
THE TWO TONTTITULU MATUHUMIHIN
US 20170322696A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2017 / 0322696 A1

Hartman (43) Pub . Date : Nov . 9 , 2017

2) (54) SELECTING AND PERFORMING
CONTEXTUAL ACTIONS VIA USER
INTERFACE OBJECTS

U . S . CI .
CPC GO6F 3 / 0486 (2013 . 01) ; G06F 3 / 0482

(2013 . 01) ; G06F 3 / 04883 (2013 . 01)

(71) Applicant : PERINOTE LLC , Seattle , WA (US) (57) ABSTRACT
(72) Inventor : Peri Hartman , Seattle , WA (US)
(21) Appl . No . : 15 / 480 , 146
(22) Filed : Apr . 5 , 2017

Related U . S . Application Data
(60) Provisional application No . 62 / 333 , 208 , filed on May

7 , 2016 .

During a drag operation , commonly known as “ drag and
drop , ” the processor causes display a separate graphical
indicator or " drop socket " for each action available to a user
at the current moment . For example , if the user is viewing
a list of objects and selects one source object , if there is only
one action possible for the selected receiving object , one
drop socket is displayed . If there were two actions possible ,
then two drop sockets are displayed . The user completes the
drag and drop operation by moving the finger or mouse
pointer into the graphical region of the drop socket and
deselecting or letting up . The specific action performed
depends on which drop socket was selected . If the user
selects not to complete the drag and drop operation , he
simply lets up the finger outside the regions of the drop
sockets .

(51)
Publication Classification

Int . CI .
G06F 3 / 0486 (2013 . 01)
G06F 3 / 0488 (2013 . 01)
GOOF 3 / 0482 (2013 . 01)

300 310a

104
310a

306
*

* *

* * * * 4082
408b . 3022 *

* *

SIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 111 * 5 + 45

310b
9 , ' ' S ' .

YJE . ' ' 3026
.

. 316 * * * sona
YLE

312
111111111111 11111111111111111

Patent Application Publication Nov . 9 , 2017 Sheet 1 of 7 US 2017 / 0322696 A1

100 110a

wahrnuto 104
www 106 1082 * 9947414741MYVYY + mama 1022 IIIIIIIIIIIIIIIIII

1086
* + + * + + + * + + + X + 4 +

mmm . mmm 1025 mm 1020 VTV42424194041907 110b

FIG . 1

110a

m
m

104
106 106 2082 ABC
102a 2086

2 . 97XXXX 02PO2Y4197977KOK 74 %
: : :

van 102b

mamine 212
u 1106 K ivi

FIG . 2

Patent Application Publication Nov . 9 , 2017 Sheet 2 of 7 US 2017 / 0322696 A1

360 30a

V - 3100
F104

- 310a
306
302a 308ar

308b … 4 - 444444 ; + ??

A? - ??? , ?3020
34 www momo31)

"

" 316 ? 312

- Ark hartistratttttte

FIG . 3

300 3103
| 104

????? 310a
?306 HYAMAHA

4083
408b … www . mwwmwwmwww ?302a www www?? +

+

* : ~ 31b + .

:

34 3025 . . . i .

316 womentermore
332

FIG . 4

US 2017 / 0322696 A1

aren 104

- 514
5026
502C

502C
5020

www 614

502a
5026

104

502f

502e
5021

5020

5029

502e

5029

1 : 47 : 7 :

: : : : : :

: : : : : : : : :

: :

:

:

: : : : : : : : : :

: : : : : : : : : :

I

:

: : : : : : :

:

: : : : : : : : :

: : : : : : :

: : : : : : : : : : : : : : :

: : : : : : : :

: : : : : : :

Nov . 9 , 2017 Sheet 3 of 7

5022
516 502

??????????????????????

.

KKK

FIG . 5

May

502 616

FIG . 6

19 . 4144
+ X

1

14X

wo wo

o foto
77777

500

500

508am
508 mm

608a -
6086

Patent Application Publication

Patent Application Publication Nov . 9 , 2017 Sheet 4 of 7 US 2017 / 0322696 A1

500 502 502a

7089
919

7086 7 . + 41 92 * * * 1 X7 + * * * 5020
5020
614 L .

en
+ X74191 117 XT + 7 + 12 + 1

5020
502e
5027
5029 liten jo

more
G 45029

*

FIG . 7

008 802 802a
104
8142 808a Amino

8086
274 . - 814b

802b YOX XXXX

8169 * 802C
. ~ 802d
.

. 240 .

17
L

.

Latina * 802e - 802f
.

. mm 8029

. . . .

FIG . 8

Patent Application Publication Nov . 9 , 2017 Sheet 5 of 7 US 2017 / 0322696 A1

800 800 802

908amminen 814a
wwwwwwwww 8146 9086 Weite 8020
816b

816am 8020
- 802d 4743 wowo 802e

44 %

8024 4X2 8029 14142

FIG . 9

1000
1002

wwwmm
-

1006
104

* * * * * * * * * * * * * *
10082 am
10086
1010

mm 1014
111111111111 minnanma 1002a

wa 10026
1016 - 10020 tole X

* * * * * * * * * * * * * *

2 + x + + X +

+ * + + X 1002eman 10020
1002f SX4 2 + 0

*

FIG . 10

Patent Application Publication Nov . 9 , 2017 Sheet 6 of 7 US 2017 / 0322696 A1

1100 wwwww

iii * * * * * * * * * * * *

1108a 102
1108b www

1106
m . in 104

* 1114a
- 11145

mw 1102a
* * 11025

~ 11020 11162

11020 Wow * * * * * * * * 5245474X47X - 5 47554

11166
mini 1102e 1102

1110

FIG . 11

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

1206

PROCESSOR (S)

112146

1252a 1252a)

1210

Patent Application Publication

BUS

NETWORK INTERFACE

CELLULAR NETWORK

1208

25

1246

?

INTERFACE

VIDEO INTERFACE

? ?

1214a , 12142

SYSTEM MEMORY 1212

ROM

1216

BIOS

1214

RAM

12440)

1250

1256 (1256

COMMUNICATION INTERFACE

INTERNET
? ?? ???

OPERATING SYSTEM

L L

1230 1232

?

1232a

, 1248

?

TOUCH SCREEN

?

Nov . 9 , 2017 Sheet 7 of 7

?

1

1234

APPLICATION PROGRAMS
PAN / SCROLL OTHER

PROGRAMS / MODULES
DRIVERS PROGRAM DATA COMMUNICATIONS

?

< 1236 1238 1240
7 F

1244a

-

12446

PROCESSOR - BASED DEVICE

- -

1

1204

- -

- - -

- - -

- - -

-

US 2017 / 0322696 A1

Fig . 12

US 2017 / 0322696 A1 Nov . 9 , 2017

SELECTING AND PERFORMING
CONTEXTUAL ACTIONS VIA USER

INTERFACE OBJECTS

TECHNICAL FIELD
[0001] The present disclosure relates to apparatus , sys
tems , methods and techniques that employ or implement
user interfaces on touch enabled electronic devices , such as
tablets , mobile phones , or other touch enabled displays .

BRIEF SUMMARY
[0002] As used herein and in the claims , the term “ object
representation " means a graphical representation (i . e . , a
virtual object , virtual element or icon) of an object (e . g . , file ,
folder , data object , data structure or other digital or elec
tronically stored information) on a display . As used herein
and in the claims , the term “ drag operation ” , means selecting
an object representation , and dragging the object represen
tation (e . g . , icon) or an indicator (e . g . , cross hairs , ghost
icon) in a continuous move without releasing the selection ,
and ending the drag operation by releasing the selection of
the object representation . For example , when employing a
touch - screen or touch - sensitive display , a drag operation can
be implemented by touching a portion of the touch - screen or
touch - sensitive display at a location where the object rep
resentation appears with a finger or stylus , then moving the
finger or stylus to another location while maintaining contact
with the touch - screen or touch - sensitive display and , finally ,
at some later time , removing the finger or stylus from
contact with the touch - screen or touch - sensitive display to
deselect , release or drop the object representation , thereby
ending the drag operation . Also , for example , when employ
ing a mouse or trackball , a drag operation can be imple
mented by positioning a cursor at a location where the object
representation appears and activating (e . g . , pressing or hold
ing) a button or key on the mouse or trackball , then moving
the cursor to another location while continually actuating the
button or key , and finally , at some later point , deactivating
(e . g . , releasing) the button or key to deselect , release or drop
the object representation , thereby ending the drag operation .
Thus , the various approaches described herein can be used
with a finger on a touch - enabled display , but are not limited
to such , and can be used with a stylus or even other pointing
mechanisms , for instance a computer mouse or trackball to
name a few .
[0003] As used herein and in the claims , the terms “ letting
up ” and “ lets up ” mean , in the case of a touch - screen or
touch - sensitive display , removing a finger or stylus from
contact with the display . As used herein and in the claims ,
the terms “ letting up ” and “ lets up ” mean , in the case of a
computer mouse or trackball , deactivating , releasing or
otherwise disengaging a button on the computer mouse or
trackball . It is noted that the approaches described herein can
be employed with any of a wide variety of computing
devices , for example , mobile or smartphones , tablet com
puters , desktop computers , laptop computers , wearable com
puters , and embedded computers (e . g . , in cars or appli
ances) , and apply to both touch - enabled displays and non
touch - enabled displays .
[0004] As used herein and in the claims , the term " drag
operation ” means selecting some object representation
which appears at a first position on a display , and moving the
object representation to a second position on the display . The

