

(86) **Date de dépôt PCT/PCT Filing Date:** 2007/09/27

(87) **Date publication PCT/PCT Publication Date:** 2008/04/03

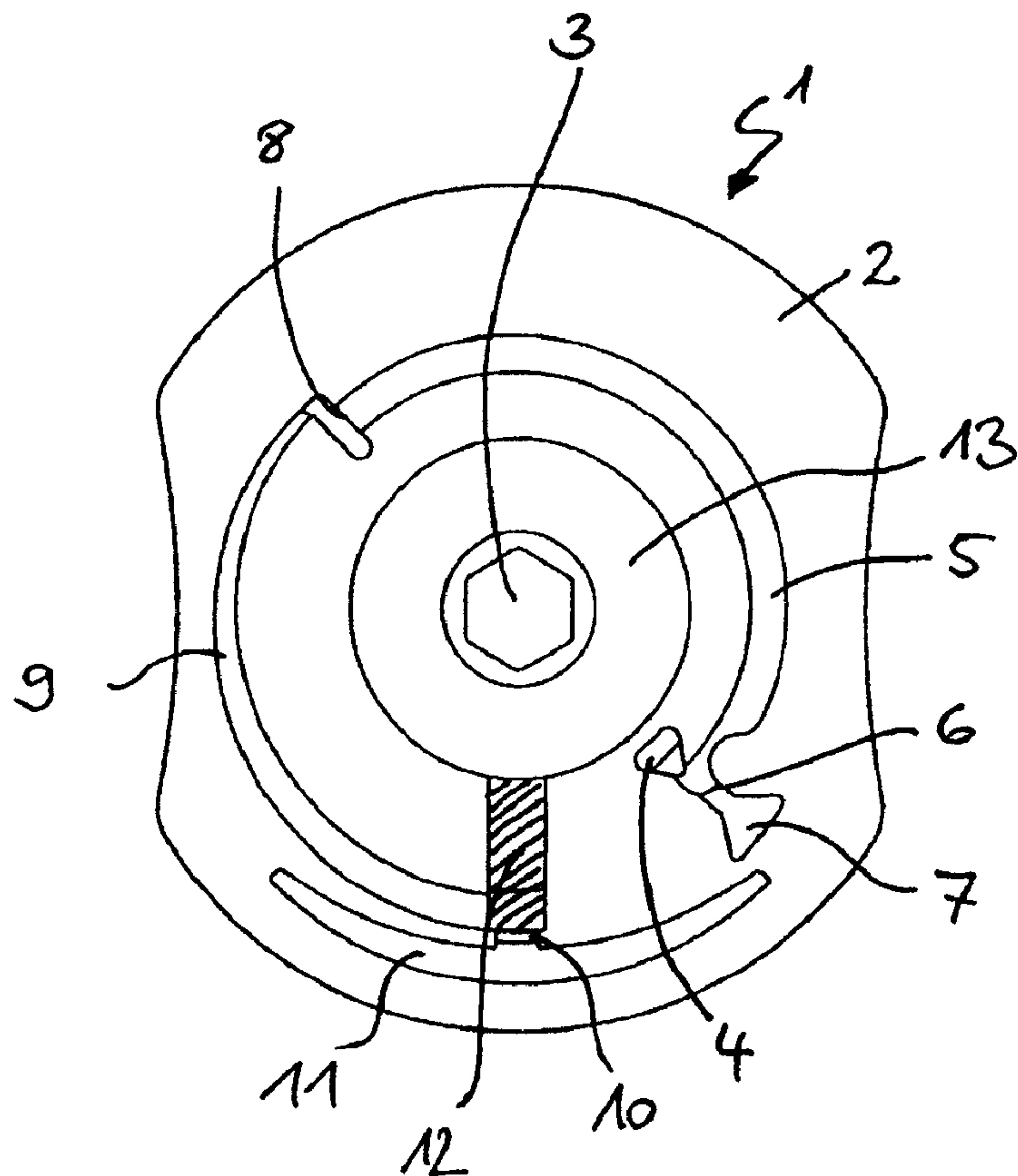
(45) **Date de délivrance/Issue Date:** 2014/04/01

(85) **Entrée phase nationale/National Entry:** 2009/03/26

(86) **N° demande PCT/PCT Application No.:** EP 2007/008419

(87) **N° publication PCT/PCT Publication No.:** 2008/037469

(30) **Priorité/Priority:** 2006/09/27 (EP06020219.9)


(51) **Cl.Int./Int.Cl.** *G01N 33/543* (2006.01),
B01L 3/00 (2006.01)

(72) **Inventeurs/Inventors:**
BOEHM, CHRISTOPH, DE;
ORANTH, NORBERT, DE;
SPINKE, JUERGEN, DE

(73) **Propriétaire/Owner:**
F. HOFFMANN-LA ROCHE AG, CH

(74) **Agent:** BORDEN LADNER GERVAIS LLP

(54) Titre : ELEMENT D'ESSAI ROTATIF
(54) Title: ROTATABLE TEST ELEMENT

(57) Abrégé/Abstract:

(07) Abstract. The invention relates to an essentially disk-shaped, flat test element that can be rotated about a preferably central axis which is perpendicular to the plane of the disk-shaped test element. Said test element contains a sample feeding opening for introducing a

(57) Abrégé(suite)/Abstract(continued):

liquid sample, a capillary-active region, especially a porous, absorbent matrix, having a first end at a distance from the axis and a second end which is close to the axis, and a sample channel which reaches from a region close to the axis to the first end of the capillary-active region, at a distance from the axis. The invention also relates to a method for determining an analyte by means of the test element.

Abstract

The invention concerns a test element which is essentially disk-shaped and flat and can be rotated about a preferably central axis which is perpendicular to the plane of the disk-shaped test element, comprising a sample application opening for applying a liquid sample, a capillary-active zone, in particular a porous, absorbent matrix having a first end that is remote from the axis and a second end that is near to the axis, and a sample channel which extends from an area near to the axis to the first end of the capillary-active zone that is remote from the axis. In addition the invention concerns a method for determining an analyte with the aid of the test element.

Rotatable test element

The invention concerns a test element which is essentially disk-shaped and flat and can be rotated about a preferably central axis which is perpendicular to the plane of the disk-shaped test element, containing a sample application opening for applying a liquid sample, 5 a capillary-active zone, in particular a porous absorbent matrix and a sample channel which reaches from the sample application opening to the capillary-active zone. In addition the invention concerns a method for determining an analyte with the aid of the test element.

In principle the systems for analysing liquid sample materials or sample materials which 10 can be converted into a liquid form can be divided into two classes: On the one hand, there are analytical systems which operate exclusively with so-called wet reagents and, on the other hand, there are systems which use so-called dry reagents. In particular in medical diagnostics and also in environmental and process analytics the former systems are primarily used in permanently equipped laboratories whereas the latter systems are used 15 mainly for "on-site" analyses.

Analytical systems using dry reagents are offered in the field of medical diagnostics especially in the form of so-called test carriers e.g. test strips. Prominent examples of this are test strips for determining the blood sugar value or test strips for urine analyses. Such test carriers usually integrate several functions (e.g. the storage of reagents in a dried form 20 or, although more rare, in solution; the separation of undesired sample components in particular red blood corpuscles from whole blood; in the case of immunoassays the so-called bound free separation; the metering of sample volumes; the transport of sample liquid from outside a device into the interior of a device; the control of the chronological sequence of individual reaction steps etc.). In this connection the function of sample 25 transport is often effected by means of absorbent materials (e.g. papers or fleeces), by means of capillary channels or by using external driving forces (such as e.g. pressure, suction) or by means of centrifugal force. Disk-shaped test carriers, so-called lab-disks or optical bio-disks pursue the idea of controlled sample transport by means of centrifugal force. Such disk-shaped, compact disk-like test carriers allow a miniaturization by 30 utilizing microfluidic structures and at the same time enable processes to be carried out in parallel by the repeated application of identical structures for the parallel processing of

similar analyses from one sample or of identical analyses from different samples. Especially in the field of optical bio-disks it is possible to integrate optically stored digital data for identifying the test carrier or for the control of analytical systems on the optical bio-disks.

5 In addition to miniaturization and parallelization of analyses and integration of digital data on optical disks, bio-disks generally have the advantage that they can be manufactured by established manufacturing processes and can be measured by means of an established evaluation technology. In the case of the chemical and biochemical components of such optical bio-disks it is usually possible to make use of known chemical and biochemical 10 components. A disadvantage of the optical lab-disks or bio-disks that are based purely on centrifugal and capillary forces is that it is difficult to immobilize reagents and the accuracy of the detection suffers. Especially in the case of detection systems which are based on specific binding reactions, such as e.g. immunoassays, there is an absence of the volume component compared to conventional test strip systems especially in the so-called 15 bound-free separation.

For this reason attempts have recently been made especially in the field of immunoassays to establish hybrids of conventional test strips and bio-disks. This results in bio-disks with channels and channel-like structures for liquid transport, on the one hand, and voluminous absorbent materials in these structures (at least partially), on the other hand.

20 WO 2005/001429 (Phan et al) describe optical bio-disks which have pieces of membrane as reagent carriers in parts of the channel system. The reagents are dissolved by a liquid supplied to the disk and thus result in buffered reagent solutions which are then brought into contact with the sample.

Optical bio-disks are known from WO 2005/009581 (Randall et al.) which contain 25 absorbent membranes or papers to move a sample liquid, to separate particulate sample components, to carry reagents or to analyse the sample. The sample is firstly applied to a blood separation membrane near to the outer edge of the bio-disk and migrates radially through this membrane to a reagent paper which is disposed nearer to the centre of the bio-disk. Afterwards the sample is again radially moved towards the outside i.e. away from the 30 centre of the bio-disk and flows through a so-called analysis membrane. The movement

towards the outside occurs in this case by means of chromatography which is supported by rotating the bio-disk and the centrifugal force which thereby acts on the sample.

US 2002/0076354 A1 (Cohen) discloses optical bio-disks which in addition to a channel system for transporting a liquid sample, have a so-called "capture layer". The latter can for 5 example consist of nitrocellulose. The flow through the "capture layer" is effected with the aid of centrifugal forces when the disk is rotated.

US 2005/0014249 (Staimer et al.) and US 2005/0037484 (Staimer et al.) describe optical bio-disks with porous materials integrated into channels which act as chromatographic separation media. The sample liquid is forced outwards by means of centrifugal force from 10 a sample application site near to the centre through the separation media and, after passing a filter, subsequently flows again in a channel radially towards the inside.

US 2004/0265171 (Pugia et al.) describes a test element with liquid channels in which sample liquid is transported by means of an interplay of capillary force and centrifugal force. A nitrocellulose strip can be provided within a liquid channel which carries an 15 agglutination reagent that reacts with the analyte and thus can lead to the formation of so-called bands which are finally measured optically and are thus used to determine an analyte concentration in the sample. The nitrocellulose strip enables the sample liquid to be transported parallel to the centrifugal force as well as opposed to the centrifugal force especially when a further absorptive material for example an absorbent nitrocellulose 20 paper is used to assist the suction action.

WO 99/58245 (Larsson et al.) describes microfluidic test elements in which the movement of liquids is controlled by different surfaces having different surface properties such as e.g. different hydrophilicities.

US 5,242,606 (Braynin et al.) discloses circular, disk-like rotors for centrifuges which are 25 furnished with channels and chambers to transport sample liquids.

A disadvantage of the concepts of the prior art is that a specific control of the reaction and dwelling times of the sample liquid after uptake of the reagents and after they have flowed into the porous, absorbent matrix is not possible especially for specific binding assays such as e.g. immunoassays.

The object of the invention is to eliminate the disadvantages of the prior art.

This object is achieved by the subject matter of the invention.

In one aspect, there is provided a test element which is essentially disk-shaped. The test element includes: an axis within the test element which is perpendicular to the plane of the test element and about which the test element can be rotated; a sample application opening for applying a liquid sample comprising blood components; a capillary-active zone which is a paper, a membrane or a fleece, having a porous, absorbent matrix which matrix comprises one or more zones containing immobilized reagents, the capillary-active zone having a first end that is remote from the axis and a second end that is near to the axis; and a sample channel which extends from the sample application opening over an area near to the axis to the first end of the capillary-active zone that is remote from the axis and contains a zone for separating cellular sample components from the liquid sample; wherein the immobilized reagents are specific binding reagents used to specifically capture an analyte, a species derived from the analyte, or a species related to the analyte, from the sample flowing through the capillary-active zone and to immobilize the analyte, the species derived from the analyte, or the species related to the analyte in the capillary-active zone.

The sample application opening may be near to the axis and the sample channel may extend from the sample application opening near to the axis to the first end of the capillary-active zone that is remote from the axis.

