wo 20117106333 A2 IO 0O OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

. -

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number

1 September 2011 (01.09.2011) WO 2011/106333 A2

(51) International Patent Classification: Not classified 01099 Dresden (DE). DIESTELHORST, Stephan [DE/
(21) International Application Number: DE]; Conertplatz 18, 01159 Dresden (DE). POHLACK,
pp POT/US2011/025778 Martin [DE/DE]; Priessnitzstr. 35, 01099 Dresden (DE).

. - . (74) Agent: KIVLIN, B. Noel, Meyertons, Hood, Kivlin,

(22) International Filing Date: Kowert & Goetzel, P.C., P.O. Box 398, Austin, Texas

22 February 2011 (22.02.2011) 78767-0398 (US)

(25) Filing Language: English (81) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of national protection available). AE, AG, AL, AM,
. AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(30) Priority Data: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(71) Applicant (for all designated States except US): AD- HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
VANCED MICRO DEVICES, INC. [US/US]; One KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
AMD Place, P.O. Box 3453, Sunnyvale, California 94088 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(US). NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, 8@, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

(72) Inventors; and TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(75) Inventors/Applicants (for US only): CHUNG, Jae-
woong [KR/US]; 11000 NE 10th Street, #263, Bellevue (84) Designated States (unless otherwise indicated, for every

Washington 98004 (US). CHRISTIE, David, S. kind of regional protection available): ARIPO (BW, GH,
[CA/US]; 6201 Needham Lane, Austin, Texas 78739 GM, KE, LR, LS, MW, MZ, NA, SD, SL, 8Z, TZ, UG,
(US). HOHMUTH, Michael, P. [DE/DE]; Bettinastr. 12, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

[Continued on next page]

(54) Title: AUTOMATIC SUSPEND AND RESUME IN HARDWARE TRANSACTIONAL MEMORY
(57) Abstract: An apparatus and method is disclosed for a computer pro-

System cessor configured to access a memory shared by a plurality of processing
_\‘ cores and to execute a plurality of memory access operations in a transac-
Computer processor tional mode as a single atomic transaction and to suspend the transactional

_ mode in response to determining an implicit suspend condition, such as a

HTM 110 program control transfer. As part of executing the transaction, the proces-

sor marks data accessed by the speculative memory access operations as
being speculative data. In response to determining a suspend condition (in-
cluding by detecting a control transfer in an executing thread) the proces-

Control transfer detection unit |
| sor suspends the transactional mode of execution, which includes setting a

Transaction suspenston unit

suspend tlag and suspending marking speculative data. If the processor lat-

er detects a resumption condition (e.g., a return control transfer corre-
ass sponding to a return from the control transfer), the processor is configured
160 to resume the marking of speculative data.

| Conflict detection unit
116

Overflow detection unit
118

Registers
120

Suspend flag
122

Abort flag
124

Data Cache
130

Shared memory
140

Other processor(s)
150

FIG. 1

WO 2011/106333 A2 I 0000 0 O OO A

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Published:

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG).

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

35

WO 2011/106333 PCT/US2011/025778
TITLE: AUTOMATIC SUSPEND AND RESUME IN HARDWARE

TRANSACTIONAL MEMORY

BACKGROUND

[0001] Hardware Transactional Memory (HTM) is a mechanism in computer architecture for
supporting parallel programming. With HTM, programmers may simply declare a group of
instructions as a transaction and the HTM system guarantees that the instructions in the
transaction are executed in an atomic and isolated way. Atomicity means that all the instructions
of the transaction are executed as a single atomic block with respect to all other concurrent
threads of execution. Isolation means that no intermediate result of the transaction is exposed to
the rest of the system until the transaction completes. HTM systems may allow transactions to
run in parallel as long as they do not conflict. Two transactions may conflict when they both
access the same memory area and either of the two transactions writes to that memory area.
[0002] Many existing HTM designs present correctness and/or security issues in the presence
of program control transfers, such as transfers to an operating system in response to a system call,
exception, interrupt, signal, or other event. Traditionally, such program control transfers may
occur transparently to the HTM system. If such a transfer occurs during transactional execution,
operating system code may be executed as part of a transaction. This may cause problems with
correctness and/or security. In some traditional systems, if the transaction is aborted while
executing in the operating system, unexpected side effects may occur.

[0003] In one example, consider a TCP/IP network device driver. When receiving a packet
from the network, an interrupt is triggered to execute the device driver code. Suppose that the
processor receives the interrupt while running an application transaction. The program control
would be transferred to the device driver and under a traditional HTM system, the driver would
run as part of the transaction since the traditional HTM design simply considers all the
instructions between the start and end of the transaction to be part of the transaction.

[0004] This behavior may cause at least two problems. First, a system failure may occur if
the transaction is aborted while the device driver code executes. For example, if the device
driver is configured to write memory-mapped registers to manage the network interface
hardware, and is aborted in the middle of changing the register values, the interface hardware
may be left in an inconsistent state, breaking the integrity of the network system. Additionally,
in the example given above, aborting the transaction during or after the device driver executes as
part of the transaction may cause the network connection to lose packets. For example, after the
driver code processes a packet, the driver sends an acknowledge message to the packet sender.

At this point, the sender may delete the packet since there is no need for retransmission.

1

10

15

20

25

30

WO 2011/106333 PCT/US2011/025778
However, if the transaction is later aborted, the memory write operations that were used to store

the packet on the receiver may be rolled back and the packet may be permanently lost, thereby
violating the reliable communication guarantee of the TCP/IP system.

[0005] Second, security issues are another side effect of transparently jumping to operating
system code as part of a transaction. Many modern processors support security features to
separate operating system and application code execution. For example, the x86 architecture
allows an operating system and applications to use different code segments and privilege levels
(e.g., user-level vs. kernel-level privilege) by switching the code segment selector at the
boundary of system calls. However, traditional HTM systems often do not checkpoint and
manage some parts of processor state, such as the code segment selector. When a transaction that
originates in user-level code executes a system call to the operating system, the privilege level is
increased. If the transaction aborts, a traditional HTM may not be configured to restore the
privilege level to the lower level. Accordingly, a security leak may result. Malicious programs
may be able to take advantage of this security hole to acquire an operating system privilege level

after a transactional abort.