drag operation is typically implemented by selecting the
object representation via a pointer , dragging the object
representation with the pointer along the display without
deselecting (e . g . , letting up) the object representation until
the object representation is in a desired location . As used
herein and in the claims , the term “ drag and drop operation ”
means selecting some object representation which appears at
a first position on a display , moving the object representation
to a second position on the display , and then deselecting
(e . g . , releasing , letting up , dropping) the object representa
tion to " drop " the object representation at the desired
location .
[0005] In some instances , a first or " source " object repre
sentation may be dragged to , and dropped on , a second or
“ receiving ” object representation . In response to the drop
ping of the first or source object representation on the second
or receiving object representation , an action associated with
or represented by the second or receiving object represen
tation will be performed , if possible , using information
associated with or represented by the first or source object
representation .
[0006] A significant problem occurs when multiple result
ing actions are possible in response to dragging and drop
ping a given source object representation on a given receiv
ing object representation . In such implementations , it is not
evident to the end user that there are multiple possible
actions associated with the receiving object representation ,
and it may take an extra step for the end user to choose an
action . For example , if a user drags a first icon representing
a file from one window to another window , where each
window represents a respective folder of various files , there
will be no indication to the user as to whether the file
represented by the first icon will be moved or copied to the
respective folder . For instance , only after the user finishes
the drag and drop operation will a menu appear that allows
the user to choose whether to complete the action as a
“ move ” or a " copy " of the file to the respective folder .
Alternatively , instead of presenting a menu , a default action
may be completed , without any notification of which action
was performed
[0007] Conventionally , while selecting (e . g . , clicking on)
and dragging a source object , the source object is repre
sented as a graphical element (i . e . , source object represen
tation , e . g . , icon) to the end user and moves synchronously
with the pointer (e . g . , finger of end user , stylus) while
dragging the source object representation . An appearance of
the graphical element (i . e . , source object representation)
changes depending on whether the current receiving object
can or cannot receive or act upon the particular source
object . This may be a particular problem on touch - respon
sive displays since the user ' s finger obfuscates the graphical
element (i . e . , source object representation , e . g . , icon) , and it
is difficult for the end user to see if the visual appearance of
the graphical element indicates whether the receiving object
can or cannot receive or act upon the source object at the
desired moment .
[0008] A further problem with conventional approaches is
that the finger of the end user may obfuscate the receiving
object representation . In situations where there are several
receiving object representations in close proximity , this
obfuscation makes it difficult for the end user to see whether
the desired receiving object will be selected just prior to
dropping the source object representation on the receiving
object representation .

US 2017 / 0322696 A1 Nov . 9 , 2017

[0009] The approaches described herein are generally
executable on processor - based devices , for example a
mobile or smartphone , tablet computer , or other processor
based devices including those with touch - enabled or touch -
sensitive or touch - responsive displays or screen . The
approaches may , for example , satisfy the need of an end user
to select a source object and perform a contextually appro
priate action with that source object and a selected receiving
object . The approaches described herein employ “ drop sock
ets ” to implement end actions of drag and drop operations .
The approaches use zero or more “ drop sockets ” to present
to the user a clear visual indication on the display screen of
what types of actions involving the source object are pos
sible , for example continually while dragging a source
object representation or an indicator (e . g . , cross hairs , ghost
icon) that represents a position of a pointer with which the
source object representation was selected , advantageously
allowing the end user to complete a desired action without
any additional steps . Each drop socket can , for example , take
the form of a graphical representation of a specific action
available to be selected by the end user at that instance , in
the context of the current situation (e . g . , which source
object , which receiving object , relative positions) . A plural
ity of drop sockets can be presented at any given instance .
If no actions are available involving the selected source
object at a particular instance , no drop sockets are presented
during that time .
[0010] typical drag operation begins when the user
selects the source object representation (e . g . , an icon) , for
example via a pointer (e . g . , finger , cursor , stylus) . While
maintaining selection of the source object representation
(e . g . , without releasing or letting up) , the user selects a
receiving object by moving the pointer (e . g . , dragging finger ,
moving cursor or stylus) into the vicinity of the desired
receiving object representation . The drag operation can be
visually represented by movement of an icon that represents
a source object , or by movement of an indicator (e . g . , cross
hairs , ghost icon) while the icon that represents the source
object remains stationary . When the source object represen
tation or indicator (e . g . , cross hairs , ghost icon) is in the
vicinity of the selected receiving object representation , zero ,
one , or more drop sockets appear , each graphically inter
secting with or fully encompassed within a boundary of the
selected receiving object representation . The drop sockets
preferably do not intersect or overlap each other . The total
number of drop sockets that are presented depends at least
in part on whether or how many actions are possible between
the selected source object and selected receiving object .
[0011] To select an action , an end user moves the pointer
(e . g . , drags his finger , moves a cursor , moves a stylus) into
a boundary of the desired drop socket . While the pointer is
positioned with the boundary of the drop socket , the user
deselects or drops the source object representation , for
example by releasing or letting up . In response , the selected
action is performed by the processor - based device . To not
select any action , the end user simply deselects or drops the
source object representation while the cursor is outside the
boundaries of all drop sockets .
[0012] The positions and composition of drop sockets may
change during a drag operation . The composition of drop
sockets — how many are displayed and what action each
represents — depends on the selected source object and cur
rently selected receiving object . The position of the drop
sockets depends on the currently selected receiving object ;

as stated earlier , the drop sockets graphically intersect , or are
fully encompassed within , a boundary of the receiving
object representation . Thus , as different receiving objects
become selected , drop sockets for any prior selected receiv
ing object disappear , and new drop sockets , if any , for the
currently selected receiving object appear or are presented .
[0013] For example , a computer file may be moved or
copied from one computer folder or data structure element
to another computer folder or data structure element . The
end user begins the drag operation by selecting an object
representation of a desired source file in a desired source
folder , called the selected source file and selected source
folder , respectively . As the user moves the cursor (e . g . , drags
a finger) over a destination folder representation , the corre
sponding computer folder becomes the selected receiving
folder . In response , one or two drop sockets can , for
example , appear : one for completing a “ move ” action and
one for completing a " copy " action . If the end user chooses
the “ move ” drop socket and deselects , releases or drops the
selected source file representation while positioned within a
boundary of the “ move ” drop socket , the processor - based
device moves the selected source file from the selected
source folder to the selected receiving folder . That is , the
processor - based device logically associates the selected
source file with the selected receiving folder in a data
structure stored in a nontransitory processor - readable
medium or memory , and the processor - based device logi
cally disassociates the selected source file with the source
folder in the data structure stored in the nontransitory
processor - readable medium or memory . If the end user
chooses the " copy ” drop socket and deselects , releases or
drops the selected source file representation while positioned
within a boundary of the “ copy ” drop socket , the processor
based device copies the selected source file (i . e . , creates a
new instance of the selected source file) to the selected
receiving folder . That is , the processor - based device logi
cally associates a second instance of the selected source file
with the selected receiving folder in a data structure stored
in a nontransitory processor - readable medium or memory ,
and the processor - based device maintains a logical associa
tion of the initial instance of the selected source file with the
source folder in the data structure stored in the nontransitory
processor - readable medium or memory . If the end user
deselects , releases or drops the selected source file while
outside the respective boundaries of all of the drop sockets ,
no action will be performed . If the source file cannot be
moved or copied to the selected receiving folder , no corre
sponding drop sockets will appear , although other types of
drop sockets may be presented if other suitable actions can
be performed .
[0014] In the above example each drop socket represents
a specific action between a selected source file and selected
receiving folder . At every instance it is clear to the end user
which action will be performed and it is also clear to the end
user if no action will be performed . In a system without drop
sockets , when deselecting , releasing or dropping (e . g . , let
ting up) a source object representation , the end user could
become confused as to whether the source object (e . g . , file)
was copied , moved , or neither . In effect , without drop
sockets , the end user must know in advance which action , if
any , will be performed when the source object representation
is deselected , released , or dropped .
[0015] drop socket can also be location sensitive or
responsive . For example , a position of a drop socket relative

