发明名称
分离含锡液中亚铁离子的方法

摘要
本发明公开一种分离含锡液中亚铁离子的方法，包括将萃取剂与含锡液接触，以及再将萃取剂与含锡液分离，其中在于，所述萃取剂为三庚胺；所述含锡液中氯化氢浓度≥140g/L。采用本发明可以将亚铁离子从含锡液中直接萃取分离出来，萃取率可达98.7%以上，且保持亚锡离子的萃取率，甚至低至0.65%以下，而萃取剂可重复使用，成本更低。
1. 一种分离含锡液中亚铁离子的方法，包括将萃取剂与含锡液接触，以及再将萃取剂与含锡液分离，其特征在于，所述萃取剂为三庚胺；所述含锡液中氯化氢浓度 \(\geq 140 \text{g/L} \)。

2. 根据权利要求1所述分离含锡液中亚铁离子的方法，其特征在于，所述含锡液中氯化氢浓度为 \(\geq 180 \text{g/L} \)。

3. 根据权利要求2所述分离含锡液中亚铁离子的方法，其特征在于，所述含锡液中氯化氢浓度为 \(180 \sim 250 \text{g/L} \)。

4. 根据权利要求1所述分离含锡液中亚铁离子的方法，其特征在于，所述萃取剂用有机溶剂稀释。

5. 根据权利要求4所述分离含锡液中亚铁离子的方法，其特征在于，所述有机溶剂为煤油或石油醚。

6. 根据权利要求1～5任一所述分离含锡液中亚铁离子的方法，其特征在于，萃取剂与含锡液接触时，温度 \(\geq 50^\circ \text{C} \)。

7. 根据权利要求5所述分离含锡液中亚铁离子的方法，其特征在于，萃取剂与含锡液接触时，温度为 \(50 \sim 60^\circ \text{C} \)。

8. 根据权利要求1～5任一所述分离含锡液中亚铁离子的方法，其特征在于，将萃取剂与含锡液分离后得到的萃取液中反萃出亚铁离子的过程，包括将盐酸与萃取液接触，以及再分离出水相。

9. 根据权利要求8所述分离含锡液中亚铁离子的方法，其特征在于，所述盐酸浓度为 \(0.05 \sim 1 \text{mol/L} \)。

10. 三庚胺用于萃取分离镀锡液中的亚铁离子。
分离含锡液中亚铁离子的方法

技术领域
[0001] 本发明属于亚铁离子的分离，具体涉及含锡液中亚铁离子的分离。

背景技术
[0002] 在电镀工业中，电镀锡的应用非常广泛。酸性镀锡液具有抗腐蚀、耐变色、无毒、易铣焊、柔软、熔点低和延展性好等优点，还具有良好的装饰效果。故电镀锡层可作为可焊性镀层，也可作为装饰性镀层来使用。通过特殊的前处理工艺，在复合材料的表面形成结合牢固、致密、光亮、均匀的合金镀层。在一定的范围内，甚至可以代替镀锌层，降低对人 体的毒害程度，广泛应用于电工、电子、食品、轻工业等行业中。
[0003] 在进行镀锡工艺时，需要一步光亮镀锡层的操作。因为镀锡液是强酸性的，不可避免地会对钢带基体产生腐蚀作用，从而在镀液中会出现二价铁离子，并积聚在镀液中，使得镀层的耐腐蚀性、钎焊性和软熔光泽性等大大降低。与此同时，镀锡液中的 Sn(II) 将会被空气中的氧化气氧化成 Sn(IV)，而二价铁离子的存在更恶化了这种氧化反应的速度，造成严重混浊，大大降低镀液的性能。
[0004] 溶剂萃取是一种有效而成熟的分离技术，广泛应用于湿法冶金、电镀等工业中。与沉淀法相比，萃取分离技术的优点主要是工艺流程短、化工原料及能源消耗低、金属回收率高等等。
[0005] N_{258} 属于碱性萃取剂，为三脂肪酸，分子式 R_3N。工业品在常温下为无色或者浅黄色透明油状液体，其应用非常广泛，现有研究表表明，N_{258} 萃取各种金属离子能力从大到小为：Zn^{2+}、Fe^{3+}、Cu^{2+}、Co^{2+}、Fe^{2+}、Ni^{2+} 等，也即 Fe(III)N_{258} 萃取物远比 Fe(II) 的 N_{258} 结合物更稳定。此外，由于亚铁酸在金属活性度顺序表中相邻，Sn(II) 和 Sn(IV) 的氢氧化物的溶液酸碱度比 Fe(II) 和 Fe(III) 的氢氧化物的溶液酸碱度大，若在进行萃取时，部分锡将会不可避免地被协同萃取出，导致锡的损失。因此，目前用 N_{258} 萃取分离铁的研究主要针对于铁(III)的分离，而对于直接分离 Fe(II)，特别是对于镀锡液中亚铁离子的萃取分离研究还很少。