SUMMARY
[0006] An apparatus and method is disclosed for a computer processor configured to access a

memory shared by a multiple processing cores and to execute memory access operations in a
transactional mode as a single atomic transaction. The apparatus is configured to suspend the
transactional mode in response to determining an implicit suspend condition. As part of
executing the transaction, the processor marks data accessed by the speculative memory access
operations as being speculative data. In response to determining an implicit suspend condition
(including by detecting a control transfer in a thread being executed, such as to an operating
system) the processor suspends the transactional mode of execution, which includes setting a
suspend flag and suspending the marking of speculative data. Later, if the processor detects a
resumption condition (e.g., by detecting a return control transfer corresponding to a return from
the control transfer), the processor resumes the transactional mode of execution by resuming the
marking of speculative data.

[0007] In some embodiments, the processor may be further configured to detect that the
atomic transaction has failed while the transaction is suspended. In some embodiments, the
processor may be responsive to detecting that a suspended transaction failed by setting an abort
flag and checking the abort flag when an attempt is made to resume the transaction. If the check

determines the abort flag to be set, then the processor aborts the transaction. In some

10

15

20

25

30

35

WO 2011/106333 PCT/US2011/025778
embodiments, the processor may be configured to save/restore values of the abort flag and/or the

suspend flag as part of the execution context.

BRIEF DESCRIPTION OF THE DRAWINGS
[0008] FIG. 1 is a block diagram illustrating a computer system configured to implement an

HTM mechanism with suspend/resume capability, according to some embodiments

[0009] FIG. 2 is a flow diagram illustrating a method for suspending a transactional mode of
execution while executing a memory transaction, according to some embodiments.

[0010] FIG. 3 is a flow diagram illustrating a method for executing an atomic transaction
using an HTM, including by suspending the transactional mode of execution during the
transaction.

[0011] FIG. 4 is a flow diagram illustrating a method for handling an abort condition
detected during suspended transactional mode, according to some embodiments.

[0012] FIG. 5 illustrates a specific method for implementing an HTM with automatic
suspend/resume capabilities, according to some embodiments.

[0013] FIG. 6 is a table listing various types of control transfers during which suspension
may be executed, according to some embodiments.

[0014] FIG. 7 illustrates a computer system configured to implement a hardware
transactional memory system with automatic suspend/resume functionality, as described herein,
according to some embodiments.

[0015] Any headings used herein are for organizational purposes only and are not meant to
limit the scope of the description or the claims. As used herein, the word “may” is used in a
permissive sense (i.¢., meaning having the potential to) rather than the mandatory sense (i.e.
meaning must). Similarly, the words “include”, “including”, and “includes” mean including, but

not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS
[0016] Traditional HTM designs present correctness and/or security issues in the presence of

program control transfers. As used herein, the term “control transfer” refers to an instruction or
event that signals, causes, or indicates a change in program flow—e.g., from some executing
software program to some supervisory program, or error or interrupt handler, and vice-versa. In
some embodiments, the supervisory program may be an operating system. In various
embodiments, different operating systems may be used (e.g., Linux, WindowsTM, etc.), each of
which may be implemented as software that supports a computer’s basic functions such as
scheduling tasks, executing applications, and controlling peripherals. In some embodiments, the
operating system may include a kernel for implementing basic functionality. In various
embodiments, the kernel of the operating system may be monolithic or may be a micro-kernel.

3

10

15

20

25

30

WO 2011/106333 PCT/US2011/025778
[0017] In some embodiments, one or more operating systems may be virtual (e.g., the

operating system may be a “guest” OS within a virtual machine). In such embodiments, a control
transfer may transfer program control between a program and a virtual operating system, to a
hypervisor used to deploy the virtual operating system, or to another runtime system. While the
embodiments described herein refer to transfer controls to/from an operating system, it should be
understood that embodiments may be adapted to include transfers to/from virtual operating
systems, hypervisors, and/or any other runtime system. As such, unless otherwise indicated, a
“control transfer” is not limited to a change in program flow between some executing code and
the operating system on which it is running.

[0018] In different circumstances, a control transfer may be performed in response to
detecting different events, such as a program executing a system call to an operating system, a
software and/or hardware exception, a hardware interrupt, a software signal, or other event. Each
control transfer from an application to an operating system may have a corresponding return
control transfer, such that the return control transfer returns control to the program from which
the original (suspending) control transfer occurred. For example, if a program invokes a system
call to control transfer to the operating system, the operating system may respond by executing
some functionality and then returning control to the point in the invoking program immediately
following the system call invocation.

[0019] In various embodiments, a hardware transactional memory system (HTM) may
provide functionality for executing a plurality of memory access operations as a single atomic
transaction. In some embodiments, a program may execute an initiating instruction to initiate a
transactional mode of execution and a subsequent terminating instruction to end the transactional
mode of execution. The HTM may be configured to ensure that some or all of the memory
operations executed by the application in the transactional mode (i.e., between the initiating and
terminating instructions) are performed atomically with respect to the execution of other
threads/processors in the system.

[0020] To ensure atomic execution, the HTM may be configured to treat memory access
operations of the transaction as speculative until the transaction is successfully committed and to
monitor for an abort condition. For example, the HTM may mark data written or read by the
speculative instructions during the transactional mode of execution as speculative, and if the
transaction completes successfully (i.e., no abort condition was detected), the HTM may mark
the data as non-speculative and/or otherwise incorporate it into the shared memory. On the other
hand, if an abort condition is detected, then the HTM may be configured to drop/invalidate the

speculative data and/or to roll back effects of speculative data writes to shared memory.