US 2017 / 0322696 A1 Nov . 9 , 2017

to the receiving object representation can be a factor in what
action the drop socket represents . Note that the drop sockets
are presented to intersect , or be fully within , a boundary of
the selected receiving object representation . A position of a
drop socket within or partially within the boundary of the
selected receiving object representation can refine the action
the corresponding drop socket represents or performs .
10016] For example , consider a list of items . The display
screen may present a graphical representation of a list
containing several graphical representations of list items . An
end user may wish to organize the list items into a desired
order . One by one , the end user can select a source list item
and move the selected source list item to another location
within the list . Using a drag operation , the end user can
select a source list item and drag a representation of the
selected source list item to the desired location within the
list . While dragging , a drop socket is presented , the drop
socket showing where the selected source list item will be
inserted if the end user selects that corresponding drop
socket . As the end user continues to drag , the drop socket
will disappear from one location and a new drop socket is
presented in another location . In other words , the action
associated with the drop socket is not only to move the
selected source list item in the list , but to move the selected
source list item to a specific location within the list . That
specific location is indicated by the location of the drop
socket . This is in contrast to the earlier example of moving
or copying a file from one folder to another folder . In that
example , the positions of the drop socket (s) were not rel
evant except to the extent of showing with which receiving
object the drop sockets were associated .
[0017] A combination of these two approaches may be
implemented , where there are multiple actions possible for
a selected source object and selected receiving object and
the actions are position dependent . Expanding on the list
of - items example , consider that the selected source item may
be a list item in another list object , or can be some other kind
of object all together . As the end user drags the selected
source item , two drop sockets may appear in the selected
receiving list . One drop socket is operable to move the
source item when selected , and one drop socket is operable
to copy the source item when selected . As well , the location
of the drop sockets within the selected receiving list repre
sentation indicates where (i . e . , the position) in the receiving
list the source item will be copied or moved .
[0018] Visual or other feedback may help the end user to
know when the cursor (e . g . , finger , stylus) is over a drop
socket . For example , when the user ' s finger is over a drop
socket , the corresponding drop socket may change color ,
may change shape , may flash , may be shown with or without
some perimeter graphics , or the processor - based device may
produce a sound and / or provide tactile (e . g . , vibration) or
haptic (e . g . , sensation of engaging a bump or a recess)
feedback .

the elements as drawn , are not necessarily intended to
convey any information regarding the actual shape of the
particular elements , and may have been solely selected for
ease of recognition in the drawings .
[0020] FIG . 1 is a plan view of a touch - responsive display
of a processor - based device showing a user interface that
includes two container object representations , where each
object representation is also a respective drop socket , illus
trating an end user performing a drag operation with a
pointer (e . g . , finger) positioned outside of respective bound
aries of the drop sockets .
[0021] FIG . 2 is a plan view of a touch - responsive display
of FIG . 1 , illustrating the end user performing the drag
operation with the pointer (e . g . , finger) positioned inside of
the respective boundary of one of the drop sockets .
[0022] FIG . 3 is a plan view of a touch - responsive display
of a processor - based device showing a user interface that
includes two container object representations , where one of
the object representations is selected and a drop socket
appears within a boundary of the selected object represen
tation , illustrating an end user performing a drag operation
and a pointer (e . g . , finger) positioned outside of a respective
boundary of the drop socket .
10023] FIG . 4 is a plan view of the touch - responsive
display of FIG . 3 , illustrating the end user performing the
drag operation with the pointer (e . g . , finger) positioned
inside the respective boundary of the drop socket .
[0024] FIG . 5 is a plan view of a touch - responsive display
of a processor - based device showing a user interface that
includes a list representation containing item representations
numbered A through G , illustrating an end user performing
a drag operation relative to a location sensitive drop socket
positioned between items B and C in the list representation ,
with a pointer (e . g . , finger) positioned outside of a respective
boundary of the location sensitive drop socket .
[0025] FIG . 6 is a plan view of the touch - responsive
display of FIG . 5 , illustrating an end user performing a drag
operation relative to a location sensitive drop socket posi
tioned between items C and D in the list representation , with
the pointer (e . g . , finger) positioned outside of the respective
boundary of the location sensitive drop socket .
[0026] FIG . 7 is a plan view of the touch - responsive
display of FIG . 6 , illustrating the end user is performing the
drag operation , with the pointer (e . g . , finger) positioned
inside a boundary of the location sensitive drop socket .
[0027] FIG . 8 is a plan view of a touch - responsive display
of a processor - based device showing a user interface that
includes a list representation containing item representations
numbered A through G , illustrating an end user performing
a drag operation relative to two location sensitive drop
sockets positioned between items B and C of the list
representation , with a pointer (e . g . , finger) positioned out
side of the respective boundaries of the location sensitive
drop sockets .
10028] FIG . 9 is a plan view of the touch - responsive
display of FIG . 8 , illustrating the end user performing the
drag operation , with the pointer (e . g . , finger) positioned
inside a boundary of one of the drop sockets .
[0029] FIG . 10 is a plan view of a touch - responsive
display of a processor - based device showing a user interface
that includes a list representation containing item represen
tations numbered A through G and a “ new ” button repre
sentation , illustrating an end user performing a drag opera
tion where a source object is the “ new ” button representation

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0019] In the drawings , identical reference numbers iden
tify similar elements or acts . The sizes and relative positions
of elements in the drawings are not necessarily drawn to
scale . For example , the shapes of various elements and
angles are not necessarily drawn to scale , and some of these
elements may be arbitrarily enlarged and positioned to
improve drawing legibility . Further , the particular shapes of

US 2017 / 0322696 A1 Nov . 9 , 2017

end user has begun the operation but before the end user has
deselected , released (e . g . , let up) or dropped the source
object representation . The source object can be any virtual
object that is accessible via one or more drag or drag and
drop operations .

and a location sensitive drop socket is positioned between
items A and B , with the pointer (e . g . , finger) positioned
outside of a boundary of the location sensitive drop socket .
(0030) FIG . 11 is a plan view of a touch - responsive
display of a processor - based device showing a user interface
that includes a list representation containing item represen
tations numbered A through G and a “ new ” button repre
sentation , illustrating an end user performing a drag opera
tion where the source object is the “ new ” button and two
location sensitive drop socket are positioned between items
A and G , with a pointer (e . g . , finger) positioned outside of
the respective boundaries of the drop sockets .
[0031] FIG . 12 is a block diagram of an example proces
sor - based device used to implement one or more of the user
interface approaches described herein , according to one
non - limiting illustrated embodiment .

DETAILED DESCRIPTION
10032] In the following description , certain specific details
are set forth in order to provide a thorough understanding of
various disclosed embodiments . However , one skilled in the
relevant art will recognize that embodiments may be prac
ticed without one or more of these specific details , or with
other methods , components , materials , etc . In other
instances , well - known structures associated with processor
based devices and displays for processor - based devices ,
have not been shown or described in detail to avoid unnec
essarily obscuring descriptions of the embodiments .
[0033] Unless the context requires otherwise , throughout
the specification and claims which follow , the word " com
prise ” and variations thereof , such as , “ comprises ” and
" comprising " are to be construed in an open , inclusive sense ,
that is , as “ including , but not limited to . "
[0034] Reference throughout this specification to " one
embodiment ” or “ an embodiment ” means that a particular
feature , structures , or characteristics may be combined in
any suitable manner in one or more embodiments .
[0035] As used in this specification and the appended
claims , the singular forms “ a , ” “ an , ” and “ the ” include plural
referents unless the content clearly dictates otherwise . It
should also be noted that the term " or " is generally
employed in its broadest sense , that is , as meaning " and / or ”
unless the content clearly dictates otherwise .
[0036] The headings and Abstract of the Disclosure pro
vided herein are for convenience only and do not interpret
the scope or meaning of the embodiments .
10037] Those of skill in the art will appreciate that in
various implementations certain acts may be omitted and / or
additional acts may be added . Those of skill in the art will
also appreciate that the illustrated order of acts of a method ,
processor or algorithm are shown for exemplary purposes
only , and may change in various implementations .
[0038] Where reference is made herein to a method com -
prising two or more defined acts , the defined acts can be
carried out in any order or simultaneously (except where the
context excludes that possibility) , and the operation can
include one or more other additional acts which are carried
out before any of the defined acts , between two of the
defined acts , and / or after all the defined acts (except where
the context clearly excludes that possibility) .
[0039] In all the Figures , the end user has already begun
a drag operation by selecting a source object representation ,
for instance via a finger , a stylus , a cursor or other pointer .
The Figure shows the drag operation in progress , after the

