

DOMANDA DI INVENZIONE NUMERO	102023000006786
Data Deposito	06/04/2023
Data Pubblicazione	06/10/2024

Classifiche IPC

Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
В	29	С	44	12

Titolo

Metodo per la realizzazione di selle per biciclette e sella per bicilette così realizzata

"Metodo per la realizzazione di selle per bicilette e sella per bicilette così realizzata" DESCRIZIONE

Settore tecnico dell'invenzione

La presente invenzione si riferisce ad un metodo per la realizzazione di una sella per bicilette, del tipo comprendente un componente rigido ed un componente morbido accoppiati tra loro.

La presente invenzione si riferisce altresì ad una sella per biciclette ottenuta con il metodo summenzionato.

Arte Nota

5

15

20

25

30

Sono note dallo stato della tecnica selle per biciclette che comprendono un componente rigido ed un componente morbido accoppiati tra loro.

In particolare, il componente rigido – che, in uso, è più lontano dall'utilizzatore – ha la funzione di fornire resistenza strutturale alla sella e di supportare il peso dell'utilizzatore, mentre il componente morbido – che, in uso, è più vicino all'utilizzatore – ha la funzione di fornire un comfort adeguato all'utilizzatore, che consenta di utilizzare la sella anche per lunghi tragitti.

Sempre secondo lo stato della tecnica, uno strato di interfaccia è previsto fra il componente rigido ed il componente morbido per garantirne la mutua adesione.

A titolo di esempio, il documento CN 209938806U descrive una sella per biciclette che comprende una piastra di base rigida provvista di fori passanti. Un elemento elastico di interfaccia è calzato nei fori della piastra di base rigida. Successivamente uno strato ammortizzante in schiuma poliuretanica è applicato alla piastra di base rigida.

Inoltre, uno strato superficiale di copertura – realizzato ad esempio in un materiale resistente all'usura e agli agenti atmosferici – è abitualmente previsto sopra al componente morbido.

A titolo di esempio, il documento CN 108656427 descrive una sella per biciclette che comprende una piastra di base rigida in materiale plastico, un elemento ammortizzante in schiuma poliuretanica e un elemento di copertura al di sopra dell'elemento ammortizzante. Al fine di semplificare il processo di produzione delle selle per bicilette e ridurre il numero di componenti (in particolare eliminando l'elemento di interfaccia), sono stati sviluppati metodi in cui un componente rigido è disposto all'interno di uno stampo che ha la forma complessiva del prodotto finale desiderato e nello stampo sono introdotti gli ingredienti di un materiale in schiuma; successivamente lo stampo viene chiuso e ha luogo la reazione di schiumatura; una volta che il materiale in schiuma si è solidificato, il

10

15

20

25

30

prodotto finito viene estratto dallo stampo.

Le fasi principali di un metodo del tipo sopra descritto sono schematicamente illustrate nelle Figure 1a e 1b.

In una prima fase del metodo (Figura 1a) viene realizzato il componente rigido o anima rigida R della sella per biciclette.

Detto componente rigido R viene realizzato mediante stampaggio ad iniezione. Granuli di un materiale plastico rigido desiderato sono introdotti in una tramoggia 101 ed alimentati ad una coclea 103 che trascina il materiale verso un primo stampo 105. La coclea 103 è provvista di dispositivi riscaldanti, cosicché durante il trasporto lungo detta coclea si ottiene la fusione dei granuli di materiale plastico e, successivamente, l'omogeneizzazione del materiale plastico fuso. La massa di materiale plastico fuso così ottenuta viene iniettata, attraverso un canale di iniezione 107, nel primo stampo 105. Detto primo stampo 105 è formato da un semi-guscio superiore 105a e da un semi-guscio inferiore 105b che insieme definiscono una cavità che ha la forma del componente rigido R che si desidera ottenere.

Il componente rigido R, una volta solidificato, viene estratto dal primo stampo 105 e disposto in un secondo stampo per la seconda fase del metodo (Figura 1b), in cui viene realizzato il componente morbido S.

Il secondo stampo 109 è a sua volta composto da un semi-guscio superiore 109a e da un semi-guscio inferiore 109b che insieme definiscono una cavità che ha la forma del prodotto finale che si intende ottenere. In altre parole, una volta che il componente rigido R è stato introdotto nel secondo stampo 109, lo spazio vuoto restante all'interno di detto secondo stampo corrispondente alla forma del componente morbido S che si desidera ottenere.