The sample application opening may be remote from the axis and may be connected to an area near to the axis by a capillary channel.

25

The second end of the capillary-active zone may be in contact with a further absorbent material or an absorbent structure which can receive the liquid from the capillary-active zone. The porous, absorbent matrix that is near to the axis may be in contact with the further absorbent material or absorbent structure.

30

The sample channel may contain zones of different dimensions and/or for different functions.

The sample channel may contain a zone containing soluble reagents.

5

The sample channel may contain geometric valves or hydrophobic barriers.

The sample channel may contain a sample metering zone.

10 The sample channel may have an inlet for further liquids other than the sample liquid.

The sample application opening may be in contact with a sample metering zone and a zone for sample excess, and a capillary stop may be present between the sample metering zone and the zone for sample excess. The sample channel may have an inlet for further liquids 15 other than the sample liquid.

In another aspect, there is provided a method for detecting an analyte in a liquid sample.

The method includes applying the sample to the sample application opening of the test element as described above. The test element is rotated such that the sample is transported

20 to the end of the capillary-active zone, the rotation of the test element is slowed down to such an extent or stopped so that the sample or a material obtained from the sample when it flows through the test element is sucked from the end remote from the axis to the end near to the axis of the capillary-active zone; and the analyte is detected visually or optically in the capillary-active zone or in a zone downstream thereof.

25

The sample may be transported to the porous, absorbent matrix that is remote from the axis.

After the rotation of the test element, a further liquid may be applied to the test element

30 which is sucked after the sample from the end remote from the axis to the end near to the axis of the capillary-active zone.

The migration of the liquid sample through the capillary-active zone may be selectively slowed down or stopped by the rotation of the test element. The direction of migration of the liquid sample through the capillary-active zone may be reversed by the rotation of the test element.

5

The migration of the further liquid through the capillary-active zone may be selectively slowed down or stopped by the rotation of the test element. The direction of migration of the further liquid through the capillary-active zone may be reversed by the rotation of the test element.

10

According to a further aspect, there is provided a system for determining an analyte in a liquid sample. The system includes a test element as described above and a measuring device, wherein the measuring device has at least one drive for rotating the test element; and evaluation optics for evaluating the visual or optical signal of the test element.

15

According to still another aspect, there is provided a use of a test element or of a measuring system as described above to determine an analyte in a liquid sample.

The test element according to the invention is essentially disk-shaped and flat. It can be rotated about a preferably central axis which is perpendicular to the plane of the disk-shaped test element within the test element. The test element is typically a circular disk comparable to a compact disk. However, the invention is not limited to this form of disk but rather can also readily be used for non-symmetrical or non-circular disks.

With regard to components the test element firstly contains a sample application opening into which a liquid sample can be pipetted or introduced in another manner. The sample application opening can either be near to the axis (i.e. near to the centre of the disk) or remote from the axis (i.e. near to the edge of the disk). In the case that the sample application opening is remote from the axis, the test element contains at least one channel which can transfer the liquid sample from the position remote from the axis into a position near to the axis by means of capillary forces.

30

In this connection the sample application opening can directly discharge into a sample channel. However, it is also possible that the sample application opening firstly leads into a reservoir that is located behind it into which the sample flows before it flows further into the sample channel. It can be ensured by suitable dimensions that the sample flows from

5 the sample application opening into the subsequent fluidic structures without further assistance. This may require a hydrophilization of the surfaces of the fluidic structures and/or the use of structures which enhance the formation of capillary forces. It is, however, also possible to only allow the fluidic structures of the test element according to the invention to be filled from the sample application opening after an external force,

10 preferably a centrifugal force acts on it.

The test element additionally contains a capillary-active zone especially in the form of a porous, absorbent matrix or capillary channel which holds at least a portion of the liquid sample. The capillary-active zone has a first end remote from the axis and a second end near to the axis.

- 5 In addition the test element has a sample channel which extends from the sample application opening to the first end of the capillary-active zone remote from the axis and in particular to the porous, absorbent matrix. In this case the sample channel passes at least once through a region near to the axis which is nearer to the preferably central axis than the first end of the capillary-active zone that is remote from the axis.
- 10 An important feature of the test element of the present invention is that the capillary-active zone and in particular the porous, absorbent matrix has a second end that is near to the axis. The first end of the capillary-active zone that is remote from the axis is in contact with the sample channel in which the sample can be moved by means of capillary forces and/or centrifugal forces and/or other external forces such as overpressure or negative pressure. As soon as the liquid sample reaches the first end of the capillary-active zone remote from the axis, optionally after uptake of reagents and/or dilution media and/or pre-reactions have occurred, it is taken up into the said zone and transported through the said zone by capillary forces (which in the case of a porous, absorbent matrix can also be referred to as suction forces).
- 15
- 20 The capillary-active zone is typically a porous, absorbent matrix and in particular a paper, a membrane or a fleece.

The capillary-active zone and in particular the porous, absorbent matrix usually contains one or more zones containing immobilized reagents.

- 25 Specific binding reagents for example specific binding partners such as antigens, antibodies, (poly) haptens, streptavidin, polystreptavidin, ligands, receptors, nucleic acid strands (capture probes) and such like are typically immobilized in the capillary-active zone and in particular in the porous, absorbent matrix. They are used to specifically capture the analyte or species derived from the analyte or related to the analyte from the sample flowing through the capillary-active zone. These binding partners can be present
- 30 immobilized in or on the material of the capillary-active zone in the form of lines, points,

patterns or they can be indirectly bound to the capillary-active zone e.g. by means of so-called beads. Thus, for example in the case of immunoassays one antibody against the analyte can be present immobilized on the surface of the capillary-active zone or in the porous, absorbent matrix which then captures the analyte (in this case an antigen or 5 haptens) from the sample and also immobilizes it in the capillary-active zone such as e.g. the absorbent matrix. In this case the analyte can be made detectable for example by means of a label that can be detected visually, optically or fluorescence-optically by further reactions for example by additionally contacting it with a labelled bindable partner.

In a preferred embodiment of the test element according to the invention the second end 10 near to the axis of the capillary-active zone and in particular of the porous, absorbent matrix adjoins a further absorbent material or an absorbent structure such that it can take up liquid from the zone. The porous, absorbent matrix and the further material typically slightly overlap for this purpose. The further material or the further absorbent structure serve on the one hand, to assist the suction action of the capillary-active zone and in 15 particular of the porous, absorbent matrix and, on the other hand, serve as a holding zone for liquid which has already passed through the capillary-active zone. In this connection the further material can consist of the same materials or different materials than the matrix. For example the matrix can be a membrane and the further absorbent material can be a fleece or a paper. Other combinations are of course equally possible.

20 The test element according to the invention is characterized in a preferred embodiment by the fact that the sample channel contains zones of different dimensions and/or for different functions. For example the sample channel can contain a zone which contains reagents that are soluble in the sample or can be suspended in the sample. These reagents can be dissolved or suspended in the liquid sample when it flows into or through the channel and 25 can react with the analyte in the sample or with other sample components.

The different zones in the sample channel can also differ in that there are zones with 30 capillary activity and those without capillary activity. Moreover, there may be zones having a high hydrophilicity and those with a low hydrophilicity. The individual zones can quasi seamlessly merge into one another or be separated from one another by certain barriers such as valves and in particular non-closing valves such as geometric valves or hydrophobic barriers.

The reagents in the sample channel are preferably present in a dried or lyophilized form. It is, however, also possible that the reagents are present in the test element according to the invention in a liquid form.

The reagents can be introduced into the test element in a known manner. The test element

5 preferably contains at least two layers, a bottom layer into which the fluidic structures are introduced and a cover layer which apart from inlet openings for liquids and vent openings, contains no further structures. The introduction of reagents during the manufacture of the test device is usually carried out before the upper part of the test element (cover layer) is mounted on the lower part (bottom layer). At this point in time the
10 fluidic structures are open in the lower part so that the reagents can be easily metered in a liquid or dried form. In this connection the reagents can for example be introduced by pressing or dispensing. However, it is also possible to introduce the reagents into the test element by impregnating them in absorbent materials such as papers, fleeces or membranes which are inserted into the test element. After placing the reagents and
15 inserting the absorbent materials, for example the porous, absorbent matrix (membrane) and optionally further absorbent materials (waste fleece etc.), the upper and lower part of the test element are joined together for example clipped, welded, glued and such like.

Alternatively the bottom layer may also have the inlet openings for liquids and the vent

20 openings in addition to the fluidic structures. In this case the cover layer can be formed completely without openings optionally with exception of a central opening to receive a drive unit. In this case in particular the cover part can simply consist of a plastic foil which is glued onto the lower part or welded to it.

The sample channel usually contains a zone for separating particulate components from

25 the liquid sample. Especially if blood or other body fluids containing cellular components are used as a sample material, this zone serves to separate the cellular sample components. Thus, almost colourless plasma or serum which is usually more suitable than strongly coloured blood for subsequent visual or optical detection methods can be obtained by separating especially the red corpuscles (erythrocytes) from the blood.

Cellular sample components are preferably separated by centrifugation i.e. by rapidly

30 rotating the test element after filling it with liquid sample. For this purpose the test

element according to the invention contains channels and/or chambers of suitable dimensions and geometric designs. In particular the test element contains an erythrocyte collecting zone (erythrocyte chamber or erythrocyte trap) for the separation of cellular blood components and a serum or plasma collection zone (serum or plasma chamber).

- 5 In order to control the flow of sample liquid in the test element, it can contain valves especially in the sample channel and in particular so-called non-closing or geometric valves or hydrophobic barriers. These valves serve as capillary stops. They can ensure a specific chronological and spatial control of the sample flow through the sample channel and individual zones of the test element.
- 10 In particular the sample channel can have a sample metering zone which allows an accurate measurement of the sample which is firstly applied in excess. In a preferred embodiment the sample metering zone extends from the sample application opening over an appropriate piece of sample channel up to a valve in the fluidic structure, in particular a geometric valve or a hydrophobic barrier. In this connection the sample application opening can firstly receive an excess of sample material. The sample flows from the sample application zone into the channel structure driven either by capillary forces or by centrifugation and fills it up to the valve. Excess sample initially remains in the sample application zone. Only when the channel structure is filled up to the valve, will a sample excess chamber adjoining the sample application zone and branching from the sample channel be filled for example by capillary forces or by centrifuging the test element. In this case it must be ensured that the sample volume to be measured is initially not transported beyond the valve by means of a suitable choice of valve. Once excess sample has been collected in the corresponding overflow chamber, there is an exactly defined sample volume between the valve of the sample channel on one side and the inlet to the sample overflow chamber on the other side. This defined sample volume is then moved beyond the valve by applying external forces and in particular by starting a further centrifugation. All fluidic areas which are located after the valve and which come into contact with sample are then firstly filled with an exactly defined sample volume.
- 25
- 30

The sample channel can additionally have an inlet for further liquids apart from the sample liquid. For example a second channel which for example can be filled with a washing liquid or reagent liquid, can discharge into the sample channel.

The system according to the invention consisting of measuring device and test element is used to determine an analyte in a liquid sample. In this case the measuring device comprises among others at least one drive for rotating the test element and evaluation optics for evaluating the visual or optical signal of the test element.

5 The optical system of the measuring device can preferably be used to measure fluorescence with spatially resolved detection. In the case of two-dimensional i.e. planar evaluation optics, an LED or a laser is typically used to illuminate the detection area of the test element and optionally to excite optically detectable labels. The optical signal is detected by means of a CMOS or CCD (typically with 640 x 480 pixels). The light path is
10 direct or folded (e.g. via mirrors or prisms).

In the case of anamorphotic optics the illumination or excitation is typically by means of an illumination line which illuminates the detection area of the test element preferably perpendicular to the detection and control lines. In this case the detection can be by means of a diode line. A rotary movement of the test element can in this case be utilized to
15 illuminate and evaluate the second dimension in order to thus scan the planar area to be evaluated with the diode line.

A DC motor with an encoder or a step motor can be used as the drive to rotate and position the test element.

The temperature of the test element is preferably maintained indirectly in the device for
20 example by heating or cooling the plate on which the disk-shaped test element rests in the device. The temperature is preferably measured in a contactless manner.