Receiving Object is the Drop Socket
[0040] FIG . 1 shows a user interface 100 that includes two
container object representations or virtual elements 102a ,
102b which may be displayed , for example , on a touch
enabled , touch - sensitive , or touch - responsive display 104 of
a processor - based device , according to at least one illus
trated implementation .
[0041] Each container object representation 102a , 102b
may graphically represent a digital , electronic or virtual
element , for example a data element or construction , for
instance a folder , a file , etc . , which is stored or implemented
in nontransitory processor - readable media , for instance one
or more digital memories or storage . Each container object
representation 102a , 102b is a potential receiving object
representation . In this implementation , each container object
representation 102a , 102b also constitutes a respective drop
socket , which is operable to cause a corresponding action
when selected .
[0042] In particular , FIG . 1 illustrates an end user per
forming a drag operation with a source object 106 , via
selection and movement of a pointer (e . g . , finger , stylus ,
cursor) , the position of which is indicated by an indicator ,
for instance crosshairs 108a , 108b (collectively 108) . Nota
bly , in FIG . 1 the pointer is positioned outside of respective
boundaries 110a , 110b of both container object representa
tions 102a , 102b and , hence , the drop sockets . Thus , neither
container object is selected as a receiving object . Since no
object is selected as a receiving object , no action will occur
if the user deselects , releases (e . g . , lets up) or drops source
object 106 at this moment or instance .
[0043] The drag operation can be represented as move
ment of a primary icon or the source object representation ,
or by movement of the indicator while the primary icon
remains stationary . The indicator can , for instance , take the
form of cross hairs or a ghost icon that generally resembles
the primary icon but has a visual distinction (e . g . , transpar
ency) from the primary icon .
10044) FIG . 2 shows the user interface 100 of FIG . 1 at a
later time . In FIG . 2 , the end user has moved the pointer
(e . g . , finger , stylus , cursor) to a new position within a
respective boundary of one of the receiving object repre
sentations 102b , the position indicated by crosshairs 208a ,
208b (collectively 208) . The processor - based device causes
a visual notification , for example , via a different background
coloring , represented by stippled area 212 , that indicates the
corresponding action will be performed if the end user
deselects , releases (e . g . , lets up) or drops the source object
106 at this moment or instance . If the end user moves the
pointer (e . g . , finger , stylus , cursor) outside the boundary
110b of the receiving object representation 102b without
deselecting , releasing or dropping , the processor - based
device will revert the receiving object representation to its
previous visual appearance , for example unstippled as
shown in FIG . 1 . The processor - based device can addition
ally or alternatively produce an aural alert and / or tactile alert
in response to the pointer being positioned within a bound
ary 110a , 110b of the receiving object representation 102a ,
102b .

US 2017 / 0322696 A1 Nov . 9 , 2017

[0045] As illustrated , a visual appearance of the receiving
object representation 102a , 102b may change , rather than
changing the appearance of some indicator under the finger
of the user or under a stylus . Many variations are possible ,
besides visual appearance , to represent the receiving
object ' s state (i . e . , selected , not selected) , such as showing
a border graphic , producing sound , and / or producing haptic
feedback . While the Figures employ crosshairs 108 , 208 to
indicate the position of the pointer , in general any other
graphical element (e . g . , ring or annulus , ghost icons) may be
employed to indicate position . In some implementations , the
position of the pointer may not even be visually indicated on
the display screen .
Receiving Object has a Distinct Drop Socket
0046] FIG . 3 shows a user interface 300 that includes two
container object representations 302a , 302b which may be
displayed , for example , on a touch - enabled , touch - sensitive ,
or touch - responsive display 104 of a processor - based
device , according to at least one illustrated implementation .
10047] Each container object representation 302a , 302b
may graphically represent a digital , electronic or virtual
element , for example a data element or data construct , for
instance a folder , a file , etc . , which is stored or implemented
in nontransitory processor - readable media , for instance one
or more digital memories or storage . Each container object
representation 302a , 302b is a potential receiving object
representation . In contrast to the implementation of FIGS . 1
and 2 , in this implementation neither of the two container
object representations 302a , 302b constitute drop sockets ,
rather the user interface 300 selectively displays one or more
distinct drop sockets 314 (only one shown in FIGS . 3 and 4)
for the respective receiving object representations 302a ,
302b , which are operable to cause corresponding actions
when selected .
[0048] In particular , FIG . 3 illustrates an end user per
forming a drag operation with a source object 306 , via
selection and movement of a pointer (e . g . , finger , stylus ,
cursor) , the position of which is indicated by crosshairs
308a , 308b (collectively 308) . Notably , in FIG . 3 the pointer
is positioned outside of respective boundaries 310a , 310b
both container object representations 302a , 302b . Neither
container object is selected as a receiving object and , thus ,
no action will occur if the user deselects , releases (e . g . , lets
up) , or drops source object 306 at this moment or instance .
[0049] Notably , in FIG . 3 the end user has moved the
pointer , shown by crosshairs 308a , 308b , into the boundary
310a , 310b of one of the receiving object representations
302a , 302b , respectively . The processor - based device has
updated a presentation to visually indicate such , for example
display the selected receiving object representation with a
different background coloring indicated by stippling 312 .
The processor - based device also updates the presentation to
present a drop socket 314 spatially associated (i . e . , overlap
ping , encompassed by) with the selected receiving object
representation 302b , indicating that an action involving the
object which is represented by the selected receiving object
representation 302b can be selected by the end user . Since
the pointer is not within a boundary 316 of the drop socket
314 , the drop socket 314 is not selected . If the end user were
to deselect , release (e . g . , let up) , or drop the source object
representation 306 at this moment or instance , the processor
based device would not perform the action associated with
the drop socket 314 . If the end user moves the pointer

outside the respective boundary 310b of the receiving object
representation 302b , without deselecting , releasing (e . g . ,
letting up) , or dropping , the processor - based device will
cause the drop socket 314 to disappear from the receiving
object representation 302b .
[0050] FIG . 4 shows the user interface 300 of FIG . 3 at a
later time . In FIG . 4 , the end user has moved the pointer
(e . g . , finger , stylus , cursor) to a new position within a
respective boundary 316 of the drop socket 314 , the position
indicated by crosshairs 408a , 408b . The processor - based
device causes a visual notification , for example , via a
different visual appearance than in FIG . 3 , indicated by solid
black within the boundary 316 of the drop socket 314 as
illustrated in FIG . 4 , to provide feedback to the end user that
the pointer is on the drop socket 314 . If the end user were
to deselect , release or drop at this moment or instance , the
processor - based device would perform the action associated
with the drop socket 314 . If the end user moves the pointer
outside the boundary 316 of the drop socket 314 but still
within the boundary 310b of the receiving object represen
tation 302b , without deselecting , the processor - based device
will revert the drop socket 314 back to its earlier visual
appearance , for example as indicated by lack of shading as
shown in FIG . 3 . The processor - based device would not
perform the action associated with the drop socket action
314 if the user deselects , releases or drops at this moment or
instance .
10051) Because this embodiment has a drop socket 314
which is distinct from the receiving object representation
302a , 302b , it is possible for the end user to have his finger
or stylus overlying the receiving object representation 302a ,
302b without the danger of accidentally deselecting , releas
ing or dropping and invoking the action of the drop socket
314 . The end user must actually move the pointer into the
boundary 316 of the drop socket 314 and deselect , release
(e . g . , let up) , or drop while the pointer is within the boundary
316 of the drop socket 314 to invoke the action of the drop
socket 314 . In general , besides changing a visual appearance
of the drop socket 314 , other notifications are possible to
indicate a state of the drop socket 314 (e . g . , selected , not
selected) , such as visually presenting a border graphic ,
producing sound , or producing haptic feedback .