Gli ingredienti di un prodotto in schiuma sono estratti da rispettivi serbatoi. Nell'esempio di Figura 1b sono previsti un primo serbatoio 111 contenente poliolo e un secondo serbatoio 113 contenente isocianato per la realizzazione di una schiuma poliuretanica. Mediante rispettive pompe 115, 117, il poliolo e l'isocianato sono estratti dai rispettivi serbatoi e alimentati ad una camera di miscelazione 119, in cui vengono miscelati e addizionati con aria e, eventualmente, con opportuni additivi. La miscela così ottenuta viene versata nel secondo stampo 109 attraverso una apposita apertura 121. Successivamente, il secondo stampo è chiuso e ha luogo la reazione di schiumatura.

Una volta terminata la reazione di schiumatura, il prodotto finale così ottenuto (derivante dall'accoppiamento del componente rigido R e del componente morbido S) viene estratto

15

20

25

30

dal secondo stampo ed eventualmente sottoposto ad operazioni di rifinitura, quali l'applicazione di uno strato di copertura resistente all'usura e agli agenti atmosferici.

Esempi di un metodo del tipo sopra descritto possono essere rinvenuti, tra gli altri, nei documenti FR 2 517 252 e WO 2006/034640.

5 Anche un tale metodo, tuttavia non è esente da inconvenienti e possibilità di migliorie.

In primo luogo, la realizzazione del componente morbido mediante un processo di schiumatura richiede tempi notevolmente lunghi e incide negativamente sulla produttività complessiva del metodo suddetto.

In secondo luogo, ma non meno importante, un elemento in schiuma è – per sua stessa natura – scarsamente resistente all'usura e agli agenti atmosferici. Per questo motivo, al fine di ottenere un prodotto finale con proprietà adeguate, il metodo sopra descritto deve necessariamente prevedere l'applicazione dello strato di copertura resistente all'usura e agli agenti atmosferici sopra menzionato. L'applicazione di tale strato comporta un ulteriore allungamento dei tempi di produzione, oltre all'introduzione di un ulteriore componente.

Scopo principale della presente invenzione è quindi quello di superare gli inconvenienti della tecnica nota, fornendo un metodo per la realizzazione di una sella per bicilette che sia semplice e abbia tempi di produzione ridotti.

Altro scopo della presente invenzione è quello di fornire un metodo per la realizzazione di una sella per bicilette che consenta di limitare il numero di componenti della sella per bicilette ottenuta.

In particolare, altro scopo della presente invenzione è quello di fornire un metodo per la realizzazione di una sella per bicilette che consenta di evitare la necessità tanto di uno strato di interfaccia fra il componente rigido e il componente morbido della sella per bicilette, quanto di uno strato di copertura resistente all'usura e agli agenti atmosferici.

Questi ed altri scopi sono raggiunti da un metodo per la realizzazione di selle per bicilette e dalla sella per bicilette come rivendicati nelle annesse rivendicazioni.

Esposizione Sintetica dell'Invenzione

La presente invenzione si riferisce ad un metodo per la realizzazione di una sella per biciclette comprendente un componente rigido ed un componente morbido accoppiati tra loro.

Nel presente contesto, con "componente rigido" si intende un componente in grado di fornire alla sella per biciclette una resistenza strutturale sufficiente a sostenere i carichi cui la sella per bicilette è sottoposta in uso (e in particolare il peso dell'utilizzatore).

10

15

20

25

30

Nel presente contesto, con "componente morbido" si intende un componente in grado di ammortizzare urti e vibrazioni e garantire un comfort adeguato all'utilizzatore.

Secondo l'invenzione, il metodo comprende essenzialmente:

- una prima fase di stampaggio, preferibilmente di stampaggio ad iniezione, di un primo materiale termoplastico in un primo stampo per la realizzazione del componente rigido della sella per biciclette;
- una seconda fase di sovrastampaggio, preferibilmente di sovrainiezione, di un secondo materiale termoplastico in un secondo stampo, in cui è stato disposto il componente rigido della sella per bicilette precedentemente ottenuto, per la realizzazione del componente morbido della sella per biciclette.

