case, the Daemon Controller
initiates an object state change in the dog, causing it to bark every time a
TICK event is synthetically generated eventually, the dog passes the flower
and leaves it behind, and as the secondary object passes out of its region of
interest it stops barking when it receives a final Daemon Event (of type
DROP). In this way, the daemon process may keep a list of event tokens that
represent the interactions between this flower and this dog, and the finite-state
machine ANIMAL LOGIC will be able to respond to these events.

d. NPC Logic

As each daemon event token is created, it is queued by the Daemon
Controller as input for one particular finite-state machine associated with each
NPC (see FIG. 57).

VII. Example System Operation
A. Gaming Example

Referring to FIG. 58, a flowchart depicting an embodiment of the
operation and control flow 5800 of Grid system 100 of the present invention is
shown. More specifically, control flow 5800 depicts, in flowchart form, an
example of multiple users in both the physical and synthetic worlds being
bridged during the execution of one instance of an interactive multi-user
gaming application. =~ The description of FIG. 58 is presented with

particularized reference to individual Multi-User Bridging system 100

PCT/US03/04879

10

15

20

25

30

WO 03/081447

- 108 -

components. Control flow 5800 begins at step 5802, with control passing
immediately to step 5804.

In step 5804, a user on a PC client device 112f ("PC user") designs a
new character for the instance of an interactive, multi-user gaming application
being executed within Grid system 100. As will be apparent to one skilled in
the relevant art(s), after reading the teachings herein, one of the servers 102
within Grid system 100 would ensure (by checking database 104) that the PC
user had "creation" permissions within the instance of the interactive, multi-
user gaming application being executed (i.e., played). Such a new character is
termed an avatar within the instance of the interactive, multi-user gaming
application. Each avatar can be classified in terms of three definitions: (1) role
- this encapsulates the role of that person or character (e.g. manager,
administrator, guardian, wizard, secretary, etc.); (2) attributes - this
encapsulates the person or character within the synthetic environment (e.g.,
hair color, eyes, description, inventory, location, etc.); and (3) name - which is
the identifier used when registering the avatar with Grid system 100.

In an embodiment of the present invention, such user would design a
"monster" character using one or more of the following steps: (a) use graphics
software such as 3D Studio Max or Maya to create a 3D visual representation
of the "monster" character; (b) use a JPEG file to create a 2D visual
representation of the "monster" character; (c) create an MP3 file that includes
audio content (i.e., sounds) that the "monster" character makes; (d) type text
associated with the "monster" character (e.g., "85 Ft. Monster"); (¢) use any
commercially available gaming character creation utilities to create the

"monster" character (e.g., www.creaturelabs.com by CyberLife Technology

Ltd. of Cambridge, England); (f) define user response rules to the "monster"
character (e.g., pressing #9999 will kill "monster" in 30 seconds); and (f)
define how the "monster" character moves within the synthetic environment
(e.g., x,y position to x',y' position at z rate).

In step 5806, the PC user would register the new "monster" charactef

with Grid system 100. That is, the communications flow described with

PCT/US03/04879

10

15

20

25

30

WO 03/081447 PCT/US03/04879

- 109 -

reference to FIG. 2 would allow the server 102 to centrally store the attributes
of the new character in application database 104.

In step 5808, server 102 would cause the new "monster” character to
be delivered to all other users playing the same instance of the interactive
multi-user gaming application as the PC user. Such deliver would be affected
by translator 108, under the control of server 102, via transportation network
103. Further, the server would place the new "monster" character in a PC
user-dictated location within the synthetic environment, say for example, the
Wall Street area of New York City.

As one skilled in the relevant art(s) would appreciate after reading the
description herein, the PC user would need to have "creator" rights within the
specific instance of the interactive multi-user gaming application in order to
create the new "monster" character in step 5808. Such rights would be
dictated by the identity, permissions, and gaming rules stored by Grid system
100 in application database 104.

In step 5810, a user on a laptop client device 112e ("laptop user")
would now "see" the new "monster" character on their laptop. More
specifically, the laptop user would see the "monster" character on the synthetic
representation of Wall Street in New York City. Grid system 100 ensures that
the "monster" character is properly rendered for each user utilizing a different
type of client device 112.

In step 5812, the laptop user sends a message to a user on a mobile
phone client device 112a ("mobile user"). Such message, for example, would
convey that "a new ‘monster’ character is two blocks from you." This
message may be sent because the mobile user is represented in the synthetic
environment as being on Wall Street in New York City because in the physical
world, they are.

In step 5814, the mobile user receives a signal (e.g., audio indication,
text message, voice mail message, graphic display, etc.) on client device 112a

reflecting the laptop user’s message sent in step 5812.

10

15

20

25

WO 03/081447 PCT/US03/04879

-110 -

In step 5816, the mobile user can interact with "monster" character
(i.e., manipulate the "monster" character entity). Such interaction would
involve, for example, pressing *9999 on their mobile phone client device 112a
to kill the "monster" character. In step 5818, the synthetic representation of
the "monster" character would disappear from the PC user’s, laptops user’s
and mobile user’s client devices. Again, Grid system 100 would ensure that
the "monster" character’s death would be properly rendered (using the proﬁer
signal) for each player’s different type of client device.

Control flow 5800 then ends as indicated by step 5820.

B. Alternate Embodiments

It should be understood that control flow 5800, which highlights the
functionality, scalability, and other advantages of Grid system 100, is
presented for example purposes only. The architecture of the present
invention is sufficiently flexible and configurable such that users may utilize
Grid system 100 in ways other than that shown in FIG. 58. Such alternate
embodiments are presented below.

In one embodiment, users of Multi-User Bridging system 100 may
further bridge the synthetic environment with the physical environment. More
specifically, in step 5816 of flow 5800, the mobile user may have taken a taxi
in order to "run away" from (i.e., interact with) the "monster" character. If the
mobile user also possessed a video camera client device 112, the video stream
of the taxi ride may be uploaded to server 102 (via transportation network 103
and translator 108), so that the video stream of the mobile user running away
from the "monster" character may be seen on the PC user’s and laptops user’s
client devices.

In another embodiment of the present invention, as one skilled in the
relevant art(s) will appreciate after reading the description herein, if the mobile

user’s taxi ride takes them outside of the Wall Street area of New York City,

10

15

20

25

WO 03/081447 PCT/US03/04879

- 111 -

then the synthetic representation of the mobile user would disappear from the
PC user’s and laptops user’s client devices.

In another embodiment of the present invention, as one skilled in the
relevant art(s) will appreciate after reading the description herein, a user may
create an MP3 file that includes audio content (e.g., a recorded voice message)
that is played on a registered client device owned by another player when that
player enters a specific area of the synthetic or physical environment. For
example, the PC user could specify that the "monster" character speaks each
time another player enters a specific building located on Wall Street in New
York City. That sound would be played, for example, on a player’s mobile
phone 112a when they walk into the physical building, or on a player’s PC
112f speaker when a player’s synthetic representation walks into the specified
building.

In yet another embodiment of the present invention, as one skilled in
the relevant art(s) will appreciate after reading the description herein,
application database 104 would contain billing information (i.e., address,
telephone, credit card or bank account number) for each player registered with
the ASP providing Grid system 100. This would allow players to actually
incorporate financial transactions into the synthetic and physical environment
bridging of the interactive multi-user gaming application being executed (i.e.,
played). More specifically, using the above taxi ride example, the mobile user
could charge the PC user for the physical environment taxi ride he was forced
to take in order to run away from the synthetic environment "monster"

character.

VIII. Simultaneous Display Across Various Client Devices

Having described the solution to the problem of maintaining referential
integrity between physical and synthetic environments, and describing an
example gaming flow, the simultaneous display across multiple client devices

112 will be further described. Such simultaneous display across multiple

10

15

20

25

WO 03/081447 PCT/US03/04879

~112 -

client devices 112 would occur when Grid system 100 ensures that the
"monster" character is properly rendered for each user utilizing a different type
of client device 112.

Within Grid system 100, there is a need to bridge not only RL and
synthetic environments, but also the need to bridge platforms (i.e., various
client devices 112) so that users (on various platforms) share a common
experience. That is, the delivery of the application delivered by Grid system
100 must be "cross-platform" (i.e., imposing the same interface on multiple
platforms with similar displays and interface conventions). It must also allow
interface conventions that make sense on each platform by translating from the
“interface space" (e.g., buttons and menus) to "action space" (e.g., shooting a
"monster" character or talking to a character) in a fashion that is transparent to
end-user/end-user platform 112. The multi-tiered architecture (i.e., a "back-
end” tier executing on server 102, a "middle" tier executing on translator 108,
and a "front-end" tier executing on client devices 112) of the present invention
supports this translation and allows users to interact in ways that are natural
extensions of the technology (i.e., client devices 112) they use to access the
shared environment provided by Grid system 100.

By employing a multi-tiered software architecture with object
abstraction/control on one tier, attribute translation on the middle tier, and
display on the client tier, the present invention provides a flexible architecture
for the inhabitation of shared, distributed environments for users of widely

disparate access platforms. These three tiers are detailed in more detail below.

A. Front-End Client Tier

The client device 112 provides a window into the shared environment,
as well as the interface that allows the user to interact with objects (and
people, by their extension). Data which have been translated to inherent
protocols by the middle tier will be rendered appropriately by the client device

112 software. Going in the other direction, the client device 112 software

10

15

20

25

WO 03/081447 PCT/US03/04879

- 113 -

provides natural interfaces for performing actions, which will in turn be
translated by the middle tier, communicated to the back-end tier, and re-
distributed to other client device 112 platforms, as appfopriate to the
environment and the context of the application(s) being executed within Grid
system 100.

As suggested above, in an embodiment of the present invention client
devices 112 can range from a text and menu-based system on a PDA device to
a real-time 3D rendering engine on a hardware-accelerated graphics
workstation.

For performance reasons, a particular client device 112 may perform
certain use-logic calculations locally, but the results of these calculations will
not be transmitted unmediated to other clients within system 100. For
example, collision detection (i.e., a player collides into a wall within a shared
environment) may be performed locally, but the back-end servers 102 must
perform heuristics to ensure that collision constraints are met before
transmitting updated position-states to other clients 112. If the heuristics are
not met, more detailed calculations can be performed on the server 102 to

disambiguate the situation (i.e., to avoid the "cheating problem").

B. Middle Tier

The middle tier of the present invention translates the interactions,
changes, and actions of objects to communications protocols which are
understood by the end-user’s client platform (i.e., device 112). In one
embodiment, on a sufficiently complex or powerful client device 112
platform, this layer can be vanishingly thin using "lossless" translations. As
will be appreciated by those skilled in the relevant art(s), "lossless" is a term
describing data compression algorithms which retain all the information in the
data, allowing it to be recovered perfectly by decompression. Examples

include GNU’s gzip utility and UNIX’s compress command.

10

15

20

25

WO 03/081447 PCT/US03/04879

-114-

In an alternative embodiment, on more modest client device 112
platforms, this layer may be complex and could involve "lossy" translations,
where certain data-elements are parsed out and not transmitted to the end-
client. As will be appreciated by those skilled in the relevant art(s), "lossy" is
a term describing a data compression algorithm that actually reduces the
amount of information in the data, rather than just the number of bits used to
represent that information. The lost information is usually removed because it
is subjectively less important to the quality of the data (usually an image or
sound) or because it can be recovered reasonably by interpolation from the
remaining data. The JPEG and MPEG formats are lossy algorithms.

In essence, the middle tier aims to only transmit "useful" information
to a particular client device 112 in order to conserve bandwidth within Multi-
User Bridging system 100. Thus, in an embodiment, the middle tier performs
both protocol level translations (e.g., from TCP/IP to WAP) and data-level
translations (e.g., parsing user objects to textual descriptions for transmission

to a wireless PDA client device, or as shown in control flow 5800 above).

C. The Back-End Tier

In an embodiment of the present invention, the back-end tier (i.e.,
server 102) includes all objects within an offered application (e.g., a particular
game title) are represented by software objects. Such objects include players,
users, Things and non-playing characters (NPCs) (i.e., characters within a
game not controlled by any player). The environment is divided into sectors
which are in turn, represented by objects which have their own controllers.

In an embodiment of the present invention, states and attributes--both
abstract and concrete--are abstracted into objects. This allows for complex
mappings of attributes to objects (e.g., one-to-one, many-to-one, or one-to-
many). Examples of concrete attributes (attributes that apply to an object) are:
color-applicable to graphic platforms, polygonal ("3D") model, textural

description and physical strength (used by a controller to determine outcome

10

15

20

25

30

WO 03/081447 PCT/US03/04879

- 115 -

of an action that requires strength). An example of an abstract attribute (an
attribute that can apply to multiple objects or classes of objects) is temperature
which can apply to all objects within a location, and can be updated based
upon environmental concerns which are not the result of any action of a
participant.

Attributes can contain information which is applicable to all platforms,
with filtering taking place on the middle tier. The database 104 provides a
store of persistent information on objects, and can communicate object
information to the back-end servers as needed. The database 104 also can
provide checkpointing of the environment when the re-creation of the
environment is necessary. As will be appreciated by those skilled in the
relevant art(s), "checkpointing" refers to the process of taking a snapshot of
the state of an executing process, so that the process can be later restarted for
the purpose of fault tolerance or load balancing.

In an embodiment, a zone object simplifies the representation of users’
movements in a shared environment when users are using disparate access
client devices 112. Take the example of a user on a graphical platform
moving from one room to another in a shared environment. This represents no
conceptual problem for other users of graphical devices 112 (e.g., desktop
112f), but could be complicated to represent to a wireless PDA device 112c.
Grid system 100 represents the players in the zone as attributes of the zone
object. When a new player enters the zone, an event is triggered so that this
information is communicated to the other users in the room. These player
objects in turn have attributes that describe the abilities of their client device
112 platform (which is used in the middle tier to determine which description
attribute (i.e., polygonal model, textual description, etc.) is transmitted to the
other users (i.e., players).

The back-end tier has access to all attributes of all objects--both public
and private attributes. Some attributes, however, are flagged private so that
they will never be transmitted to client devices. This is important in a

distributed environment because the client devices 112 cannot be relied upon

10

15

20

25

WO 03/081447 PCT/US03/04879

-116 -

to behave correctly with the information that is transmitted to them (the game

users "cheating problem").

IX. Environment

The present invention may be implemented using hardware, software
or a combination thereof and may be implemented in one or more computer
systems or other processing systems. An example of a computer system 5900
is shown in FIG. 59. The computer system 5900 represents any single or
multi-processor computer. In conjunction, single-threaded and multi-threaded
applications can be used. Unified or distributed memory systems can be used.
Computer system 5900, or portions thereof, may be used to implement the
present invention. For example, the system 100 of the present invention may
comprise software running on a computer system such as computer system
5900.