10

15

20

25

30

35

WO 2011/106333 PCT/US2011/025778
[0021] According to various embodiments, hardware mechanisms (e.g., on the processor)

may be configured to automatically detect a suspension condition, including by detecting a
program control transfer within an active transaction, and to respond by suspending the
transactional execution mode. In some embodiments, the HTM may be configured to
subsequently detect the corresponding return control transfer and, if appropriate, resume the
transactional mode of execution.

[0022] In some embodiments, while the transactional execution mode is suspended, the
processor does not mark data accessed by memory operations as speculative. Thus, in such
embodiments, if a transaction is aborted, memory access operations that were executed while
transactional mode was suspended would not be rolled back.

[0023] In some embodiments, if an abort condition is detected while transactional execution
is suspended, the HTM may be configured to delay aborting the transaction until after the
transactional mode resumes. For example, in response to detecting an abort condition (caused
by, e.g., a data conflict), the HTM may set an abort flag and continue to execute in suspended
transactional mode. Upon resuming transactional execution mode, the HTM may check the abort
flag and perform the abort if the flag is set.

[0024] In various embodiments, suspension/resumption of transactional execution mode may
be performed by the HTM in a manner that is transparent to the executing software. That is,
since the HTM is configured to automatically detect suspend/resume conditions and to
suspend/resume transactional execution mode, software (e.g., program and/or operating system)
need not be modified to execute specialized instructions to instruct the HTM to suspend or
resume the transactional execution mode at appropriate times.

[0025] FIG. 1 is a block diagram illustrating a computer system configured to implement an
HTM mechanism with suspend/resume capability, according to some embodiments. In FIG. 1,
system 100 (which may be referred to as a transaction memory system in some embodiments)
comprises computer processor 102, shared memory 140, and other processors 150. These
components may be connected by bus 150, which may be of various types of interconnect,
including broadcast and/or point-to-point. In various embodiments, other processors 150 may
include one or more processors that share memory 140 with computer processors 102. In some
embodiments, each of processors 150 may be configured as computer processor 102.

[0026] According to the illustrated embodiment, computer processor 102 includes HTM 110
for implementing hardware transactional memory functionality with suspend/resume capabilities,
as described above. In various embodiments, HTM 110 may mark speculative data in different
ways. For example, HTM 110 may use a cache-based speculative data buffer, including by

storing and marking speculative data in a data cache, such as data cache 130. In other

5

10

15

20

25

30

35

WO 2011/106333 PCT/US2011/025778
embodiments, speculative data buffers may be implemented in other structures, such as in a load,

store, or load/store queue. In different embodiments, each processor may implement multiple,
cooperating speculative data buffers (e.g., in data cache 130 and in a load/store queue)

[0027] In system 100, HTM 110 includes various hardware units, including control transfer
detection unit 112, transaction suspension unit 114, conflict detection unit 116, and overflow
detection unit 118. In various embodiments, different ones of these components may be
combined in whole or part, or broken into further subcomponents.

[0028] In some embodiments, control transfer detection unit 112 may be configured to
determine a suspend condition. In certain embodiments, this suspend condition may be an
“implicit” suspend condition, meaning that the suspend condition is determined based on some
set of criteria other than the existence of an explicit instruction (e.g., “pause” or “suspend”). In
some embodiments, unit 112 may be configured to determine that a suspend condition exists
based in part on detecting a control transfer in a thread that is being executed by processor 102.
For example, control transfer detection unit may detect a control transfer caused by a system call
invocation or a hardware interrupt (e.g., I/O interrupt).

[0029] In various embodiments, determining a suspend condition may also include
confirming that processor 102 is currently in transactional execution mode and/or that the
processor is executing in a lower level (e.g., application-level) of privilege rather than at a higher
level (e.g., kernel-level) of privilege. For example, in some systems, a current privilege level
(CPL) is stored in a register (e.g., of registers 120) and may hold values indicating various levels
of privilege. In such systems, at higher levels of privilege, the system grants an executing thread
access to protected resources, such as various memory regions, 1/0 ports, and/or special
instructions. On the x86 architecture, for example, there are 4 privilege levels ranging from 0
which is the most privileged, to 3 which is least privileged. On such systems, level 0 is used for
the kernel/executive and level 3 for application programs. In some systems, when software needs
to execute instructions at an elevated privilege level (such as when executing operating system
code), the software may execute one or more instructions to raise the level of privilege (e.g., from
3 to 0) and execute one or more instructions to lower the level of privilege (e.g., from 0 to 3)
when the elevated privilege is no longer needed. In some systems, operating system code may
raise and lower privilege levels on entry and exit respectively.

[0030] In some embodiments, control transfer detection unit 112 may be configured to detect
a suspension condition in response to detecting a) a control transfer to the operating system, b)
that the processor is executing in transactional mode, and c) that the current level of privilege is
not elevated (e.g., is 3). In response to detecting the suspend condition, control transfer

detection unit 112 may notify transaction suspension unit 114 of the suspend condition. In

6

10

15

20

25

30

35

WO 2011/106333 PCT/US2011/025778
response, the transaction suspension unit 114 may be configured to respond by suspending the

transactional mode of execution, such as by setting suspend flag 122 in registers 120. As
described above, while transactional mode is suspended, the processor is configured, in some
embodiments, to suspend the marking of data accessed by memory operations as speculative.
However, data that was marked as speculative before the transactional mode was suspended is
retained along with the speculative marks. Thus, in certain embodiments, if an abort occurs,
modifications to memory values that occurred during the suspension would not be rolled back
while those that occurred before or after the transactional mode was suspended would be rolled
back.

[0031] In some embodiments, control transfer detection unit 112 may be further configured
to determine a resumption condition, including by detecting a return control transfer
corresponding to the control transfer that was detected to determine the suspend condition. For
example, if the control transfer that was detected to determine the suspend condition was a
system call to the operating system, the return transfer call may be the return from the system
call.

[0032] In some circumstances, a control transfer that originally causes a suspend condition
(referred to herein as the “suspending” transfer) may be followed by one or more subsequent
control transfers before a return from the suspending control transfer is executed. In this case,
although multiple return control transfers may be executed, the transactional mode would not be
resumed until the return control transfer corresponding to the suspending control transfer is
executed.