The method according to the invention serves to detect an analyte in a liquid sample. The sample is firstly applied to the sample application opening of the test element. Subsequently the test element is rotated preferably about its preferably central axis; it is,
25 however, also possible to carry out the method according to the invention such that the rotation is about another axis which may also be outside the test element. In this process the sample is transported from the sample application opening to the end of the capillary-active zone and in particular of the porous, absorbent matrix that is remote from the axis. The rotation of the test element is then slowed down or stopped to such an extent that the
30 sample or a material obtained from the sample as it flows through the test element (for

example a mixture of sample and reagents, a sample changed by pre-reactions with reagents from the test element, a sample freed of certain components such as serum or plasma from whole blood after separation of erythrocytes etc.) is transported from the end of the capillary-active zone and in particular of the porous, absorbent matrix that is remote 5 from the axis to the end that is near to the axis. The analyte is finally visually or optically detected in the capillary-active zone, in particular in the porous, absorbent matrix or in a zone downstream thereof.

It is possible to exactly determine and control the time at which the sample (or a material obtained from the sample) starts to migrate through the capillary-active zone by 10 specifically slowing down or stopping the rotation of the test element. A movement of the sample into and through the capillary-active zone is only possible when the magnitude of the capillary force (suction force) in the capillary-active zone exceeds the magnitude of the opposing centrifugal force. Liquid transport in the capillary-active zone can be specifically started in this manner. For example it is thus possible to await a possible pre-reaction or 15 pre-incubation of the sample or an incubation of the sample before the rotation of the test element is slowed down or stopped to such an extent that the sample is able to flow into the capillary-active zone.

The transport of the sample (or of a material obtained from the sample) through the capillary-active zone can be specifically slowed down or stopped by a new rotation of the 20 test element about its preferably central axis. The centrifugal forces occurring during the rotation counteract the capillary force which moves the sample liquid from the end remote from the axis of the capillary-active zone to the end near to the axis. Thus, a specific control and in particular slowing down of the flow rate of the sample in the capillary-active zone is possible even to the extent of a reversal of the flow direction. In this manner 25 it is possible to for example control the residence time of the sample in the capillary-active zone.

In particular it is also possible with the test element and the method according to the invention to reverse the direction of migration of the liquid sample and/or of another liquid through the capillary-active zone by the rotation of the test element wherein this can be 30 carried out several times to achieve a reciprocating movement of the liquid. By means of a concerted interplay of capillary forces which transport the liquid in the capillary-active

zone from the outside (i.e. from the end remote from the axis) towards the inside (i.e. towards the end near to the axis) and opposing centrifugal forces, it is possible among others to increase the binding efficiency of the binding reactions in the capillary-active zone, to improve the dissolution of soluble reagents and mix them with the sample or other 5 liquids, or to increase the washing efficiency (bound-free separation) in the case of affinity assays.

In particular in connection with immunoassays the detection can be carried out according to the principle of a sandwich assay or in the form of a competitive test.

It is also possible that a further liquid is applied to the test element after the rotation of the 10 test element, said liquid being transported after the sample from the end of the capillary-active zone and in particular of the porous, absorbent matrix that is remote from the axis to the end that is near to the axis.

The further liquid can be in particular a buffer, preferably a washing buffer or a reagent liquid. The addition of the further liquid can result in an improved signal to background 15 ratio compared to conventional test strips especially in relation to immunoassays because the addition of liquid can be used as a washing step after the bound-free separation.

The invention has the following advantages:

The combination of liquid transport by means of centrifugal forces and by means of suction forces in capillary-active zones and in particular in porous, absorbent matrix 20 materials allows a precise control of liquid flows. According to the invention the capillary-active zone and in particular the porous, absorbent matrix transports the liquid from an end remote from the axis to an end near to the axis i.e. from the periphery of the disk-shaped test element towards the axis of rotation. The centrifugal force which can also be used to move the liquids, exactly counteracts this transport direction. Systematic control of the 25 rotation of the test element (such as e.g. more rapid/slower rotation, switching the rotary movement on and off) therefore enables the flow of sample liquid in the capillary-active zone and in particular in the porous, absorbent matrix to be slowed down or stopped thus allowing selective and defined reaction conditions to be maintained. At the same time the use of the porous, absorbent matrix which essentially serves as a capture matrix for the 30 bound-free separation in immunoassays, allows an efficient capture of sample components

5 during the course of the immunoassay. In particular the interplay of centrifugal and capillary forces (suction forces) enables the sample to be moved backwards and forwards over a reagent zone in particular a zone containing immobilized reagents (especially a capture zone for heterogeneous immunoassays) without an increased amount of technical complexity and thus ensures a more effective dissolution of the reagents, mixing of the sample with reagents or a capture of sample components on immobilized binding partners.

10 At the same time it is possible to eliminate depletion effects when sample components (above all the analyte) bind to immobilized binding partners and thus increase the binding efficiency (i.e. sample components depleted in analyte can be replaced by analyte-rich sample components by a reciprocating movement of sample over the capture zone and/or by efficient mixing). Moreover, the reciprocating movement of liquids in the capillary-active zone can result in the most efficient utilization of the small liquid volumes not only for reaction purposes (in this case the sample volume in particular is utilized) but also for washing purposes for example in order to improve the discrimination between bound and

15 free label in the capture zone. This allows an effective reduction of the amounts of sample and liquid reagents as well as of washing buffer.

20 The preferably central position of the axis of rotation within the test element enables the test element itself as well as the associated measuring device to be designed as compactly as possible. In the case of chip-shaped test elements such as those shown for example in figure 1 and 2 of US 2004/0265171 the axis of rotation is outside the test element. An associated turntable or rotor is thus inevitably larger than in the case of a test element with identical dimensions but where the axis of rotation is within the test element and is preferably arranged centrally as is the case with the test elements according to the invention.

25 The invention is further elucidated by the following examples and figures. In this case reference is made to immunological sandwich assays. However, the invention is not limited thereto. It can also be applied to other types of immunoassays and in particular also to competitive immunoassays or other types of specific binding assays (for example those which use sugars and lectins, hormones and their receptors or also complementary 30 nucleic acid pairs as binding partners). Typical representatives of these specific binding assays are known to a person skilled in the art (with regard to immunoassays reference is

explicitly made to figures 1 and 2 and the accompanying passages in the description of the document US 4,861,711) and can be readily applied to the present invention. In the following examples and figures a porous, absorbent matrix (membrane) is described as a typical representative of the capillary-active zone. However, the invention is not limited to 5 such a matrix. It is for example possible to use a capillary-active channel which can also have microstructures for controlling the liquid flows or for providing or immobilizing reagents or for mixing liquids and/or reagents instead of the matrix.

Figure 1 shows a top-view of a preferred embodiment of the test element according to the invention in a schematic diagram. For the sake of clarity only the layer of the test element 10 is shown which contains the fluidic structures. The embodiment shown contains only one opening for introducing sample and/or washing liquid. In this embodiment interfering sample components are separated after the sample has been contacted with reagents.

Figure 2 shows schematically a further preferred embodiment of the test element according to the invention. Also in this case only the structure is shown which has the 15 fluidic elements of the test element. In this embodiment of the test element there are two separate sample and washing buffer application openings. In this case the cellular sample components are separated before the sample is brought into contact with reagents.

Figure 3 shows a variant of the embodiment according to figure 1 in a schematic diagram. Also in this case the cellular sample components are separated after the sample has been 20 brought into contact with reagents. However, the structure according to figure 3 has a separate feed for washing liquid.

Figure 4 shows a further preferred embodiment of the test element according to the invention in a schematic view similar to figure 2.

Figure 5 shows a slight further development of the test element according to figure 3. In 25 contrast to the embodiment according to figure 3, figure 5 has a different geometric arrangement of the waste fleece and a different type of valve at the end of the sample metering section.

Figure 6 shows schematically a top-view of a further development of the test element according to figure 5. In contrast to the embodiment according to figure 5, the embodiment according to figure 6 has a fluidic structure for receiving sample excess.

Figure 7 is a schematic representation of a further variant of the test element according to figure 3. The fluidic structures are functionally essentially similar to those of figure 3. However, their geometric alignment and design are different.

Figure 8 shows schematically a further preferred embodiment of the test element according to the invention. The structures in figure 8 correspond essentially to the functions that are already known from the test element according to figure 4.

10 Figure 9 shows schematically a top-view of an alternative to the test element according to figure 6. In contrast to the embodiment according to figure 6, the embodiment according to figure 9 has a sample application opening which is remote from the axis which firstly moves the sample via a capillary nearer to the centre of the test element i.e. into an area near to the axis.

15 Figure 10 shows a typically curve shape for troponin T measurements in whole blood samples (concentration of troponin T in ng/ml plotted against the signal strength (counts)). Recombinant troponin T was added to the samples to yield the respective concentrations. The data are from example 2 and were obtained with the aid of test elements according to figure 6 / example 1.

20 The numerals and abbreviations in the figures have the following meaning.

- 1 disk-shaped test element (disk)
- 2 substrate (e.g. one-piece or multipart, injection moulded, milled, composed of layers etc.)
- 3 central opening (drive hole)
- 25 4 sample application opening
- 5 sample metering zone (metering section of the channel)
- 6 capillary stop (e.g. hydrophobic barrier, geometric / non-closing valve)
- 7 container for sample excess
- 8 capillary stop (e.g. hydrophobic barrier, geometric / non-closing valve)

9 channel
 10 serum / plasma collecting zone (serum / plasma chamber)
 11 erythrocyte collecting zone (erythrocyte chamber)
 12 porous, absorbent matrix (membrane)
 5 13 waste (fleece)
 14 capillary stop (e.g. hydrophobic barrier, geometric / non-closing valve)
 15 channel
 16 opening for adding further liquids, e.g. washing buffer
 17 vent hole
 10 18 decanting channel

 20 capture reservoir
 21 capillary channel

Figures 1 to 9 show different preferred embodiments of the test element (1) according to
 15 the invention. Essentially the substrate (2) containing the fluidic structures and the central
 opening (drive hole 3) are shown in each case. In addition to the substrate that can for
 example be one piece or multipart and can be configured by means of injection moulding,
 milling or by laminating appropriate layers, the disk-shaped test element (1) according to
 the invention also usually contains a cover layer which is not shown in the figures for the
 20 sake of clarity. The cover layer can in principle also carry structures but it usually has no
 structures at all apart from the openings for the samples and/or other liquids that have to
 be applied to the test element. The cover layer can also be designed completely without
 openings, for example in the form of a foil which is joined to the substrate and closes the
 structures located therein.

25 The embodiments which are shown in figures 1 to 9 show fluidic structures which fulfil to
 a large extent the same functions even if they differ in detail from embodiment to
 embodiment. The basic configuration and the basic function is therefore elucidated in
 more detail on the basis of the embodiment according to figure 1. The embodiments
 according to figures 2 to 9 are subsequently elucidated in more detail only on the basis of
 30 the specific differences between one another in order to avoid unnecessary repetition.

Figure 1 shows a first preferred embodiment of the disk-shaped test element (1) according to the invention. The test element (1) contains a substrate (2) which contains the fluidic and microfluidic as well as chromatographic structures. The substrate (2) is covered by a corresponding counterpiece (cover layer) (not shown) which contains sample application and vent openings which correspond with structures in the substrate (2). The cover layer as well as the substrate (2) have a central opening (3) which enables the disk-shaped test element (1) to be rotated by interaction with a corresponding drive unit in the measuring device. Alternatively the test element (according to one of the figure 1 to 9) may have no such central opening (3) and the drive is rotated by a drive unit of the measuring device 10 corresponding to the outer contours of the test element such as a rotating plate into which the test element is inserted into a depression corresponding to its shape.

The sample liquid in particular whole blood is applied to the test element (1) via the sample application opening (4). The sample liquid fills the sample metering zone (5) which is driven by capillary forces and/or centrifugal forces. The sample metering zone 15 (5) can in this connection also contain dried reagents. It is delimited by the capillary stops (6 and 8) which can for example be in the form of a hydrophobic barrier or a geometric / non-closing valve. The delimitation of the sample metering zone (5) by the capillary stops (6, 8) ensures that a defined sample volume is taken up and passed into the fluidic zones that are located downstream of the sample metering zone (5). When the test element (1) is 20 rotated, any sample excess is transferred from the sample application opening (4) and the sample metering zone (5) into the container for sample excess (7) whereas the measured amount of sample is transferred from the sample metering zone (5) into the channel (9).

The separation of red blood corpuscles and other cellular sample components is started in channel (9) at an appropriate speed of rotation. The reagents contained in the sample 25 metering zone (5) are already present dissolved in the sample when the sample enters the channel (9). In this connection the entry of the sample into channel (9) via the capillary stop (8) results in a mixing of the reagents in the sample.

The time control of the rotation processes that is possible with the test element according to the invention allows a selective control of the residence times and thus of the incubation 30 time of sample with reagents and of the reaction times.