发明内容
[0006] 本发明的目的是提供一种从含锡液中萃取分离出亚铁离子的方法。
[0007] 本发明实现上述目的所采用的技术方案如下：
一种分离含锡液中亚铁离子的方法，包括将萃取剂与含锡液接触，以及再将萃取剂与含锡液分离，其特征在于，所述萃取剂为三庚胺；所述含锡液中氰化氢浓度 ≥ 140g/L。
[0008] 进一步，所述含锡液中氰化氢浓度 ≥ 180g/L。
[0009] 进一步，所述含锡液中氰化氢浓度为 180 ～ 250g/L。
[0010] 进一步，所述萃取剂用有机溶剂稀释。
[0011] 进一步，所述有机溶剂为煤油或石油醚。
[0012] 进一步，萃取剂与含锡液接触时，温度 ≥ 50℃。
进一步，萃取剂与含锡液接触时，温度为 50 ～ 60℃。

进一步，所述含锡液为镀锡液。

进一步，将萃取剂与含锡液分离后得到的萃取液中反萃出亚铁离子的过程：包括
将盐酸与萃取液接触，以及再分离出水相。

进一步，所述盐酸浓度为 0.05 ～ 1mol/L。

进一步，所述盐酸浓度为 0.5 ～ 1mol/L。

反萃时，萃取液与盐酸的体积比优选 1: (2 ～ 10)。优选为 1: (3 ～ 5)。

三庚胺用于萃取分离镀锡液中的亚铁离子。

具体实施方式

以下结合具体实施例对本发明做进一步详细说明。

如无特别说明，在本发明的实施例中所述的镀锡液和 N_{235} 萃取液均通过如下方法
得到：

将 (NH_{4})_{2}Fe(SO_{4})_{2}・6H_{2}O 溶于 20mL 2mol/L 的盐酸水溶液中，再定容到 100mL，配制成
0.1mol/L 的亚铁标准溶液；将 SnCl_{2}・6H_{2}O 溶于 20mL 2mol/L 的盐酸水溶液中，再定容到
100mL，配制成 0.1mol/L 的亚锡标准溶液。

将上述 20mL 的亚铁标准溶液和 20mL 的亚锡标准溶液混合，配制成镀锡液模拟液
（以下简称为镀锡液）。

萃取剂选用三庚胺，CAS 号 : 2411-36-1，用 80mL 的石油醚将 20mL 的三庚胺稀释成
浓度为 20% 的 N_{235} 萃取液。

实施例 1

在烧杯中，加入 40mL 的镀锡液加入 10mL 400g/L HCl 溶液，混匀后，加入 5mL N_{235} 萃取
液，用薄膜封口，水浴恒温磁力搅拌，转速为 20r/s，萃取温度为 50℃，搅拌 20min 后，转入
分液漏斗中静置 15min 分层，分别收集水层和有机层，水层为萃余相，有机层为萃取相。