[0033] In some embodiments, the control transfer detection unit 112 may be configured to
respond to detecting the resumption condition by notifying the transaction suspension unit to
resume the transactional mode of execution. In some embodiments, resuming the transactional
mode may include unsetting suspend flag 122 and/or checking abort flag 124 as described below.
[0034] According to the illustrated embodiment, HTM 110 may include various other
mechanisms and/or units, such as conflict detection unit 116. In various embodiments, the
conflict detection unit 116 may be configured to detect different kinds of abort conditions. For
example, the conflict detection unit may be configured to monitor cache coherency messages
(probes) received from other processors 150 as part of a cache coherency protocol, such as MESI
or MOESI. If one or more such probes indicate a data conflict, then the conflict detection unit
116 determines that an abort condition exists and the transaction attempt may be aborted.
[0035] As described above, in some embodiments, the HTM may be configured to delay
aborting a transaction attempt that is executing in suspended transactional mode until the

transactional execution mode is resumed. In such embodiments, in response to detecting an abort

7

10

15

20

25

30

35

WO 2011/106333 PCT/US2011/025778
condition during suspended transactional mode, the conflict detection unit may be configured to

set an abort flag (i.c., store a predetermined value in a suitable storage location), such as 124,
rather than aborting and/or rolling back the transaction right away. When the transactional mode
of execution is resumed (e.g., upon returning from the operating system kernel), the HTM may
detect that abort flag 124 is set and respond by aborting the transaction attempt.

[0036] Various other hardware units may detect other abort conditions. For example,
overflow detection unit 118 may be configured to detect an abort condition in the form of a
speculative buffer overflow condition. A buffer overflow condition may be detected when
executing the transaction requires that a given portion of data be buffered in a speculative buffer
(e.g., one implemented in data cache 130) that has insufficient capacity to buffer the new
speculative data. As used herein, a speculative buffer overflow refers to an overflow condition
being detected, and not to a situation where speculative data is actually evicted from the buffer.
[0037] As with data conflicts, if overflow detection unit 118 detects an overflow condition
while the processor is executing in suspended transactional mode, then it may set abort flag 124,
which may cause HTM 110 to abort/rollback the transaction attempt when transactional
execution mode is resumed.

[0038] FIG. 2 is a flow diagram illustrating a method for suspending a transactional mode of
execution while executing a memory transaction, according to some embodiments. Method 200
may be executed by an HTM (such as HTM 110 of FIG. 1) during the course of executing a
computer program configured to utilize memory transactions.

[0039] According to the illustrated embodiment, method 200 begins when the processor
begins executing in transactional mode, as in 210. In some embodiments, this may be performed
in response to a software program executing one or more architected instructions to initiate
transactional execution. Initiating transactional execution mode, as in 210, may include setting
one or more flags, such as in registers 120 of system 100.

[0040] Once the processor is executing in transactional mode, it may be configured to mark
data accessed by speculative memory access operations as speculative, as in 220. In some
embodiments, every memory access operation executed in transactional mode may be considered
speculative and thus, data accessed by each such memory access operation may be marked as
speculative. In other embodiments, a subset of the memory access operations within a
transaction may be explicitly designated as speculative. In some such embodiments, only the
data accessed by each of these explicitly speculative instructions may be marked as speculative in
220.

[0041] In various embodiments, the process of marking the data as speculative may be

dependent on the type of speculative buffer being used by the HTM. For example, for HTMs

8

10

15

20

25

30

35

WO 2011/106333 PCT/US2011/025778
that buffer speculative data in a data cache, marking the data as speculative may include storing a

copy of the data in the data cache and marking the cache block of the cache containing the
speculative data using one or more speculative bits. Marking a speculative bit may also be used
for marking speculative data in buffers implemented by other structures, such as a load/store
queue.

[0042] According to the illustrated embodiment, at some point during transactional
execution, the HTM (or some component thereof, such as control transfer detection unit 112),
determines a suspend condition, including by detecting a control transfer, as in 230. In some
embodiments, a suspend condition may be one that indicates that program control is about to be
transferred to the operating system kernel. For example, in some embodiments, a suspend
condition may be detected in response to a system call being made and the current privilege level
of the processor corresponding to some given application level (e.g., this given privilege level
may be 3 (user or application level) in some embodiments). In another example, the suspend
condition may be detected in response to detecting a hardware interrupt and that the CPL
indicates an application level privilege, such as level 3. Thus, in such embodiments, if a control
transfer is detected during transactional execution, the HTM may check the CPL to determine if
the control transfer is one from an application to an operating system kernel. If so, a suspend
condition may be determined to exist.

[0043] As in method 200, in response to detecting a suspend condition, the HTM may
suspend transactional execution, as in 240. Suspending transactional execution may include
setting a suspend flag (e.g., suspend flag 122, which refers to a value stored in some storage
location) which may signal to the HTM that transactional execution mode is suspended.

[0044] Once the transactional execution mode is suspended, the processor may execute
memory operations without marking accessed data as speculative, as in 250. That is, once
control is transferred to the operating system, the transactional execution mode is suspended and
memory operations executed by the operating system are not treated as speculative, and thereby
not subject to rollback in the event of an abort. As described above, in some embodiments, a
processor may not abort a transaction attempt while in suspended mode, even if an abort
condition is detected. In such embodiments, the processor may respond to detecting an abort
condition by setting an abort flag (a value stored in some storage location) and aborting
(including rolling back) the transaction once transactional execution mode is resumed.

[0045] FIG. 3 is a flow diagram illustrating a method for executing an atomic transaction
using an HTM, including by suspending the transactional mode of execution during the
transaction. Method 300 begins by initiating transactional execution mode, as in 305. As before,

the processor may perform this step in response to executing a transaction initiating instruction.