During the rotation, the reagent-sample mixture is conducted into the fluidic structures (10) (serum / plasma collection zone) and (11) (erythrocyte collection zone). Due to the centrifugal forces which act on the reagent-sample mixture, plasma or serum is separated from the red blood corpuscles. In this process the red blood corpuscles collect in the 5 erythrocyte collection zone (11) whereas the plasma remains essentially in the collection zone (10).

In contrast to test elements which use membranes or fleeces to separate particulate sample components (for example glass fibre fleeces or asymmetric porous plastic membranes to separate red blood corpuscles from whole blood, generally referred to as blood separating 10 membranes or fleeces), the sample volume can be much more effectively utilized with the test elements according to the invention because virtually no dead volumes (e.g. volumes of the fibre interstices or pores) are present from which the sample can no longer be removed. Furthermore, some of these blood separating membranes and fleeces of the prior art have the undesired tendency to adsorb sample components (e.g. proteins) or to destroy 15 (lyse) cells which is also not observed with the test elements according to the invention.

If the rotation of the test element (1) is stopped or slowed down, the reagent-plasma mixture (in which in the case of an immunoassay, sandwich complexes of analyte and antibody conjugates have for example formed in the presence of the analyte) is taken up into the porous, absorbent matrix (12) by its suction action and passed through this matrix. 20 In the case of immunoassays the analyte-containing complexes are captured in the detection zone by the immobilized binding partners which are present in the membrane (12) and unbound, labelled conjugate is bound in the control zone. The fleece (13) adjoining the porous, absorbent matrix assists the movement of the sample through the membrane (12). The fleece (13) additionally serves to receive the sample after it has 25 flowed through the membrane (12).

After the liquid sample has flowed through the fluidic structure of the test element (1) from the sample application opening (4) up to the fleece (13), washing buffer is pipetted into the sample application opening (4) in a subsequent step. As a result of the same combination of capillary, centrifugal and chromatographic forces the washing buffer flows 30 through the corresponding fluidic structures of the test element (1) and washes in particular the membrane (12) where the bound analyte complexes are now located and

thus removes excess reagent residues. The washing step can be repeated once or several times in order to thus improve the signal-to-background-ratio. This allows an optimization of the detection limit for the analyte and an increase of the dynamic measuring range.

5 The sample channel in which the liquid sample is transported in the test element (1) from the sample application opening (4) to the first end of the membrane (12) that is remote from the axis, comprises in the present case the sample metering zone (5), the capillary stop (8), the channel (9), the serum / plasma collection zone (10) and the erythrocyte chamber (11). In other embodiments the sample channel can consist of more or fewer single zones / areas / chambers.

10 Figures 3, 5, 6, 7 and 9 show essentially analogous embodiments to figure 1. Figure 3 differs from figure 1 in that, on the one hand, no container for sample excess (7) is attached to the sample application opening (4) and no capillary stop is present at the end of the sample metering section (5) (i.e. a metered sample application is necessary in this case) and, on the other hand, in that a separate application opening (16) for further liquids 15 such as e.g. washing buffer and an associated channel (15) are present which can transport the buffer to the membrane (12). The transport of the buffer to the membrane (12) can in this case be based on capillary forces or centrifugal forces.

20 The embodiment according to figure 5 is substantially identical to the embodiment according to figure 3. The two embodiments differ only in the form of the waste fleece (13) and the fact that the test element according to figure 5 has a capillary stop (8) at the end of the sample metering section (5).

The embodiment according to figure 6 is again essentially identical to the embodiment according to figure 5 and differs from this by the additional presence of a container for sample excess (7) in the area between the sample metering opening (4) and the sample 25 metering zone (5). In this case a metered application of the sample is not necessary (similar to figure 1).

The embodiment of the test element (1) according to the invention according to figure 7 essentially corresponds to the test element (1) of figure 6. Both embodiments have the same fluidic structures and functions. Only the arrangement and geometric design are 30 different. The embodiment according to figure 7 has additional vent openings (17) which

are necessary due to the different dimensions of the fluidic structures compared to figure 6 in order to enable the structures to be filled with samples or washing liquid. In this case channel (9) is designed as a thin capillary which is not filled until the test element rotates (i.e. the capillary stop (8) can only be overcome by means of centrifugal force). With the 5 test element (1) according to figure 7 it is possible to already discharge collected plasma from the erythrocyte collection zone (11) during rotation; a decanting unit (18) is used for this purpose which finally ends in the serum / plasma collection zone (10).

The embodiment of the test element (1) according to the invention according to figure 9 essentially corresponds to the test element (1) of figure 6. Both embodiments have the 10 same fluidic structures and functions. Only the arrangement and geometric design are different. The embodiment according to figure 9 basically has a sample application opening (4) that is located further to the outside i.e. remote from the axis. This may be an advantage when the test element (1) is already placed in a measuring device in order to fill it with sample. In this case the sample application opening (4) can be made more easily 15 accessible to the user than is possible with test elements according to figures 1 to 8 where the sample application opening (4) is in each case arranged near to the axis (i.e. remote from the outer edge of the test element).

In contrast to the embodiment according to figures 1, 3, 5, 6, 7 and 9, in the case of the embodiment according to figures 2, 4 and 8 the cellular sample components are separated 20 from the sample liquid before the sample comes into contact with reagents. This has the advantage that the use of whole blood or plasma or serum as the sample material does not lead to different measuring results because always plasma or serum firstly comes into contact with the reagents and the dissolution / incubation / reaction behaviour should thus be virtually the same. Also in the embodiments according to figures 2, 4 and 8, the liquid 25 sample is firstly applied to the test element (1) via the sample application opening (4). The sample is subsequently transported further from the sample application opening (4) into the channel structures by capillary forces and/or centrifugal forces. In the embodiments according to figures 2 and 4 the sample is transferred into a sample metering section (5) after application into the sample application opening (4) and subsequently serum or 30 plasma is separated from whole blood by rotation. The undesired cellular sample components which are essentially erythrocytes, collect in the erythrocyte trap (11) whereas

serum or plasma collects in the zone (10). The serum is removed from the zone (10) via a capillary and transported further into the channel structure (9) where dry reagents are accommodated and dissolved when the sample flows in. The sample-reagent mixture can overcome the capillary stop (14) from the channel structure (9) by again rotating the test 5 element (1) and thus reach the membrane (12) via the channel (15). When the rotation is slowed down or stopped, the sample-reagent mixture is transported via the membrane (12) into the waste fleece (13).

The embodiments according to figure 2 and figure 4 differ in that a container for sample 10 excess (7) is provided in figure 2 whereas the embodiment according to figure 4 does not provide such a function. As in the embodiment according to figure 3, a metered application of the sample is expedient in this case.

Figure 8 shows a variant of the embodiments according to figures 2 and 4. In this case the sample is transferred by centrifugation into an erythrocyte separation structure (10, 11) directly after the sample application opening (4) after it has passed a first geometric valve. 15 The area denoted (10) serves in this case as a serum / plasma collection zone (10) from which serum or plasma freed of cells after the centrifugation is transferred via a capillary channel (21). The chamber (20) serves as a collection reservoir for excess serum or plasma which may under certain circumstances continue to flow from the serum / plasma collection zone (10) after the sample metering section (5) has been completely 20 filled. All other functions and structures are similar to figures 1 to 7.

The hydrophilic or hydrophobic properties of the surfaces of the test element (1) can be selectively designed such that the sample liquid and/or washing liquid are moved either only with the aid of rotation and the resulting centrifugal forces or by a combination of centrifugal forces and capillary forces. The latter requires at least partially hydrophilized 25 surfaces in the fluidic structures of the test element (1).

As already described further above in connection with figure 1, the test element according to the invention according to figures 1, 2, 6, 7, 8 and 9 have an automatic functionality which allows a relatively accurate measurement of a sample aliquot from a sample that is applied to the test element in excess (so-called metering system). This metering system is 30 a further subject matter of the present invention. It essentially comprises the elements 4, 5,

6 and 7 of the test elements (1) that are shown. Sample liquid and in particular whole blood is fed to the test element (1) via the sample application opening (4). The sample liquid fills the sample metering zone (5) driven by capillary forces and/or centrifugal forces. The sample metering zone (5) can in this connection also contain the dried 5 reagents. It is delimited by the capillary stops (6 and 8) which can for example be in the form of hydrophobic barriers or geometric / non-closing valves. The delimitation of the sample metering zone (5) by the capillary stops (6, 8) ensures a defined sample volume is taken up and is passed into the fluidic zones that are located downstream of the sample metering zone (5). When the test element (1) is rotated, any sample excess is transferred 10 from the sample application opening (4) and the sample metering zone (5) into the container for sample excess (7) whereas the metered amount of sample is transferred from the sample metering zone (5) into the channel (9). Alternatively it is also possible to use other forces for this purpose instead of the force generated by rotation which moves the sample e.g. by applying an overpressure on the sample input side or a negative pressure on 15 the sample output side. The metering system shown is hence not imperatively tied to rotatable test elements but can also be used in other test elements.

Similar metering systems are known for example from US 5,061,381. Also in this document a system is described in which sample liquid is applied in excess to a test element. In this case the metering of a relatively accurate sample aliquot which is 20 subsequently processed further in the test element is also achieved by the interplay of a metering zone (metering chamber) and a zone for sample excess (overflow chamber) where, in contrast to the present invention, these two zones are in contact via a very narrow channel which always enables an exchange of liquid at least during filling. In this case sample liquid is immediately separated during the filling of the test element into a portion which is passed through a broad channel into the metering chamber, and a portion 25 which flows through a narrow channel into the overflow chamber. After the metering chamber has been completely filled, the test element is rotated and any sample excess is diverted into the overflow chamber so that only the desired metered sample volume remains in the metering chamber which is subsequently processed further.

30 A disadvantage of the design of the metering system according to US 5,061,381 is that in the case of sample volumes that are applied to the test element and correspond exactly to

the minimum volume or are only slightly larger than the minimum volume, there is a risk that the metering zone will be underdosed because from the start a proportion of the sample always flows unhindered into the overflow chamber.

This problem is solved by the present proposed design of the metering system in that a 5 capillary stop (hydrophobic barrier or a geometric or non-closing valve) is arranged between the metering zone and the zone for sample excess. Hence, when the test element is filled with sample, the sample is firstly practically exclusively passed into the metering zone. In this process the capillary stop prevents sample from flowing into the zone for sample excess before the sample metering zone is completely filled. Also in the case of 10 sample volumes which are applied to the test element and exactly correspond to the minimum volume or are only slightly larger than the minimum volume, this ensures that the sample metering zone is completely filled.

Example 1

Preparation of a test element according to figure 6

15 1.1 Preparation of the substrate (2)

A substrate (2) according to figure 6 (dimensions about $60 \times 80 \text{ mm}^2$) is manufactured by means of injection moulding from polycarbonate (PC) (alternatively polystyrene (PS), ABS plastic or polymethylmethacrylate (PMMA) can also be used as the material). The individual channels and zones (fluidic structures) have the following dimensions (depth of 20 the structures (d) and optionally their volumes (V); the numerals refer to figure 6 and the structures shown therein):

capillary between 4 and 5: $d = 500 \mu\text{m}$

No. 7: $d = 700 \mu\text{m}$

No. 5: $d = 150 \mu\text{m}$; $V = 26.5 \text{ mm}^3$

25 No. 8: $d = 500 \mu\text{m}$

No. 9: $d = 110 \mu\text{m}$

No. 10: $d = 550 \mu\text{m}$

No. 11: $d = 130 \mu\text{m}$; $V = 15 \text{ mm}^3$

No. 15: $d = 150 \mu\text{m}$; $V = 11.4 \text{ mm}^3$

A transition from less deep to deeper structures is usually only possible for liquids in the fluidic structures when force (e.g. centrifugal force) acts from outside. Such transitions act as geometric (non-closing) valves.

In addition to the fluidic structures (see above), the substrate (2) also has the sample and
5 buffer addition openings (4, 16), vent openings (17) and the central opening (3).

The surface of the substrate (2) which has the fluidic structures can subsequently be cleaned by means of plasma treatment and hydrophilized.

1.2 Introducing the reagents

Some of the reagents required for the analyte detection (e.g. biotinylated anti-analyte
10 antibody and anti-analyte antibody labelled with a fluorescent label) are introduced alternately as a solution as point-shaped reagent spots in the sample metering section (5) by means of piezo metering and subsequently dried so that virtually the entire inner surface is occupied with reagents.