Sempre secondo l'invenzione, al fine di ottenere un componente morbido con le caratteristiche desiderate, il secondo materiale termoplastico è caricato con uno o più additivi espandenti.

La presenza di tali additivi espandenti consente, durante la seconda fase di sovrastampaggio, di ridurre sensibilmente la densità del secondo materiale termoplastico.

Grazie al fatto che sia il componente rigido sia il componente morbido sono realizzati mediante processi di stampaggio (in particolare, stampaggio ad iniezione), i tempi richiesti per la realizzazione delle corrispondenti fasi di lavorazione è sensibilmente ridotto rispetto ai metodi tradizionali che prevedono la realizzazione del componente morbido mediante un processo di schiumatura.

Di conseguenza, la produttività del metodo secondo l'invenzione è sensibilmente incrementata rispetto ai metodi noti dallo stato della tecnica.

Grazie al fatto che il componente morbido non è un componente in schiuma, bensì un componente realizzato in materiale termoplastico (la cui densità è ridotta grazie alla presenza degli additivi espandenti), è possibile ottenere un componente morbido con buone proprietà di resistenza all'usura e agli agenti atmosferici.

Di conseguenza, è possibile evitare la necessità di impiegare un ulteriore strato di copertura al di sopra del componente morbido.

Questo comporta una sensibile riduzione della complessità del metodo secondo l'invenzione rispetto ai metodi noti dallo stato della tecnica, con un conseguente ulteriore incremento della produttività.

Inoltre, la riduzione del numero di componenti della sella per biciclette ottenuta comporta anche una riduzione dei costi di produzione complessivi.

Grazie al fatto che il sovrastampaggio avviene a temperatura elevata ed in pressione, è

possibile ottenere una intima adesione fra il componente rigido ed il componente morbido della sella per bicilette, evitando così la necessità di dover predisporre uno strato di interfaccia fra i due componenti.

Secondo una forma di realizzazione preferita dell'invenzione, il primo materiale termoplastico ed il secondo materiale termoplastico hanno la medesima natura molecolare. Secondo una forma di realizzazione particolarmente preferita dell'invenzione, il primo materiale termoplastico ed il secondo materiale termoplastico sono poliuretano.

Tuttavia, in forme di realizzazione alternative dell'invenzione, il primo materiale termoplastico ed il secondo materiale termoplastico hanno una natura molecolare diversa.

A titolo di esempio, il primo materiale termoplastico potrebbe essere poliuretano ed il secondo materiale termoplastico potrebbe essere poliammide (nylon).

Secondo una forma di realizzazione preferita dell'invenzione, grazie alla presenza degli additivi espandenti la densità del componente morbido del prodotto finale è compresa fra il 35% e il 70% della densità del secondo materiale termoplastico di partenza.

Secondo una forma di realizzazione preferita dell'invenzione, gli additivi espandenti sono agenti espandenti chimici ("chemical blowing agents") che reagiscono per decomposizione termica o reazione chimica.

Secondo un'altra forma di realizzazione preferita dell'invenzione, gli additivi espandenti sono agenti espandenti fisico-chimici, come ad esempio sfere cave.

Secondo una forma di realizzazione preferita dell'invenzione, il primo stampo utilizzato durante la prima fase di stampaggio è conformato in modo da presentare una o più sporgenze che sporgono verso l'interno della cavità dello stampo.

Di conseguenza, il componente rigido così ottenuto presenterà una o più corrispondenti porzioni a sezione trasversale ridotta.

Secondo una forma di realizzazione particolarmente preferita dell'invenzione, il primo stampo utilizzato durante la prima fase di stampaggio è conformato in modo da presentare una o più sporgenze che attraversano completamente la cavità dello stampo da una prima parete ad una seconda parete opposta di detta cavità.

Di conseguenza, il componente rigido così ottenuto presenterà uno o più corrispondenti fori passanti.

Grazie a tale configurazione si possono ottenere notevoli vantaggi.

In primo luogo, rispetto ad una configurazione in cui il componente rigido ha una sezione trasversale uniforme, il volume del componente morbido risulta sensibilmente incrementato, con un conseguente miglioramento del comfort dell'utilizzatore.