Location - Sensitive Drop Socket
[0052] FIG . 5 shows a user interface 500 that includes a
representation of a list of items 502a - 502g (seven items
shown , list collectively referenced as 502) which may be
displayed , for example , on a touch - enabled , touch - sensitive ,
or touch - responsive display screen 104 of a processor - based
device , according to at least one illustrated implementation .
FIGS . 5 and 6 depict different drop socket positions , each
with a unique action , within the selected receiving object
representation (e . g . , list of items 502) depending on where
a pointer is positioned in a receiving object representation
502 .
[0053] In particular , FIG . 5 illustrates an end user per
forming a drag operation with a source object (not illustrated
in FIG . 5) via selection and movement of a pointer (e . g . ,
finger , stylus , cursor) in the selected receiving object rep
resentation (item 502) , that is , within a boundary of the list
object representation . The position of the pointer is indicated
by crosshairs 508a , 508b . (Unlike the previous illustrations ,
shading for the selected receiving object is omitted from
FIG . 5 .) Because the pointer (e . g . , finger , stylus , cursor) is

US 2017 / 0322696 A1 Nov . 9 , 2017

dependent on a particular location within the selected receiv
ing object . Also , the various approaches can employ source
objects that originate from within or outside the selected
receiving object . Different algorithms , besides the one
described herein , could be used to determine where to
position the drop socket or whether to show or not show a
drop socket . In general , any of a variety of techniques can be
employed to indicate a drop socket ' s state (e . g . , selected , not
selected) , such as showing a border graphic , producing
sound , and / or producing haptic feedback .

nearest to the dividing line between representations of list
items B and C 502b , 502c as opposed to any other dividing
line or a top or a bottom of the list representation 502 , the
processor - based device presents a drop socket 514 centered
between representations of list items B and C 502b , 502c .
Since the pointer is not within a boundary 516 of the drop
socket 514 , the drop socket 514 is not selected . If the end
user were to deselect , release (e . g . , let up) , or drop at this
moment or instance , the processor - based device would not
perform the action associated with the drop socket 514 .
10054] FIG . 6 shows the user interface 500 of FIG . 5 at a
later time . In FIG . 6 , the end user has moved the pointer (e . g .
finger , stylus , cursor) downward , until the pointer is nearest
to the dividing line between representations of list items C
and D 502c , 502d as opposed to any other dividing line or
the top or bottom of the list representation 502 . The new
position is shown by crosshairs 608a , 608b . In response , the
processor - based device presents a drop socket 614 centered
between the representations of list items C and D 502c ,
502d , and no longer between the representations of list items
B and C 502b , 502c (FIG . 5) . Since the pointer is not within
a respective boundary 616 of the drop socket 614 , the drop
socket 614 is not selected . If the end user were to deselect ,
release (e . g . , let up) , or drop at this moment or instance , the
processor - based device would not perform the action asso
ciated with the drop socket 614 . In general , a drop socket
could be presented to appear centered on the dividing line
closest to the pointer or centered on a top or a bottom border
of the list representation if the pointer is closer to the top or
bottom border , respectively , than any dividing line .
[0055] FIG . 7 shows the user interface 500 of FIG . 5 at an
even later time . In FIG . 7 , the end user has moved the pointer
(e . g . , finger , stylus , cursor) to be positioned within a bound
ary 616 of the drop socket 614 . The new position is indicated
by crosshairs 708a , 708b . In response , the processor - based
device updates a visual appearance of the drop socket 614 as
compared to that illustrated in FIG . 6 , e . g . , illustrated in
solid black , to provide feedback to the end user that the
pointer is over the drop socket 614 . If the end user were to
deselect , release (e . g . , let up) , or drop at this moment or
instance , the processor - based device would perform the
action represented by the drop socket 614 : for example
inserting the source object (not illustrated in FIG . 7) between
list items C and D 502C , 502d in the list representation 502 .
If the end user moves the pointer outside the boundary 616
of the drop socket 614 but still remains closest to the
dividing line between the representations of list items Cand
D 502c , 502d without deselecting , releasing or dropping , the
processor - based device will revert the appearance of the
drop socket 614 to a previous appearance , e . g . , an unshaded
visual appearance as shown in FIG . 6 . Additionally , the
processor - based device would not perform the action indi
cated or represented by the drop socket action 614 if the end
user deselects , releases or drops at this moment or instance .
[0056] In general , a drop socket action can be to insert an
item into a list between other items indicated by the position
of the drop socket , or at a top or a bottom of the list if the
drop socket is so positioned . The drop socket action is
different for each position because it implies inserting a
selected source object into a different location in the list
depending on each drop socket position .
[0057] The approaches described herein are not restricted
to inserting an object into a particular location in a list , but
can apply to any situation where the resulting action is

Multiple Drop Sockets
[0058] FIG . 8 shows a user interface 800 that includes a
representation of a list of items 802a - 802g (seven shown , list
collectively referenced as 802) which may be displayed , for
example , on a touch - enabled , touch - sensitive , or touch
responsive display screen 104 of a processor - based device ,
according to at least one illustrated implementation . FIG . 8
depicts two or more drop sockets 814a , 814b in a selected
receiving object , i . e . , list representation 802 , from which an
end user may choose .
10059] In particular , FIG . 8 illustrates an end user per
forming a drag operation with a source object (not illustrated
in FIG . 8) via selection and movement of a pointer (e . g . ,
finger , stylus , cursor) positioned in the selected receiving
object representation , e . g . , list representation 802 . The posi
tion of the pointer is indicated by crosshairs 808a , 808b .
Because the pointer (e . g . , finger , stylus , cursor) is nearest to
the dividing line between representations of list items B and
C 802b , 802c , as opposed to any other dividing line or a top
or a bottom of the list representation 802 , the processor
based device presents two drop sockets , namely a MOVE
drop socket 814a and a COPY drop socket 814b , respec
tively , centered between those two list item representations
B and C 802b , 802c . The action associated with these drop
sockets 814a , 814b is dependent at least in part on the
respective positions of the drop sockets 814a , 814b relative
to or within the list representation 802 . In this case , selection
of the actions will cause the processor - based device to move
or copy , respectively , the source object (not illustrated in
FIG . 8) into the list representation 802 between the list items
indicated by the position of the drop sockets 814a , 814b .
Since the pointer is not positioned within the respective
boundaries 816a , 816b of either drop socket 814a , 814b ,
neither drop socket 814a , 814b is selected . If the end user
were to deselect , release (e . g . , let up) , or drop at this moment
or instance , the processor - based device would not perform
the action associated with the drop sockets 814a , 814b .
Moving a source object representation or indicator to at least
partially overlap a link drop socket may cause a processor to
add a link or association (e . g . , logical association) between
the source object represented by the source object represen
tation and another object , for example increasing a number
of parents to which the source object is logically linked .
[0060] FIG . 9 shows the user interface 800 at a later time .
In FIG . 9 , the end user has moved the pointer (e . g . , finger ,
stylus , cursor) within a boundary 816a of the MOVE drop
socket 814a . The new position is indicated by crosshairs
908a , 908b . In response , the processor - based device updates
a visual appearance of the selected drop socket 814a to be
a different visual appearance than that of FIG . 8 , e . g . ,
illustrated in solid black in FIG . 9 , to provide feedback to the
end user indicating that the pointer is overlying the selected
drop socket 814a . If the end user were to deselect , release

US 2017 / 0322696 A1 Nov . 9 , 2017

(e . g . , let up) , or drop at this moment or instance , the
processor - based device would perform the action identified
or represented by the selected drop socket 814a (e . g . ,
moving the source object) , for instance inserting the source
object between list items B and C 802b , 802c , and removing
the source object from its current container (not shown in
FIG . 9) . If the end user moves the pointer (e . g . , finger , stylus ,
cursor) outside the respective boundary 816a of the drop
socket 814a but still remains closest to the dividing line
between the representations of list items B and C 802b , 802C
without deselecting , releasing or dropping the source object ,
the processor - based device will revert the appearance of the
drop socket 814a to its previous unemphasized (e . g . ,
unshaded) visual appearance , for instance as shown in FIG .
8 . Additionally , the processor - based device would not per
form the action identified by the drop socket 814a if the end
user deselected , released (e . g . , let up) , or dropped at that
moment or instance .
[0061] If the end user were to deselect , release or drop the
source object (not illustrated in FIG . 9) while the pointer is
within the boundary 816b of the COPY drop socket 814b ,
the processor - based device would perform a corresponding
copy action , different from the move action . The processor
based device would copy the source object , for instance ,
inserting a copy or a second instance of the source object
between list items B and C 802b , 802c , and leaving the
original or first instance of the source object in its current
container (not shown in FIG . 9) .
[0062] The described approaches do not impose any limits
on how many drop sockets can be available at any moment
and the number of drop sockets appearing or being presented
might vary depending on circumstances . For example , if a
specific implementation permits a source object to be moved
only to certain locations in a list , the processor - based device
would present a drop socket only for those locations in the
list representation , and no drop socket would be presented
for other locations . If a specific implementation permits any
source object to be copied into a list , but only permits certain
types of source objects to be moved into a list , the processor
based device would present both a MOVE drop socket and
a COPY drop socket for source objects where the imple
mentation permits a move action , but would present only a
COPY drop socket for source objects where a move action
is not permitted . Another implementation could present a
graphical representation of a jigsaw puzzle , where each
selected receiving object would be represented as a respec
tive a puzzle piece , and drop sockets presented for the places
the source object (e . g . , a new puzzle piece) could be
inserted . In general , a wide variety of different types of
actions can be logically associated with any of a variety of
drop sockets .