In one example, the system 100 of the present invention is
implemented in a multi-platform (platform independent) programming
language such as JAVA, programming language/structured query language
(PL/SQL), hyper-text mark-up language (H’I_‘ML), practical extraction report
language (PERL), common translator interface/structured query language
(CGI/SQL) or the like. Java-enabled and JavaScript-enabled browsers are
used, such as, Netscape, HotJava, and Microsoft Explorer‘browsers. Active
content Web pages can be used. Such active content Web pages can include
Java applets or ActiveX controls, or any other active content technology
developed now or in the future. The present invention, however, is not
intended to be limited to Java, JavaScript, or their enabled browsers,
developed now or in the future, as would be apparent to a person skilled in the
relevant art(s) given this description.

In another example, the system 100 of the f)resent invention, may be
implemented using a high-level programming language (e.g., C or C++) and

applications written for the Microsoft Windows 2000, Linux or Solaris

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-117 -

environments. It will be apparent to persons skilled in the relevant art(s) how
to implement the invention in alternative embodiments from the teachings
herein.

Computer system 5900 includes one or more processors, such as
processor 5944. One or more processors 5944 can execute software
implementing the routines described above. Each processor 5944 is connected
to a communication infrastructure 5942 (e.g., a communications bus, cross-
bar, or network). Various software embodiments are described in terms of this
exemplary computer system. After reading this description, it will become
apparent to a person skilled in the relevant art how to implement the invention
using other computer systems and/or computer architectures.

Computer system 5900 can include a display interface 5902 that
forwards graphics, text, and other data from the communication infrastructure
5942 (or from a frame buffer not shown) for display on the display unit 5930.

Computer system 5900 also includes a main memory 5946, preferably
random access memory (RAM), and can also include a secondary memory
5948. The secondary memory 5948 can include, for example, a hard disk
drive 5950 and/or a removable storage drive 5952, representing a floppy disk
drive, a magnetic tape drive, an optical disk drive, etc. The removable storage
drive 5952 reads from and/or writes to a removable storage unit 5954 in a well
known manner. Removable storage unit 5954 represents a floppy disk,
magnetic tape, optical disk, etc., which is read by and written to by removable
storage drive 5952. As will be appreciated, the removable storage unit 5954
includes a computer usable storage medium having stored therein computer
software and/or data.

In alternative embodiments, secondary memory 5948 may include
other similar means for allowing computer programs or other instructions to
be loaded into computer system 5900. Such means can include, for example, a
removable storage unit 5962 and an interface 5960. Examples can include a
program cartridge and cartridge interface (such as that found in video game

console devices), a removable memory chip (such as an EPROM, or PROM)

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-118 -

and associated socket, and other removable storage units 5962 and interfaces
5960 which allow software and data to be transferred from the removable
storage unit 5962 to computer system 5900.

Computer system 5900 can also include a communications interface
5964. Communications interface 5964 allows software and data to be
transferred between computer system 5900 and external devices via
communicatidns path 5966. Examples of communications interface 5964 can
include a modem, a network interface (such as Ethernet card), a
communications port, interfaces described above, etc. Software and data
transferred via communications interface 5964 are in the form of signals
which can be electronic, electromagnetic, optical or other signals capable of
being received by communications interface 5964, via communications path
5966. Note that communications interface 5964 provides a means by which
computer system 5900 can interface to a network such as the Internet.

The present invention can be implemented using software running (that
is, executing) in an environment similar to that described above. In this
document, the term "computer program product” is used to generally refer to
removable storage unit 5954, a hard disk installed in hard disk drive 5950, or a
carrier wave carrying software over a communication path 5966 (wireless link
or cable) to communication interface 5964. A computer useable medium can
include magnetic media, optical media, or other recordable media, or media
that transmits a carrier wave or other signal. These computer program
products are means for providing software to computer system 5900.

Computer programs (also called computer control logic) are stored in
main memory 5946 and/or secondary memory 5948. Computer programs can
also be received via communications interface 5964. Such computer
programs, when executed, enable the computer system 5900 to perform the
features of the present invention as discussed herein. In particular, the
computer programs, when executed, enable the processor 5944 to perform
features of the present invention. Accordingly, such computer programs

represent controllers of the computer system 5900.

10

15

20

25

WO 03/081447 PCT/US03/04879

-119 -

The present invention can be implemented as control logic in software,
firmware, hardware or any combination thereof. In an embodiment where the
invention is implemented using software, the software may be stored in a
computer program product and loaded into computer system 5900 using
removable storage drive 5952, hard disk drive 5950, or interface 5960.
Alternatively, the computer program product may be downloaded to computer
system 5900 over communications path 5966. The control logic (software),
when executed by the one or more processors 5944, causes the processor(s)
5944 to perform functions of the invention as described herein.

In another embodiment, the invention is implemented primarily in
firmware and/or hardware using, for example, hardware components such as
application specific integrated circuits (ASICs). Implementation of a
hardware state machine so as to perform the functions described herein will be

apparent to persons skilled in the relevant art(s) from the teachings herein.

X. Conclusion

It will be appreciated that while the invention has been described
primarily in terms of game terminology, it is not limited to that particular
application, and is applicable more generally to such fields as concurrent
engineering, to collaborative environments, simulations and distributed work
flow environment. The invention is also applicable to such fields as
construction engineering, where construction machinery can be equipped
transmitters that are connected to the Grid. It is also applicable to military war
games, manufacturing or distributed telepresence.

While various embodiments of the present invention have been
described above, it should be understood that they have been presented by way
of example, and not limitation. It will be apparent to persons skilled in the
relevant art that various changes in form and detail may be made therein
without departing from the spirit and scope of the invention. This is especially
true in light of technology and terms within the relevant art(s) that may be

WO 03/081447 PCT/US03/04879

-120 -

later developed. Thus, the present invention should not be limited by any of .
the above-described exemplary embodiments, but should be defined only in

accordance with the following claims and their equivalents.

10

15

20

25

WO 03/081447 PCT/US03/04879

- 121 -

WHAT IS CLAIMED IS:

1. A method of managing a collaborative process comprising:
defining a plurality of locales on a plurality of servers;
creating a plurality of objects corresponding to players in the
plurality of locales; and
mediating object state of the objects between the locales in a

seamless manner so that the locales form a seamless world.

2. The method of claim 1, wherein the plurality servers are hosted

on multiple hosts.

3. The method of claim 1, wherein the objects include non-player

characters.

4. The method of claim 1, wherein the object state is mediated by

exchange of context-agnostic information across process boundaries.

5. The method of claim 4, further including syntactic validation

during the exchange.

6. The method of claim 1, wherein the collaborative process is a
game.

7. The method of claim 1, wherein the collaborative process is a
simulation task.

8. The method of claim 1, wherein the collaborative process

includes telepresence.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

- 122 -

9. The method of claim 1, wherein the object state is distributed

asymmetrically between the servers.

10. The method of claim 1, wherein sentinels are used to mediate

object state between two different servers of the plurality of servers.

11. The method of claim 1, wherein the plurality of servers
includes a first server and a second server, the method further comprising:
launching a proxy sentinel from the first server into the second
server;
starting a stub sentinel on the first server to correspond to the
proxy sentinel; and
communicating the object state from the proxy sentinel to the

stub sentinel.

12. The method of claim 11, wherein the proxy sentinel is a sink
for object state information of objects on the second server, and the stub
sentinel is a source for the object state information of objects on the second

server.

13. The method of claim 12, wherein the stub sentinel creates ghost
objects that correspond to the objects on the second server that come in

contact with the proxy sentinel.

14. The method of claim 11, wherein the object state of an object

on the first server is transmitted to multiple objects on the second server.

15. The method of claim 1, wherein only a subset of the object

state is mediated.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-123 -

16. The method of claim 1, further comprising moving an object

seamlessly from one host to another host.

17. The method of claim 1, further comprising moving an object

seamlessly from one server to another server.

18. The method of claim 1, wherein additional locales can be added

dynamically to the collaborative process to expand the seamless world.

19. The method of claim 1, wherein additional servers running
additional locales can be added dynamically to the collaborative process to

expand the seamless world.

20. The method of claim 1, wherein each locale is a thread in a

single server.

21. The method of claim 1, wherein the object state is mediated

using proxies.

22. The method of claim 1, wherein the object state is mediated

asymmetrically between the servers involved in the mediating step.

23. A method of distributing object state across a plurality of hosts
comprising:
initiating a plurality of server processes on the multiple hosts;
defining a plurality of objects whose object state is maintained
by a corresponding server process; and
mediating exchanges of object state information between the
plurality of objects such that the plurality of objects perceive a seamless world

formed by the server processes residing on multiple hosts.

10

15

20

25

WO 03/081447 PCT/US03/04879

-124 -

24. The method of claim 23, wherein only a subset of the object

state for each object is exchanged.

25. The method of claim 23, wherein the object state is transmitted

as an abstraction.

26. The method of claim 23, wherein the plurality of server

processes are hosted on multiple hosts.

217. The method of claim 23, wherein the objects also include non-

player characters.

28. The method of claim 23, wherein the object state is mediated

by exchange of context agnostic information across process boundaries.

29. The method of claim 23, wherein sentinels are used to marshal
object state between two different server processes of the plurality of server

processes.

30. The method of claim 23, wherein the plurality of server
processes includes a first server process and a second server process, and
further including :

launching a proxy sentinel from the first server process into the
second server process,
starting a stub sentinel on the first server process to correspond
to the proxy sentinel; and
Z communicating the object state from the proxy sentinel to the

stub sentinel.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

- 125 -

31. The method of claim 30, wherein the proxy sentinel is a sink
for object state of objects on the second server process, and the stub sentinel is

a source for the object state of objects on the second server process.

32. The method of claim 31, wherein the stub sentinel creates ghost
objects that correspond to the objects on the second server process that come

in contact with the proxy sentinel.

33. The method of claim 30, wherein the object state of an object
on the first server process is transmitted to multiple objects on the second

S€rver process.

34. The method of claim 23, wherein an object can seamlessly

move from one host to another host.

35. The method of claim 23, wherein an object can seamlessly

move from one server process to another server process.

36. The method of claim 23, wherein the object state is mediated

using proxies.

37. A method of distributing object state across server process

boundaries comprising:

initiating a plurality of server processes;

defining a plurality of objects whose object state is maintained
by a corresponding server process;

marshalling the object state on a first server process using a
Network Protocol Stack (NPS) and at least one NPS packet;

transmitting the object state across a process boundary to a
second server process; and

de-marshalling the object state on the second server.

10

15

20

25

30

WO 03/081447

-126 -

38. The method of claim 37, further including transmitting the
object state of an object on the first server process to multiple objects on the

second server process.

39. The method of claim 37, further including transmitting

heartbeat packets with a beat that increases as packet traffic decreases.

40. A method of distributing object state across server process

boundaries comprising:

initiating a plurality of server processes;

defining a plurality of objects whose object state is maintained
by a corresponding server process;

initiating a message sink for the object state on a first server
process; and

creating a message source for the object state on the second
server process such that the message source transmits the object state of

objects on the first server process to objects on the second server process.

41. A method of managing a collaborative process comprising:

initiating a plurality of server processes;

initiating at least one gateway connected to the plurality of
server processes;

directing data from a user to a server process by performing a
discovery process to match the user to the server process; and

dynamically redirecting the data from the user to another server
process when a user moves from one server process to the another server

process.

42. The method of claim 41, wherein the gateway dynamically

routes instant messages through the discovery process and dynamic redirection

to another gateway.

PCT/US03/04879

10

15

20

25

30

WO 03/081447 PCT/US03/04879

- 127 -

43, The method of claim 41, wherein the discovery process is

performed in a multicast manner.

44, The method of claim 41, wherein the gateway acts as a proxy

for a user for transmission of data from the user to a matched server process.

45. A method of managing a collaborative process comprising:

defining a plurality of objects on a plurality of servers, each
server having a Network Protocol Stack; and

exchanging information about state of the objects between the
servers using their Network Protocol Stacks,

wherein, during the exchanging step, reliable packets and
unreliable packets are exchanged such that only dropped reliable packets are
resent upon notification from a corresponding Network Protocol Stack to a

sender of a dropped packet.

46. A method of managing a collaborative process comprising:
initiating at least one gateway connected to a plurality of hosts;
performing a discovery process to match a user to a host when

a user sends data to an object residing on at least one of the hosts; and
redirecting the data from the user to another host when the

object moves from one host to the another host.

47. The method of claim 46, further including binding the user to
an Identity residing on one of the plurality of hosts.
48. The method of claim 46, further including authenticating the

user.

49. The method of claim 46, wherein the data is sent in a context

agnostic manner.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

- 128 -

50. The method of claim 46, wherein the Identity corresponds to an

Avatar.

51. The method of claim 46, further including blocking messages

from a user when the messages exceed a predetermined quota.

52. The method of claim 46, further including syntactically

validating packets sent from the user to an object on the plurality of hosts.

53. A method of conducting a distributed secure transaction

comprising:

receiving a proposal the distributed secure transaction between
a first party and a second party, wherein the first party and the second party
are represented by object states distributed across a plurality of servers;

receiving approval for the distributed secure transaction from
the first party and the second party;

mediating the distributed secure transaction across the plurality
of servers;

verifying that object states of objects maintained on the
plurality of servers before and after the distributed secure transaction are valid;
and

verifying that the distributed secure transaction is consistent

with the original proposal for the distributed secure transaction.

54. A method of distributing object state across locale boundaries
comprising:
initiating a plurality of locale threads;
defining a plurality of objects whose object state is maintained
in the locale threads;

changing the object state of at least one object in a first locale;

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-129 -

proxying marshaled data representing the changed object state
through a proxy sentinel at the first locale to its corresponding stub sentinel at
a second locale;

distributing the marshaled data through the stub sentinel to a

receiving object at the second locale.

55. A method of effecting a distributed secure transaction

comprising:

receiving a proposal for a transaction from a first user;

verifying that the proposal is genuine;

securing the proposal against tampering with a first password;

embedding the sealed proposal in a secure message, the secure
message being sealed with a second password;

transmitting the secure message to a second user;

receiving the secure message from the second user, wherein the
authenticity of the secure message has been verified, and the secure message
has been countersigned by the second user;

verifying that the secure message has been properly
countersigned by the second user; and

executing the transaction.

56. The method of claim 55, further including registering the

proposal prior to embedding.

57. The method of claim 55, further including preserving atomicity

of the transaction.