10

15

20

30

In secondo luogo, la presenza di porzioni a sezione trasversale ridotta o, preferibilmente, di fori passanti nel componente rigido della sella per biciclette consente una maggiore e più efficace adesione del secondo materiale termoplastico durante la seconda fase di sovrastampaggio del metodo secondo l'invenzione. Di conseguenza, l'accoppiamento fra il componente rigido ed il componente morbido della sella per biciletta ottenuta risulterà particolarmente saldo e stabile.

Breve descrizione dei disegni

Ulteriori vantaggi e caratteristiche della presente invenzione risulteranno evidenti dalla descrizione dettagliata che segue di una forma di realizzazione preferita dell'invenzione, data a titolo di esempio non limitativo con riferimento ai disegni allegati in cui:

- la Figura 1a mostra schematicamente una fase di realizzazione di un componente rigido di una sella per bicilette secondo un metodo noto dallo stato dell'arte;
- la Figura 1b mostra schematicamente una fase di realizzazione di un componente morbido di una sella per bicilette secondo il suddetto metodo noto dallo stato dell'arte;
- la Figura 2a mostra schematicamente una prima fase del metodo secondo l'invenzione, relativa alla realizzazione di un componente rigido di una sella per bicilette;
- la Figura 2b mostra schematicamente in scala ingrandita un particolare della Figura
 2a relativo al primo stampo utilizzato in detta prima fase del metodo secondo
 l'invenzione;
- la Figura 3a mostra schematicamente una seconda fase del metodo secondo l'invenzione, relativa alla realizzazione di un componente morbido di una sella per bicilette;
- le Figura 3b e 3c mostrano schematicamente in scala ingrandita un particolare della
 Figura 3a relativo al secondo stampo utilizzato in detta seconda fase del metodo secondo l'invenzione;
 - la Figura 4a è una vista in prospettiva dall'alto di una sella per biciclette ottenuta con il metodo secondo l'invenzione, come illustrato schematicamente nelle Figure 2a e 3a;
 - la Figura 4b è una vista dal basso della sella per biciclette di Figura 4a.

Descrizione Dettagliata di una Forma di Realizzazione Preferita dell'Invenzione

La presente invenzione si riferisce ad un metodo per la realizzazione di una sella per bicilette, del tipo comprendente un componente rigido R ed un componente morbido S

10

15

30

accoppiati tra loro.

In Figura 2a è illustrata schematicamente una prima fase di detto metodo, durante la quale viene realizzato detto componente rigido R.

Secondo l'invenzione, il componente rigido R è realizzato mediante stampaggio, in particolare mediante stampaggio ad iniezione, di un primo materiale termoplastico.

A tale scopo, viene utilizzata una macchina per iniezione di materiali plastici 1.

Granuli di detto primo materiale termoplastico sono introdotti in una tramoggia 3 ed alimentati ad una coclea 5 che trascina il materiale verso un primo stampo 7.

Durante il percorso lungo la coclea 5 dalla tramoggia 3 verso il primo stampo 7 (freccia F1) il primo materiale termoplastico è soggetto a riscaldamento, cosicché inizialmente i granuli del primo materiale termoplastico sono fusi, e successivamente il materiale termoplastico fuso è omogeneizzato.

All'estremità finale della coclea 5 si ottiene così una massa fusa omogenea del primo materiale termoplastico, che viene iniettata all'interno della cavità del primo stampo 7 attraverso un canale di iniezione 9 di detto primo stampo.

Il primo stampo 7 è illustrato in maggior dettaglio in Figura 2b.

Detto primo stampo è formato da un semi-guscio superiore 11 e da un semi-guscio inferiore 13 che insieme definiscono una cavità 15 che ha la forma del componente rigido R che si desidera ottenere.

Con riferimento alla forma di realizzazione esemplificativa illustrata in Figura 2b, uno dei semi-gusci, e nello specifico il semi-guscio superiore 11, è dotato di sporgenze 17 che si estendono verso l'interno della cavità 15 del primo stampo 7.

In particolare, le sporgenze 17 si estendono attraverso tutta la cavità 15 di detto primo stampo, fino a raggiungere la superficie interna del semi-guscio inferiore 13.