pointer (e . g . , finger , stylus , cursor) , where the source object
is the “ new ” button 1006 and the pointer position is within
a boundary 1010 of a selected receiving object representa
tion 1002 . The position is indicated by crosshairs 1008a ,
1008b . Since the pointer is nearest to the dividing line
between representations of list items A and B 1002a , 1002b ,
as opposed to any other dividing line or a top or a bottom of
the list representation 1002 , the processor - based device
causes presentation of a drop socket 1014 centered between
representations of list items A and B 1002a , 10026 . Since the
pointer is not within the boundary 1016 of the drop socket
1014 , the drop socket 1014 is not selected . Thus , if the end
user were to deselect , release (e . g . , let up) , or drop the source
object 1006 at this moment or instance , the processor - based
device would not perform the action indicated by or asso
ciated with the drop socket 1014 .
[0065] If the end user moves the pointer within the bound
ary 1016 of the drop socket 1014 , the processor - based
device will update a visual appearance of the drop socket
1014 , indicating that an action identified by or associated
with the respective drop socket 1014 would be performed if
the user deselects , releases or drops the source object 1006
at that moment or instance . The action indicated by or
associated with the drop socket 1014 may , for example , be
to insert a new item into the list representation 1002 at the
current position of the drop socket 1014 , for instance
between list items A and B 1002a , 1002b .
[0066] In general in this implementation , the position of
the drop socket 1014 will depend on the position or location
of the pointer (e . g . , finger , stylus , cursor) with respect to or
within the list item representation 1002 as described in
reference to other implementations . The action associated
with or identified by the drop socket 1014 may change
depending on the position of the drop socket 1014 . In
particular , the action will change to insert a new item at a top
or a bottom of the list representation 1002 or between any
two of list items 1002a - 1002f as indicated by the position of
the drop socket 1014 .
Source Object as Action with Multiple Drop Sockets
[0067] FIG . 11 shows a user interface 1100 including a
representation of a list of items 1102a - 1102f (six shown , list
collectively referenced as 1102) and a “ new ” button repre
sentation 1106 , which may be displayed , for example , on a
touch - enabled , touch - sensitive , or touch - responsive display
screen 104 of a processor - based device , according to at least
one illustrated implementation . FIG . 11 shows a source
object 1106 that represents an action , and the end user may
select from two or more drop sockets 1114a , 1114b in the
selected receiving object representation 1102 .
[0068] In particular , FIG . 11 illustrates an end user per
forming a drag operation via selection and movement of a
pointer (e . g . , finger , stylus , cursor) where the source object
is the “ new ” button 1106 and a pointer position is within a
boundary 1110 of a selected receiving object representation
1102 . The position of the pointer is indicated by crosshairs
1108a , 1108b . Since the pointer is nearest to the dividing line
between representations of list items A and B 1102a , 1102b ,
as opposed to any other dividing line or a top or a bottom of
the list representation 1102 , the processor - based device
causes a presentation of two drop sockets 1114a , 1114b
centered between the representations of list items A and B
1102a , 1102b . Since the pointer is not within a respective
boundary 1116a , 1116b of either drop socket 1114a , 1114b ,
neither drop socket 1114a , 1114b is selected . Thus , if the end

Source Object is an Action
[0063] FIG . 10 shows a user interface 1000 which
includes a representation of a list of items 1002a - 1002f (six
items shown , list collectively referenced as 1002) and a
“ new ” button representation 1006 which may be displayed ,
for example , on a touch - enabled , touch - sensitive , or touch
responsive display screen 104 of a processor - based device ,
according to at least one illustrated implementation . FIG . 10
depicts source object representation 1006 as an action rather
than an object to be manipulated .
[0064] In particular , FIG . 10 illustrates an end user per
forming a drag operation via selection and movement of a

US 2017 / 0322696 A1 Nov . 9 , 2017

user were to deselect , release (e . g . , let up) or drop the source
object 1106 at this moment or instance , the processor - based
device would not perform the action indicated by or asso
ciated with the drop sockets 1114a , 1114b .
100691 As illustrated , action identified or represented by
the left drop socket 1114a is to insert a new folder into the
list representation 1102 at the indicated position , that is ,
insert a new folder at a position between list items A and B
1102a , 1102b . The action identified or represented by the
right drop socket 1114b is to insert a new note into the list
representation 1102 at the indicated position , that is , insert a
new note at a position between list items A and B 1102a ,
1102b . If the user selects a drop socket 1114a , 1114b by
moving the pointer within a respective boundary 1116a ,
1116b of the drop socket 1114a , 1114b , the processor - based
device will update a visual appearance of the selected drop
socket 1114a , 1114b , for instance changing the visual
appearance , indicating that the action indicated by the
selected drop socket 1114a , 1114b would be performed if the
end user deselects , releases or drops the source object 1106
at that moment or instance .
[0070] In general in this implementation , the drop socket
positions depend on the position or location of the pointer
with respect to the list item representations as described
previously . The drop socket actions may change depending
on the drop socket position . In particular , the actions will
change to insert a new folder or a new note , respectively , at
the top or bottom of the list or between any two of list items
as indicated by the drop socket positions .
[0071] The described approaches do not impose any limits
on how many drop sockets can be available at any moment
and the number of drop sockets appearing might vary
depending on circumstances as explained herein . In general ,
any of a large variety of actions can be indicated by or
associated with any of a large variety of drop sockets .
Feedback
[0072] In all implementations , any of a variety of feedback
could be provided , both for while dragging a source object
representation and at the point of dropping , that is , at the
point of deselecting or releasing or letting up the user ' s
finger or stylus . During dragging , one form of feedback is to
have the drop sockets change color when the end user drags
into the drop socket . This feedback serves two purposes .
One is to indicate that the pointer is within the boundary of
the drop socket and the drop socket action will occur if the
end user drops the source object . The other is that , when no
drop sockets are providing feedback , no drop socket action
will occur when the end user drops the source object . This
feedback adds value to the end user ' s experience . It provides
an easy way for the end user to abort the operation and also
makes it very clear as to what action to expect at any given
moment .
[0073] Feedback could also be provided when the end user
drops or releases the source object to complete a drag
operation . For example , the processor - based device may
produce haptic feedback or cause the drop socket appear
ance to flicker . In this example , if the pointer (e . g . , user ' s
finger) drifts out of the boundary of the drop socket before
the end user drops the source object , the feedback would not
occur , indicating the drop socket action did not occur .
System
[0074] FIG . 12 shows a processor - based device 1204
suitable for implementing various embodiments described

herein . Although not required , some portion of the embodi
ments will be described in the general context of processor
executable instructions or logic , such as program application
modules , objects , or macros being executed by one or more
processors . Those skilled in the relevant art will appreciate
that the described embodiments , as well as other embodi
ments , can be practiced with various processor - based system
configurations , including handheld devices , such as smart
phones and tablet computers , wearable devices , multipro
cessor systems , microprocessor - based or programmable
consumer electronics , personal computers (“ PCs ”) , network
PCs , minicomputers , mainframe computers , and the like .
[0075] The processor - based device 1204 may , for
example , take the form of a smartphone or tablet computer ,
which includes one or more processors 1206 , a system
memory 1208 and a system bus 1210 that couples various
system components including the system memory 1208 to
the processor (s) 1206 . The processor - based device 1204 will
at times be referred to in the singular herein , but this is not
intended to limit the embodiments to a single system , since
in certain embodiments , there will be more than one system
or other networked computing device involved . Non - limit
ing examples of commercially available systems include ,
but are not limited to , ARM processors from a variety of
manufactures , Core microprocessors from Intel Corporation ,
U . S . A . , PowerPC microprocessor from IBM , Sparc micro
processors from Sun Microsystems , Inc . , PA - RISC series
microprocessors from Hewlett - Packard Company , 68xxx
series microprocessors from Motorola Corporation .
[0076] The processor (s) 1206 may be any logic processing
unit , such as one or more central processing units (CPUs) ,
microprocessors , digital signal processors (DSPs) , applica
tion - specific integrated circuits (ASICs) , field program
mable gate arrays (FPGAs) , etc . Unless described otherwise ,
the construction and operation of the various blocks shown
in FIG . 12 are of conventional design . As a result , such
blocks need not be described in further detail herein , as they
will be understood by those skilled in the relevant art .
[0077] The system bus 1210 can employ any known bus
structures or architectures , including a memory bus with
memory controller , a peripheral bus , and a local bus . The
system memory 1208 includes read - only memory (“ ROM ”)
1212 and random access memory (“ RAM ”) 1214 . A basic
input / output system (“ BIOS ') 1216 , which can form part of
the ROM 1212 , contains basic routines that help transfer
information between elements within processor - based
device 1204 , such as during start - up . Some embodiments
may employ separate buses for data , instructions and power .
10078] The processor - based device 1204 may also include
one or more solid state memories , for instance Flash
memory or solid state drive (SSD) 1218 , which provides
nonvolatile storage of computer - readable instructions , data
structures , program modules and other data for the proces
sor - based device 1204 . Although not depicted , the proces
sor - based device 1204 can employ other nontransitory com
puter - or processor - readable media , for example a hard disk
drive , an optical disk drive , or memory card media drive .
[0079] Program modules can be stored in the system
memory 1208 , such as an operating system 1230 , one or
more application programs 1232 , other programs or modules
1234 , drivers 1236 and program data 1238 .
[0080] The application programs 1232 may , for example ,
include panning / scrolling 1232a . Such panning / scrolling
logic may include , but is not limited to logic that determines