58. The method of claim 55, further including preserving

consistency of the transaction.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

- 130 -

59. The method of claim 55, further including preserving isolation

of the transaction.

60. The method of claim 55, further including preserving durability

of the transaction.

61. A system for managing a collaborative process comprising:
means for defining a plurality of locales on a plurality of
servers;
means for creating a plurality of objects corresponding to
players in the plurality of locales; and
means for mediating object state of the objects between the

locales in a seamless manner so that the locales form a seamless world.

62. A system for distributing object state across a plurality of hosts

comprising:

means for initiating a plurality of server processes on the
multiple hosts;

means for defining a plurality of objects whose object state is
maintained by a corresponding server process; and

means for mediating exchanges of object state information
between the plurality of objects such that the plurality of objects perceive a

seamless world formed by the server processes residing on multiple hosts.

63. A system for distributing object state across server process
boundaries comprising:
means for initiating a plurality of server processes;
means for defining a plurality of objects whose object state is
maintained by a corresponding server process;
means for marshalling the object state on a first server process

using a Network Protocol Stack (NPS) and at least one NPS packet;

10

15

20

25

30

WO 03/081447
-131-

means for transmitting the object state across a process
boundary to a second server process; and

means for de-marshaling the object state on the second server.

64. A system for distributing object state across server process

boundaries comprising:

means for initiating a plurality of server processes;

means for defining a plurality of objects whose object state is
maintained by a corresponding server process;

means for initiating a message sink for the object state on a first
server process; and

means for creating a message source for the object state on the
second server process such that the message source transmits the object state

of objects on the first server process to objects on the second server process.

65. A system for managing a collaborative process comprising:

means for initiating a plurality of server processes;

means for initiating at least one gateway connected to the
plurality of server processes;

means for directing data from a user to a server process by
performing a discovery process to match the user to the server process; and

means for dynamically redirecting the data from the user to
another server process when a user moves from one server process to the

another server process.

66. A system for managing a collaborative process comprising:
means for defining a plurality of objects on a plurality of
servers, each server having a Network Protocol Stack; and
means for exchanging information about state of the objects

between the servers using their Network Protocol Stacks,

PCT/US03/04879

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-132-

wherein, during the exchange of information, reliable packets
and unreliable packets are exchanged such that only dropped reliable packets
are resent upon notification from a corresponding Network Protocol Stack to a

sender of a dropped packet.

67. A system for managing a collaborative process comprising:
means for initiating at least one gateway connected to a
plurality of hosts;
means for performing a discovery process to match a user to a
host when a user sends data to an object residing on at least one of the hosts;
and
means for redirecting the data from the user to another host

when the object moves from one host to the another host.

68. A system for conducting a distributed secure transaction

comprising:

means for receiving a proposal the distributed secure
transaction between a first party and a second party, wherein the first party and
the second party are represented by object states distributed across a plurality
of servers;

means for receiving approval for the distributed secure
transaction from the first party and the second party;

means for mediating the distributed secure transaction across
the plurality of servers;

means for verifying that object states of objects maintained on
the plurality of servers before and after the distributed secure transaction are
valid; and

means for verifying that the distributed secure transaction is

consistent with the original proposal for the distributed secure transaction.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

- 133 -

69. A system for distributing object state across locale boundaries

comprising:

means for initiating a plurality of locale threads;

means for defining a plurality of objects whose object state is
maintained in the locale threads;

means for changing the object state of at least one object in a
first locale;

means for proxying marshaled data representing the changed
object state through a proxy sentinel at the first locale to its corresponding stub
sentinel at a second locale; and

means for distributing the marshaled data through the stub

sentinel to a receiving object at the second locale.

70. A system for effecting a distributed secure transaction

comprising:

means for receiving a proposal for a transaction from a first
user;

means for verifying that the proposal is genuine;

means for securing the proposal against tampering with a first
password;

means for embedding the sealed proposal in a secure message,
the secure message being sealed with a second password;

means for transmitting the secure message to a second user;

means for receiving the secure message from the second user,
wherein the authenticity of the secure message has been verified, and the
secure message has been countersigned by the second user;

means for verifying that the secure message has been properly
countersigned by the second user; and

means for executing the transaction.

10

15

20

25

30

WO 03/081447 PCT/US03/04879

- 134 -

71. A computer program product for managing a collaborative
process, the computer program product comprising a computer useable
medium having computer program logic recorded thereon for controlling a
processor, the computer program logic comprising:

a procedure that defines a plurality of locales on a plurality of
servers;

a procedure that creates a plurality of objects corresponding to
players in the plurality of locales; and

a procedure that mediates object state of the objects between

the locales in a seamless manner so that the locales form a seamless world.

72. A computer program product for distributing object state across

a plurality of hosts, the computer program product comprising a computer
useable medium having computer program logic recorded thereon for
controlling a processor, the computer program logic comprising:

a procedure that initiates a plurality of server processes on the
multiple hosts;

a procedure that defines a plurality of objects whose object
state is maintained by a corresponding server process; and

a procedure that mediates exchanges of object state information
between the plurality of objects such that the plurality of objects perceive a

seamless world formed by the server processes residing on multiple hosts.

73. A computer program product for distributing object state across
server process boundaries, the computer program product comprising a
computer useable medium having computer program logic recorded thereon
for controlling a processor, the computer program logic comprising:
a procedure that initiates a plurality of server processes;
a procedure that defines a plurality of objects whose object

state is maintained by a corresponding server process;

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-135-

a procedure that marshals the object state on a first server
process using a Network Protocol Stack (NPS) and at least one NPS packet;

a procedure that transmits the object state across a process
boundary to a second server process; and

a procedure that de-marshals the object state on the second

server.

74. A computer program product for distributing object state acrosé

server process boundaries, the computer program product comprising a
computer useable medium having computer program logic recorded thereon
for controlling a processor, the computer program logic comprising:

a procedure that initiates a plurality of server processes;

a procedure that defines a plurality of objects whose object
state is maintained by a corresponding server process;

a procedure that initiates a message sink for the object state on
a first server process; and

a procedure that creates a message source for the object state on
the second server process such that the message source transmits the object
state of objects on the first server process to objects on the second server

process.

75. A computer program product for managing a collaborative
process, the computer program product comprising a computer useable
medium having computer program logic recorded thereon for controlling a
processor, the computer program logic comprising:

a procedure that initiates a plurality of server processes;

a procedure that initiates at least one gateway connected to the
plurality of server processes;

a procedure that directs data from a user to a server process by

performing a discovery process to match the user to the server process; and

10

15

20

25

30

WO 03/081447 PCT/US03/04879

-136 -

a procedure that dynamically redirects the data from the user to
another server process when a user moves from one server process to the

another server process.

76. A computer program product for managing a collaborative
process, the computer program product comprising a computer useable
medium having computer program logic recorded thereon for controlling a
processor, the computer program logic comprising:

a procedure that defines a plurality of objects on a plurality of
servers, each server having a Network Protocol Stack; and

a procedure that exchanges information about state of the
objects between the servers using their Network Protocol Stacks,

wherein, during the exchange of information, reliable packets
and unreliable packets are exchanged such that only dropped reliable packets
are resent upon notification from a corresponding Network Protocol Stack to a

sender of a dropped packet.

77. A computer program product for managing a collaborative
process, the computer program product comprising a computer useable
medium having computer program logic recorded thereon for controlling a
processor, the computer program logic comprising:

a procedure that initiates at least one gateway connected to a
plurality of hosts;

a procedure that performs a discovery process to match a user
to a host when a user sends data to an object residing on at least one of the
hosts; and

a procedure that redirects the data from the user to another host

when the object moves from one host to the another host.

78. A computer program product for conducting a distributed

secure transaction, the computer program product comprising a computer

10

15

20

25

30

WO 03/081447 PCT/US03/04879

- 137 -

useable medium having computer program logic recorded thereon for
controlling a processor, the computer program logic comprising:

a procedure that receives a proposal the distributed secure
transaction between a first party and a second party, wherein the first party and
the second party are represented by object states distributed across a plurality
of servers;

a procedure that receives approval for the distributed secure
transaction from the first party and the second party;

a procedure that mediates the distributed secure transaction
across the plurality of servers;

a procedure that verifies that object states of objects maintained
on the plurality of servers before and after the distributed secure transaction
are valid; and

a procedure that verifies that the distributed secure transaction

is consistent with the original proposal for the distributed secure transaction.

79. A computer program product for distributing object state across
locale boundaries, the computer program product comprising a computer
useable medium having computer program logic recorded thereon for
controlling a processor, the computer program logic comprising:

a procedure that initiates a plurality of locale threads;

a procedure that defines a plurality of objects whose object
state is maintained in the locale threads;

a procedure that changes the object state of at least one object
in a first locale;

a procedure' that proxies marshaled data representing the
changed object state through a proxy sentinel at the first locale to its
corresponding stub sentinel at a second locale; and

a procedure that distributes the marshaled data through the stub

sentinel to a receiving object at the second locale.

WO 03/081447 PCT/US03/04879

- 138 -

80. A computer program product for effecting a distributed secure
transaction, the computer program product comprising a computer useable
medium having computer program logic recorded thereon for controlling a
processor, the computer program logic comprising:
5 a procedure that receives a proposal for a transaction from a
first user;
a procedure that verifies that the proposal is genuine;
a procedure that secures the proposal against tampering with a
first password;
10 a procedure that embeds the sealed proposal in a secure
message, the secure message being sealed with a second password;
a procedure that transmits the secure message to a second user;
a procedure that receives the secure message from the second
user, wherein the authenticity of the secure message has been verified, and the
15 secure message has been countersigned by the second user;
verifies that the secure message has been properly
countersigned by the second user; and

a procedure that executes the transaction.

PCT/US03/04879

WO 03/081447

1/60

L/PSA'69-7020

qcli

m/_vwcoo

awen

001

MIOMIBN
uonjeuodsuel |

ecll

SlIqoIN

1 "Old

lajjonuo)n
uowee(

N

801na(

uonoslfold euney

\QN/

petl

L —Cu<<dd

SUONRISHIOM
loise
awier) pue

Jadojeasg swer)

‘uoneisiuIipYy

le|jonuo)
uowaeq

N

Ot

uzok _.II_ B0}
4 4 N
uool 290!
asegele(
Aemaren _\ uoieolddy
K]
801 W_w
Y01
JEVNEIS JEVNEEIS BV
awen) awen awey)
uzol azot B201

PCT/US03/04879

WO 03/081447

2/60

2/PsA'69-¥020

00¢

$80IA8(]
welo
slesn

I

Aemarern)

¢ "Old

-

v

801

'

18]|0AuU0D
uowseq

L0}

c0l

0l

Y

aseqele(
uoneoljddy

=

PCT/US03/04879

WO 03/081447

3/60

€/PsA'69-7020

00€

€ "Old

0ee

(VdO) letayduad
alemy AjJeuoneiuellQ

$19]9W0I8[800Y PBIUBUQ-Z

BlR(] MBY 7

S1819W018|300Y PAIUSHO-A

(g-o1-v 10 -01-Q)
lojejsuel] eleq

mey A

$19]9W0JB[200Y PAUSHUO-X

weisAsqng JoRIISUBI |

BlRQ MBY X

074

W

WO 03/081447 PCT/US03/04879

4/60

108b

1

~ Gateway

| Gateway

102b

Games
Database

e
Game Server

108c
=]

= e

4

Gateway

Pen computer

Pen computer l_____l

IBM Comatible M:elcintosh Laptop computer
Macintosh

FIG. 4

0204-69.vsd/4

PCT/US03/04879

WO 03/081447

5/60

S/psn'69-¥020

G "Old

‘ BEY NI
v aseqeleq

saneIqr]
uald

pLID

PCT/US03/04879
6/60

WO 03/081447

9/pPsA'69-70c0

(xew m%a.:n_ 96)) _.._ 0 _ u.m-_ : m _ .._.: OU
S3A|l
oy o034 G908 X 91 IaAleg aseqejeqjuones|ddy

(xep gOZE) BYoeD W'Y 10 898
wiaysAg abfielo)s asudiapig

15-06kg x1LPWIAS DT paleys _(—Q_H.U—)- ﬂwol_& w_.mom mm-—MI—

Anlgejieay-ybiH

(sHod JaUiayi SAQAOD) X +)
1aED [Od 1BUiayls jsed penD — -
pAeD [Dd 19UIaYa 1geblo X 2 T g T

Wy 808 .u\ ;..r.r (sHod Puieyia sdawool X #)
SMdD ZYW00T X ¥ ~ * e 10d JPUisyl Jskd PEND
Janias aseqeleq § Jealsgyoejol suojosuuo) % piED [0d 1BUIaUE 19EBS
005+3 Ung (£ 2) ' O by Sy H (siesn 8981 - | Qlv)
.~ SAgW00 | [BUORIPRY \l.\ AU PIEH GO 8L X T
L) , N\ . Wy 801
19K0S804D . l..-.?.... - Nd ZUWO0e X 1
| oAEN - - 1anlag uonrauuod
q Q1RAld WH ®IHN paseq Od (X 2)
| HI0M)BN 1938013 ISEAUNY
HI10MIBH
aseqejeq 2)eqlld payopms sdqol
payayms sdasi

~ N |

(sHod 1Rudeyia sddinoo | X) YORAAS Jeusal
JE—— pieD 1Dd 1BUIBYIA IS8 PEND sdgw 001
pied [Dd Jeuiayia 1edlo (X £) —
(elgesn gogl - | Alvy) sdawool
afielo)s @O8L X -
L Wy 89T
s M1 2008 X € 2T e T,
Janias uonenddy Vi :._r
o
XN pased Od (X £) 2" (s hgperddns g oy M
Jaouejeg proT “
Y lsAnal L A2IN0N) F
N SHIAND PAFRY quuE_uq -
......- o, Fy

Oll_‘..\ "

9 "Old

PCT/US03/04879

WO 03/081447

7/60

2/psA'69-7020

"wIwo?
lenieg-1aMes

uoljediusyiny
uonezuoyiny

aABSG/peo 91eIS

Bunduog

L 'Ol

wawebeue
1selau| Jo Baly

soisAyd

JusweoIoju]
alind

dda

eweabeuep
uolsses

juswabeuel piooay
jo swipoquiy

uoljefe.bhy
alelsS

uonebedoid
2le1s

3oe1S
|000104d MYOMISN

O s1doed Uj sigyoed

PCT/US03/04879

WO 03/081447

8/60

8/PSA'69-¥020

S08

S3AILILNAAI

)