In questo modo, il componente rigido R ottenuto mediante stampaggio ad iniezione del primo materiale termoplastico all'interno del primo stampo 7 sarà provvisto di fori passanti in corrispondenza della posizione delle sporgenze 17.

Come sopra menzionato, il primo materiale termoplastico è selezionato in modo tale da ottenere un componente rigido R in grado di sopportare i carichi cui è soggetta in uso la sella per biciclette.

A titolo di esempio, il primo materiale termoplastico può essere selezionato nel gruppo comprendente poliuretano, polipropilene e poliammide (nylon).

In Figura 2b è illustrata schematicamente una seconda fase di detto metodo, durante la quale viene realizzato il suddetto componente morbido S.

10

15

20

25

30

Secondo l'invenzione, il componente rigido S è realizzato mediante sovrastampaggio, in particolare mediante sovrainiezione, di un secondo materiale termoplastico sul componente rigido R precedentemente ottenuto.

A tale scopo, il componente rigido R è disposto all'interno della cavità di un secondo stampo 7', illustrato in maggior dettaglio in Figura 3b.

Detto secondo stampo è formato da un semi-guscio superiore 11' e da un semi-guscio inferiore 13' che insieme definiscono una cavità 15' che ha la forma complessiva della sella per biciclette che si intende ottenere.

Pertanto, una volta che il componente rigido R è stato disposto all'interno della cavità 15' del secondo stampo 7', lo spazio vuoto restante corrisponde alla forma del componente morbido S che si desidera ottenere.

Per la realizzazione di detto componente morbido S, viene utilizzata una macchina per iniezione di materiali plastici 1'.

Detta macchina per iniezione 1' può essere la stessa utilizzata per la realizzazione del componente rigido R, oppure può essere una diversa macchina per iniezione dedicata.

Granuli del secondo materiale termoplastico sono preventivamente miscelati con cariche di uno o più additivi espandenti e la miscela così ottenuta è introdotta in una tramoggia 3' ed alimentata ad una coclea 5' che trascina detta miscela verso il secondo stampo 7'.

Durante il percorso lungo la coclea 5' dalla tramoggia 3' verso il secondo stampo 7' (freccia F2) la miscela del secondo materiale termoplastico e delle cariche di additivo/i espandente/i è soggetta a riscaldamento, cosicché inizialmente i granuli del secondo materiale termoplastico sono fusi, e successivamente la miscela è omogeneizzata.

All'estremità finale della coclea 5' si ottiene così una massa fusa omogenea del secondo materiale termoplastico caricato con le cariche di additivo/i espandente/i, che viene iniettata all'interno della cavità del secondo stampo 7' attraverso un canale di iniezione 9' di detto secondo stampo.

In Figura 3c è illustrato il secondo stampo 7' dopo la sovrainiezione del secondo materiale termoplastico caricato con additivo/i espandente/i.

Come visibile in Figura 3c, il secondo materiale termoplastico caricato con additivo/i espandente/i riempie completamente lo spazio vuoto della cavità 15' di detto secondo stampo, aderendo alla superficie del componente rigido R e, in particolare penetrando nei fori passanti ricavati in detto componente rigido R.

Come sopra menzionato, l'additivo espandente o gli additivi espandenti sono selezionati in modo da ridurre sensibilmente la densità del secondo materiale termoplastico di

10

15

partenza, in modo tale da ottenere un componente morbido S in grado di fornire un comfort adeguato all'utilizzatore.

In particolare, l'additivo espandente o gli additivi espandenti sono selezionati in modo tale che la densità del componente morbido S sia pari al 35% - 70% del secondo materiale termoplastico di partenza.

A titolo di esempio, il secondo materiale termoplastico può essere selezionato nel gruppo comprendente poliuretano, polipropilene e poliammide (nylon).

Preferibilmente, il secondo materiale termoplastico ha la stessa natura molecolare del primo materiale termoplastico (poliuretano / poliuretano, polipropilene / polipropilene, poliammide / poliammide), il che garantisce una efficace adesione del componente morbido S al componente rigido R.

Tuttavia, è anche possibile prevedere che il secondo materiale termoplastico abbia una natura molecolare diversa dal primo materiale termoplastico, purché detto primo e secondo materiale termoplastico risultino compatibili (ad esempio, utilizzando poliuretano come primo materiale termoplastico e poliammide come secondo materiale termoplastico).