The composition of the reagent solutions is as follows:

15 biotinylated antibody: 50 mM Mes pH 5.6; 100 µg biotinylated monoclonal anti-troponin T antibody
labelled antibody: 50 mM Hepes pH 7.4, containing a squaric acid derivative,
fluorescent dye JG9 (embedded in polystyrene latex particles),
fluorescent-labelled monoclonal anti-troponin T antibody (0.35
20 % solution)

1.3 Inserting the membrane (12)

The porous matrix (12) (nitrocellulose membrane on a plastic carrier foil; 21 x 5 mm²; cellulose nitrate membrane (type CN 140 from Sartorius, Germany) reinforced with 100 µm PE foil) into which an analyte detection line (polystreptavidin) and a control line (polyhapten) were introduced by means of line impregnation (see below) is inserted into a corresponding recess in the substrate (2) and optionally attached by means of double-sided adhesive tape.

An aqueous streptavidin solution (4.75 mg/ml) is applied to the cellulose nitrate membrane described above by line metering. For this purpose the dosage is selected (metered amount 0.12 ml/min, track speed 3 m/min) such that a line with a width of about 0.4 mm is formed. This line is used to detect the analyte to be determined and contains about 0.95 µg

5 streptavidin per membrane.

An aqueous troponin T-polyhapten solution containing 0.3 mg/ml is applied at a distance of about 4 mm downstream of the streptavidin line under identical metering conditions. This line serves as a function control for the test element and contains about 0.06 µm polyhapten per test.

10 1.4 Applying the cover

Subsequently the cover (foil or injection-moulded part without fluidic structures which can optionally be hydrophilized) is applied and optionally permanently joined to the substrate (2) and preferably glued, welded or clipped.

1.5 Inserting the waste fleece (13)

15 Finally the substrate is turned over and the waste fleece (13) (13 x 7 x 1.5 mm³ fleece consisting of 100 parts glass fibre (diameter 0.49 to 0.58 µm, length 1000 µm) and 5 parts polyvinyl alcohol fibres (Kuralon VPB 105-2 from Kuraray) having a weight per unit area of about 180 g/m²) is inserted into the corresponding recess and is then attached in the substrate (2) by means of an adhesive tape.

20 The quasi self-metering sample uptake unit (comprising the sample application opening (4), the sample metering section (5) and the adjoining structures (capillary stop (8) and container for sample excess (7)) ensures that irrespective of the amount of sample applied to the test element (1) (provided it exceeds a minimum volume (in this example 27 µl)) reproducibly identical sample amounts are used when using different test elements.

25 A homogeneous dissolution of the reagents in the entire sample volume is achieved by the distribution of the reagents in the entire sample metering section (5) preferably in the form of alternating reagent spots (i.e. small, almost point-shaped reagent zones) in combination with a rapid filling of the sample metering section (5) with sample, especially if filling

occurs considerably more rapidly than the dissolving. Moreover, there is a virtually complete dissolving of the reagents so that here again an increased reproducibility is observed in comparison to conventional test elements based on absorbent materials (test strips, bio-disks with reagent pads etc.).

5 Example 2

Detection of troponin T with the aid of the test element from example 1

27 µl whole blood to which different amounts of recombinant troponin T were admixed were applied to the test element according to example 1. The test element is subsequently treated further according to the process stated in table 1 and finally the fluorescence signals for different concentrations are measured.

Table 1: Measuring process

Time (min:sec)	Duration (min:sec)	Rotation at revolutions per minute	Action
00:00	01:00	0	apply 27 µl sample; dissolve the reagents
01:00	02:00	5000	erythrocyte separation and incubation
03:00	01:00	800	chromatography (signal generation)
04:00	00:10	0	apply 12 µl washing buffer ¹⁾
04:10	02:00	800	washing buffer transport and chromatography
06:10	00:10	0	apply 12 µl washing buffer ¹⁾
06:20	02:00	800	washing buffer transport and chromatography
08:20	00:10	0	apply 12 µl washing buffer ¹⁾
08:30	02:00	800	washing buffer transport and chromatography
10:30		0	Measure

¹⁾ 100 mM Hepes, pH 8.0; 150 mM NaCl; 0.095 % sodium azide.

The measured data are shown in figure 10. The respective measured signals (in counts) are plotted against the concentration of recombinant troponin T (c(TnT)) in [ng/ml]. The actual troponin T concentration in the whole blood samples was determined with the reference method “Roche Diagnostics Elecsys Troponin T Test”.

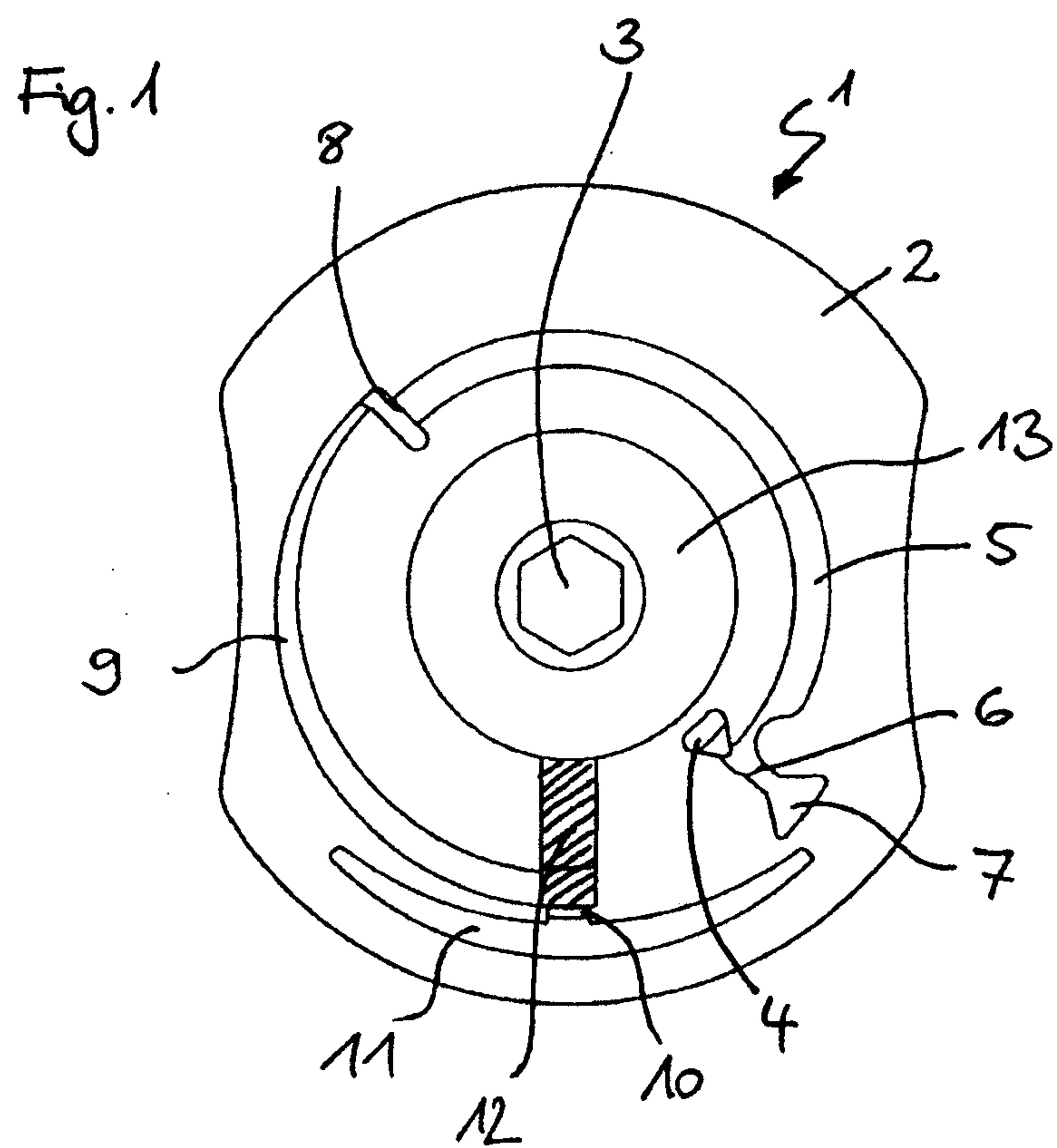
In comparison to conventional immunochromatographic troponin T test strips such as e.g. Cardiac Troponin T from Roche Diagnostics, the detection limit for the measuring range that can be quantitatively evaluated is shifted downwards with the test element according to the invention (Cardiac Troponin T: 0.1 ng/ml; invention: 0.02 ng/ml) and the dynamic measuring range is extended upwards (Cardiac Troponin T: 2.0 ng/ml; invention: 20 ng/ml). The test elements according to the invention also show an improved precision.

5

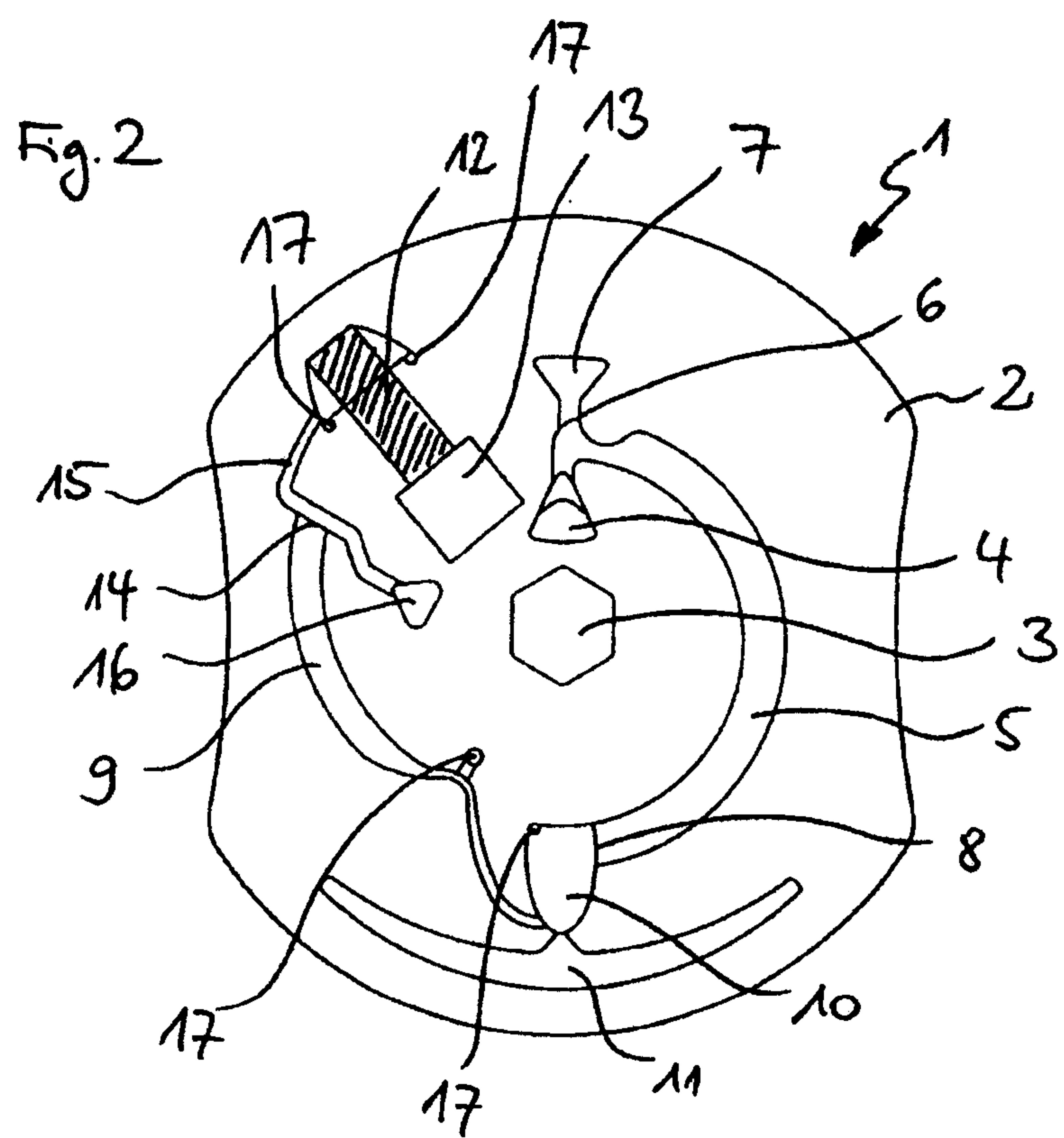
CLAIMS:

1. A test element which is essentially disk-shaped, comprising:
 - an axis within the test element which is perpendicular to the plane of the test element and about which the test element can be rotated;
 - a sample application opening for applying a liquid sample comprising blood components;
 - a capillary-active zone having a porous, absorbent matrix which matrix comprises one or more zones containing immobilized reagents, the capillary-active zone having a first end that is remote from the axis and a second end that is near to the axis; and
 - a sample channel which extends from the sample application opening over an area near to the axis to the first end of the capillary-active zone that is remote from the axis and contains an erythrocyte collecting zone for separating cellular blood components and a serum or plasma collection zone;

wherein the immobilized reagents are specific binding reagents used to specifically capture an analyte, a species derived from the analyte, or a species related to the analyte, from the sample flowing through the capillary-active zone and to immobilize the analyte, the species derived from the analyte, or the species related to the analyte in the capillary-active zone.
2. The test element according to claim 1, wherein
the sample application opening is near to the axis and the sample channel extends from the sample application opening near to the axis to the first end of the capillary-active zone that is remote from the axis.