€08

8 "OId

S3AMVOO1

—)}

N

c08

| SINNODOV SHYLVAVY Q_ 908
/| SNOIsSING3d SONIHL [N\
08 ~ . 08
SANYD

108

PCT/US03/04879

WO 03/081447

9/60

6/PSA'69-¥020

6 "Old
0=7 anjep a1e1s
¢l=A anjep o181
0L=X anjep a1els
e yibuen]
1GG 15,6586 dweysowl |
JNY.L :Bby UOIESIILIONd
1002 ai
:9)dwex3y 19)oed
GOv Jenies A&, ere1s abueyo)
swen NOd4
Aemalen
S0V Jonies <
ouED Ol Z A X 1e we |

ajels [Ind

uoI19NJISU0Y 13)oed

SO

A

X0)7%

sajepdn aje1s [euondd.1p-1g

—~

oansouby awer)

saluadoad

PCT/US03/04879

WO 03/081447

10/60

0L/PSA'69-¥020

0l "Old

yibus| xew
yibusj uiw
P! uoluliap | Md
UOISIon aweb %j | Md
pr oweb 3} | Md

NOILINIHIQ ONIMLS

aneAn oads
anjen adA
anjen pinb
adAy Buiy;
pIuomuyep

7 ONIHLS ALYLS .

anjen bulls
yibus| Buiis
adAy Buiyy anjen” xew
pIuoniuiep enfeA” ulw
Prowss | Md P! uolunap | Md
Prourgy M | Md TOISIoA oWeb I | Md
TOISoA oweEDb 4J | Md Pr oweb M| Md
proweb JI | Md

NOILINIAIQ " NIMOL

enjen jeba|
PI uonRiuySp | Md
UoISoA oweb 3| Md
pr ouweb I | Md

P oEs
prougy
TOISIoA owiEb 3]
proweb 1}

Ad
Md
d
Ad

- N2MOL FLV1S

'NOLLINIITWONT

yibus| xew

ybus uiw
pr uoniuisp | Md
TOISOA oweb % | Md
pr oweb JI| Md

) enjeA 10}08A
[Tan[en 10}o8A
ToNn[eA 10J09A

adAy Buiyy
pI-uontuyep

NOLLINIAZQ HOLOIA

ProlEs
pr ouigr %
S SEINCITE
I oweb 3}

Ad
Ad
Ad
Ad

. ”HOLO3IA 3LVIS

anjeA” Xew

anfeA ulw
pr uoniuysp | Md
TOISIon oweDb Y] | Md
pr oweb 3} | Md

anjeA wnua
odAy Buiyy
pruoniuyep
P! 91e1s | Md
pr Bulgy 3} | Md
TioIS1on oweb Y] | Md
pr oweb 3 | Md
T WONT ALVIS
anjen 1eol}
adAy Buiyy
pIuoniuljep
pI 91eis | Md
pr bulgt f | Md
TOISI9A oweb 37 | Md
pr oweb i | Md

anjex xew

anjeA ulw
P UoIHuLep | Md
TiOISoA oweb 3y | Md
pr oweb | Md

_ vorawis

NOLLINIZIa ONOT -

anjeA buo|
adAy Buiyl
pIuousp
T otes | Md
pPr bUIgy ¥ | Md
TOISIon oWeED Y1 | Md
pr oweb 3} | Md
. BNOTELYLS

PCT/US03/04879

WO 03/081447

11/60

}1/PSA'69-¥020

L "OId

190ed-J0-pUa sejeoipul
TINN o ai swey

L

-dno.b y20|q 10 pus sajeolpul

TINN o yibuaT Yoold

salhq g 3dALENS M001d

S3AIHVYANNO9 AdOM OL Qvd TINN
S31AG V1va avd
avd TINN
avd ° w e
Jpulissweusssn, +
seikg g (,BuLisewreulasn,)us|ns u 1 s n
L YLva ooid
/
(uojns LINI
HL1ONAT
= H1lNY
seikg 2 1 3dAL HMO01d M20149
l4dd
AVMILYD OL |
did H3aA

selAg g HIHONIT M001g

SJ1AG ¢ -equinN UOISIaA

PCT/US03/04879

WO 03/081447

12/60

2H/PsSN'69-¥020

¢l "Old

SHIUYONNOE 13100 0l
salrepunoq aiq ¥ uo pus sdnoib %o0|q
HOLVYNINYAL dNOHD X004 avd TI0N
TINN X X X
salfg 91 x | x| x| x| x| x

paas~abusjieyd i V1va X004

l/

solhg g - AdAL MD0014

selepunoq a)Aq g uo pue sdnoib Jesn
HOLVYNIANYHIAL dNOYHD H3SN

1IN0 OL

x| x| x 1SOH
HLONIT
HiNV M007d
0
0 yaA

PCT/US03/04879

WO 03/081447

13/60

E1/PSA'69-¥020

€1 "Old

SHIHYANNOd L3100 OL

avd TINN
salig 91
(promssed yum TINN X X X
Umﬁmcm“mo:oo
paes~abus|eyd) AN x| x| x| x| x| x
I VLva Mo0o1d

/

seikg 2 i1 3dAL HM001d

AVMILYD OL |

x | x| x dsay

HLONTT

H1NV 3007d
1l4dd

did H3A

1411

0204-69.vsd/14

WO 03/081447 PCT/US03/04879
14/60
1401
CMD_LOGIN
local_time
"username"
Gateway Database
CMD_CHALLENGE
Server Server profiles
system_time l 1402 1403 ‘ —
pkey profileid
login_request_time ESTABLISH LOGIN FIND USERID, CHECK fkey useravatarsid
REQUEST TIME 1404 PROFILE - .
" 1405 FETCH USERID AND String passwor
CMD_AUTHENTICATE PASSWORD boolean active
- REQUEST TIME AS 1407 NEERT USERD
local_time SEED FORHASH | 1406 ’
7 LOGING_TIME, NULL
hash(login_request AUTHENTICATE HASH[—" 1408 INTO LOGINS user_avatars
_time, password) 1410 VALUE 1409 INSERT INTO SESSIONS fkey userid
] LOGINID, IP, PORT, -
START SESSION #N [~ fkey avatarid
CMD_NEWSESSION [« | s fic id
- SELECT USERID 15;1 9 1413 | INSERT GAMEID INTO ey gamel
system_time FROM LOGINS SESSIONS WHERE timestamp deleted
—- WHERE LOGINID = N SESSIONID = N
sessionid SEND AVATARID LIST SELECT AVATARID
NSERT SEAVERTD INSERT IP, PORT INTO FROM USER_AVATARS avatars _
CMD_PLAYGAME INTO LOGINS WHERE[—>] SESSIONS WHERE WHERE USERID =N pkey avatarid
I ' LOGINID = N SESSIONID =N INSERT AVATARID INTO fkey gameid
local_time SESSIONS WHERE oy thina
«— ey thingid
"game" PROXY < LOAD AVATAR SESSIONID = N - =
¢ SELECT AVATAR FROM | |_String description
PROXY || SELECT GAME ID FROM|—y| AVATARS WHERE
LIST_AVATARLIST SESSIONS WHRE AVATARID = N -
- SESSION 1D =N SELECT THINGID FROM things
system_time \ PROXY THINGS WHERE pkey thingid
- - ENFORCE RULES € GAMEID = N fkey qameid
list of avatarids SUBSELEGT FROW V_EJ
PROXY | ENFORCE RULES THINGS WHERE XYX position xyz
CMD_NEWAVATAR | IN RANGE orientation abc
- l¢—| ENFORCE RULES string scriptmodule
local_time PROXY 9 setip
avatarid ENFORCE RULES
\ PROXY users
<] key userid
BLOCK_AVATAR y PROXY pkey —
fkey profileid
system_time Game string username
<avatar> Server timestamp deleted
THING_SUBSCRIBE
local_time
thingid
v sessions
THING_NEW -
- games pkey sessionid servers logins
system_time
pkey gameid fkey loginid pkey serverid pkey loginid
<thing>
string gamename number ip number ip fkey userid
THING_MOVE number activeusers) number port number port fkey serverid
local_time number maxusers fkey gameid number users timestamp login
position, orientation string rules module fkey avatarid number maxusers | Jtimestamp logout

FIG. 14

PCT/US03/04879
15/60

WO 03/081447

405a 405b 405¢

__\\ ._\\ 14
SERVER 0 7 seRvER1 7 SERVER 2 7
4 GAME MANAGER N GAME MANAGER \ 4 GAME MANAGER A
e AME 1 T ™ "GAME 1 e ' GAME 1 \
| | LOCALEL12 || | LOCALEL.1.1 ! LOCALEL10 |
| i {XLOR:GOPO}| | | [X.LOL:GOPO | W { XLOL:GOPO ¢
m N A i | Y.LOR:GOP3 m i YLOLGOP2 & |
n et /1 N | LzL0maopt)
! SUBSCRIBE XLOI:31G1 _“ NI, S o -
___ SUBSCRIBE XLOI:S2G1 J . SUBSCRIBE YLO1:52G1 \ NO SUBSCRIPTIONS y
. _ AN / . \ i y
GAME PORT 0 | GAME PORT 1 GAME PORT 0 _ GAME PORT 1 GAME PORT 0 GAME PORT 1
I - ™ [} o - ¥ D] i
CERP->NOgPo> ZUD > VAL > OUP > R8T ~> ZUPo>
8Siougrsiw 85 50W 85552 22580283558 55589
S GMAOSGQM OSGZA o GOROSG1RUSG2R OSGOU
§3£05 385085 g8E08 eEzilozzslgBacl 98z i
SERF5220F5% EeRF5 2zxProlegProzelre =zxlF5H i
i w L L. [9 u.
© @ (@))
i i
PLAYER PORT 0 PLAYER PORT 1 PLAYER PORT 2 PLAYER PORT 3 PLAYER PORT 4 PLAYER PORT 5
T |
j GATEWAY.O H | a0t
/ GATEWAY MANAGER Il) _\
3D SESSIONMGR ¢ iNd HANDHELD SESSION z_mm“ LOGIN MANAGER 3
SAVATAR X N CRVATARZN (L T 7 AVATAR Y™, {PLAYER Y PLAYER Y PLAYER !
! GAMEPORT | | GAMEPORT | | ! | ! { GAMEPORT ! { PORT | PORT | PORT
m 1 i ! 1 I m “_ 1 i i 0 _ 3 m 1 H
\ SERVERO \ SERVER2 / || e % / ,,,.m.m@mmm.m\\ _ "BART" A "MARK’ A "JEREMY" [
\ SERVERO . WSERVERZS , _ |
. SESSION G.0 wmmw_wz g1 J SESSION H.0 SESSI®N H.1 LOGIN 0 LOGIN 1 LOGIN2
\ { - g
§ 1
CLIENT UDP PORT CLIENT UDP PORT SYSTEM CONTROL PORT
1 i 1
BART CLICKS ON MARK’S AVATAR 1
MARK’S AVATAR MOVEINTO CLIENT SENDS QUERY i
BART'S RANGE - , 1({ MARK UPDATES THE POSITION OF AVATAR Y
BART'S CLIENT RECEIVES RESULTS OF QUERY |
@4\\\@ ! FIG. 15
i JEREMY’S CLIENT IS IDLE i

0204-69.vsd/15

WO 03/081447

16/60

PCT/US03/04879

0204-69.vsd/16

AVATARS
PK,FK2,FK3 | GAME 1D
PK,FK2,FK3 | GAME VERSION
PK,FK2,FK3 | LOCALE ID
PK,FK2 PK_THING 1D
PK PK_AVATAR ID
FK1 FK_GAME_ID
FK1 FK_GAME_VERSION
DATE_CREATED
DATE_DELETED
. THNGs
PK,FK1,FK3,FK4 | GAME_ID
PK,FK1,FK3,FK4 | GAME_VERSION
PK,FK3,FK4 LOCALE ID
PK,FK4 PK THING ID
PK,FK4 PK_AVATAR ID
FK_AVATAR_ID

FK_SENTINEL_ID
FK_LAST_LOCALE
THING_TYPE
POSITION_I
POSITION_J
POSITION_K
ORIENTATION_A
ORIENTATION_B
ORIENTATION_C
RANGE
PRESENCE
ACTIVE

REGION
DATE_CREATED
DATE_DELETED

IDENTITY
PK PK_IDENTITY ID T
FK1 FK_ACCOUNT _ID
P! AT PK | PK_ACCOUNT ID
FK_GAME_ID
FK_GAME_VERSION EEE\';'%KEY
FK_LAST_LOCALE P | pay poRT
NAME PLAY_GAME
DESCRIPTION Ut | NAME
DATE_CREATED PASSWORD
DATE_DELETED DATE_CREATED
FK2,FK3 | GAME_ID DATE CELETES
FK2.FK3 | GAME_VERSION -
FK2 PK_THING_ID
FK2 LOCALE_ID T BOUNDS
+ FK2 | GAME_ID
T FK2 | GAME_VERSION
o -CAMES FK2 | LOCALE_ID
PK | GAME ID
PK | GAME VERSION FK3 | FK_GAME_ID
ﬂ FK3 | FK_GAME_VERSION
GAME_NAME FK1 | FK_THING_ID
DATE_CREATED FK_LOCALE_ID
DATE_DELETED BOUNDARY
'y NUM
——— NEXT
.~ ~LOCALES LAST
PK,FK1 | GAME ID o OE
PK,FK1 | GAME VERSION ORIGIN |
ID .
PK LOCALE ORIGIN
- ORIGIN_K
NORMAL_A
PORT .
TERRAIN_FILE ﬁggmbg
MAZE_FILE DATE_GREATED
DATE_CREATED DATE_DELETED
DATE_DELETED a

FIG. 16

WO 03/081447

PCT/US03/04879
17/60
~
3
2
(o))
©
%
o
(3]
o
VER T A—
SP SERVER PORT
SIP S
_ P SERVER IP
INITIATED BY GATEWAY VER RT MULTICAST BLGCK SELECT
AFTER AUTHENTICATION PIP LENGTH
BIOCR INIT NULL
LENGTH SELECT
NULL PAD
NULL NULL EOP
(end of payload) PAD TO OCTET
EOP (end of payload) NULL PaD
PAD TO QCTET VER SPT — SERVER PORT
sIp E—
GATEWAY PROXIES INTIALISATION MESSAGE(S) TO CLIENT — o SERVER IP
LENGTH SELECT = oNE RESPONSE
RESP <IDENTITY PER BLOCK
COOKIE> | <AVATAR
VER SPT COOKIE> strlen()
CLIENT REQUESTS
CHOICES SIP n a m e
—BLOCK
LENGTH SELECT strlen() d e
RQST strlen() s c r i
a s t r p t i o
i | n | g |Pap n | PAD LBE",\‘GCT';
NULL PAD SELECT RESP
EOP (end of payload)
NULL PAD <IDENTITY | COOKIE> ONE GHOICE
<AVATAR | COOKIE> OF
GATEWAY PROXIES SELECTION REQUEST TO CLIENT IDENTITY
strlen() n a PER
RESPONSE
m e strlen() BLOCK
VER SPT
CLEINT TAKES p d e s c
IDENTITY - . o :
BLOCK
LENGTH SELECT :
—| BND | <IDENTITY Pl e
GATEWAY BINDS CLIENT NULL PAD
TO THIS SERVER COOKIE> NULL
NULL PAD
EOP (end of payload NULL PAD EOP
of payload) (end of payload) | o OGTET BOUNDARIES