Sempre a titolo di esempio, l'additivo espandente o gli additivi espandenti sono agenti espandenti chimici ("chemical blowing agents") che liberano gas per decomposizione termica o reazione chimica.

In alternativa, l'additivo espandente o gli additivi espandenti sono agenti chimico-fisici, quali sfere cave e particelle porose (ad esempio, gusci/sfere di vetro, gusci epossidici, gusci in PVDC, cenere volante, vermiculite, altri materiali reticolati), che sono miscelati al secondo materiale termoplastico, cosicché il componente risultante comprende una parte polimerica solida contenente una rete di cavità.

La proporzione fra il secondo materiale termoplastico e le cariche di additivo/i espandente/i può essere compresa fra 2% e 12%.

In un esempio preferito di realizzazione del metodo secondo l'invenzione, il primo materiale termoplastico è un poliuretano con una densità di 100 – 120 kg/m³. Anche il secondo materiale termoplastico è un poliuretano con una densità di 100 – 120 kg/m³.

Grazie all'aggiunta di detto additivo espandente, la densità finale del componente morbido S può essere ridotta fono a 40 – 80 kg/m³.

Nelle Figure 4a e 4b è illustrata una sella per biciclette ottenuta secondo il metodo dell'invenzione.

Evidentemente, il componente morbido S è disposto sul lato superiore della sella per

P4851IT00

biciclette, che in uso è a contatto con il corpo dell'utilizzatore. In questo modo, è garantito un comfort adeguato all'utilizzatore stesso. Per contro, il componente rigido R è disposto sul lato inferiore della sella per biciclette, lontano dal corpo dell'utilizzatore durante l'uso.

Tuttavia, come visibile anche in Figura 4b, grazie alla conformazione del primo stampo 7,

il componente morbido S penetra attraverso i fori passanti del componente rigido R, fino alla faccia inferiore della sella per biciclette.

In questo modo, il volume del componente morbido S (e il comfort che ne deriva) è massimizzato.

Inoltre, la penetrazione del componente morbido S all'interno del componente rigido R incrementa l'adesione e la stabilità dell'accoppiamento fra detti componenti.

Sarà evidente alla persona esperta del ramo che la forma di realizzazione sopra descritta in dettaglio non deve essere in alcun modo intesa in senso limitativo e che numerose varianti e modifiche sono possibili senza per questo uscire dall'ambito dell'invenzione, come definito dalle unite rivendicazioni.

15

10

5

25

30

RIVENDICAZIONI

- 1. Metodo per la realizzazione di una sella per bicilette, del tipo comprendente un componente rigido (R) ed un componente morbido (S) accoppiati tra loro, detto metodo comprendendo le fasi di:
- 5 realizzare detto componente rigido (R) in una prima fase di stampaggio in un primo stampo (7) di un primo materiale termoplastico;
 - disporre detto componente rigido (R) così ottenuto in un secondo stampo (7'); caratterizzato dal fatto che metodo comprende inoltre la fase di
 - realizzare detto componente morbido (S) in una seconda fase di sovrastampaggio in detto secondo stampo (7') su detto componente rigido (R) di un secondo materiale termoplastico, detto secondo materiale termoplastico essendo caricato con uno o più additivi espandenti.
 - 2. Metodo secondo la rivendicazione 1, in cui detta prima fase di stampaggio è una fase di stampaggio a iniezione.
- 15 3. Metodo secondo la rivendicazione 1 o 2, in cui detta seconda fase di sovra stampaggio è una fase sovrainiezione.
 - 4. Metodo secondo una qualsiasi delle rivendicazioni 1-3, in cui detto primo materiale termoplastico e detto secondo materiale termoplastico hanno la medesima natura molecolare.
- 5. Metodo secondo una qualsiasi delle rivendicazioni 1 − 3, in cui detto primo materiale termoplastico e detto secondo materiale termoplastico hanno natura molecolare diversa.
 - 6. Metodo secondo la rivendicazione 4 o 5, in cui in cui detto primo materiale termoplastico e detto secondo materiale termoplastico sono selezionati ciascuno nel gruppo comprendente poliuretano, polipropilene e poliammide.
 - 7. Metodo secondo una qualsiasi delle rivendicazioni 1-6, in cui la densità di detto secondo materiale termoplastico caricato con detti uno o più additivi espandenti è pari al 35% 70% della densità di detto secondo materiale termoplastico da solo.
 - 8. Metodo secondo una qualsiasi delle rivendicazioni 1-7, in cui detti uno o più additivi espandenti sono agenti espandenti chimici.
 - 9. Metodo secondo una qualsiasi delle rivendicazioni 1-7, in cui detti uno o più additivi espandenti sono agenti espandenti fisico-chimici, quali sfere cave e particelle porose.
 - 10. Metodo secondo una qualsiasi delle rivendicazioni 1-9, in cui detto primo stampo