US 2017 / 0322696 A1 Nov . 9 , 2017

when and / or where a pointer (e . g . , finger , stylus , cursor)
enters a user interface element that includes a region having
a central portion and at least one margin . Such panning /
scrolling logic may include , but is not limited to logic that
determines a direction and a rate at which at least one
element of the user interface element should appear to move ,
and causes updating of a display to cause the at least one
element to appear to move in the determined direction at the
determined rate . The panning / scrolling logic 1232a may , for
example , be stored as one or more executable instructions .
The panning / scrolling logic 1232a may include processor
and / or machine executable logic or instructions to generate
user interface objects using data that characterizes move
ment of a pointer , for example data from a touch - sensitive
display or from a computer mouse or trackball , or other user
interface device .
[0081] The system memory 1208 may also include com
munications programs 1240 , for example a server and / or a
Web client or browser for permitting the processor - based
device 1204 to access and exchange data with other systems
such as user computing systems , Web sites on the Internet ,
corporate intranets , or other networks as described below .
The communications program 1240 in the depicted embodi
ment is markup language based , such as Hypertext Markup
Language (HTML) , Extensible Markup Language (XML) or
Wireless Markup Language (WML) , and operates with
markup languages that use syntactically delimited characters
added to the data of a document to represent the structure of
the document . A number of servers and / or Web clients or
browsers are commercially available such as those from
Mozilla Corporation of California and Microsoft of Wash
ington .
[0082] While shown in FIG . 12 as being stored in the
system memory 1208 , the operating system 1230 , applica
tion programs 1232 , other programs / modules 1234 , drivers
1236 , program data 1238 and server and / or browser 1240
can be stored on any other of a large variety of nontransitory
processor - readable media (e . g . , hard disk drive , optical disk
drive , SSD and / or flash memory .
10083] A user can enter commands and information via a
pointer , for example through input devices such as a touch
screen 1248 via a finger 1244a , stylus 1244b , or via a
computer mouse or trackball 1244c which controls a cursor .
Other input devices can include a microphone , joystick ,
game pad , tablet , scanner , biometric scanning device , etc .
These and other input devices (i . e . , “ I / O devices ”) are
connected to the processor (s) 1206 through an interface
1246 such as a touch - screen controller and / or a universal
serial bus (" USB ”) interface that couples user input to the
system bus 1210 , although other interfaces such as a parallel
port , a game port or a wireless interface or a serial port may
be used . The touch screen 1248 can be coupled to the system
bus 1210 via a video interface 1250 , such as a video adapter
to receive image data or image information for display via
the touch screen 1248 . Although not shown , the processor
based device 1204 can include other output devices , such as
speakers , vibrator , haptic actuator or haptic engine , etc .
[0084] The processor - based device 104 operates in a net
worked environment using one or more of the logical
connections to communicate with one or more remote
computers , servers and / or devices via one or more commu
nications channels , for example , one or more networks
1214a , 1214b . These logical connections may facilitate any
known method of permitting computers to communicate ,

such as through one or more LANs and / or WANs , such as
the Internet , and / or cellular communications networks . Such
networking environments are well known in wired and
wireless enterprise - wide computer networks , intranets ,
extranets , the Internet , and other types of communication
networks including telecommunications networks , cellular
networks , paging networks , and other mobile networks .
f0085] When used in a networking environment , the pro
cessor - based device 1204 may include one or more network ,
wired or wireless communications interfaces 1252a , 1256
(e . g . , network interface controllers , cellular radios , WI - FI
radios , Bluetooth radios) for establishing communications
over the network , for instance the Internet 1214a or cellular
network .
[0086] In a networked environment , program modules ,
application programs , or data , or portions thereof , can be
stored in a server computing system (not shown) . Those
skilled in the relevant art will recognize that the network
connections shown in FIG . 12 are only some examples of
ways of establishing communications between computers ,
and other connections may be used , including wirelessly .
[0087] for convenience , the processor (s) 1206 , system
memory 1208 , and network and communications interfaces
1252a , 1256 are illustrated as communicably coupled to
each other via the system bus 1210 , thereby providing
connectivity between the above - described components . In
alternative embodiments of the processor - based device
1204 , the above - described components may be communi
cably coupled in a different manner than illustrated in FIG .
12 . For example , one or more of the above - described
components may be directly coupled to other components ,
or may be coupled to each other , via intermediary compo
nents (not shown) . In some embodiments , system bus 1210
is omitted and the components are coupled directly to each
other using suitable connections .
10088] . The above description of illustrated embodiments ,
including what is described in the Abstract , is not intended
to be exhaustive or to limit the embodiments to the precise
forms disclosed . Although specific embodiments of and
examples are described herein for illustrative purposes ,
various equivalent modifications can be made without
departing from the spirit and scope of the disclosure , as will
be recognized by those skilled in the relevant art . The
teachings provided herein of the various embodiments can
be applied to other processor - based devices and / or displays
associated with processor - based devices , for example touch
sensitive or touch - responsive displays of portable processor
based devices , not necessarily the exemplary processor
based devices generally described above .
[0089] For instance , the foregoing detailed description has
set forth various embodiments of the systems , devices
and / or processes via the use of block diagrams , schematics ,
and examples . Insofar as such block diagrams , schematics ,
and examples contain one or more functions and / or opera
tions , it will be understood by those skilled in the art that
each function and / or operation within such block diagrams ,
flowcharts , or examples can be implemented , individually
and / or collectively , by a wide range of hardware , software ,
firmware , or virtually any combination thereof . In one
embodiment , the present subject matter may be imple
mented via one or more processors , for instance one or more
Application Specific Integrated Circuits (ASICs) . However ,
those skilled in the art will recognize that the embodiments
disclosed herein , in whole or in part , can be equivalently

US 2017 / 0322696 A1 Nov . 9 , 2017
10

implemented in standard or generic integrated circuits , as
one or more computer programs executed by one or more
computers (e . g . , as one or more programs running on one or
more computer systems) , as one or more programs executed
by on one or more controllers (e . g . , microcontrollers) as one
or more programs executed by one or more processors (e . g . ,
microprocessors , central processing units (CPUs) , graphical
processing units (GPUs) , programmable gate arrays (PGAs) ,
programmed logic controllers (PLCs)) , as firmware , or as
virtually any combination thereof , and that designing the
circuitry and / or writing the code for the software and or
firmware would be well within the skill of one of ordinary
skill in the art in light of the teachings of this disclosure . As
used herein and in the claims , the terms processor or
processors refer to hardware circuitry , for example ASICS ,
microprocessors , CPUs , GPUs , PGAs , PLCs , and other
microcontrollers .
[0090] When logic is implemented as software and stored
in memory , logic or information can be stored on any
processor - readable medium for use by or in connection with
any processor - related system or method . In the context of
this disclosure , a memory is a processor - readable medium
that is an electronic , magnetic , optical , or other physical
device or means that contains or stores a computer and / or
processor program . Logic and / or the information can be
embodied in any processor - readable medium for use by or in
connection with an instruction execution system , apparatus ,
or device , such as a computer - based system , processor
containing system , or other system that can fetch the instruc
tions from the instruction execution system , apparatus , or
device and execute the instructions associated with logic
and / or information .
[0091] In the context of this specification , a “ non - transi
tory processor - readable medium " can be any hardware that
can store the program associated with logic and / or informa
tion for use by or in connection with the instruction execu
tion system , apparatus , and / or device . The processor - read
able medium can be , for example , but is not limited to , an
electronic , magnetic , optical , electromagnetic , infrared , or
semiconductor system , apparatus or device . More specific
examples (a non - exhaustive list) of the computer readable
medium would include the following : a portable computer
diskette (magnetic , compact flash card , secure digital , or the
like) , a random access memory (RAM) , a read - only memory
(ROM) , an erasable programmable read - only memory
(EPROM , EEPROM , or Flash memory) , a portable compact
disc read - only memory (CDROM) , digital tape , and other
non - transitory media .
[0092] The various embodiments described above can be
combined to provide further embodiments . To the extent that
they are not inconsistent with the specific teachings and
definitions herein , all of the U . S . patents , U . S . patent appli
cation publications , U . S . patent applications , foreign pat
ents , foreign patent applications and non - patent publications
referred to in this specification and / or listed in the Applica
tion Data Sheet , are incorporated herein by reference , in
their entirety . Aspects of the embodiments can be modified ,
if necessary , to employ systems , circuits and concepts of the
various patents , applications and publications to provide yet
further embodiments .
[0093] These and other changes can be made to the
embodiments in light of the above - detailed description . In
general , in the following claims , the terms used should not
be construed to limit the claims to the specific embodiments

disclosed in the specification and the claims , but should be
construed to include all possible embodiments along with
the full scope of equivalents to which such claims are
entitled . Accordingly , the claims are not limited by the
disclosure .