FIG. 17

WO 03/081447

18/60
G —_—
VER PT GAME PORT
Gip GAME IP
BLOCK ™ T eypopy
LENGTH
INIT | <IDENTITY Gm&mﬁggg%g”mw”. EN
COOKIE> NULL
NULL PAD
GATEWAY PROXIES EMBODIMENT REQUEST TO CLIENT X o ATTE?N Ay
VER PRT GAME POAT
\ PIP
AN - GAME IP
N | (enern | EMBODY
FROM CLIENT |
AVATAR NOT FAIL <AVATAR
EMBODIED /
/| cooxies NULL
/ NULL pAD
%
VER PRT GAME PORT
— PIP GAME IP
EMBODY
FROM CLIENT! LENGTH
AVATAR DONE | <AVATAR
EMBODIED
COOKIE> NULL
NULL PAD
VER GPT GAME PORT
S GIP GAME IP
LENGTH THING T
ERATED BY GATEWAYWH
INIT <AVATAR CLIENT EMBODIES AVATAR
COOKIE> NULL
NULL PAD

FIG. 18

PCT/US03/04879
@
S
g
[+23
©
<
o
3
VER SPT |7 semver PORT
— SiP | SERVERIP
LENGTH | EMBODY
RGST <TT':::;G [GLOBALY UNIQUE ID
< FOR AVATAR'S THING
COOKIE> | sugrypEs
<THING TYPE> LENGH
BUTTERALY POSITION
< i value >
<j value >
< k value >
[SUBELOCK
LENGH BUTTERRLY
OFIENTATION < i
value > <j
value > < k
value > SUEEOK
LENGH
BUTTERRLY VELOCITY
< i value >
<j value >
<k value >
SUBRLOCK
LENGTH BUTTERALY
ANGULAR .
VELOGTY <!
value > <j
value > < k
value > SUEELOCK
u LENGH
BUTTERALY ACCELERATION
< i value >
<j value >
<k value >
SUBELOCK
LBGH BUTTERALY
value > <j
value > < k
NOLLSUBBLOCK
LEGH NULL
NULL PAD

PCT/US03/04879

WO 03/081447

19/60

61/PSA'69-¥020

Asepunoq
a1Aq g o} pepped avd TINN
yibus) ebessaw,
10 Apoq HLONIT HLON]
paULap-18SN _waSm TINN 3HYSSIN TIN
)
/ 0} %mm nQ. .m. .m.
.AQ_. mEmm\tOQ S S & A
aweb ein) HENET
Aay oljgnd siy} 0} e <A3A
,obessew, puss
-{ ornand> anas
HL19DN3IT
L owes FOVSSIn No03d
— did
Hod swel
O ldd d3A
Aoy 1o}
dl / 1odswen
o1 Apoq

obessaw puas

61 "Old

avd
TINN
. HLONIT HLONT1
(ur pabbol ¥OOIETION | 3OVSSIW TINN
Apuaino j) pyo
aweu Ag J18sn oyped | U oA
si no.
Cu pu d I .:n 1—. _W. N,
HIENTT
<
Aoy ol|gnd sJosn s
’ 7' orand> DNId
H1DN31
. 39YSSIN Mo01d
— did
uod awe
d OI. 14Hd H3A

oweusn, 10}

Aayo11Qnd pue

dl / odauwen
Buid

10} Yyosess 0}
sweuIasn

QIND sdojsenbay

d] sJoisenbay

Jod sJojsanbay

avd
TINN
H19NT H19NTT
N0078 1NN FOVSSIW 1TNN
BN}
A B B)
M e S N,
HIENA <
TV JIM00D
H3asn> anid
HLOYN31
ADVYSSIAN M908
did
14d H3A

Jouweuisn, 1oj

dl / Yiodawe)
1senbay

WO 03/081447 PCT/US03/04879

20/60
VER PRT <
PIP 4———3J‘ USER HEADER:
L]-l . .
» BLOCK >z version (required)
| SECURE MESSAGE: Lenary | ES9A0R X% prayer port (reqp el
' SECURE | <PUBLIC o835 Player ip (required)
a single block containing S0BBLOCK .2 NOTE: port/ip for public ke
the recipient public key, <KEY LENGTH a % s porip for p 4
the respondant’s signature VER CHKSUM = |
A A -
4 SIGNATURE > -
requestor’s signature, ED | iESSAGE - 5 SIGNATURE HEADER:
the message request, LENGTH § é . .
and the (optional) RESP |<RESPONSE o5z version (required)
dialog blocks. fE9 chksum (required)
KEY> RE:PONSE =R signature (required)
»- NGTH | s
> VER CHKSUM >~ NOTE:: simple XOR of
—) u 9 "subblock length" bytes
RESPONSE HEADER: < REQUESTOR SIGNATURE > o % <z((including checksum)
SIGNED S5 =ZERO. .
version (required) ™ LENGTH <MESSAGE / o %
chksum (_require.d) RQST |<REQUEST o o
request_id (required) REQUEST]
. KEY> LENGTH
NOTE:: simple XOR of - .
"response length” bytes VER <option > <
(ineluding checksum) <REQUEST ID> <—J REQUEST HEADER:
— BLOCK
LENGTH THING version (required)
> SCRIPT | <CALLER option (required)
—_ SRR request_id (required)
SIGNATURE: COOKIE> option MUST be ZERO
<pyihon _1BOH when calculating signaturel
. = | SUBBLOCK
Signature is the 32 bit > LENGTH .
decimation of the MD5 ha BLOEK DIALOG option MAY be NON-ZERO
of "signed length" bytes LENGTH _if figuring countersignature
concatenated with the SOURCE <strlen>
password of the respondant - - - -
(public key required). u s r n P
9’ m’ Y pat;:i to S
- 2
COUNTERSIGNATURE: BLUTK yie REQUEST PAYLOAD:
Countersignat s th LENGTH DIALOG
ountersignature is the " "
32 bit decimation of the PROMPT | <strlen> Is“:ﬂ:?:;;?‘g;? th:’;:suesJ
MD5 hash of "signature” vp» | padto | BLOCK header plus the sum of
concatenated with the : 2byte | LENGTH the block lengths of the
password of ‘hei;::i)m"da t. DIALOG | ACCEPT request payload.
i (public key requ S
> <~0 > <strien>
g "y ey | SUBBLOCK
o ° l K LENGTH
RESPONSE PAYLOAD: <
PYTHON GUD —
u .. DIALOG BLOCKS:
' response length" bytes <THING COOKIE>
is the length of the responsge NULE .
header plus the sum of SUBBLOCK BLOCK pron'_lpt (Opt'.o nal)
the block lengths of the LENGTH LENGTH confirm (optu?nal)
response payload. DIALOG | REJECT abandon (optional)
p pay
<0 > <strlen> NOTE: since the dialog is
— — NUEE part of the signed messagge
N' | O | summock only someone who knows
NULL BLOCK BAD the SIGNATOR PASSWOR
LENGTH is able to authenticate
NULL PAD —eialogs-for-client-display.
——H———> .
sussLocK | MLILOCK
NTH :
NULL
PAD

FIG. 20

0204-69.vsd/20

PCT/US03/04879

WO 03/081447

21/60

12/PsA'69-¥020

i¢ "Old

d3LS HIVLS V JO
(€u 1) _ 3aNLINDVIN 40 H3aH0
NOIDIH LINN - -} 3HL NO SI LNIW313 NV

\. _ * - -
..\\ (...,(,.,., : .s_\ ‘
/ /(€ woh)
/ NGID3H TV.ANINTTI
4
/ /
/ \

7 \ 7 \\“\:

7 | - M
_%o. 1 _

& WOOH v 40
: JANLINDVIN 40 HIAHO FHL
————>NO SINOID3H-ans T¥O01 Y
\ (€ e 962) ,, :
Y\, NODIY-ans 1vo01 T
N H \\\\
~ NMOLTIVNS V 40
JANLINDVIN 40 43440 FHL
NO SI1 37TvO01V
.ﬂ,.k... _
(€ + 95559 SNOISNINIA WNNIXVIN)
3IvO01
(€ 4 960%) 01934-ans Vo0 SHONIAING M3ad Vv 40
NOD3d VOO - " JANLINDVIN 40 HIAHO FHL
/ : NO SI NOID3H V001V

N7

PCT/US03/04879

WO 03/081447

22/60

22/PSA'69-¥020

ASVO TvOIdAL
|

¢¢ ‘Old

JONHSHYd 40 NOIO3AH
e

_~Yg

€ HAAHIAS

LSHHILNI 40 NOIDZH o \

ASVO 1SHOM

[A-ENYES

L 4IAH3S

PCT/US03/04879

WO 03/081447

23/60

€2/PSA'69-7020

— ME WM T DN ME NN MK MM WR M K M e
: ' |
1HOd TOHLNOD WILSAS 1HOd dan LN3ND 1H0d dan N3O
% N
L NIDOT 0 NIBO1 u.w L'H NOISS3s OHNOISSAS 1'D NOISS3S 0D zWMouo
M I e T e LT
I _m w 0 w m 2 "UaAYAS x» _"‘ } w w i W [ARSENRNCE R ! m n.lv..
mN -G—m 1dod i didod o i 0 JHOdAWYD | m _m | '] ; I LHOdanNYD w Hl o=
HIAVI | LOHIAVI P AXHVLVAY L J ! . } L XXHVLVAY -) ..m
HIADYNYIN NIDO'I . L THOW NOISSAS GTaHANYH \m HOW NOISS3S ae *
) 1 HIOVNVA AVMILYD)
" 0 AVRELYS
_\ § 1HOd H3AVd v 1HOd HIAVd € 1HOd HIAY1d Z LHOd HAAY1d | 1HOd H3AV1d 0 .LHOd H3AYId
C . ¥ |
. _ .
1 1HOd 3NVD 0 LHOd JNYD b LHOd INYD 0 LHOd ANV L 1HOd ANYD 0 1HOd TNV
7 | ¥ ~ 7 ¥ L 7 [-
[7 — . // { I - lllllllll . 7 - ||||||| ~
I Ny 1 R 1 p 1]) | I . 1
i _\ , \ f__ _\ i A z_. _\)
i H ' adoo3d H
I l : & I
1 i , ' NOILYOO1 H
H j " 1 0 HVLVAY i
| Z113v001 L Evo01 B E1vo0T 1731007 LTI WO0T O LT1HIVOO ARENS aREL o IR E el
L HIOVNVN J1v00T] HABYNYIN F1Y00 ' HIDVNYIN ZT¥001
s vanve ! \ y) b) , L ANVD
.
-~ “ ,J, - B . “ \ - =
. TR N { i _m { \ N7)
ad003d i H i | | 1 § ¥ {
40 H H H | m H i ¥ i
NOILYDO1 H ¥ { m ”” i ! i i
i I m I8 H H ._m P i m i H
, } HYLVAVY it \.“ L g P } b i i it i
i ! .] m . AN SN =~
207131001 L0131v0o0] 007T3VO0T | | 207 3V00T 0TI IV00T 001 FTVOO0T | | 207137¥D01 L'071ATWO0T 00713VOOT |
HADYNYIN TvI01 } | HIDYNYWN T1¥O01 H L HADYNYIW V001 J
. 0 INYD) , 0 3NVD ; 3 0 INYD J
\ HIDVYNYIN SNYD) | HIDVYNYIN FNYD } | HIADYNY INYD
p . . . N
M AENVER _\\ | H3AAY3S 0 Y3AH3S
030y qsoy e

WO 03/081447 PCT/US03/04879

24/60

As this Thing crosses
the inter-Server boundary
communications with it are
redirected by the Gateway

from one Server to another.
boundary

THING 0

LOCALEQ
SERVER 0

'LOCALE (etc.)
SERVER ...

FIG. 24

0204-69.vsd/24

PCT/US03/04879

WO 03/081447

25/60

Ge/PsSA69-7020

Jo1ndwod uad

G¢ "Old

1SeJojuj Pi099Y JO JusWIpoqul dopiseq [21UIM

jJo uoibay

1S3HILIN| 4O SNOIDIH DNIddYIHIAO FHVHS

SR RN HOHM SEVO0T LNIHI--IA NI SINIIO OML L/ /
Rz y . o ~
B 4.,,;?(,': IR \

jseJopu| : 3 =

!
pi022aYy JO JuswipoquIz jo uoibay ;)

h

ai

U
\ 1y
Ty
17
| [,
w1
Al > e
Z NOI93H OL ST _\S<
L O NOID3Y WOHH STAOW g -~)
X\ H3SN TILNIM SV . _ -
qi0v 37v00TM3N -
0L .LO3rdo 40 PLPt)”
DNIddYWTH DINYNAC _.=Z=-
/\\\\\\\\\\\\ asvav.iva
\\\\\\\\\\\ " T
\ -2 I |=0. “
4) e
| . _— &[] !
SNOILYOIH03dS | — |
14O HaAEES | g1z,
. | _ 0L SFIVOO01 dviN “] yoL

019 ‘2 SNOID3Y HO4 I ANV 0 SNOID3Y \\\'.J

av3ayHL FTvOO0T avadHl 31vOo01 S -

WO 03/081447

26/60

PCT/US03/04879

—O00=EnNgC-<Z

o
j ——0—>—_|—<z|7 90:|
-3
'g 6' —0O0SHNAL+-<CZ - SYHuviaL
_g | =
= Q —o=->—1-az M3IA 40 LNIOd
=
2 - ——
8 R | —vozm<r<zr SSINSNOIOSNOD
2 «
m 4 —o->-a-<z NIvH
2] =)
a —& .
w | @ |—vosm<r<zr IQAVTIUSNA
2 = ‘)
—-—-5 I
< () O = —d =g Z GN|M
=
-0
: —0OSm<-<Z+ NOISO71dX3
- ,;
S |l—o->-a-<z 31gand
-2
g 6' —o0OoSmI-<Z ai3idanNIn
_g =
= Q —o-—>-—a-az g34d1
=
— O
EI I<-.l: —0OSmI<F<Z+ HHC_"NS_
_E o«
< T —o->-u-«=z admodd
= =)
—Q
w 6’ —0O0OSmg<-<Z - ANHY
2 L= ‘
-2 P R TEN:E: (o)
—-3
< 431a10S