- (7) è formato da un semi-guscio superiore (11) e da un semi-guscio inferiore (13) che definiscono insieme una cavità (15) all'interno di detto primo stampo, ed in cui almeno uno (11) di detti semi-gusci presenta una o più sporgenze (17) che si estendono verso l'interno in detta cavità (15).
- 5 11. Metodo secondo la rivendicazione 10, in cui dette sporgenze (17) si estendono verso l'interno in detta cavità (15) attraversando completamente detta cavità e raggiungendo la parete interna dell'altro (13) di detti semi-gusci.
 - 12. Sella per biciclette, del tipo comprendente un componente rigido (R) ed un componente morbido (S) accoppiati tra loro, caratterizzata dal fatto di essere realizzata mediante il metodo secondo una qualsiasi delle rivendicazioni 1-11.
 - 13. Sella per biciclette secondo la rivendicazione 12, in cui detto componente rigido (R) presenta una o più porzioni a sezione ridotta, ed in cui detto componente morbido (S) penetra in dette porzioni a sezione ridotta e le riempie.
- 14. Sella per biciclette secondo la rivendicazione 12, in cui detto componente rigido
 15 (R) presenta uno o più fori passanti, ed in cui detto componente morbido (S) penetra in detti fori passanti e li riempie.

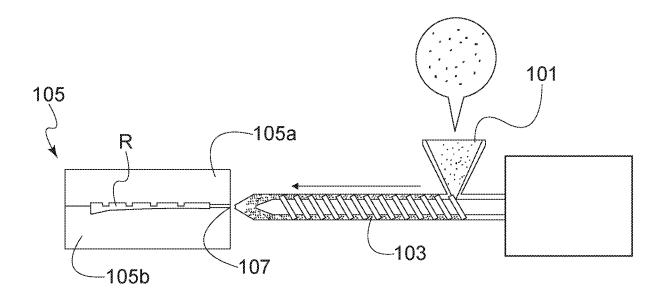


Fig. 1a (TECNICA NOTA)

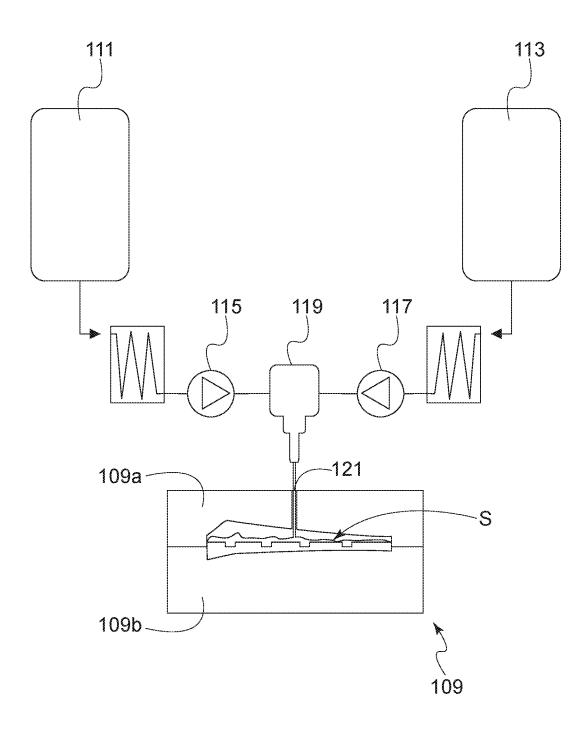


Fig. 1b (TECNICA NOTA)