3. The test element according to claim 1, wherein
the sample application opening is remote from the axis and is connected to an area
near to the axis by a capillary channel.
4. The test element according to any one of claims 1 to 3, wherein
the second end of the capillary-active zone is in contact with a further absorbent
material or an absorbent structure which can receive the liquid from the capillary-active
zone.
5. The test element according to claim 4, wherein the porous, absorbent matrix that is
near to the axis is in contact with the further absorbent material or absorbent structure.
6. The test element according to any one of claims 1 to 5, wherein the sample channel
contains zones of different dimensions and/or for different functions.
7. The test element according to any one of claims 1 to 6, wherein the sample channel
contains a zone containing soluble reagents.
8. The test element according to any one of claims 1 to 7, wherein the sample channel
contains geometric valves or hydrophobic barriers.
9. The element according to any one of claims 1 to 8, wherein the sample channel
contains a sample metering zone.

10. The test element according to any one of claims 1 to 9, wherein the sample channel has an inlet for further liquids other than the sample liquid.
11. The test element according to any one of claims 1 to 8, wherein the sample application opening is in contact with a sample metering zone and a zone for sample excess, and a capillary stop is present between the sample metering zone and the zone for sample excess.
12. The test element according to claim 11, wherein the sample channel has an inlet for further liquids other than the sample liquid.
13. A method for detecting an analyte in a liquid sample, wherein the sample is applied to the sample application opening of the test element according to any one of claims 1 to 12,
the test element is rotated such that the sample is transported to the end of the capillary-active zone,
the rotation of the test element is slowed down to such an extent or stopped so that the sample or a material obtained from the sample when it flows through the test element is sucked from the end remote from the axis to the end near to the axis of the capillary-active zone; and
the analyte is detected visually or optically in the capillary-active zone or in a zone downstream thereof.
14. The method according to claim 13, wherein the sample is transported to the porous, absorbent matrix that is remote from the axis.


15. The method according to claim 13 or 14, wherein after the rotation of the test element a further liquid is applied to the test element which is sucked after the sample from the end remote from the axis to the end near to the axis of the capillary-active zone.
16. The method according to claim 13 or 14, wherein the migration of the liquid sample through the capillary-active zone is selectively slowed down or stopped by the rotation of the test element.
17. The method according to claim 16, wherein the direction of migration of the liquid sample through the capillary-active zone is reversed by the rotation of the test element.
18. The method according to claim 15, wherein the migration of the further liquid through the capillary-active zone is selectively slowed down or stopped by the rotation of the test element.
19. The method according to claim 18, wherein the direction of migration of the further liquid through the capillary-active zone is reversed by the rotation of the test element.
20. A system for determining an analyte in a liquid sample comprising a test element according to one of the claims 1 to 12 and a measuring device, wherein the measuring device has:
 - at least one drive for rotating the test element; and
 - evaluation optics for evaluating the visual or optical signal of the test element.

21. Use of a test element according to any one of the claims 1 to 12 or of a measuring system according to claim 18 to determine an analyte in a liquid sample.

1/10

2/10

3/10

Fig. 3

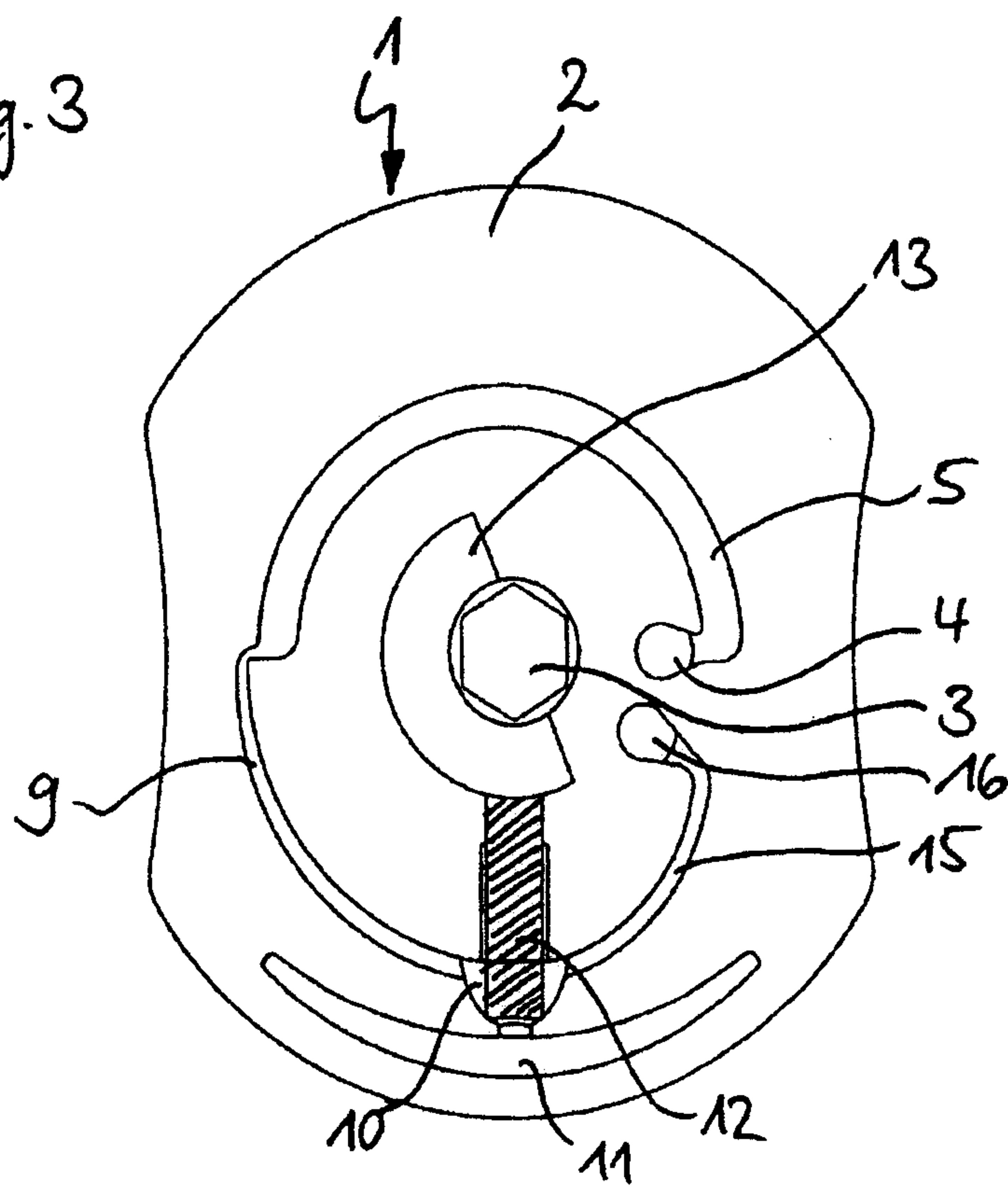
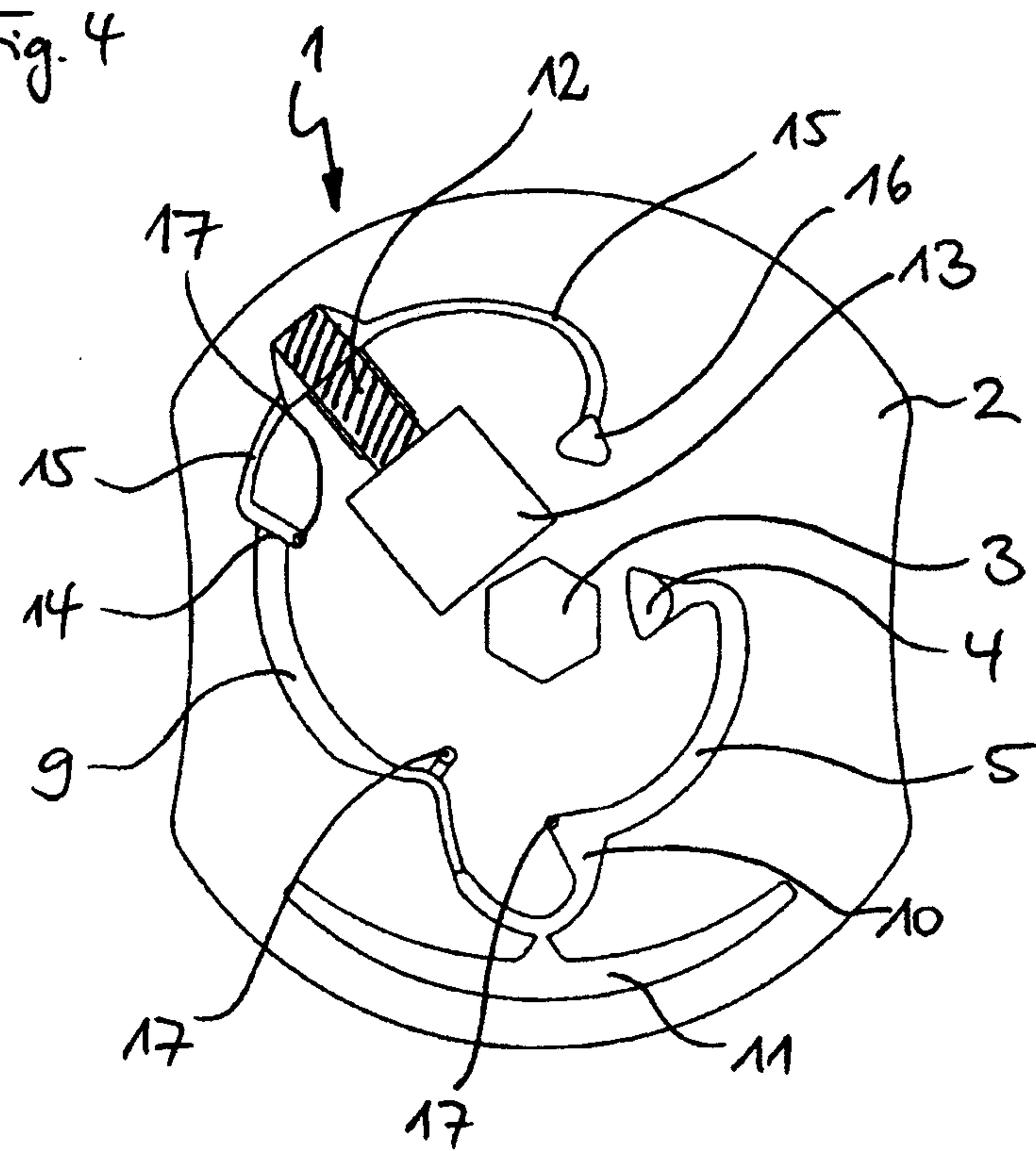
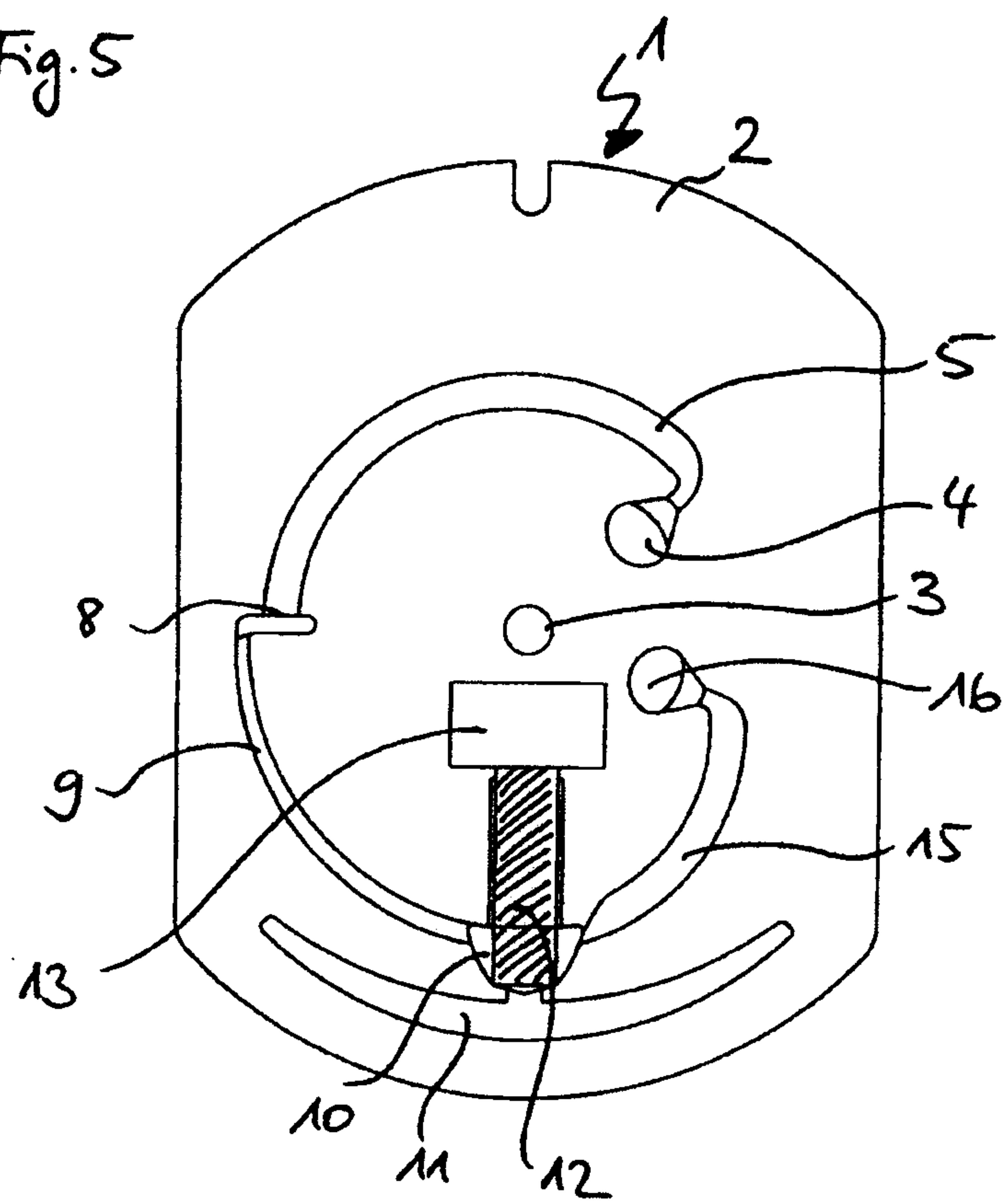