FIG. 26

0204-69.vsd/26

PCT/US03/04879

WO 03/081447

27/60

12/PSN'69-7020

W3LSAS

® T

m
omw
mm
LE:

(saLAg ¥2)
d3avaH
13Movd

‘ - - G
SHYONNOY 13150 0L 19y9ed-}0-pus sajesipul m m m
- TINNJoqiewen T 4om .
avd TINN hE® l¢ Old
| avd . TINN
v.1va 90714 IHOoN T
<
Y1Va 0018 JHOW P
salig g :: V.Lva yooid viIva IdALANS salfq g :3dALans 00149 b=
_ M001d MH01d .
salAg g i 3dAL 0018 3dAL HLONTT sa1iq g :HLDNI1T U019
LE"LDE‘ _—
© T
did wic
Som
ldd Wvo -dnoJib %90]q Jo pua serealpul m mm_ s}
" o yibua 320 ~
ava | v — TINN jo yibusyoolg o
<
viva 5 {sayvaNnog
viva IdALANS = 13100 oL avd)
Mo01g vIYa TYNOLLIaay
AdAL HIDNTT
S3IWYANNOS QHOM OL 0074 S
s3LAg v1va avd avd viva 3
<
viva [~
sog g it so! i B S31AS ¥ - Bleq
gz vLvaMoold [Viva Idaians | sedz:iadAlansioons F SaLAEZ lva —
sailg g :: AdAL X009 .Iy_bb.._mlmn_t lv_bbumli:_bzm._ salAq g :HLHNIT 00719 i yibua NTT oD |~ s31Ad ¢ :: pueWWo
S3LAS b = dl 1ofeld A2074 A078 G
— did mwm
11 1od 19Ae 11l awen m
s3LAg e d 1d 144 YD saLAd e al o Hom <
— 0T SN
d3sn
1 Jaquinp Ajigel|e
s:z_ oE_ — | S3LAd ¢ i sequiny Aigelsy
(1ovoed yasn asie 1oNoed WALSAS
so182Ipul TINN) ALAL | 3 ISqWINN UOISISA did
31A9 L uno) uoissiwsuellay diL
mmp>mqunm:w>Bwwm\\\\\\\\\\\\\\\\\\\\\\\ WIL
I di 1enlwisuel 1t 1aynuap] dnol
saLAg v di \\\mvx\\\\\\\\\\\\\\ — a5 |__S3LAa : sounuapl dnoio
- dwels st
s3LAd b 1S QWL ais
SILAE 2 :* 19%08d 1XeN O} [BAIa] WNS3HO | HLONAT
. 1dod 140d
S3LAG ¥ o JoLUSp| |elies 1s3a 30HN0S |

(saLrg 91)
H3qvaH
dan

PCT/US03/04879

WO 03/081447

28/60

82/PSA'69-7020
psA' | "omnBI4"SdN

JLAG | lUNOD uoissiwsueleY

1e30®d (s)geljeun) 43S
10 (efgel|iol) JNYD osimsyio
“19x0red wWeisAs Jo) T1NN

8¢ "Old

pi swed sajeoipul ‘joxoed sweb Y
p1 dnoif seyeoipul ‘1senbal Aljai Ji

JUN 09 a|geljel sereoipul ‘1exoed Jeaquesy |

S3l1Ag ¢ - 1e1eweled JUsWNN

/

SAS | J1d

WNN

\

SILAL ¥ dl 1enedey —

did

S3ALAd ¥ -t dI 1epiwsuel |—

dilL

S3IAG ¥ dwels swil | —

NIL

(s3.1Ag v2)
H3avaH
Ald43aLing

S31A4 ¢ - 190ed XaN 0} [eAdjU] —

dNI

amo

—S31Ag ¢ Jeyiuep| dnoi

S31Ad ¥ - J8ynusp| [eUsS —

ais

WNSYHO

HLON3M

140d
1s3a

1d0d
304NOS

(s31A9 8)
H3AvIH
dan

PCT/US03/04879

WO 03/081447

29/60

“seheld syy 0)
6¢/PSN'69-¥020 L.SBuiul mau, ay) seyebaibbe pue
*18/eld ay) Jo 15818}UI JO JUSWIPOGLIS BU} UIYUM Ajmau s(e}
sbuiyy peyebaibbe sy jo Aue 31 998 0} S0aYD [puURUAS Bk
‘uol1duosgns s,1saJe1ul JO JUSWIPOGLD S} WO
UOHBOHIIOU SOASI081 [oUUSS By} ‘sanotl S sahe(d ay) usym

V6¢ 'Old

'sefeooy Jayjo o1 buiy) sy 1noqe spodes
sajefalbbe jaunuas ayy
‘Bun sy} 10} 8[e00)]

181410 Aue U] 18819)U] JO JUSWIpOgLUS
ou s| a1ay) UBnoyyly ‘Jeunuas
$,3[830{ S} J6 8suasaid Jo uoibal ay;
83U} pasdluS SEY PI0DAI JO WUBLIPOqUID
S.0dN SIy? Jo uomsod ay 1.

NOILISOd S TaNILN3S

JFON3S34dd 40
NOIOD3H S TANILNIS

0] yeys Ul pajealo aq pinoys

SAB|d BU} 10 }58.81UL JO JUSWIPOGWID UB
:plodal JO 8jeso)

saunues sy o) peyebodoid st ebessaw e

pJIo28! JO 3]R00] S SteAeld Ul 1588l O JuBsWipogLue

5, jounuas s109819}ul1s818}Ul jo uoibal s lake|d sy

1S3H3LINI 40
NOI93d S 13NILNIS

PCT/US03/04879

WO 03/081447

\

30/60

0€/PsA'69-7020

ax

"270UM 0} JBagHESY XaU BU} - Sroz 4l
pues pue g X dNI"g oym Aidipinw ‘sef 1y D)
¢Owl siy} e 8 ais
1E2qUE3Y MBU B PUdS O} SABY | OP "D H ¢ diL
LH Lv3gIHYIH
\ 7 A
I did
‘1Toym o} Jeaguesy jxsu eyl 8b0¢ dNI
~ 1 oym Aldnynw sk Si8e WIL
puss pue g X dN!I | oym Aldnj v
" S amL
cewy sy je o dis
JeaqUEaY MU B pUSS O} 8ABY | 0P "D 0dl
1H LvIEHYIH
)
2 did
20l dNI
2 0UM Ol 1eaguesy 1XsuU aul ¢l INIL
puss pue g X dNI"z oym Adninw sef iy v arn
£oWp Syl e L ais
1eaguUeay MU B PUSS 0} 9ABL | 0P "D H edib
14 1v3g.lHV3H |
S \w\\m\ L.V—&\
- | v20L dNI |
1 Toym o} Jesquesay 1xau ayl 89/ WIL
puss pue gz X dNI"Foym Adpnw sehy | @O
auy sy e S dis
1eaqueay MaU B puas 0} 8ABY 1 0P "D OdlL

1

\\\“\\\\thwm“m\

14 LYF818VaH

¢ did

\

Z7oUm 0} Jeagueay jxeu au}
puss pue g X dNI"Z oum Adiyinw sef iy

CLG dNI
192 NIL
£am
9 ais

oull siyi e

1e3qUESY MBU B puas o} aAeY SN SIU} S90p O

£diL
1

*170uMm O} jesquesy IXau 8u}
puss pue z X dNI~LToum Aidiyinw “seh 1y

Laown sty e

JesquUESY MBU B PUBS O} 8ABY SN SIUl $90p O

‘g 0ym O} Jeaguieay xsu au}
puos pue g X dNI"Z oum Aldpnuwi sk 1y
{own siyy e
129qLIBAY MBU B pUSS 0} 8ABY | OP "D

‘1T oym o} leaquesy Jxau au}
puas pue g X dNI~ 1 oum Aidninw sk 1y
gawn siyy e
1e8qLIBaY MBU B puas 0] 8ABY 1 0P ‘D

27 OUM 0} PUBLLLIOD Sy} PUSS OU 1y
Loul siyy e
JesquBaY MU B PUSS O} 9ABY | 0P ‘D

2 oym o} jeagueay [enul aeleush ou iy
&8 di woly g7oym o} Jeaquesy
Buipuelsino ue saAey SN SiYl S30p 0

1T0UM 0} | PUIO 8yl puss "ou iy
Jaun siyr e
1BaqUEaY MBU B PUSS O} 9ABY 1 0P 1

LToym o} jeaquesy [l sleiaush r'ou iy
£0 di} Woui 1 T0ym 0} yeaquesy
BujpuelsIno Ue aney SdN Slyl seop 0

g6¢ 'Old

2 aiv ‘1eaquesy snojaid oy} buipnjoul
s dis ‘dnosB snoeid auj} Lj POPILUSUERY]
Edil sem 1ox0ed sjqelal
H INO 12Ul Se1ROIpU
1 1v3g1dv3H Z wnp jay

7 /S I~ /
L did

| ciSdNI| JeaqLEsy snojesd ay) Buipnjou]

| ZSCNLL] ‘dnoib snomerd ayj uf peRILSUE]
Mm____w sem jexoed ajqelel
o dlL INO 1By} sareolpul

c wnn ey

‘1eequesy feniul sajeolpul
0 wnn ey

04 Ly3g1dvaH
e I

cdid

96¢ dNI
S WIL
an

_ (25]8) ‘1 TPWO ‘ZTOYM ‘ETWOIJWOoNPUSS

/7

€ LN3MO

€ als

Sdil
1

, L and
e AR

| did
962 dNI

¢ WIL
0amn
cdis
0dii

1

1B8qUESL [EHIL SBIEOPU
0 wny [y

FTECITTER]
1 did

| 9SedNI
L WIL

0 LN3ITO

L i

A@m_& Y1 TpWd ‘LT oyM ‘g Wody) Wwoypuss

1 ais

odlL

3

| + uopeziEnIul S4N 8ouUIs pajessush syexoed jo
18quinu 8y} Si JequInu [BLss [efiul 10} peas

PCT/US03/04879
31/60

WO 03/081447

1&/PSA'69-7020

0€ "Old
F | [§] Emwhmﬁ:.

19 173914
/A n_.-<\\ <m—n—‘ g \\\\QHMHI\»
2 dl
FA R
_.w.w WLL |
S X« [N - [2aD]
g als X | sds|
£dl £ dil
K
14 1v3giHy3a 1H.1Y3 hI.(NEl
LA A A s S AAG]
___Ldid]
[¢1G dNI]
2/ WLL]
I X< R
9 4dis
Odll

A ._.<mm._.m<m_r

\

2 oym o} dno.b yeaguesy mau puss ‘seh iy
¢ pepaatadns usaq
Z7OUM O} 1eagueay JuaInd ay} Sy 1D

\

ﬁ_m_ﬂ ‘L TPWO ‘gToym ‘gToI)) woljpuss
| ~oym o} dnoib yesqueay mau puss ‘sah iy /
¢ papaoladns usaq
LT oym O] Jeagueay Jualind aui sey 10

L AN |

ORI a Y O %
\ [diY

1 ‘27 PWo ‘gToym ‘gTWol)) Wollpuss 99¢ _n_z_.__:

2 OYM 0} PUBLLLIOD 3y} PUSS OU 1y /_‘ T oqain]
couwn siyrie wm__w

YeaquUesy mau B puas 0} daAeY SdN SIUL useop D

04 1v4d ._.r_<m_t

LIt \
99 (esfey | TpWO ‘L ToUM ‘07 WO} WOLPUSS

-
N
\\
N
e 2
e
bY

_dNI |
(@SB ‘2 PpWo L oym ‘0T Wol}) Wolpuss 1L |
1~ 0ym O} PUBLLILIOD U} PUSS "OU 1Y wn_Eln__m /_ 3 Ewln__w /
jawn s e odil 0dlL

JeaquUesy Mau B puas 0} aney SdN StUl S80p ‘D ¢ w

PCT/US03/04879

WO 03/081447

32/60

2E/PSA'69-17020

Z-oym o} dnoub yeaguesy mau puss 'seh iy
¢ papadladns usaq
Z27oym o} 1eaqueay Jusund 8y} sey :p

{~oum o} dnoib jeagueay mau puss ‘seh iy
¢ papaosadns usaq
1 TOuM 0} Jeaquesy JuaLnd 8y} seyY 1D

Z70UM O] PUBLULLOD U} PUSS "OU 1Y
iawl sy e

JeaquEal MaU B pUas 0} aARY SN SiU} S80p ‘D

[TOUM O} PUBLLILLOD 8Y} PUSS "OU 1y
Zawmn sl e

1BagLBaY MaU & puss 0} 9ABY SdN SIU} S80p ‘D

43

1€ "Old

NN EEIETE]

RSy

‘1eequUesy snofaid ay} bujpnjoul
‘dnoib snojaid ay) uj papiuisuel)
aiom sjexord siqeijel

om} jey; sejeolpul

¢ wn gy

VS ——

‘1eaquesy snolaid au) Bupnjoul
‘dnoub snoinaid ey} Ul papiuisuel}
aiem sjexord 8jqeljel
om} Jey] sepeoipul

¢ Wwnn fed

\A_m:b ‘Z7pWo ‘g oM ‘g0 Wolpuss

uoISSIWSUBL

o|qe)|al 1o} Jsenbal e

Y \
[THLYISIHVIH

1A YA
g dl

2lG dNI |
19¢ ALL |
| zdio|
| odIS |
£ dil

1

ﬂ

LH LVA81HYIH

L S A

9G¢ dNI |

\me_ﬁ | TpWo ‘gToyMm ‘gTLIoY) wospuss

/_‘

8|qeljal Joj 1senbal e

\ CHIVASHYAH
_ i} _ _ 7 \i.\\uknﬂﬁ.l_ _ _ _
(anJ} ‘2~ pwWwo ‘L Toym ‘0T wod)) Wojpuss G % (es]e} ‘1" pWo ‘L oum ‘0" Wwoiwolpuss
uolssiwsues |.||||..r,.m_=_.m|