实施例 2

在烧杯中，加入 40mL 的镀锡液加入 20mL 400g/L HCl 溶液，混匀后，加入 5mL N_{235} 萃取
液，用薄膜封口，水浴恒温磁力搅拌，转速为 20r/s，萃取温度为 50℃，搅拌 20min 后，转入
分液漏斗中静置 15min 分层，分别收集水层和有机层，水层为萃余相，有机层为萃取相。

实施例 3

在烧杯中，加入 40mL 的镀锡液加入 30mL 400g/L HCl 溶液，混匀后，加入 5mL N_{235} 萃取
液，用薄膜封口，水浴恒温磁力搅拌，转速为 20r/s，萃取温度为 50℃，搅拌 20min 后，转入
分液漏斗中静置 15min 分层，分别收集水层和有机层，水层为萃余相，有机层为萃取相。

实施例 4

在烧杯中，加入 40mL 的镀锡液加入 40mL 400g/L HCl 溶液，混匀后，加入 5mL N_{235} 萃取
液，用薄膜封口，水浴恒温磁力搅拌，转速为 20r/s，萃取温度为 50℃，搅拌 20min 后，转入
分液漏斗中静置 15min 分层，分别收集水层和有机层，水层为萃余相，有机层为萃取相。

实施例 5

在烧杯中，加入 40mL 的镀锡液加入 50mL 400g/L HCl 溶液，混匀后，加入 5mL N_{235} 萃取
液，用薄膜封口，水浴恒温磁力搅拌，转速为 20r/s，萃取温度为 50℃，搅拌 20min 后，转入
分液漏斗中静置 15min 分层，分别收集水层和有机层，水层为萃余相，有机层为萃取相。

实施例 1～5（编号分别为 1～5）的萃取分离结果见下表：

<table>
<thead>
<tr>
<th>编号</th>
<th>HCl 浓度 /g·L⁻¹</th>
<th>萃余液 Fe²⁺ 含量 n_{Fe²⁺} /mol</th>
<th>Fe²⁺ 萃取率 η_{Fe²⁺}%</th>
<th>萃余液混合离子总含量 /mol</th>
<th>萃余液 Sn²⁺ 含量 n_{Sn²⁺} /mol</th>
<th>Sn²⁺ 萃取率 η_{Sn²⁺}%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>92</td>
<td>262.80×10⁻⁶</td>
<td>88.86</td>
<td>1.317×10⁻³</td>
<td>1.212×10⁻³</td>
<td>39.40</td>
</tr>
<tr>
<td>2</td>
<td>143</td>
<td>25.8762×10⁻⁶</td>
<td>98.71</td>
<td>1.511×10⁻³</td>
<td>1.509×10⁻³</td>
<td>24.55</td>
</tr>
<tr>
<td>3</td>
<td>180</td>
<td>3.7938×10⁻⁶</td>
<td>99.81</td>
<td>1.991×10⁻³</td>
<td>1.987×10⁻³</td>
<td>0.65</td>
</tr>
<tr>
<td>4</td>
<td>207</td>
<td>1.9488×10⁻⁶</td>
<td>99.90</td>
<td>1.993×10⁻³</td>
<td>1.991×10⁻³</td>
<td>0.45</td>
</tr>
<tr>
<td>5</td>
<td>229</td>
<td>0.9110×10⁻⁶</td>
<td>99.95</td>
<td>1.993×10⁻³</td>
<td>1.992×10⁻³</td>
<td>0.40</td>
</tr>
</tbody>
</table>

（采用分光光度法和 EDTA 滴定法测定样品中的 Fe（II）和 Sn（II）浓度）

由上述实验可以看出，亚铁离子的萃取率直接受镀锡液中氯化氢浓度的影响，当 HCl 浓度 1140g/L 时，Fe（II）的萃取率可达 98.7%，但 Sn（II）的萃取率也 24%，当 HCl 浓度 11180g/L 时，Fe（II）的萃取率高达 99.8%，而 Sn（II）的萃取率低到 0.65% 以下。