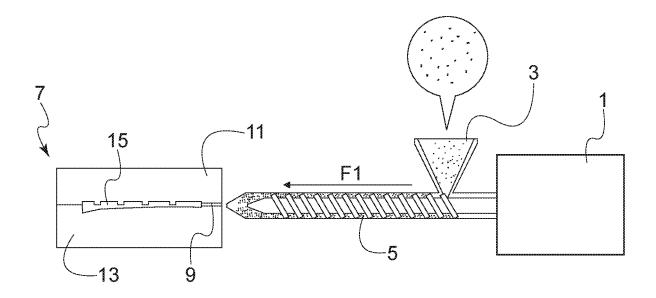


Fig. 2a

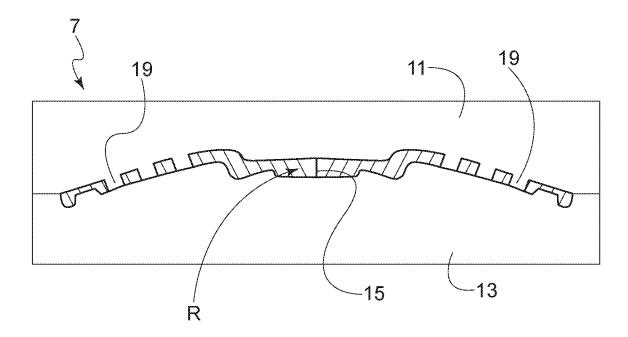


Fig. 2b

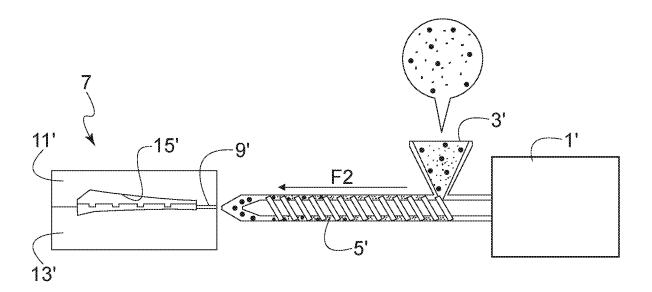


Fig. 3a



Fig. 3b

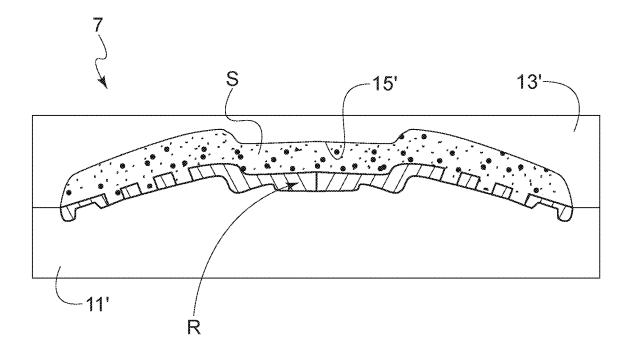


Fig. 3c

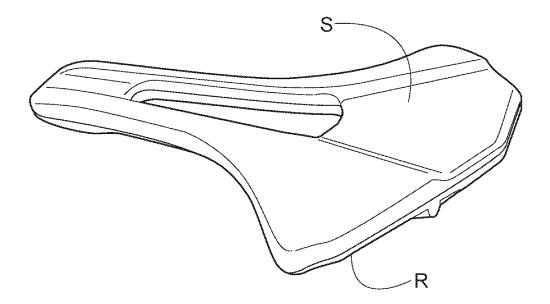


Fig. 4a

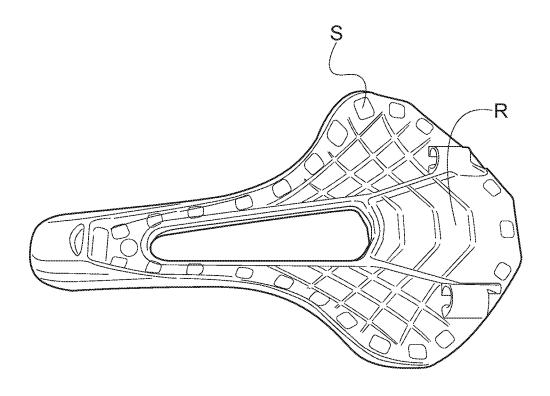


Fig. 4b