PCT/US03/04879

33/60

¢€ "OlId

WO 03/081447

Ve >~ A
Z_aND / N A 1H 1VIgIHVH
AL L IS | M-] A A]
Zdi | _ 0 it - Zdlg
952 dN 9Se dNLV (yhoar | 215 dN
02S WIL I €2/ WIL /_|| i 192 WIL
wnn____w _ i I S
—gdit] T " Ldll | £ dlL
i WD SNIVLTH ! L uo Bupren]._(9gzioes | 1
14 1v39 av3ag | cH dN3IS3Y | i tH 1v3gIHVIH
777K QUGN I LIIPIIIIT TN ! S I
wlm____@ ! 0 dit _ “ o
> — —
—— (T Tow o weuenes g e i
€ ain | L am I
'Im’mﬁ/’ | 2 ais I
QdiL HIGANN TVIH3S | L il
H TNIDIHO SNIV.LIH [|
|
24 1v3giavan : I
LA wﬁm;wqoﬂmm [“
P= 11 d : _
962 dNI peoeid pey o dijeyr | _ _
8LG WLL sexoed s|qeyol | 0™ woly Aq g dnob woy |
ean JIE Hwsuena) ‘sok 1y |1 OUM 10} PRIBYNG USBG SABY oyMm L [
— % dil] G1odoed TINN Y 0 | syasjoed s|qelel Cdit |
H oissiwisue.} sjqetal _ 1O uolssiuisue@l 10} wmms_um_ e]
JoiNsenbas e sty si .,lll.ll.ll. llllllllllllllllll |_
£t LyAgldy. \. . SlsaNO3H AULFH @) 4000.65 HINZOM -/ AL
Ld *dnoib yus.no sy} Jo ped se - e _/ ¢ dIH
Mmm dNI | ppojfed josjoed oy yusuenes pue (esley ‘1 pwo ‘g oum ‘gl woyhwoypuss - 95C dNI |
% 15 wunoo A1191 8y} JuswIaIOUl "oU 1y —\] M___mhur
S ais ¢ dnosb yus.imno ay ur e qais
QdIL) Apesle sequinu jeuss siu s1 0 g dil
"w'ga lllwﬂaﬂ-
A \\QNANV m__\ _ Y
d 1 diY
952 dNI 5 o, o] 952 dN!
£92 WIL /_E:: 27 pwo ‘2 oym ‘gTwoy)woypuas AT
c dain 0d1n
wm__w uoISSIWSUR} wn__.w_.
ﬁ s|qeljes Joy3sanbal e M
¢ _dng 0d LVIHIHVH
7 \\\\hm H&—W / x _/ L
diY | L did
962 dNJ t—, (- [(SSTer 952 dNI
s Tl //Mw:: 2 pwo ‘[~oym ‘0woly) Wwospuss A o)
W D_W am
al
Q gl uolssjwisuel} 1] mm

OA ajqelal 1oy 1senbal e H

PCT/US03/04879

WO 03/081447

34/60

¥E/PSA'69-7020

———— e s ~~ e e e e e — ~<
e EECEEIETED { \
| | [l iR |
| g dly | ! |
" 1 ! !
[e/ZINIL]

_ | €D] ! |
edil I . _
! | 5 | iduuoBupem | (ggZhiosies |
. ! _ _
€€ Old | | i |
| _ ()nos1 "
| | |
I | dil “
_ _ bunen £ (ogehosles |
_ | EFRECIETET _
I | [wzawnN vgs |/ 2 |

J [TVNIDIHO SNIV.LFH 0 _
| 952 dNIV o _
! | PRI |
_ _ | LD N |

| Ldis]
] | " L dl |
E: uo Bunrem)\ (9g2)08)es “ | “
| [EHIvEEIEvEE _ “ _
I 0 dId | _ | I
{ 962 dN| \o_>o.e I | I
R 14118 Ny | I
I vy as] _ | I
| ALl i odil I |
1du uo Buem N (9g2)o9les “ , I “
L IVaE dvad " 29 aN _ e an | |
Tas N _\M—E # g P c
. dlY | \. [—_ g diy| __ I
98¢ dNI Vs R — |
—e/J WL | €92 IWLL| “ _
€als | 9ais I |
I | edil i
| I “ [
| gzawnn s | | “
[TVNIDIHO SNIV.L3H “ | |
| I
| “ gl | |
_M "INOD , vas \ SAHITH ,]
{8)TQ00 LOHHIAROAY - ?o dil \ (JIONVYAQY (€) 102010Hd HAAIFOFH -~/
o

e

i)

Y
[s f s 79 AN

¢ dl

| ClGdNI]
192 WLl

FARD]
1

G ais
LH 1y39.1dv3

gdil
Sl \\m. &

dl

2lS dNI |

LS2 WLL
cam
| edS|

0 dil
1
1L dND

777 AN

¢ di

96¢ dN

0 dalv
v ais

% £dl

(RN EETEVE]R
S P Al
cdl

N

L

96e d
SNIL

1A
€ ais
edil

_

L AIND

e SR

I
96¢ dNI

| c WL
0 QI
c ais
ﬂ; 0dllL

0d Ly34.1Hy.

) LS I
L

94¢

19

| LAIS]

il

PCT/US03/04879
35/60

WO 03/081447

Ge/PsSA'69-¥020

2 dnoub wouj 1@x0ed 8|qeljel JO pussal 8Algoal .—Nm . G — "—
gdiy uo Bugrem @mmri odn up Buniem i (805)109)0s
1v3 \'El]
) _vm_ (i 5 M-
_ Z dl _
Eﬁz@&o SNIvATH N_ mr._‘ _n_ZFE 1R Onoat
[yaml N — ea®] N
; g dis | GdIS]
: edil Edll]
; ednuoBupemd (ss2)osles gdn uo Buprem » (zo0)08)88 edn up Buniem » (soo)oeles
= 14 1v39a1HYIH [N EETELER
N Z \Fw_\wwhrm\mwwwt Z dnoJb woly yeaqueay Jo puesal anlesal | JaLH g s ST
Cdl _ L di _ I d \
f | 9Gg dNi | ()aoau [clGdNI] ()aoal | ¢lGdNI| (Jaoau
! 6L Eﬁ%@% SNIV.L3H 222 Il AT AT
A3 I vyam| N [za®m]| N\
! as| gals £a’s
H odil odii 0dil
£ odn uo Bunrem » (ggehosles 0dy uo Bugiem T (Gghosles odi up (egehooles
i 24 1V3g1HV4H 2d 1vAg1dVaH
I SIS /] s =]
| _cdlH]
i gz dNIK (noau lwmﬁm_z-\o_am 1
f |.|:|m.rm|s=._r/_| |I||m.rm|s=._r/_| £d]170 1noawiy Josaiseh iy
I X« [N | £q4H | ;
, L ais 2 ais ¢ lopuss sy} woly
m edil £dil sweibeyep Aue paydesoe SN SIUL SeY D
t gdn uo Bupem » (zo0)0ees ¢dn uo bupiem » (zoo)o8les 0dn up Bunrem » {egenos|es
w X BCEEIELED 1 _
Ldi 7 , _ . _
i
| 99¢ dNI V" ()r00s - dnoib (aoal (noal
' AN g anois ok N— £dIL7O ezfenul ou 1y N—
i ||||M|m__h_w0l Sioored a[gel|as Jo puasal 10} £ al 4iepues Sip Loy
§ odi 01 1senbai Jwisues] ‘ou 1y .
v ; =dnoib 0dl sweibeyep Aue padaocoe SdN SIUi sey 1D
% 2
3 wouj syoxoed oo = ¥ /
% 8[qel|al ||e 8Al®8l SN PIP ‘O 2
3 / [
% mmm.u _nzr___) \o_>omh (noas _ ()aoa1
N N\ — 0d1L"O Inoauwi jesarssh iy N\
¢ Jopuss siyj wouy
£dil swelBerep Aue paydsose SN sIUl SBY 1D 0dl
ody uo (952)09)98 odn up Burem (9gz)i00les
ERNECIELE
SIS
_ L d _
()aces 94 _nE_»z_ LK Onoa
\\ 0diL O 8zyeul "ou 1y ! n:bl/_
¢18puas Siyl Woil _o m____m

swelbeyep Aue psjdecoe SN SiY: sey D

S13X2vd 1SOTON

PCT/US03/04879

WO 03/081447

36/60

9g/PsA'69-7020

wouy s1exoed 8|qeiel Jo pussal o} dii 0} jsenbal Jwisuel "ou 1y

z
¢
&
¥

(2 dnoub) dnoib snowe.d

¢,dnosb snonaid sy} wouy

1930Ed B|gRl[e. BUO + JEaguUEesy B 81808l SdN PIP ‘O

Ajuo jeaquesy Jo pussal enleddl

‘posojo uaeq jaf jou sey g dnoiff souis

g dnouB (juenno pajoadxe)

wouy syxoed sjqelal Jo puasal 1o}

0 dn o1 1senbal jwsuel} 'soA iy

¢0 diy wouy Jeagueay B SSIW SdN SIU PIP ©O

Z dnoub woy
19308d

ojqeyel .-~

o

10 puesal.oAjeosl
P

oda uo

Buniem

(9G2)08

GE€ "Old

_
()noau
N —

{os

PR

s)senbai Jeypny 10}
paduou "saf 1y

sjeyoed sjgeljal
10 pioasp dnoib

§ snojnaid 8y sem D

£
i
i

(yeaqueay Ueul J8ylo gdy uo

g

Bugiem

LY LY3

g qy

7 G I

I

2 dnoyb woy syexord ejqeyal jje
pue Jpaquesy Jo pussal eAjeodl

‘pesojo ussq sey g dnoub souis

odn uo

Odil

L / |
962 dNI | ()noo1

| EdS|

Buem

L (pS2)i00jes

LHVIE

}

(

Jnoal

{

< 1v3aldvaH

T i s

AN

0

JjteS))

i

edll
gdn uo Buptem T (00)108198 gdpuobugem 4 (zoo)wsres
o e @ e RN ECIECELR
AIIILE G T
L diH _
A 2lS dNILY" Jaoa)

PR I ——
oy
L0
P
=
-
&
g

odi uo

edy

) I —
A3 \,H\C_;«u,mz

S

o

ody

£ il

| 9S¢ dNI |

()aoad
N

uo Buprem & (zoo)wetes

2H 1Lyag1HV3
s I

LIS IN
eq

)

0dll

{4l A
/o_>om:

(ggzhoates

0dp uo Buprem (gog)oeles
EBNEESEETEL
0% 1t
Z diH | \r||
2l9 dNI Y (Jaoes
—— — zdinl \
&al
£l
gdnuo Bugrem & (go0)osjes
(AN EENELED
AP Y)

ody uo mc_ﬁ_@s» (egghooles

0" 1vi91HVY3dH
Py B 1
om« n_n_z‘ _
& sE../oWQ
als
edil

(9g2hosjes

_ _
()noau llbmwunpz_lw s:._r/w%wh
N o aim|
I A< |
0dLL
odi ody uo Buniem (952)hos)es
4 1 S
/. SIS gy /. [1
P L di _ iy | \
|||mmnhzrmmm AL Onoel 95¢ dNI L ()a0a)
[zamm| N\ %/
v ais as
r 0 dl . 0dlL
1807+ 13)M0Vd 37aVI13H LSO S13M0Vd LSO10N

WO 03/081447

Seed for initial serial number is the number

37/60

PCT/US03/04879

of packets generated since NPS initialization + 1

TIP O

Q: does this NPS have an outstanding

SID1

heartbeat to who_1 from tip 0?7

I\

sendfrom (from_0, who_1, cmd_1, USER)

GID 1
TIM 1
INP 256

A: no.: generate initial heartbeat to who_1

/

RIP 1

PKT 1

HEARTBEAT RO

\

Rel Num 0
indicates initial heartbeat

TIP O
SID 2

Q. do i have to send a new heartbeat
at this time?

GID 0

A: no. send the cmd_1 to who_1

TIM 2

INP 256

RIP 1

PKT 2

CMD 1

\

I

sendfrom(from_3, who_2, cmd_1, USER)

TIP3

Q: does this NPS have an outstanding

SID3

heartbeat to who_2 from tip 37

GID 1
TIM5

A: no. generate initial heartbeat to who_2

INP 256
RIP 2

PKT 3

I

HEARTRBEAT RO

Rel Num 0
indicates initial heartbeat.

TIP 3

Q. do i have to send a new heartbeat

)

SID 4

at this time?

GID 0

A: no. send the command to who_2

TIM 6

INP 256

RIP 2

PKT 4

CMD 1

\

Rel Num 1

A

TIP 0

Q. do i have to send a new heartbeat

indicates that ONE

SiD 3

at this time?

reliable packet was

GID 2

A: yes. multiply who_1_INP X 2 and send

transmitted in the previous group,

TIM 257

the next heartbeat to who_1.

including the preious heartbeat.

INP 512

RIP 1

PKT5

\

HEARTBEAT R1

\

Rel Num 1
indicates that ONE

reliable packet was

TIP3

Q. do i have to send a new heartbeat

transmitted in the previous group,

SID5

at this time?

including the preious heartbeat,

GID 2

A: yes. multiply who_2_INP X 2 and send

TIM 261

the next heartbeat to who_2.

INP 512

RIP 2

PKT 6

\

HEARTBEAT R1

v

FIG. 36

0204-69.vsd/37

WO 03/081447

a request for reliable
transmission

sendfom (from_0, who_1, cmd_2, GAMI§>

a request for reliable
transmission

sendfrom (from_3, who_2, cmd_2, GAMEJ)l>

Rel Num 2
indicates that two
reliable packets were
transmitted in the previous group,
including the previous heartbeat.

\

Rel Num 2
indicates that two
reliable packets were
transmitted in the previous group,
including the previous heartbeat.

38/60

PCT/US03/04879

Q. does this NPS have to send a new heartbeat

at this time?