9

10

15

20

25

30

35

WO 2011/106333 PCT/US2011/025778
[0046] In method 300, if the HTM detects a suspend condition (as indicated by the

affirmative exit from 310), then the HTM may suspend the transactional mode, such as by setting
a suspend flag in 315. Detecting a suspend condition in 310 may be analogous to detecting the
suspend condition in 230 of FIG. 2, and may include detecting a control transfer into the
operating system during an active (not suspended) transactional mode. In response to detecting a
control transfer into the operating system, the HTM may also record the type of control transfer
used, such that the appropriate return control transfer may later be identified. If no suspend
condition is detected, as indicated by the negative exit from 310, then the transaction is not
suspended.

[0047] According to method 300, the processor then executes the next memory access
instruction, as in 320. If the transactional mode of execution is not suspended (as indicated by
the negative exit from 325), then the HTM marks any speculative data accessed by the memory
operation as speculative, as in 330. For example, if the operation is a read operation, then the
HTM may note that the memory location from which the value was read is part of the
transaction’s read set. Thus, if an invalidating probe is received indicating that another processor
has modified the value stored at the speculative memory location, the processor detects an abort
condition.

[0048] As described above, in some embodiments, every memory operation in an active
transaction may be considered speculative, while in other embodiments, some data and/or
memory operations may be explicitly identified as speculative while others are not. In such
embodiments, a memory operation that accesses only non-speculative data would not cause any
data to be marked as speculative. For example, in one such embodiment, method 300 may be
augmented such that the negative exit from 325 is further contingent on the memory operation
and/or data accessed by the memory operation having been explicitly marked as speculative.
[0049] In embodiments wherein a cache is used to implement the speculative data buffer, the
cache block corresponding to the read data may be marked using a “speculative flag” indicating
that it was read in transactional execution mode. In some embodiments, each cache block may
comprise or be otherwise associated with a “read speculative flag” and a “write speculative flag”,
indicating the type of speculative memory access operation that was performed on the memory
area (if any). In various embodiments, these flags may be combined or separate, and may be
used in different speculative buffers, such as those implemented by a data cache, a load/store
queue, and/or others.

[0050] According to the illustrated embodiment, if the transaction is suspended (as indicated
by the affirmative exit from 325), then no marking of speculative data (as in 330) is performed by

the HTM. Instead, the HTM may determine whether a resume condition exists, as in 335. In

10

10

15

20

25

30

35

WO 2011/106333 PCT/US2011/025778
some embodiments, a resume condition may be detected in response to detecting a return control

transfer from the operating system to the application. In some embodiments, detecting such a
return control transfer may include determining that a control transfer being executed (or about to
be executed) is a return corresponding to the original (suspending) control transfer into the
operating system. Additionally, detecting a resume condition may be further dependent on the
CPL indicating that the processor is executing in a privileged (e.g., kernel-level) mode, such as
level 0.

[0051] In method 300, if a resume condition is detected, as indicated by the affirmative exit
from 335, then the transactional mode of execution may be resumed, as in 340. Resuming the
transactional mode of execution may include unsetting the suspend flag, thereby indicating to the
HTM that the marking of speculative data should resume as appropriate. As discussed below in
reference to FIG. 4, resuming the transactional mode may also include determining whether an
abort condition was detected during the suspension (e.g., by checking an abort flag).

[0052] In the illustrated embodiment of FIG. 3, if the transaction includes more instructions
(as indicated by the affirmative exit from 345), then the processor may repeat method 300 (as
indicated by the feedback loop from 345 to 310). Otherwise, as indicated by the negative exit
from 345, the transaction may be committed, as in 350. In various embodiments, committing the
transaction may include different steps. For example, as part of committing the transaction, the
marked speculative data may be marked as non-speculative. In some embodiments, committing
the transaction may include writing speculatively written data to shared memory or otherwise
sharing the speculatively written values with the other processors in the system. The reader will
note that although method 300 includes executing at least one a memory access instruction
between detecting a suspend condition in 310 and detecting a resume condition in 335, those
skilled in the art will appreciate that this is not necessarily the case for all instances of suspended
transactions.

[0053] FIG. 4 is a flow diagram illustrating a method for handling an abort condition
detected during suspended transactional mode, according to some embodiments. As before, the
method begins by initiating a transactional execution mode, as in 405, and suspending
transactional execution mode in response to detecting a suspend condition, as in 410. Once the
transactional execution mode is suspended, the processor may begin executing operating system
code in a non-transactional mode (i.e., without marking accessed data as speculative).

[0054] According to method 400, the HTM may detect an abort condition indicating that the
transaction attempt failed, as in 415. In various embodiments, different circumstances may cause
an abort condition, including a data conflict with another processor or a speculative buffer

overflow condition being detected, as described above. For example, a data conflict may occur if

11

10

15

20

25

30

35

WO 2011/106333 PCT/US2011/025778
another processor accesses a memory area marked by the processor as speculative, and either of

the processors modified the data stored in the memory area. In another example of an abort
condition may be detected in response to a speculative buffer overflow condition being detected,
such as when a speculative data buffer (e.g., data cache) has insufficient capacity to buffer all the
speculative data accessed during the transaction. The buffer may have insufficient capacity
because too much speculative and/or non-speculative data is being buffered simultancously.
[0055] In traditional systems, an HTM would abort a transaction immediately upon detecting
the abort condition. However, this may leave various structures of the operating system software
in an inconsistent state. Instead, HTMs in various embodiments may delay aborting a suspended
transaction until after it resumes. For example, in method 400 of FIG. 4, in response to detecting
the abort condition in 415, the HTM sets an abort flag, as in 420, and continues to execute in
suspended transactional mode, as in 425.

[0056] While execution continues in the operating system in suspended transactional mode,
various additional control transfers may be performed. At a later point, the HTM may detect a
resume condition (as in 430) in response to detecting a return control transfer matching the
suspending control transfer and returning control to the application code.

[0057] According to the illustrated embodiment, after returning to the application code and
resuming transactional execution, the HTM may determine whether the abort flag is set, as in
435. If the abort flag is not set, then the transaction did not fail during the suspended execution
mode and so the HTM may clear the suspended flag and continue to execute in transactional
mode. However, in method 400, the abort flag was set in 420, so the HTM will determine in 435
that the abort flag is set and in response, abort the transaction, as in 440.