1 . A method , comprising :
causing , by at least one processor , a presentation of a

graphical representation of a user interface comprising
at least a first source object representation that repre
sents a first source object and a first receiving object
representation that represents a first receiving object ;

in response to a first drag operation that drags the first
source object representation or an indicator that repre
sents a position of a pointer , the pointer with which the
first source object representation was selected , in at
least a defined proximity of the first receiving object
representation :
determining , by at least one processor , which , if any , of

a number of actions associated with the first receiv
ing object can be performed on the first source
object ; and

for each action it is determined can be performed on the
first source object , causing , by at least one processor ,
a presentation of a respective drop socket spatially at
least overlapping or encompassed by the first receiv
ing object representation , each drop socket having a
respective boundary and responsive to a deselection
of the first source object representation with the first
source object representation or indicator at least
partially within the respective boundary of the drop
socket to cause the respective action to be performed
on the first source object .

2 . The method of claim 1 wherein the first source object
is a first instance of a file type object , the first receiving
object is a first instance of a folder type object , and the
actions include a copy action which creates a second
instance of the first source object to the first instance of the
folder type object .

3 . The method of claim 1 wherein the first source object
is a first instance of a file type object , the first receiving
object is a first instance of a folder type object , and the
actions include a move action which logically associates the
first instance of the first source object to the first instance of
the folder type object .

4 . The method of claim 1 wherein the first source object
is a first instance of a file type object , the first receiving
object is a first instance of a folder type object , and the
actions include a move action which changes a logical
association of the first instance of the first source object from
one folder type object to another folder type object .

5 . The method of claim 1 wherein the actions include a
link action which creates an association between the first
source object and a third object , in addition to an existing
association between the first source object and a second
object .

6 . The method of claim 1 wherein causing a presentation
of a respective drop socket includes causing a presentation
of one or more characters or one or more non - character icons
that represent the respective action .

7 . The method of claim 1 , further comprising :
in response to the deselection of the first source object

representation with the first source object representa
tion or indicator at least partially within the respective

US 2017 / 0322696 A1 Nov . 9 , 2017

boundary of a first drop socket , causing the respective
action to be performed on the first source object .

8 . The method of claim 1 wherein determining which , if
any , of a number of actions associated with the first receiv
ing object can be performed on the first source object
includes determining which of a plurality of actions asso
ciated with the first receiving object are compatible with a
type of object to which the first source object corresponds .

9 . The method of claim 8 wherein determining which , if
any , of a number of actions associated with the first receiv
ing object can be performed on the first source object
includes determining which of the plurality of actions asso
ciated with the first receiving object are compatible with a
current position of a pointer , with which the first source
object is being dragged , within a boundary of the first
receiving object .

10 . The method of claim 8 wherein the first receiving
object is a list of source object representations , and deter
mining which , if any , of a number of actions associated with
the first receiving object can be performed on the first source
object includes determining which of the plurality of actions
associated with the first receiving object are compatible with
a current position of a pointer , with which the first source
object is being dragged , in the list of source object repre
sentations .

11 . The method of claim 1 wherein the first source object
is a file type object , and determining which , if any , of a
nu number of actions associated with the first receiving object
can be performed on the first source object includes deter
mining which of a plurality of actions associated with the
first receiving object are compatible with the file type
objects .

12 . The method of claim 1 , further comprising :
in response to the first source object representation or the

indicator being positioned at least partially within the
first receiving object representation as part of the first
drag operation , causing at least one instance of a
feedback to be presented .

13 . The method of claim 12 wherein the indicator is a
cross hairs indicator and causing at least one instance of a
feedback to be presented includes causing presentation of at
least one of a visual feedback signal , an aural feedback
signal or a tactile feedback signal .

14 . The method of claim 1 , further comprising :
in response to a second drag operation that drags the first

source object representation or the indicator that rep
resents the position of the pointer , the pointer with
which the first source object representation was
selected , in at least a defined proximity of a second
receiving object representation , the second receiving
object representation spaced from the first receiving
object representation :
determining , by the at least one processor , which , if
any , of a number of actions associated with the
second receiving object can be performed on the first
source object ; and

for each action that it is determined can be performed
on the first source object , causing , by the at least one
processor , a presentation of a respective drop socket
spatially at least overlapping or encompassed by the
second receiving object representation , each drop
socket having a respective boundary and responsive
to a deselection of the first source object represen
tation with the first source object representation or

the indicator at least partially within the respective
boundary of the drop socket to cause the respective
action to be performed on the first source object .

15 . The method of claim 14 , further comprising :
in response to the second drag operation that drags the

first source object representation or the indicator that
represents the position of the pointer , the pointer with
which the first source object representation was
selected , in at least the defined proximity of the second
receiving object representation :
causing the presentation of the respective drop socket

spatially at least overlapping or encompassed by the
first receiving object representation to stop .

16 . The method of claim 1 , further comprising :
in response to the first drag operation that drags the first

source object representation or the indicator that rep
resents the position of the pointer , the pointer with
which the first source object representation was
selected , in at least the defined proximity of the first
receiving object representation :
repeatedly determining , by the at least one processor , a

current position of a pointer , with which the first
source object is being dragged , within a boundary of
the first receiving object ;

repeatedly determining , by the at least one processor , a
current location within the boundary of the first
receiving object or the indicator at which to display
at least one drop socket based at least in part on the
determined current position of the pointer ; and

repeatedly causing , by the at least one processor , a
presentation of the respective drop socket at the
determined current location .

17 . The method of claim 1 wherein the first receiving
object is a first list of a plurality of source object represen
tations , each of which represents a respective source object ,
and further comprising :

in response to the first drag operation that drags the first
source object representation or the indicator in at least
the defined proximity of the first receiving object
representation :
repeatedly determining a current position of a pointer ,

with which the first source object is being dragged ,
within a boundary of the first list of source object
representations ;

repeatedly determining a current location within the
boundary of the first list of source object represen
tations at which to display at least one drop socket
based at least in part on the determined current
position of the pointer ; and

repeatedly causing a presentation of the respective drop
socket at the determined current location .

18 . The method of claim 17 , further comprising :
in response to the deselection of the first source object

representation with the first source object representa
tion or the indicator at least partially within the respec
tive boundary of a first drop socket , causing , by the at
least one processor , the respective action to be per
formed on the first source object .

19 . The method of claim 17 wherein repeatedly causing a
presentation of the respective drop socket at the determined
current location includes causing a presentation of both a
move action drop socket and a copy action drop socket
between two different source object representations in the
list of source object representations .

US 2017 / 0322696 A1 Nov . 9 , 2017

20 . A system , comprising :
at least one processor ;
at least one processor - readable medium , communicatively

coupled to the at least one processor , and that stores at
least one of processor - executable instructions or data ,
which when executed by the at least one processor
causes the at least one processor to :
cause a presentation of a graphical representation of a

user interface comprising at least a first source object
representation that represents a first source object
and a first receiving object representation that rep
resents a first receiving object ;

in response to a first drag operation that drags the first
source object representation or an indicator that
represents a position of a pointer , the pointer with
which the first source object representation was
selected , in at least a defined proximity of the first
receiving object representation :

determine which , if any , of a number of actions
associated with the first receiving object can be
performed on the first source object ; and

for each action that it is determined can be performed
on the first source object , cause a presentation of
a respective drop socket spatially at least overlap
ping or encompassed by the first receiving object
representation , each drop socket having a respec
tive boundary and responsive to a deselection of
the first source object representation with the first
source object representation or the indicator at
least partially within the respective boundary of
the drop socket to cause the respective action to be
performed on the first source object .

21 . - 38 . (canceled)
* * * * *