在相同条件下，萃取所用时间对亚铁离子和亚锡离子的萃取率波动在 ±0.5% 以内，基本无影响，一般可控制在 10～50min。

在相同条件下，萃取时的温度对萃取率的影响也在 ±0.5% 以内，基本不亚铁离子和亚锡离子的萃取率，但温度低于 50℃，特别是在 20～40℃时，容易出现第三相有机相，即萃取相分两相，为避免第三相的出现，可将温度设置在 50℃以上，优选 50～60℃，这样可避免添加辅助剂。

N_{253} 萃取液也可按少量多次的原则加入进行萃取。

实施例 6

将实施例 5 分离得到的萃取相与 15mL 0.05mol/L 的 HCl 溶液混合，在锌形分液漏斗中充分震荡反萃，反萃 1 次，反萃时间为 3min。反萃结束后静置 20min，待清晰分层后，收集水层反萃液。

实施例 7

将实施例 5 分离得到的萃取相与 15mL 0.01mol/L 的 HCl 溶液混合，在锌形分液漏斗中充分震荡反萃，反萃 1 次，反萃时间为 3min。反萃结束后静置 20min，待清晰分层后，收集水层反萃液。

实施例 8

将实施例 5 分离得到的萃取相与 15mL 0.5mol/L 的 HCl 溶液混合，在锌形分液漏斗中充分震荡反萃，反萃 1 次，反萃时间为 3min。反萃结束后静置 20min，待清晰分层后，收集水层反萃液。

实施例 9

将实施例 5 分离得到的萃取相与 15mL 1.0mol/L 的 HCl 溶液混合，在锌形分液漏斗中充分震荡反萃，反萃 1 次，反萃时间为 3min。反萃结束后静置 20min，待清晰分层后，收集水层反萃液。

实施例 10

将实施例 5 分离得到的萃取相与 15mL 1.5mol/L 的 HCl 溶液混合，在锌形分液漏斗中
充分震荡反萃，反萃 1 次，反萃时间为 3min。反萃结束后静置 20min，待清晰分层后，收集水层反萃液。

【0039】实施例 11

将实施例 5 分离得到的萃取相与 15mL 2.0mol/L 的 HCl 溶液混合，在梨形分液漏斗中充分震荡反萃，反萃 1 次，反萃时间为 3min。反萃结束后静置 20min，待清晰分层后，收集水层反萃液。

【0040】实施例 6～11（编号分别为 1～6）的反萃结果见下表：

<table>
<thead>
<tr>
<th>编号</th>
<th>HCl 浓度/mol·L⁻¹</th>
<th>反萃液 Fe²⁺ 含量 mg/L</th>
<th>Fe²⁺ 反萃率 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.550×10⁻³</td>
<td>27.56</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.604×10⁻³</td>
<td>30.26</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>1.053×10⁻³</td>
<td>52.76</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>1.413×10⁻³</td>
<td>70.77</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>0.883×10⁻³</td>
<td>13.26</td>
</tr>
<tr>
<td>6</td>
<td>2.0</td>
<td>3.435×10⁻⁷</td>
<td>0.0172</td>
</tr>
</tbody>
</table>

【0041】由反萃结果可以看出，HCl 溶液浓度大于 1.0mol/L 后，亚铁离子反萃取率急剧下降，特别是在 1.5mol/L 以上，如为 2.0mol/L 时，几乎不能反萃出亚铁离子。因此，反萃时，HCl 溶液的浓度优选为 0.05～1.0mol/L。

【0042】反萃取后回收的 N₃₅₃ 萃取液重新用于实施例 5 中亚铁离子的萃取，重复 5 次后，Fe (II) 的萃取率仍高达 98.9%，而 Sn (II) 的萃取率低到 1.7% 以下，具有良好的重复性。