Fig. 4

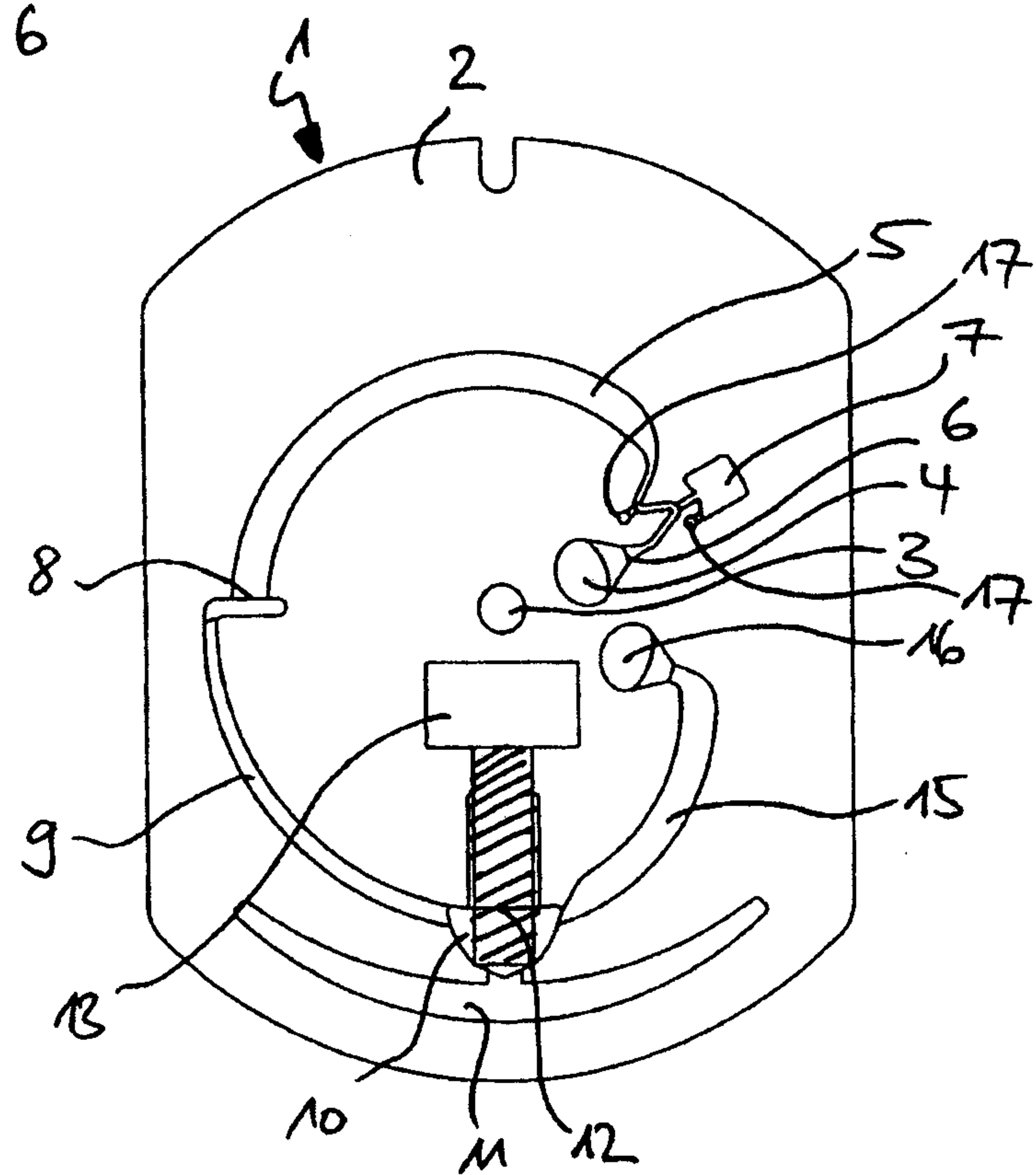
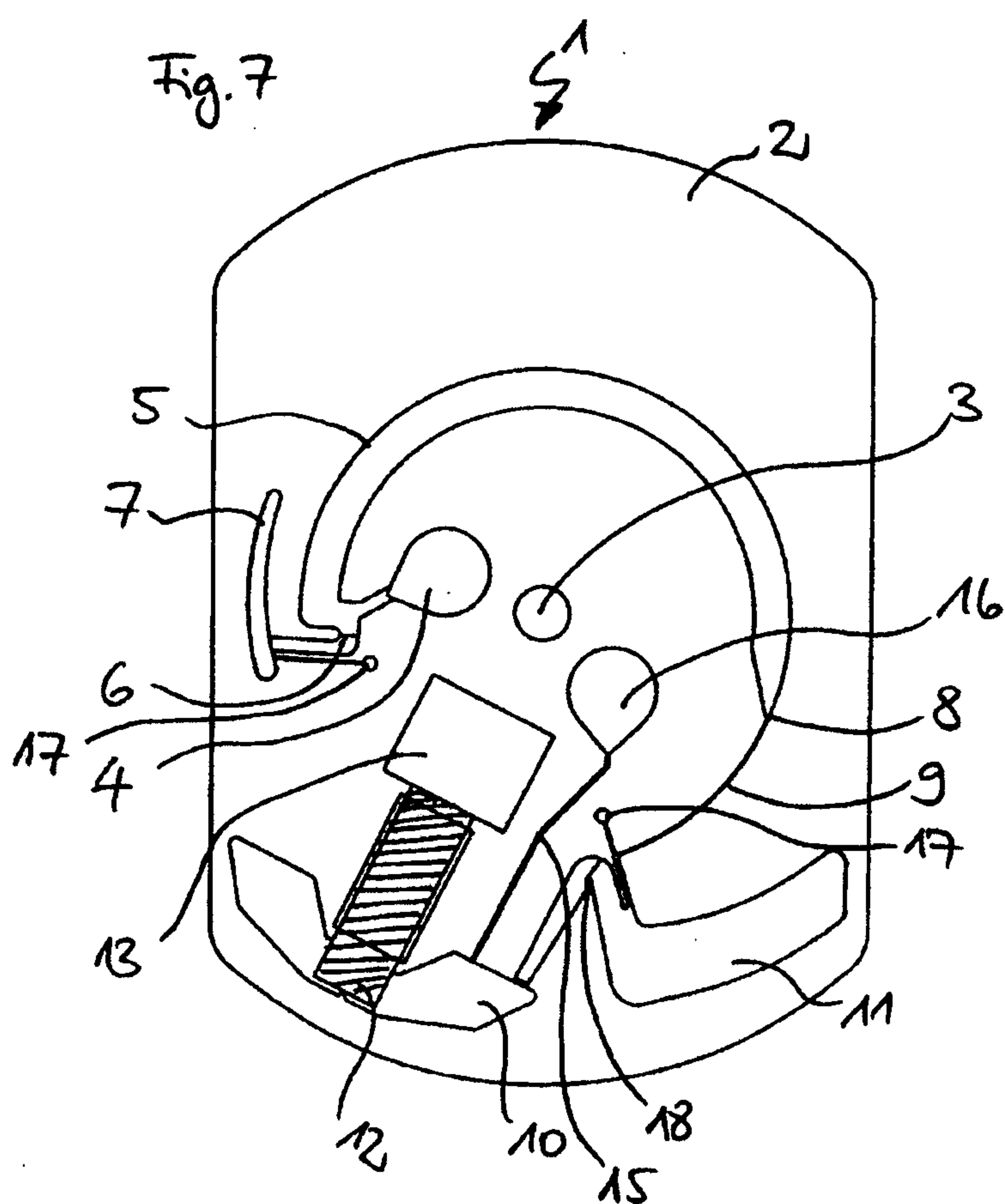
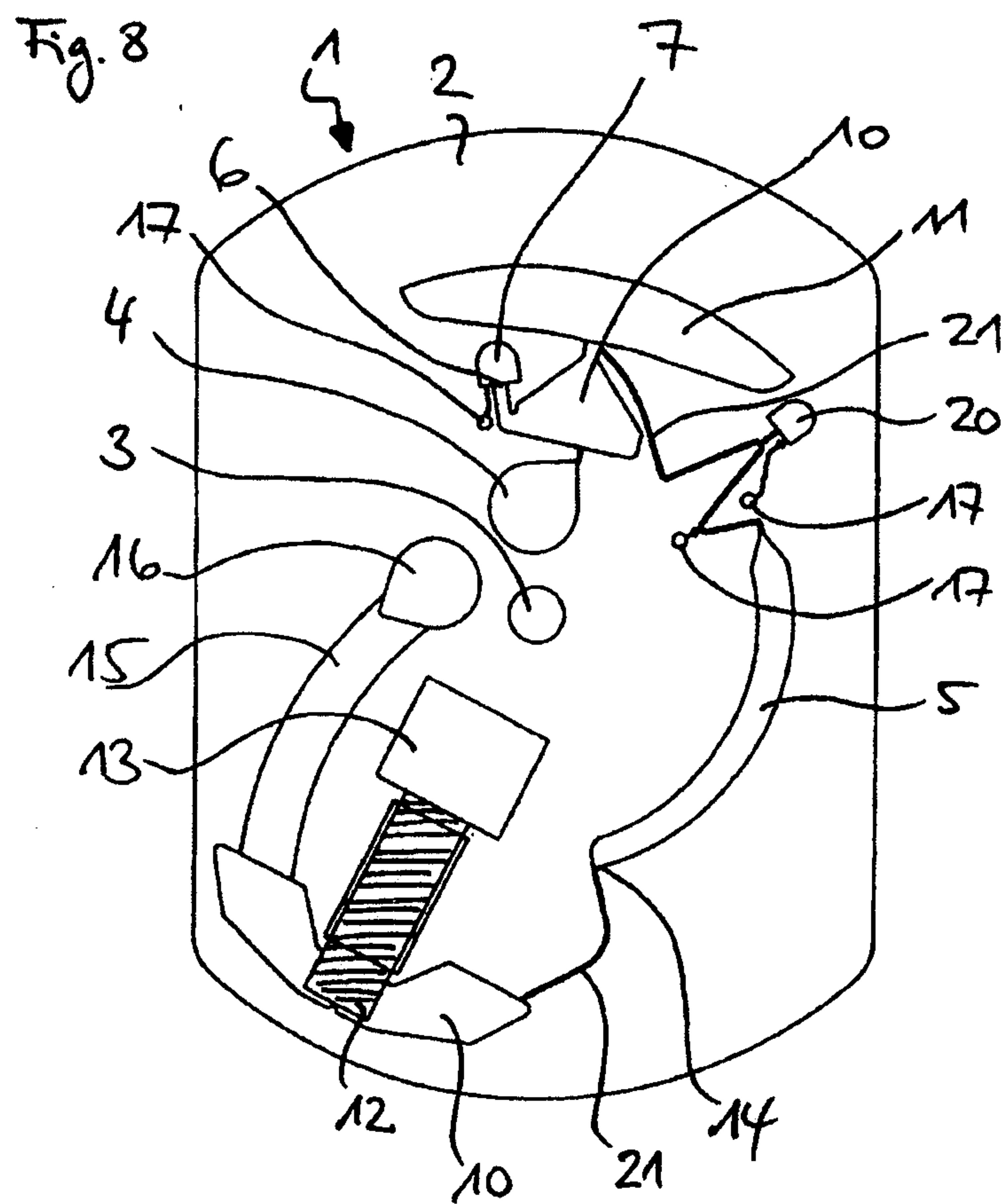