[0058] As discussed above, aborting the transaction in 440 may include marking the
speculative data as invalid. This may be referred to herein as “dropping” the speculative data.
Once speculative data is dropped, it is not stored to shared memory for access by other
processors. For example, if speculative data in a speculative buffer is marked as invalid, the
processor does not rely on this data for future instruction execution nor forwards it to shared
memory. Furthermore, no future transactional aborts or cache coherency actions need be taken to
coordinate invalidated data with other processors in the system.

[0059] FIG. 5 illustrates a specific method for implementing an HTM with automatic
suspend/resume capabilities, according to some embodiments. Method 502 begins by initiating a
transactional execution mode, as in 500. During execution, the HTM detects a control transfer to
the operating system kernel, as in 505. If the processor is executing in suspended transactional
mode, as indicated by the affirmative exit from 510, then no additional action needs to be taken

with regard to suspending the transactional execution mode. However, if the processor is not

12

10

15

20

25

30

35

WO 2011/106333 PCT/US2011/025778
currently in a suspended mode of execution, then the HTM may check the current privilege level,

asin 515. If the privilege level is elevated (e.g., kernel-level 0, or a non-application level in
some embodiments), as indicated by the negative exit from 515, then no further action need be
taken with respect to suspending the transactional mode of execution.

[0060] According to the illustrated embodiment, if the processor is not in suspended
transactional mode (negative exit from 510) and the current privilege level (CPL) is at a lower
level of privilege (e.g., application-level 3) as indicated by the affirmative exit from 515, then the
HTM may record an indication of the control transfer event (as in 520) and suspend transactional
execution mode (as in 525).

[0061] In method 502, after the transactional execution mode is suspended in 525, the HTM
may detect another control transfer, as in 530. If this subsequent control transfer detected in 530
is a return control transfer corresponding to the suspending control transfer of 505 (as indicated
by the affirmative exit from 535), then the processor may return execution to the application
mode and the HTM may resume (i.¢., un-suspend) the transactional execution mode, as in 540.
However, if the control transfer is not a return control transfer corresponding to the suspending
control transfer of 505, then the HTM may continue in transactional execution mode until the
corresponding return control transfer is found, as indicated by the feedback loop from 535 to 530.
In some instances, a given transaction may suspend and/or resume multiple times (e.g., as
indicated by the optional feedback loop from 540 to 505) before finally being committed

[0062] In various embodiments, any number of control transfers may be executed between
the suspending transfer and its corresponding return control transfer. However, in some
embodiments, only when the return control transfer corresponding to the suspending transfer is
detected (affirmative exit from 535) will the HTM resume transactional mode.

[0063] FIG. 6 is a table listing various types of control transfers during which suspension
may be executed, according to some embodiments. The control transfer types listed include far
control transfers, system calls, and exceptions/interrupts. To each type of transfer may be
detected by a respective listed suspension event and a return from the transfer may be detected by
the respective listed resumption events. For example, a system call into an operating system may
be detected by detecting a SYSENTER instruction and the matching return control transfer
would be indicated by a SYSEXIT instruction.

[0064] FIG. 7 illustrates a computer system configured to implement a hardware
transactional memory system with automatic suspend/resume functionality, as described herein,
according to some embodiments. Computer system 700 may be any of various types of devices,
including, but not limited to, a personal computer system, desktop computer, laptop or notebook

computer, mainframe computer system, handheld computer, workstation, network computer, a

13

10

15

20

25

30

35

WO 2011/106333 PCT/US2011/025778
consumer device, application server, storage device, a peripheral device such as a switch,

modem, router, etc, or in general any type of computing device.

[0065] Computer system 700 may include one or more processors 750, each of which may
include multiple cores, any of which may be single or multi-threaded. As described herein an in
FIG. 1, each processor may comprise registers 752 usable to store various flags and operands.
Processor 750 may further comprise data cache 754 configured to cache accessed data and/or to
implement a speculative data buffer. For example, data cache 754 may include one or more bits
associated with each cache block and usable to denote speculatively read and/or written data.
Processor 750 may further include control transfer detection unit 756 for detecting
suspend/resume conditions, including by detecting control transfers. According to FIG. 7,
processor 750 may also include transaction suspension unit 758 for suspending/resuming
transactional execution mode, as described herein.

[0066] In the illustrated embodiment, the computer system 700 may also include one or more
off-chip caches 760, such as an off-chip L2 or L3 cache. In some embodiments, L2 and/or L3
caches may be implemented on-chip. Computer system 700 may also include persistent storage
devices 770 (e.g. optical storage, magnetic storage, hard drive, tape drive, solid state memory,
etc), which may store data organized by a file system such as 772. Computer system 700 may
also include one or more network interfaces, such as 780, for transmitting and receiving data over
any number of networks. Computer system 700 may also include one or more memories 710
(e.g., one or more of cache, SRAM, DRAM, RDRAM, EDO RAM, DDR 7 RAM, SDRAM,
Rambus RAM, EEPROM, etc.). Various embodiments may include fewer or additional
components not illustrated in FIG. 7 (e.g., video cards, audio cards, additional network interfaces,
peripheral devices, a network interface such as an ATM interface, an Ethernet interface, a Frame
Relay interface, etc.)

[0067] The one or more processors 750, storage device(s) 740, off-chip caches 760,
persistent storage devices 770, network interface 780, and system memories 710 may be coupled
through system interconnect 740. One or more of the system memories 710 may contain
program instructions 720 and various data structures and variables 730. Program instructions
720 may be encoded in platform native binary, any interpreted language such as Java™ byte-
code, or in any other language such as C/C++, Fortran, etc or in any combination thereof.

[0068] Program instructions 720 may include program instructions executable to implement
one or more single and/or multi-threaded programs 722, which may utilize atomic memory
transactions, such as by executing initiating and commit instructions, as described herein.