A: no. send the command to who_1

Q. does this NPS have to send a new heartbeat
at this time?
A: no. send the command to who_2

TIP O

Q: has the current heartbeat to who_1

SID5
GID 3
TIM 517
INP 256
RIP 1

been superceded?
A: yes. send new heartbeat group to who_1

PKT 9

TIP 3
SID7
GID 3

HEART?EAT R2

Q: has the current heartbeat to who_2
been superceded?
A: yes. send new heartbeat group to who_2

TIM 518
INP 256
RIP 2

PKT 10

HEARTBEAT R2

TIP 0

SID 6

GID 4
TIM 772
INP 512
RIP 1

PKT 11

HEARTBEAT R1

A

TIP 3
SID 8
GID 4

TIM 773
INP 512

RIP 2

PKT 12

HEARTBEAT R1

7

FIG. 37

0204-69.vsd/38

Y

WO 03/081447 PCT/US03/04879
39/60
BUFFER FIND VALIDATE WAIT FOR
PACKET | CURRENT | INCOMING K | INCOMING
CONTENTS GROUP PACKET PACKET
CLEAR
CURRENT |
SERIAL |
NUMBERS
RECORD SEND CLEAR
RELIABLE SERIAL SERIAL CURRENT
PACKET? NUMBER NUMBERS SERIAL |
IN GROUP FROM GROUP NUMBERS
RESEND CLEAR
DISCARD RESEND MISSING CURRENT
SERIAL REQUEST? SERIAL SERIAL
NUMBER NUMBERS NUMBERS

FIG. 38

0204-69.vsd/39

PCT/US03/04879

WO 03/081447

40/60

0b/PSN°'69-¥020

19vjord-j0-pus sejeolpul

yasn

Hasn

d3asn

SIKHVYANNOG 31A9 8 ST
0 (| swe m
NO aN3 SdNOYD Y3ISN avd TI0N TINN 4 3} m s
mm
] avd TINN 22
S3IHYANNOG 3LAG ¥
viva 19 34
NO aN3 SdNOYD 0014 vaoo ow m
v.1vd X0079 3HON 5
viva adAlans >
selfg g Y.1va MO0T1d A007d 0014 soihq g =aAdALENS HMO0T1d
3dAL H1ONI1
selfg g - 3dAL HMD01d N201d 20719 salAg g “HIHNIAT MO01d
BT
did wm
ats
lud d3A ‘dnoJb »%00)q Jo pue sejeolpul m E
o yibue »o0
avd TN TINN Jo yibus oolg -
>
vlva =
S
viva adALldns o
N0014 M0014d
adAL HLODNIT
D019 M001d
S3IHVANNOY AHOM OL ,
S3LAg YLVA Avd Qvd vivd R
=<
seifg 2 X V.LVd M001d viva m
n viva adALans o
salfg g it 3dAL M001d N00719 Mo01g selfq g :3dALENS MO0Td
3dAl H1DNIT
pirelog s N0014d selAg g “HLHNIT Y0014
S31AG ¥ i dl Jeheld ‘ Gl
did m O
....... . <
i yod Jofe JI1AG 2 -aguini UOISIBA - O
s3LAd e d id 1ud wan S o

6€ "Old

PCT/US03/04879

WO 03/081447

41/60

L#/PSA'69-¥020

ov "Old

Jo1eolpul 300]qJ0” pug

(aino)

@i enbiun Ajleqoin '

J0EOIpU ¥00|q NS TJ0 pu3

yibue
32019 11NN

ybue
300[qqns TINN

(sy001g-gns
Auedoud Buiyy
2I0W JO 8UO)

HIONZT
»00719ans <A00D-
ONIHL> 13S ONIHL
HLONT
JLVAILOY oo

PCT/US03/04879

WO 03/081447

42/60

¢h/PSA'69-7020

Iv "Old

an[eA Brep [enoy

(esn walsAs 1oy

paniesal GG2-0)
Jequun Auedoud

(Apoauip Aypow ueo < enjea Haze>
1UB10 Byl suBdW ()
adfy uopoLsey <adA " doid> <wnu doid>
ONO'T AlH3dOHd

(019 HNIHLS ‘1VOT1d ‘“ONOT)
Auedoud jo adAigns pejelewnus

piomAey ALHIdOHd

WO 03/081447

43/60
BUTTERFLY POSITION
< i value >
<j value >
< k value >
SUBBLOCK
LENGTH BUTTERFLY
ORIENTATION < i
value > <j
value > < k
SUBBLOCK
value > LENGTH
BUTTERFLY VELOCITY
< i value >
<j value >
< k value >
SUBBLOCK
LENGTH BUTTERFLY
ANGULAR <
VELOCITY
value > < j
value > < k
SUBBLOCK
value > LENGTH
BUTTERFLY ACCELERATION
< i value >
<j value >
< k value >
SUBBLOCK
LENGTH BUTTERFLY
ANGULAR <
ACCELERATION
value > <j
value > < k

PCT/US03/04879

FIG. 42

0204-69.vsd/43

PCT/US03/04879

WO 03/081447

44/60

Y¥/PSA'69-¥020

Buiyl ManN
siy} 1o}
VN
uowsod 309[00

Buiy L M3AN siyi 1o}
8/9GvE21X0
al enbiun Ajregolo

€v 'OId

OIS} PO O sefuedoid alow

< anfea Y >

< anfea [>

< anjea | >
NOILISOd A144311ng

Ao | e

0000X0 8/96X0

vECLX0 M3N ONIHL
SvALOY HLONaT

Buiyl M3aN
sy} Jo}
20000000%0
adAy

109[qO awen

PCT/US03/04879

WO 03/081447

45/60

S¥/PSA'69-7020

147

Old

PCT/US03/04879

WO 03/081447

46/60

9P/PSA'69-¥0

20
G "Old
QuO93H 40 —
pe oo cssmnassasccwaan .—.zm_\,—_nom—\’—mz<mo \
NOILISOd Q,

JON3SIHd 40 NOIO3d ww
" ".“h.-.unlulﬂ“." .

_ A ' "" \

“ B N qHOOIH H0

O BRI N\ iNamgoana HL 40

-eeTEIIISEREER k) LSFHILNI-HO-VILY
JON3ISAHd 4O NOID3H ! H M, m /
" o \ | w

J0NISTH 40 NOIDIH 4i__—__i» S P - e o S

PCT/US03/04879

WO 03/081447

47/60

4604

-

/LOCALE"

. OF

INTEREST

SR RAIAXLXLKS

FIG. 46

PSRRI
RS isy
oatteresetetetatetsisiolocs!
PR

XXX]
PoR0XS

i

ANOTHER SERVER

UPDATES

CRASH

IR

A
%%

O
POIPRS
#20% 0%

N

1

ER FUNCTION

COLLISION UP[iATES

FILT

FUNCTION

E

UPbATES OF RECOUPDATES OF INTEREST

FILTER FUNCTION FILTER
1 01 [
PERSISTENCE UPDATES!

TATUS lIJPDATES
|
MULTIPLEX, AGGREGATE AND
UNICAST TO CLIENT

-

0204-69.vsd/47

PCT/US03/04879

WO 03/081447

48/60

8¥/PsSA'69-¥020

..... AN

o

S

1071d N1vd

Ly "Old

dON3IS3dd
40
NOID3Y
N\
PN
s \
\
\ 1S343LNI 1STHALNI
40 _ R
31v001

R
1SIHIALNI
e

FIV301

1S343LNI
40
NOID3d

PCT/US03/04879

WO 03/081447

49/60

6¥/PSA'69-¥020

-0 110d Jofe|d ay) 0} pajebodoad s| abessaw
<HNIHLMIN/Z I<ONIHLMIAN>

e ‘pliooal Jo Juswipoquid

s, JoAejd syoasiaqul 1saia1ul Jo uoibal sil leyl
1S9.481Ul JO JUBWIPOJqWIS 119y} S8AOW [9po

+ Buiuoxoai peap s,0 19Ae(d usym

\ L HIAV1d

8 "Old

0 H3AV1d
, AT L HIAYTS
0 o 7
\ HIAHTS L OLLOIEOTES) { L 1Y00T
LU EHSOTOS
0" L LHI0TLS
0'0L IHI'0TIS

HIAHIS
21v001

3

T

o..

6'0L°043'070S
00wl

0p10929Y }O Juswipoquily
09Je201]
0JoAI0S

\

WO 03/081447

PCT/US03/04879
50/60
401 405a
Gateway Game
Server Server 1
4901 4902
| ! 4903
| SUSCRIBE TO
THING_MOVE > PROXY 1905 SEAvERD
CROSS SERVER 4904
local_time CMD_CHANGESERVER [| BOUNDARY
position, system_time UPDATE THING N | 4908
orientation DATABASE
serverid 4909
0 TRANSFER
4906 THING_FLUSH 4916
90 INSERT SERVERID : NEW SUBSCRIPTION
"~ INTO LOGINS WHERE system_time TO SERVER 1 404
LONGINID = N thingid BROADCAST THING'S | 4949
49Q7 P p— AREA OF INTEREST
CLIENT INPUT CMD_TRANSFER TO NEW SUBSCRIBER
4911 | SELECT SERVERID system_time \
FROM LOGINS WHERE thingid 4918
4912 LOGIND =N |4915 THING_NEW
4922 __| REACQUIRE THING ON THING_SUBSCRIBE system_time
NEW SERVER - -
UPDATE AREA OF system. time <thing>
THING_MOVE |« —
- INTEREST thingid
9 4914
. LOAD THING
local_time 49{ THING_ACQUIRE FROM DATABASE
position, 4915 system_time UPDATE AREA OF
orientation . INTEREST
thingid 4919
FORWARD
' UPDATES
THING_MOVE rd A
4920// system_time
position, orientation
Game
Server 2
405b

FIG. 49

0204-69.vsd/50

PCT/US03/04879

WO 03/081447

52/60

25/PsA'69-¥020

o© =)
285 &
- T

S W&
= d O
dde
0220
a= 2

27

User Input

Q
-~
Fo
o
=
[0}
=

H3ddvdm
13OV ddN LNIAT LNdNI NOILLOIAdHd 39vsSSan

uReRES

LEGEND

Dispatcher

FIG. 51

WO 03/081447

53/60

PCT/US03/04879

FIG. 52

0204-69.vsd/53

WO 03/081447

y state changes to those things
whose GUIDs
wre passed as parameters to
the python script function
Il be propogated by the server
when the function returns.

54/60

VER PRT
PIP
BLOCK
LENGTH THING
SCRIPT <CALLER
SUBBLOCK
COOKIE> LENGTH
PYTHON MODULE
<strlen> m’ o
W - - ™
e pad to SUBBLOCK
2byte LENGTH
PYTHON FUNCTION
<strlen> iy o
n e - -
1Y Yn? 't padto
a m e % byle
SUBBLOCK
LENGTH PYTHON
GUID <THING
SUBBLOCK
COOKIE> LENGTH
PYTHON LONG
<32 bit value >
SUBBLOCK
LENGTH PYTHON
FLOAT <32 bit
value > SUBBLOCK
LENGTH
PYTHON VECTOR
< i value >
<j value >
< k value >
SUBBLOCK
LENGTH PYTHON
ENUM <16 bits>
SUBBLOCK
LENGTH PYTHON
STRING <strien>
" g " -
iy nw T gagl y::
NULL SUBBLOCK NULL BLOCK
LENGTH LENGTH
NULL
PAD

PCT/US03/04879

GLOBALY UNIQUE ID
FOR INVOKING THING
(required)

caller id, subtype//type (required)
module (required)

function (required)

parameters (optional)

NOTE: the module and function
specifications should be provided

in order, followed by the (optional)
parameters, which should fit in a single
packet.

FIG. 53

0204-69.vsd/54

PCT/US03/04879

WO 03/081447

55/60

GG/PSA'69-¥020

¥S "Old

| | on

PCT/US03/04879

WO 03/081447

56/60

96/PsA'69-¥020

seifg g i1 AdALHID01d

"OdN 0
ai enbiun Ajreqoio
suIRIUCD pisl d] 4ohe|d

GG -

Old

103rdo
Aa3TIvHLING

SIH1 404
V.1vaxooid

3dAldNs
20714

saliq g m3dALENS X008

ddAlL
AD071d

H1ON3A1
A0071d

s8)Ag g tHLONAT 0014

"DdN Jo edAy 109[qo
SUIBIUOD pial} Uod Jekeld

123rdo

40 diNO

3dALrdo

H3A

S31Ad ¢ -dquinN UOISIB N

avoAvd

(saLAg 9)
H3avaH
43asn

PCT/US03/04879

WO 03/081447

57/60

1S/PSA'69-7020

96 "Old

SHENETINEVE

iHO0OM

iHOOM

~) MaN IN3AS

1seJejul Jo uojbai

ued
adA} 108lgo

8/96# AIND

[ewjue

adA1 100[g0

vect# alnNo

-) dOHA™LN3AT

WO 03/081447 PCT/US03/04879
58/60
EVENT QUEUE
FORTHISNPC = e e e e e e e e e
(ABOUT OTHER FINITE-STATE MACHINE |
OBJECTS) FOR PROCESSING
J NEXT NPC LOGIC
TOKEN N+1
/—‘ WAIT
q | (for next
»| TOKENN M noommg
event)
NEXT
WAKE
(shedule
next tick >

FIG. 57

entry for

Make nev
entry in
hash table
for the
object

(check type
of event)

Change
state of the
object

Collide
with the
object

Drop old
entry in

0204-69.vsd/58

WO 03/081447

59/60

PCT/US03/04879

PC USER Designs Character

l

PC USER Registers Character with Bridging
System

'

System Delivers Character to Other USERS

'

Laptop USER "sees" character

'

Laptop USER Sends Message to
Mobile USER

l

Mobile USER Receives Signal of Character
Presence

'

Mobile USER Interacts with Character

'

Effect of Mobile USER’s Interaction is Seen
by Other USERS

Coa> ™

FIG. 58

0204-69.vsd/59

WO 03/081447 PCT/US03/04879
60/60

5942 . o
5900

00000000 4/
o 0| 5944
@) O

<<1l >8 Processor 8
@) O
@) O
ONONONONONONONS

OO mm

/l
<\l > Main Memory //5946
g NN EREEERERERE
@ A Display Interface > Display
I=
g T, 5948
o e
g ¥“//5950
5 Hard Disk]
E Drive
e M > 5952, 5954
8 N— Removable ||| Removable

Storage Drive T Storage Unit

59604
N Interface Removable
\j: Storage Unit
N5062

Communication /
> Interface < :

N\5964

VAN

FIG. 59

0204-69.vsd/60.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/04879

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GOG6F 15/16
US CL 709/201

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 709/201

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Internet

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Orlando, FL, September 1997.

A Chiueh, Tzi-cker et al. "Distributed System Support for Network Based Multi-User
Interactive Applications”, Proceedings of 1st Distributed Simulation Symposium '97,

Smed, Jouni et al. "A Review on Networking and Multiplayer Computer Games”, Turku
Centre for Computer Science, TUCS Technical Report No. 454, April 2002.

1-80

D Further documents are listed in the continuation of Box C.

]

See patent family annex.

. Special categories of cited documents:

“A™ document defining the general state of the art which is not considered to be
of particular relevance

“E™ earlier application or patent published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited 1o
establish the publication date of another citation or other special reason (as
specified)

“O" document referring to an oral disclosure, use, exhibition or other means

“P" document published prior to the international filing date but later than the
priorily date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

02 August 2003 (02.08.2003)

Date of mailing of the international search report

20 AUG 2003

Name and mailing address of the ISA/US
Mail Stop PCT, Aun: ISA/US
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (703)305-3230

Authorized officer
David Wiley OQW o¥

Telephone No. 703-746-7240

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