5/10

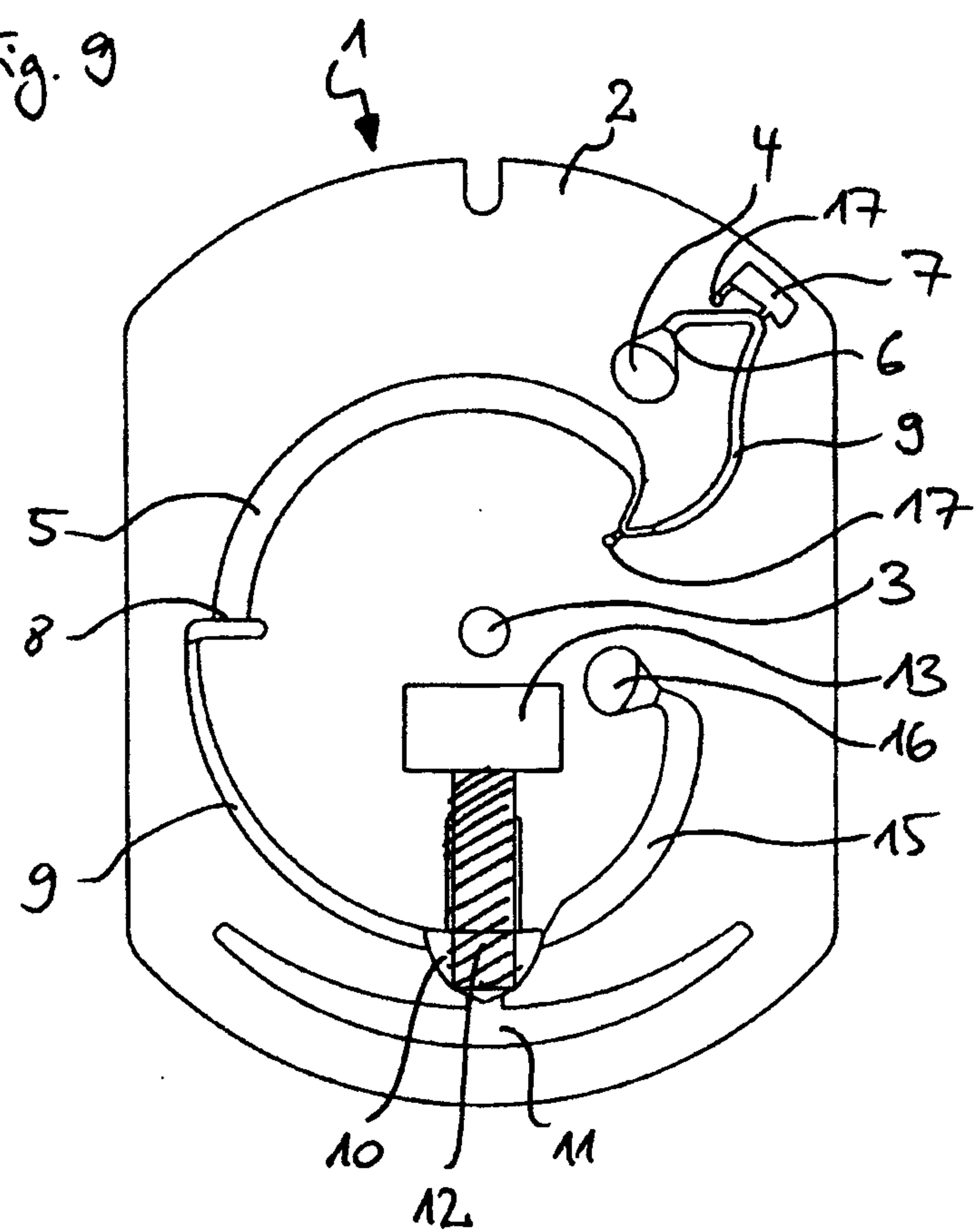
Fig. 5



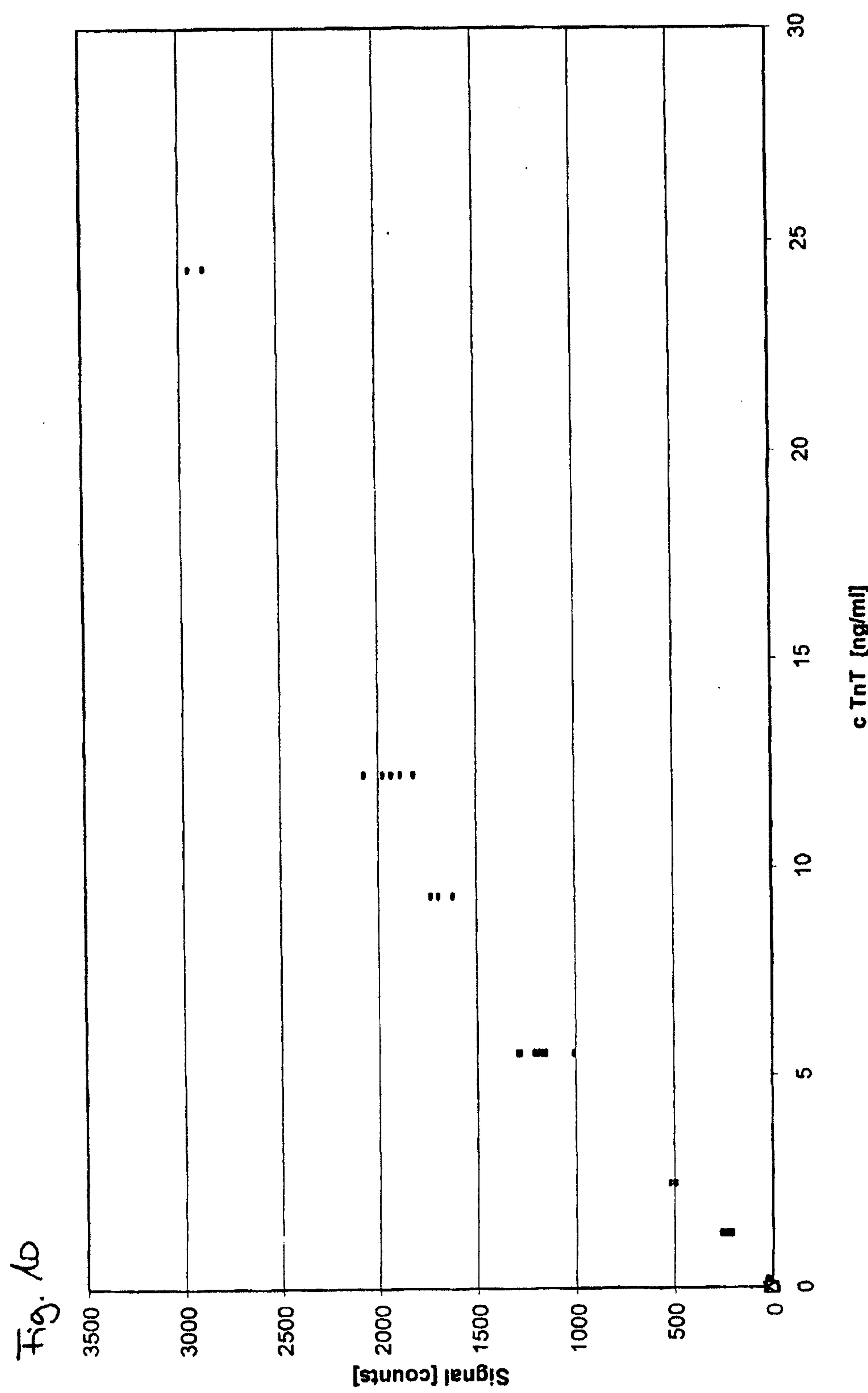
6/10


Fig. 6

7/10



8/10



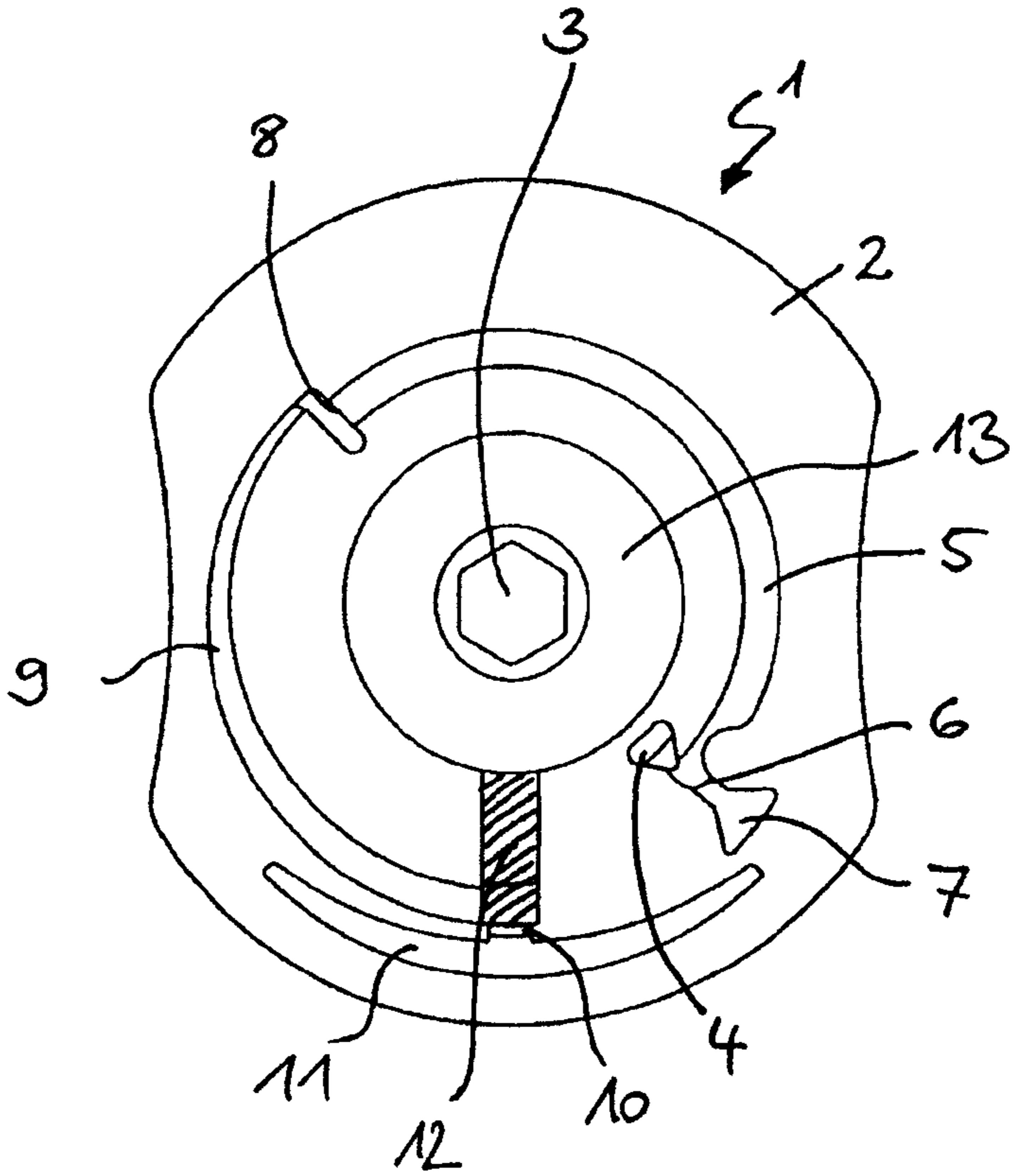

9/10

Fig. 9

10/10