[0069] According to the illustrated embodiment, memory 710 may comprise program

instructions executable to implement an operating system 724, such as Windows ' and/or Linux.

14

10

15

20

25

30

35

WO 2011/106333 PCT/US2011/025778
In some embodiments, operating system 724 may include a kernel configured to execute various

functions at an elevated level of privilege. For example, operating system 724 may expose an
application programming interface (API) defining system calls that applications 722 may invoke.
In response to invoking such system calls, processor 750 may suspend an active transaction being
executed by the application 722 in a manner substantially transparent to applications 722 and
operating system 724, as described herein.

[0070] The software programs, such as applications 722, may be provided as a computer
program product, or software, that may include a computer-readable storage medium having
stored thereon instructions, which may be used to program a computer system (or other
electronic devices) to perform a process according to various embodiments. A computer-
readable storage medium may include any mechanism for storing information in a form (e.g.,
software, processing application) readable by a machine (e.g., a computer). The (non-transitory)
machine-readable storage medium may include, but is not limited to, magnetic storage medium
(e.g., floppy diskette); optical storage medium (e.g., CD-ROM); magneto-optical storage
medium; read only memory (ROM); random access memory (RAM); erasable programmable
memory (¢.g., EPROM and EEPROM); flash memory; electrical, or other types of medium
suitable for storing program instructions. In addition, program instructions may be
communicated using optical, acoustical or other form of propagated signal (e.g., carrier waves,
infrared signals, digital signals, etc.).

[0071] A computer-readable storage medium as described above can be used in one
embodiment to store instructions read by a program and used, directly or indirectly, to fabricate
the hardware comprising system processor 750. For example, the instructions may describe one
or more data structures describing a behavioral-level or register-transfer level (RTL) description
of the hardware functionality in a high level design language (HDL) such as Verilog or VHDL.
The description may be read by a synthesis tool, which may synthesize the description to produce
a netlist. The netlist may comprise a set of gates (e.g., defined in a synthesis library), which
represent the functionality of processor 750. The netlist may then be placed and routed to
produce a data set describing geometric shapes to be applied to masks. The masks may then be
used in various semiconductor fabrication steps to produce a semiconductor circuit or circuits
corresponding to processor 750. Alternatively, the database on carrier medium 300 may be the
netlist (with or without the synthesis library) or the data set, as desired.

[0072] The scope of the present disclosure includes any feature or combination of features
disclosed herein (either explicitly or implicitly), or any generalization thereof, whether or not it
mitigates any or all of the problems addressed herein. Accordingly, new claims may be

formulated during prosecution of this application (or an application claiming priority thereto) to

15

10

WO 2011/106333 PCT/US2011/025778
any such combination of features. In particular, with reference to the appended claims, features

from dependent claims may be combined with those of the independent claims and features from
respective independent claims may be combined in any appropriate manner and not merely in the
specific combinations enumerated in the appended claims.

[0073] Although the embodiments above have been described in considerable detail,
numerous variations and modifications will become apparent to those skilled in the art once the
above disclosure is fully appreciated. It is intended that the following claims be interpreted to

embrace all such variations and modifications.

16

10

15

20

25

30

WO 2011/106333 PCT/US2011/025778
WHAT IS CLAIMED:

1. An apparatus, comprising:

a computer processor configured to execute a plurality of speculative memory access
operations in a transactional mode as a single atomic transaction, including marking data
accessed by the speculative memory access operations as being speculative data, and wherein the
processor comprises:

a detection unit configured to determine an implicit suspend condition; and

a transaction suspension unit configured to suspend the transactional mode of execution

in response to receiving an indication of a suspend condition, wherein in response
to suspension of the transactional mode, the processor is configured to suspend

marking speculative data.

2. The apparatus of claim 1, wherein the detection unit is configured to determine the
implicit suspend condition by: detecting a control transfer in a thread being executed by the
processor, detecting that the processor is executing in a transactional mode, and detecting that the

processor is executing at a given level of privilege.

3. The apparatus of claim 2, wherein the detected control transfer is a transfer to an

operating system.

4. The apparatus of claim 2, wherein the processor is configured to detect that the atomic
transaction has failed while the transaction is suspended, and wherein the processor is configured

to abort the failed transaction, including by discarding the speculative data.

5. The apparatus of claim 4, wherein the processor is further configured to abort the failed
transaction only after detecting a resumption condition for the transactional mode of execution

for the transaction.
6. The apparatus of claim 5, wherein suspension of the transactional mode includes the

processor setting a suspend flag, and wherein, in response to detecting that the transaction has

failed, the processor is further configured to set an abort flag.

17

10

15

20

25

30

35

WO 2011/106333 PCT/US2011/025778
7. The apparatus of claim 6, wherein the processor is configured to save the suspend flag

and the abort flag as part of an execution context, wherein the saved execution context is usable

to restore state of the processor in the event of a context switch performed by the processor.

8. The apparatus of claim 2, wherein the detection unit is configured to determine a
resumption condition, including by detecting a return control transfer corresponding to a return
from the control transfer, and wherein the processor is configured to resume marking data as

being speculative after determining the resumption condition.

9. The apparatus of claim 8, wherein the transaction suspension unit is configured to
respond to the determination of the resumption condition by aborting the transaction in response
to determining that the transaction failed while the transactional mode was suspended, wherein

said aborting includes discarding the speculative data.

10. The apparatus of claim 9, wherein, upon the transaction being resumed, the processor is
configured to commit the transaction, including by marking speculative data marked both before

and after suspension of the transaction as non-speculative.

11. A method, comprising:

a computer processor within a transactional memory system executing a plurality of
speculative memory access operations in a transactional mode as a single atomic transaction,
wherein said executing comprises:

marking data accessed by the speculative memory access operations as being
speculative data;

determining that an implicit suspend condition exists; and

in response to determining that the implicit suspend condition exists, suspending
the transactional mode of execution and suspending marking of

speculative data.

12. The method of claim 11, said determining the implicit suspend condition includes:
detecting a control transfer in a thread being executed by the processor, detecting that the
processor is executing in a transactional mode, and detecting that the processor is executing at a

given level of privilege.

13. The method of claim 12, further comprising:

18

10

15

20

25

30

WO 2011/106333 PCT/US2011/025778
while the transactional mode of execution is suspended, detecting a resumption condition,

including by detecting a return control transfer corresponding to a return from the control
transfer;
wherein the method further comprises resuming marking of speculative data in response

to detecting the resumption condition.

14. The method of claim 13, further comprising committing the transaction, including by
marking speculative data marked both before and after suspension of the transaction as non-

speculative.

15. The method of claim 13, further comprising:
after detecting the resumption condition, aborting the transaction attempt in response to
determining that the transaction failed while the transactional mode of execution was suspended,

wherein said aborting includes discarding data marked as being speculative data.

16. The method of claim 11, further comprising: while the transactional mode of execution is
suspended, determining that the transaction attempt failed and in response, setting an abort flag

and continuing to execute the transaction in the suspended mode.

17. A system, comprising:
a processor;
a memory shared by a plurality of processing cores, including at least one on the
processor;
wherein the processor is configured to execute a plurality of speculative memory
access operations in a transactional mode as a single atomic transaction, including by:
marking data accessed by the speculative memory access operations as being
speculative data;
determining that an implicit suspend condition exists; and
in response to determining that the implicit suspend condition exists, suspending
the transactional mode of execution and suspending marking of

speculative data.

18. The system of claim 17, wherein said determining the implicit suspend condition is also

based in part on: detecting a control transfer in a thread being executed by the processor,

19

10

15

20

25

WO 2011/106333 PCT/US2011/025778
detecting that the processor is executing in a transactional mode, and detecting that the processor

1S executing at a given level of privilege.

19. The system of claim 18, wherein the processor is further configured to detect a
resumption condition while the transactional mode of execution is suspended, including by
detecting a return control transfer corresponding to a return from the control transfer;

wherein the processor is configured to respond to detecting the resumption condition, at
least by resuming marking data accessed by speculative memory access operations as being

speculative data.

20. The system of claim 19, wherein the processor is further configured to commit the
transaction, including by marking speculative data marked both before and after suspension of

the transaction as being non-speculative.

21. A computer readable storage medium comprising a data structure which is operated upon
by a program executable on a computer system, the program operating on the data structure to
perform a portion of a process to fabricate an integrated circuit including circuitry described by
the data structure, the circuitry described in the data structure including:

a computer processor configured to execute a plurality of speculative memory access
operations in a transactional mode as a single atomic transaction, including
marking data accessed by the speculative memory access operations as being
speculative data, and wherein the processor comprises:

a detection unit configured to determine an implicit suspend condition; and

a transaction suspension unit configured to suspend the transactional mode of
execution in response to receiving an indication of a suspend condition,
wherein in response to suspension of the transactional mode, the processor

is configured to suspend marking speculative data.

20

WO 2011/106333

System
100

1/7

PCT/US2011/025778

Computer processor
102

HTM 11

Control transfer detection unit
112

Transaction suspension unit
114

Conflict detection unit
116

Overflow detection unit
118

Registers
120

Suspend flag Abort flag
122 124

Data Cache
130

Shared memory
140

Other processor(s)
150

FIG. 1

Bus
160

WO 2011/106333

Method
200

2/7

PCT/US2011/025778

Initiate transactional execution mode
210

'

Mark data accessed by speculative memory
access operations as speculative
220

:

Determine a suspend condition including by
detecting a control transfer
230

'

Suspend transactional execution mode (e.g.,
set suspend flag)
240

'

Execute memory operations without marking
accessed data as speculative
250

FIG. 2

WO 2011/106333 PCT/US2011/025778

3/7
Method

A/_‘/M

Initiate transactional execution mode
305

No Suspend
condition detected?

310

Yes

Suspend transactional mode (e.g., set
suspend flag)
315

l

Execute next memory access
instruction
320

Mark data accessed by
instruction as speculative
330

Transaction suspended?
325

Resume
condition detected?
335

Yes

Un-suspend transactional mode (e.g.,
unset suspend flag)
340

More instructions?
345

Commit transaction (e.g., mark speculative data as non-
speculative)
350

FIG. 3

WO 2011/106333 PCT/US2011/025778

4/7

Method
400

/J

Initiate transactional execution mode
405

'

Suspend transactional execution mode in
response to detecting suspend condition
410

;

Detect abort condition indicating transaction
attempt failed (e.qg., conflict, buffer overflow)
415

!

Set abort flag
420

,

Continue executing in suspended
transactional execution mode
425

Detect resume condition
430

!

Determine abort flag is set
435

'

Abort transaction
440

FIG. 4

WO 2011/106333

PCT/US2011/025778
5/7 Method
502
Initiate transactional execution mode
500 /‘/
-

Detect a control transfer to operating system
kernel
909

In suspended mode?
910

Current
privilege level is application level?
915

No

Record indication of control transfer
520

Suspend transactional execution mode
925

:

Detect another control transfer
530

Is other
control transfer a return from first
control transfer?
835

Yes

No

Un-suspend transactional execution mode
fffffff 540

FIG. 5

WO 2011/106333 PCT/US2011/025778

6/7
Transfer Type Suspension Events Resumption Events
Far control transfer | CALL RET
System call SYSCALL, SYSENTER SYSRET, SYSEXIT

Exception/Interrupt |INT, INTn, exception, interrupt | IRET, RSM

FIG. 6

WO 2011/106333

7/7

PCT/US2011/025778

Computer system 700

Memory 710
Program instructions
720
Single ana/or multi-threaded
application(s) Data structures
722 and variables
730
Operating System(s)
724
Interconnect 740
Processor(s) Off-chip Persistent
750 cache(s) storage
760 device(s)
- 770
Reg/g;er S — Network
—— i interface
e 780
Data7 gjche system(s) —
— 772
Control transfer detection unit

796

Transaction suspension unit
758

FIG. 7

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings

