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METHOD AND APPARATUS FOR VIDEO CODING 

INCORPORATION BY REFERENCE 

[00011 This present application claims the benefit of priority to U.S. Patent 

Application No. 16/823,831, "Method and Apparatus for Video Coding" filed on March 19, 

2020, which claims the benefit of priority to U.S. Provisional Application No. 62/822,787, 

Modified VPDU Compatible Max Transform Control" filed on March 22, 2019. The entire 

disclosures of the prior applications are hereby incorporated by reference in their entirety.  

TECHNICAL FIELD 

[0002] The present disclosure describes embodiments generally related to video 

coding.  

BACKGROUND 

[00031 The background description provided herein is for the purpose of generally 

presenting the context of the disclosure. Work of the presently named inventors, to the extent 

the work is described in this background section, as well as aspects of the description that 

may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly 

admitted as prior art against the present disclosure.  

[0004] Video coding and decoding can be performed using inter-picture prediction 

with motion compensation. Uncompressed digital video can include a series of pictures, each 

picture having a spatial dimension of, for example, 1920 x 1080 luminance samples and 

associatedchrominancesamples. The series of pictures can have a fixed orvariable picture 

rate (informally also known as frame rate), of, for example 60 pictures per second or 60 Hz.  

Uncompressed video has significant bitrate requirements. For example, 1080p60 4:2:0 video 

at 8 bit per sample (1920x1080 luminance sample resolution at 60 Hz frame rate) requires 

close to 1.5 Gbit/s bandwidth. An hour of such video requires more than 600 GBytes of 

storage space.  

[0005] One purpose of video coding and decoding can be the reduction of redundancy 

in the input video signal, through compression. Compression can help reduce the 

aforementioned bandwidth or storage space requirements, in some cases by two orders of 

magnitude or more. Both lossless and lossy compression, as well as a combination thereof 

can be employed. Lossless compression refers to techniques where an exact copy of the 

original signal can be reconstructed from the compressed original signal. When using lossy 

compression, the reconstructed signal may not be identical to the original signal, but the 

distortion between original and reconstructed signals is small enough to make the
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reconstructed signal useful for the intended application. In the case of video, lossy 

compression is widely employed. The amount of distortion tolerated depends on the 

application; for example, users of certain consumer streaming applications may tolerate 

higher distortion than users of television distribution applications. The compression ratio 

achievable can reflect that: higher allowable/tolerable distortion can yield higher compression 

ratios.  

[0006] A video encoder and decoder can utilize techniques from several broad 

categories, including, for example, motion compensation, transform, quantization, and 

entropy coding.  

[00071 Video codec technologies can include techniques known as intra coding. In 

intra coding, sample values are represented without reference to samples or other data from 

previously reconstructed reference pictures. In some video codecs, the picture is spatially 

subdivided into blocks of samples. When all blocks of samples are coded in intra mode, that 

picture can be an intra picture. Intra pictures and their derivations such as independent 

decoder refresh pictures, can be used to reset the decoder state and can, therefore, be used as 

the first picture in a coded video bitstream and a video session, or as a still image. The 

samples of an intra block can be exposed to a transform, and the transform coefficients can be 

quantized before entropy coding. Intra prediction can be a technique that minimizes sample 

values in the pre-transform domain. In some cases, the smaller the DC value after a 

transform is, and the smaller the AC coefficients are, the fewer the bits that are required at a 

given quantization step size to represent the block after entropy coding.  

[0008] Traditional intra coding such as known from, for example MPEG-2 generation 

coding technologies, does not use intra prediction. However, some newer video compression 

technologies include techniques that attempt, from, for example, surrounding sample data 

and/or metadata obtained during the encoding/decoding of spatially neighboring, and 

preceding in decoding order, blocks of data. Such techniques are henceforth called "intra 

prediction" techniques. Note that in at least some cases, intra prediction is only using 

reference data from the current picture under reconstruction and not from reference pictures.  

[0009] There can be many different forms of intra prediction. When more than one of 

such techniques can be used in a given video coding technology, the technique in use can be 

coded in an intra prediction mode. In certain cases, modes can have submodes and/or 

parameters, and those can be coded individually or included in the mode codeword. Which 

codeword to use for a given mode/submode/parameter combination can have an impact in the
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coding efficiency gain through intra prediction, and so can the entropy coding technology 

used to translate the codewords into a bitstream.  

[00101 A certain mode of intra prediction was introduced with H.264, refined in 

1-1.265, and further refined in newer coding technologies such as joint exploration model 

(JEM), versatile video coding (VVC), and benchmark set (BMS). A predictor block can be 

formed using neighboring sample values belonging to already available samples. Sample 

values of neighboring samples are copied into the predictor block according to a direction. A 

reference to the direction in use can be coded in the bitstream or may itself be predicted.  

[0011] Referring to FIG. 1, depicted in the lower right is a subset of nine predictor 

directions known from H.265's 33 possible predictor directions (corresponding to the 33 

angular modes of the 35 intra modes). The pointwhere the arrows converge (101) represents 

the sample being predicted. The arrows represent the direction from which the sample is 

being predicted. For example, arrow (102) indicates that sample (101) is predicted from a 

sample or samples to the upper right, at a 45 degree angle from the horizontal. Similarly, 

arrow (103) indicates that sample (101) is predicted from a sample or samples to the lower 

left of sample (101), in a22.5 degree angle from the horizontal.  

[0012] Still referring to FIG. IA, on the top left there is depicted a square block (104) 

of 4 x 4 samples (indicated by a dashed, boldface line). The square block (104) includes 16 

samples, each labelled with an"S", its position in the Y dimension (e.g., row index) and its 

position in the X dimension (e.g., column index). For example, sample S21 is the second 

sample in the Y dimension (from the top) and the first (from the left) sample in the X 

dimension. Similarly, sample S44 is the fourth sample in block (104) in both the Y and X 

dimensions. Astheblockis 4x 4 samples in size, S44 is atthebottom right. Furthershown 

are reference samples that follow a similar numbering scheme. A reference sample is 

labelled with an R, its Y position (e.g., row index) and X position (column index) relative to 

block(104). In both H264 and 11.265, prediction samples neighbor the block under 

reconstruction; therefore no negative values need to be used.  

[0013] Intra picture prediction can work by copying reference sample values from the 

neighboring samples as appropriated by the signaled prediction direction. For example, 

assume the coded video bitstream includes signaling that, for this block, indicates a 

prediction direction consistent with arrow (102)-that is, samples are predicted from a 

prediction sample or samples to the upper right, at a 45 degree angle from the horizontal. In 

that case, samples S41, S32, S23, and S14 are predicted from the same reference sample R05.  

Sample S44 is then predicted from reference sample R08.
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10014] In certain cases, the values of multiple reference samples may be combined, 

for example through interpolation, in order to calculate a reference sample; especially when 

the directions are not evenly divisible by 45 degrees.  

[0015] The number of possible directions has increased as video coding technology 

has developed. In H.264 (year 2003), nine different direction could be represented. That 

increased to 33 in H.265 (year 2013), and JEM/VVC/BMS, at the time of disclosure, can 

support up to 65 directions. Experiments have been conducted to identify the most likely 

directions, and certain techniques in the entropy coding are used to represent those likely 

directions in a small number of bits, accepting a certain penalty for less likely directions.  

Further, the directions themselves can sometimes be predicted from neighboring directions 

used in neighboring, already decoded, blocks.  

[00161 FIG. B shows a schematic (180) that depicts 65 intra prediction directions 

according to JEM to illustrate the increasing number of prediction directions over time.  

10017] The mapping of intra prediction directions bits in the coded video bitstream 

that represent the direction can be different from video coding technology to video coding 

technology; and can range, for example, from simple direct mappings of prediction direction 

to intra prediction mode, to codewords, to complex adaptive schemes involving most 

probable modes, and similar techniques. In all cases, however, there can be certain directions 

that are statistically less likely to occur in video content than certain other directions. As the 

goal of video compression is the reduction of redundancy, those less likely directions will, in 

a well working video coding technology, be represented by a larger number of bits than more 

likely directions.  

10018] Motion compensation can be a lossy compression technique and can relate to 

techniques where a block of sample data from a previously reconstructed picture or part 

thereof (reference picture), after being spatially shifted in a direction indicated by a motion 

vector (MV henceforth), is used for the prediction of a newly reconstructed picture or picture 

part. In some cases, the reference picture can be the same as the picture currently under 

reconstruction. MVs can have two dimensions X and Y, or three dimensions, the third being 

an indication of the reference picture in use (the latter, indirectly, can be a time dimension).  

[0019] In some video compression techniques, an MV applicable to a certain area of 

sample data can be predicted from other MVs, for example from those related to another area 

of sample data spatially adjacent to the area under reconstruction, and preceding that MV in 

decoding order. Doing so can substantially reduce the amount of data required for coding the 

MV, thereby removing redundancy and increasing compression. MV prediction can work
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effectively, for example, because when coding an input video signal derived from a camera 

(known as natural video) there is a statistical likelihood that areas larger than the area to 

which a single MV is applicable move in a similar direction and, therefore, can in some cases 

be predicted using a similar motion vector derived from MVs of neighboring area. That 

results in the MV found for a given area to be similar or the same as the MV predicted from 

the surrounding MVs, and that in turn can be represented, after entropy coding, in a smaller 

number of bits than what would be used if coding the MV directly. In some cases, MV 

prediction can be an example of lossless compression of a signal (namely. the MVs) derived 

from the original signal (namely: the sample stream). In other cases, MV prediction itself can 

be lossy, for example because of rounding errors when calculating a predictor from several 

surrounding MVs.  

[00201 Various MV prediction mechanisms are described in H.265/HEVC (ITU-T 

Rec. 1.265, "High Efficiency Video Coding", December 2016). OutofthemanyMV 

prediction mechanisms that H.265 offers, described here is a technique henceforth referred to 

as "spatial merge".  

[00211 Referring to FIG. 2, a current block (201) comprises samples that have been 

found by the encoder during the motion search process to be predictable from a previous 

block of the same size that has been spatially shifted. Instead of codingthat MVdirectly, the 

MV can be derived from metadata associated with one or more reference pictures, for 

example from the most recent (in decoding order) reference picture, using the MV associated 

with either one of five surrounding samples, denoted AO, Al, and BO, B1, B2 (202 through 

206, respectively). In 11.265, the MV prediction can use predictors from the same reference 

picture that the neighboring block is using.  

SUMMARY 

[00221 Aspects of the disclosure provide methods and apparatuses for video 

encoding/decoding. In some examples, an apparatus for video decoding includes processing 

circuitry. The processing circuitry is configured to decode coded information of a coding 

block (CB) in a Picture from a coded video bitstream. The coded information indicates a 

width of W samples and a height of - samples of the CB. The processing circuitry can 

partition the CB into sub-processing units (SPUs) having a width that is a minimum one of W 

and K and a height that is a minimum one of -I and K. At least one of the width W and the 

height H of the CB is larger than a processing data unit size K. The processing circuitry can 

determine a partitioning structure to further partition the SPUs based on the width and the 

height of the SPUs and a maximum transform unit (TU) size of M samples. At least one of
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the width and the height of the SPUs is larger than M. The processing circuitry can partition 

each of the SPUs into TUs of MxM based on the determined partitioning structure.  

[00231 In an embodiment, the width and the height of the SPUs are larger than M.  

The processing circuitry can determine the partitioning structure to be a quadtree partitioning 

structure. The processing circuitry can partition the SPUs into thefTls based on the quadtree 

partitioning structure.  

[0024] In an embodiment, the width of the SPUs is larger than M and the height of 

the SPUs is equal to M. The processing circuitry can determine the partitioning structure to 

be a vertical binary tree partitioning structure. The processing circuitry can partition the 

SPUs into the TUs based on the vertical binary tree partitioning structure.  

[0025] In an embodiment, the height of the SPUs is larger than M and the width of 

the SPUs is equal to M. The processing circuitry can determine the partitioning structure to 

be a horizontal binary tree partitioning structure. The processing circuitry can partition the 

SPUs into the TUs based on the horizontal binary tree partitioning structure.  

[0026] In an embodiment, the processing circuitry can partition one of the SPUs 

recursively into the TUs based on the partitioning structure.  

[0027] In an embodiment, the processing circuitry can process the SPUs according to 

first scan order, and process the TUs in each of the SPUs according to a second scan order.  

In an example, at least one of the first scan order and the second scan order is one of (i) a 

raster scan order, (ii) a vertical scan order, (iii) a zig-zag order, and (iv) a diagonal scan order.  

In an example, the first scan order and the second scan order are the raster scan order. In an 

example, W is 128, H is 64, K is 64, and M is 32. The first scan order is from left to right 

and the second scan order is a raster scan order.  

[0028] In an embodiment, the processing data unit size K indicates a size of a virtual 

pipeline data unit (VPDU). A first one of the SPUs is included in a first VPDU and a second 

one of the SPUs is included in a second VPDU in the picture. After processing the first 

VPDU in a first stage of a multi-stage pipeline, the processing circuitry can simultaneously 

process the first VPDU in a second stage of the multi-stage pipeline and the second VPDU in 

the first stage.  

BRIEF DESCRIPTION OF THE DRAWINGS 

[0029] Further features, the nature, and various advantages of the disclosed subject 

matterwill be more apparent from the following detailed description and the accompanying 

drawings in which:
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10030] FIG. IA is a schematic illustration of an exemplary subset of intra prediction 

modes.  

[00311 FIG. 1B is an illustration of exemplary intra prediction directions.  

[0032] FIG. 2 is a schematic illustration of a current block and its surrounding spatial 

merge candidates in one example.  

[00331 FIG. 3 is a schematic illustration of a simplified block diagram of a 

communication system (300) in accordance with an embodiment.  

[0034] FIG. 4 is a schematic illustration of a simplified block diagram of a 

communication system (400) in accordance with an embodiment.  

[00351 FIG. 5 is a schematic illustration of a simplified block diagram of a decoder in 

accordance with an embodiment.  

[00361 FIG. 6 is a schematic illustration of a simplified block diagram of an encoder 

in accordance with an embodiment.  

10037] FIG. 7 shows a block diagram of an encoder in accordance with another 

embodiment.  

[00381 FIG. 8 shows a block diagram of a decoder in accordance with another 

embodiment.  

[0039] FIG. 9A shows a CTU that is partitioned with a quadtree plus binary tree 

(QTBT) structure (910).  

[0040] FIG 913 shows the QTBT structure (920).  

[0041] FIG. 9C shows a horizontal center-side triple-tree.  

[0042] FIG. 91) shows a vertical center-side triple-tree.  

10043] FIGs. 10A-10D show transform core matrices of 4-point, 8-point, 16-point and 

32-point DCT-2 transform, respectively.  

[00441 FIGs. 1IA-1IE show a 64x64 transform core matrix of the 64-point DCT-2 

transform.  

10045] FIG. 12 shows transform basis functions of the selected discrete sine transform 

(DST)/ discrete cosine transform (DCT) transforms of an adaptive multiple transform (AMT).  

[0046] FIG. 13 shows a table (1300) illustrating a mapping relationship between an 

mtsidx value and respective horizontal or vertical transforms.  

[0047] FIGs. 14A-141) show transform core matrices of DST-7 transform.  

[00481 FIGs. 15A-15D show transform core matrices of DCT-8 transform.  

[0049] FIG. 16 shows a number of sub-partitions depending on a block size.  

[00501 FIG. 17 shows an example of an intra sub-partition (ISP).
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10051] FIG. 18 shows an example of an ISP.  

[0052] FIGs. 19A-19B show an example of syntax elements (1900) for an ISP coding 

mode.  

[0053] FIGs. 20A-20D show examples of a sub-block transfor (SBT).  

10054] FIGs. 21A-21I show an example of a specification text of a video coding 

standard when SBT is used.  

[0055] FIG. 22 shows different YUV formats used in some embodiments.  

[0056] FIG. 23 shows examples of disallowed ternary tree (TT) and binary tree (BT) 

partitioning.  

[00571 FIG. 24 shows an example of transform tree syntax.  

[0058] FIG. 25 shows a coding block (2510) having a size of I28x64 samples.  

[00591 FIG. 26A shows a coding block (2610A) having a size of 128x32 samples.  

[0060] FIG. 26B shows a coding block (2610B) having a size of 128x32 samples.  

10061] FIG. 27 shows a flow chart outlining a process (2700) according to an 

embodiment of the disclosure.  

[00621 FIG. 28 is a schematic illustration of a computer system in accordance with an 

embodiment.  

DETAILED I)ESCRIPTION OF FMO13()[IMENTS 

[00631 1. Video Coding Encoder and Decoder 

[0064] FIG. 3 illustrates a simplified block diagram of a communication system (300) 

according to an embodiment of the present disclosure. The communication system (300) 

includes a plurality of terminal devices that can communicate with each other, via, for 

example, a network (350). For example, the communication system (300) includes a first 

pair of terminal devices (310) and (320) interconnected via the network (350). In the FIG. 3 

example, the first pair of terminal devices (310) and (320) performs unidirectional 

transmission of data. For example, the terminal device (310) may code video data (e.g., a 

stream of video pictures that are captured by the terminal device (310)) for transmission to 

the other terminal device (320) via the network (350). The encoded video data can be 

transmitted in the form of one or more coded video bitstreans. The terminal device (320) 

may receive the coded video data from the network (350), decode the coded video data to 

recover the video pictures and display video pictures according to the recovered video data.  

Unidirectional data transmission may be common in media serving applications and the like.  

[0065] In another example, the communication system (300) includes a second pair of 

terminal devices (330) and (340) that performs bidirectional transmission of coded video data
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that may occur, for example, during videoconferencing. For bidirectional transmission of 

data, in an example, each terminal device of the terminal devices (330) and (340) may code 

video data (e.g., a stream of video pictures that are captured by the terminal device) for 

transmission to the other terminal device of the terminal devices (330) and (340) via the 

network (350). Each terminal device of the terminal devices (330) and (340) also may 

receive the coded video data transmitted by the other terminal device of the terminal devices 

(330) and (340), and may decode the coded video data to recover the video pictures and may 

display video pictures at an accessible display device according to the recovered video data.  

[0066] In the FIG. 3 example, the terminal devices (310), (320), (330) and (340) may 

be illustrated as servers, personal computers and smart phones but the principles of the 

present disclosure may be not so limited. Embodiments of the present disclosure find 

application with laptop computers, tablet computers, media players and/or dedicated video 

conferencing equipment. The network (350) represents any number of networks that convey 

coded video data among the terminal devices (310), (320), (330) and (340), including for 

example wireline (wired) and/or wireless communication networks. The communication 

network (350) may exchange data in circuit-switched and/or packet-switched channels.  

Representative networks include telecommunications networks, local area networks, wide 

area networks and/or the Internet. For the purposes of the present discussion, the architecture 

and topology of the network (350) may be immaterial to the operation of the present 

disclosure unless explained herein below.  

[0067] FIG. 4 illustrates, as an example for an application for the disclosed subject 

matter, the placement of a video encoder and a video decoder in a streaming environment.  

The disclosed subject matter can be equally applicable to other video enabled applications, 

including, for example, video conferencing, digital TV, storing of compressed video on 

digital media including CD, DVD, memory stick and the like, and so on.  

[0068] A streaming system may include a capture subsystem (413), that can include a 

video source (401), for example a digital camera, creating for example a stream of video 

pictures (402) that are uncompressed. In an example, the stream of video pictures (402) 

includes samples that are taken by the digital camera. The stream of video pictures (402), 

depicted as a bold line to emphasize a high data volume when compared to encoded video 

data (404) (or coded video bitstreams), can be processed by an electronic device (420) that 

includes a video encoder (403) coupled to the video source (401). The video encoder (403) 

can include hardware, software, or a combination thereof to enable or implement aspects of 

the disclosed subject matter as described in more detail below. The encoded video data (404)
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(or encoded video bitstream (404)), depicted as a thin line to emphasize the lower data 

volume when compared to the stream of video pictures (402), can be stored on a streaming 

server (405) for future use. One or more streaming client subsystems, such as client 

subsystems (406) and (408) in FIG. 4 can access the streaming server (405) to retrieve copies 

(407) and (409) of the encoded video data (404). A client subsystem (406) can include a 

video decoder (410), for example, in an electronic device (430). The video decoder (410) 

decodes the incoming copy (407) of the encoded video data and creates an outgoing stream of 

video pictures (411) that can be rendered on a display (412) (e.g., display screen) or other 

rendering device (not depicted). In some streaming systems, the encoded video data (404), 

(407), and (409) (e.g., video bitstreams) can be encoded according to certain video 

coding/compression standards. Examples of those standards include ITJ-T Recommendation 

H.265. In an example, a video coding standard under development is informally known as 

Versatile Video Coding (VVC). The disclosed subject matter may be used in the context of 

VVC.  

[0069] It is noted that the electronic devices (420) and (430) can include other 

components (not shown). For example, the electronic device (420) can include a video 

decoder (not shown) and the electronic device (430) can include a video encoder (not shown) 

as well.  

[00701 FIG. 5 shows a block diagram of a video decoder (510) according to an 

embodimentof the present disclosure. The video decoder (510) can be included in an 

electronic device (530). The electronic device (530) can include a receiver (531) (e.g., 

receiving circuitry). The video decoder (510) can be used in the place of the video decoder 

(410) in the FIG. 4 example.  

[0071] The receiver (531) may receive one or more coded video sequences to be 

decoded by the video decoder (510); in the same or another embodiment, one coded video 

sequence at a time, where the decoding of each coded video sequence is independent from 

other coded video sequences. The coded video sequence may be received from a channel 

(501), which may be a hardware/software link to a storage device which stores the encoded 

video data. The receiver (531) may receive the encoded video data with other data, for 

example, coded audio data and/or ancillary data streams, that may be forwarded to their 

respective using entities (not depicted). The receiver (531) may separate the coded video 

sequence from the other data. To combat network jitter, a buffer memory (515) maybe 

coupled in between the receiver (531) and an entropy decoder/ parser (520) parserer (520)" 

henceforth). In certain applications, the buffer memory (515) is part of the video decoder
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(510). In others, it can be outside of the video decoder (510) (not depicted). Instillothers, 

there can be a buffer memory (not depicted) outside of the video decoder (510), for example 

to combat network jitter, and in addition another buffer memory (515) inside the video 

decoder (510), for example to handle playouttiming. When thereceiver(531)isreceiving 

data from a store/forward device of sufficient bandwidth and controllability, or from an 

isosynchronous network, the buffer memory (515) may not be needed, or can be small. For 

use on best effort packet networks such as the Internet, the buffer memory (515) may be 

required, can be comparatively large and can be advantageously of adaptive size, and may at 

least partially be implemented in an operating system or similar elements (not depicted) 

outside of the video decoder (510).  

[0072] The video decoder (510) may include the parser (520) to reconstruct symbols 

(521) from the coded video sequence. Categories of those symbols include information used 

to manage operation of the video decoder (510), and potentially information to control a 

rendering device such as a render device (512) (e.g., a display screen) that is not an integral 

part of the electronic device (530) but can be coupled to the electronic device (530), as was 

shown in FIG. 5. The control information for the rendering device(s) may be in the form of 

Supplemental Enhancement Information (SEI messages) or Video Usability Information 

(VU) parameter set fragments (not depicted). The parser (520) may parse/ entropy-decode 

the coded video sequence that is received. The coding of the coded video sequence can be in 

accordance with a video coding technology or standard, and can follow various principles, 

including variable length coding, Huffman coding, arithmetic coding with or without context 

sensitivity, and so forth. The parser (520) may extract from the coded video sequence, a set 

of subgroup parameters for at least one of the subgroups of pixels in the video decoder, based 

upon at least one parameter corresponding to the group. Subgroups can include Groups of 

Pictures (GOPs), pictures, tiles, slices, macroblocks, Coding Units (CUs), blocks, Transform 

Units (TUs), Prediction Units (PUs) and so forth. The parser (520) may also extract from the 

coded video sequence information such as transform coefficients, quantizer parameter values, 

motion vectors, and so forth.  

[0073] The parser (520) may perform an entropy decoding /parsing operation on the 

video sequence received from the buffer memory (515), so as to create symbols (521).  

[0074] Reconstruction of the symbols (521) can involve multiple different units 

depending on the type of the coded video picture or parts thereof (such as: inter and intra 

picture, inter and intra block), and other factors. Which units are involved, and how, can be 

controlled by the subgroup control information that was parsed from the coded video
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sequence by the parser (520). The flow of such subgroup control information between the 

parser (520) and the multiple units below is not depicted for clarity.  

[00751 Beyond the functional blocks already mentioned, the video decoder (510) can 

be conceptually subdivided into a number of functional units as described below. In a 

practical implementation operating under commercial constraints, many of these units 

interact closely with each other and can, at least partly, be integrated into each other.  

However, for the purpose of describing the disclosed subject matter, the conceptual 

subdivision into the functional units below is appropriate.  

[0076] A first unit is the scaler/ inverse transform unit (551). The scale/ inverse 

transform unit (551) receives a quantized transform coefficient as well as control information, 

including which transform to use, block size, quantization factor, quantization scaling 

matrices, etc. as symbol(s) (521) from the parser (520). The scaler / inverse transform unit 

(551) can output blocks comprising sample values, that can be input into aggregator (555).  

10077] In some cases, the output samples of the scaler / inverse transform (551) can 

pertain to an intra coded block; that is: a block that is not using predictive information from 

previously reconstructed pictures, but can use predictive information from previously 

reconstructed parts of the current picture. Such predictive information can be provided by an 

intra picture prediction unit (552). In some cases, the intra picture prediction unit (552) 

generates a block of the same size and shape of the block under reconstruction, using 

surrounding already reconstructed information fetched from the current picture buffer (558).  

The current picture buffer (558) buffers, for example, partly reconstructed current picture 

and/or fully reconstructed current picture. The aggregator (555), in some cases, adds, on a 

per sample basis, the prediction information the intra prediction unit (552) has generated to 

the output sample information as provided by the scaler / inverse transform unit (551).  

[00781 In other cases, the output samples of the scaler / inverse transform unit (551) 

can pertain to an inter coded, and potentially motion compensated block. In such a case, a 

motion compensation prediction unit (553) can access reference picture memory (557) to 

fetch samples used for prediction. After motion compensating the fetched samples in 

accordance with the symbols (521) pertaining to the block, these samples can be added by the 

aggregator (555) to the output of the scaler/ inverse transform unit (551) (in this case called 

the residual samples or residual signal) so as to generate output sample information. The 

addresses within the reference picture memory (557) from where the motion compensation 

prediction unit (553) fetches prediction samples can be controlled by motion vectors, 

available to the motion compensation prediction unit (553) in the form of symbols (521) that
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can have, for example X, Y, and reference picture components. Motion compensation also 

can include interpolation of sample values as fetched from the reference picture memory 

(557) when sub-sample exact motion vectors are in use, motion vector prediction 

mechanisms, and so forth.  

10079] The output samples of the aggregator (555) can be subject to various loop 

filtering techniques in the loop filter unit (556). Video compression technologies can include 

in-loop filter technologies that are controlled by parameters included in the coded video 

sequence (also referred to as coded video bitstream) and made available to the loop filter unit 

(556) as symbols (521) from the parser (520), but can also be responsive to meta-information 

obtained during the decoding of previous (in decoding order) parts of the coded picture or 

coded video sequence, as well as responsive to previously reconstructed and loop-filtered 

sample values.  

[0080] The output of the loop filter unit (556) can be a sample stream that can be 

output to the render device (512) as well as stored in the reference picture memory (557) for 

use in future inter-picture prediction.  

[00811 Certain coded pictures, once fully reconstructed, can be used as reference 

pictures for future prediction. For example, once a coded picture corresponding to a current 

picture is fully reconstructed and the coded picture has been identified as a reference picture 

(by, for example, the parser (520)), the current picture buffer (558) can become a part of the 

reference picture memory (557), and a fresh current picture buffer can be reallocated before 

commencing the reconstruction of the following coded picture.  

[0082] The video decoder (510) may perform decoding operations according to a 

predetermined video compression technology in a standard, such as ITU-TRec. H.265. The 

coded video sequence may conform to a syntax specified by the video compression 

technology or standard being used, in the sense that the coded video sequence adheres to both 

the syntax of the video compression technology or standard and the profiles as documented in 

the video compression technology or standard. Specifically, a profile can select certain tools 

as the only tools available for use under that profile from all the tools available in the video 

compression technology or standard. Also necessary for compliance can be that the 

complexity of the coded video sequence is within bounds as defined by the level of the video 

compression technology or standard. In some cases, levels restrict the maximum picture size, 

maximum frame rate, maximum reconstruction sample rate (measured in, for example 

megasamples per second), maximum reference picture size, and so on. Limits set by levels 

can, in some cases, be further restricted through Hypothetical Reference Decoder (HRD)
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specifications and metadata for HRD buffer management signaled in the coded video 

sequence.  

[00831 In an embodiment, the receiver (531) may receive additional (redundant) data 

with the encoded video. The additional data may be included as part of the coded video 

sequence(s). The additional data may be used by the video decoder (510) to properly decode 

the data and/or to more accurately reconstruct the original video data. Additional data can be 

in the form of, for example, temporal, spatial, or signal noise ratio (SNR ) enhancement 

layers, redundant slices, redundant pictures, forward error correction codes, and so on.  

[0084] FIG. 6 shows a block diagram of a video encoder (603) according to an 

embodiment of the present disclosure. The video encoder (603) is included in an electronic 

device (620). The electronic device (620) includes a transmitter (640) (e.g., transmitting 

circuitry). The video encoder (603) can be used in the place of the video encoder (403) in 

the FIG. 4 example.  

10085] The video encoder (603) may receive video samples from a video source (601) 

(that is not part of the electronic device (620) in the FIG. 6 example) that may capture video 

image(s) to be coded by the video encoder (603). In another example, the video source (601) 

is a part of the electronic device (620).  

[0086] The video source (601) may provide the source video sequence to be coded by 

the video encoder (603) in the form of a digital video sample stream that can be of any 

suitable bit depth (for example: 8 bit, 10 bit, 12 bit, ... ), any colorspace (for example, BT.601 

Y CrCB, RGB, ... ), and any suitable sampling structure (for example Y CrCb 4:2:0, Y CrCb 

4:4:4). Ina media serving system, the video source (601) may be a storage device storing 

previously prepared video. In avideoconferencing system, the video source (601) maybe a 

camera that captures local image information as a video sequence. Video data may be 

provided as a plurality of individual pictures that impart motion when viewed in sequence.  

The pictures themselves may be organized as a spatial array of pixels, wherein each pixel can 

comprise one or more samples depending on the sampling structure, color space, etc. in use.  

A person skilled in the art can readily understand the relationship between pixels and 

samples. The description below focuses on samples.  

[0087] According to an embodiment, the video encoder (603) may code and compress 

the pictures of the source video sequence into a coded video sequence (643) in real time or 

under any other time constraints as required by the application. Enforcing appropriate coding 

speed is one function of a controller (650). in some embodiments, the controller (650) 

controls other functional units as described below and is functionally coupled to the other
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functional units. The coupling is not depicted for clarity. Parameters set by the controller 

(650) can include rate control related parameters (picture skip, quantizer, lambda value of 

rate-distortion optimization techniques, ... ), picture size, group of pictures (GOP) layout, 

maximum motion vector search range, and so forth. The controller (650) can be configured 

to have other suitable functions that pertain to the video encoder (603) optimized for a certain 

system design.  

[0088] In some embodiments, the video encoder (603) is configured to operate in a 

coding loop. As an oversimplified description, in an example, the coding loop can include a 

source coder (630) (e.g.,responsible for creating symbols, such as a symbol stream, based on 

an input picture to be coded, and a reference picture(s)), and a (local) decoder (633) 

embedded in the video encoder (603). The decoder (633) reconstructs the symbols to create 

the sample data in a similar manner as a (remote) decoder also would create (as any 

compression between symbols and coded video bitstream is lossless in the video compression 

technologies considered in the disclosed subject matter). The reconstructed sample stream 

(sample data) is input to the reference picture memory (634). As the decoding of a symbol 

stream leads to bit-exact results independent of decoder location (local or remote), the content 

in the reference picture memory (634) is also bit exact between the local encoder and remote 

encoder. In other words, the prediction part of an encoder "sees" as reference picture samples 

exactly the same sample values as a decoder would "see" when using prediction during 

decoding. This fundamental principle of reference picture synchronicity (and resulting drift, 

if synchronicity cannot be maintained, for example because of channel errors) is used in some 

related arts as well.  

10089] The operation of the "local" decoder (633) can be the same as of a "remote" 

decoder, such as the video decoder (510), which has already been described in detail above in 

conjunction with FIG. 5. Briefly referring also to FIG. 5, however, as symbols are available 

and encoding/decoding of symbols to a coded video sequence by an entropy coder (645) and 

the parser (520) can be lossless, the entropy decoding parts of the video decoder (510), 

including the buffer memory (515), and parser (520) may not be fully implemented in the 

local decoder (633).  

[0090] An observation that can be made at this point is that any decoder technology 

except the parsing/entropy decoding that is present in a decoder also necessarily needs to be 

present, in substantially identical functional form, in a corresponding encoder. For this 

reason, the disclosed subject matter focuses on decoder operation. The description of 

encoder technologies can be abbreviated as they are the inverse of the comprehensively
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described decoder technologies. Only in certain areas a more detail description is required 

and provided below.  

[00911 During operation, in some examples, the source coder (630) may perform 

motion compensated predictive coding, which codes an input picture predictively with 

reference to one or more previously-coded picture from the video sequence that were 

designated as "reference pictures". In this manner, the coding engine (632) codes differences 

between pixel blocks of an input picture and pixel blocks of reference pictures) that may be 

selected as prediction reference(s) to the input picture.  

[0092] The local video decoder (633) may decode coded video data of pictures that 

may be designated as reference pictures, based on symbols created by the source coder (630).  

Operations of the coding engine (632) may advantageously be lossy processes. When the 

coded video data may be decoded at a video decoder (not shown in FIG. 6 ), the 

reconstructed video sequence typically may be a replica of the source video sequence with 

some errors. The local video decoder (633) replicates decoding processes that may be 

performed by the video decoder on reference pictures and may cause reconstructed reference 

pictures to be stored in the reference picture cache (634). In this manner, the video encoder 

(603) may store copies of reconstructed reference pictures locally that have common content 

as the reconstructed reference pictures that will be obtained by a far-end video decoder 

(absent transmission errors).  

[0093] The predictor (635) may perform prediction searches for the coding engine 

(632). That is, for a new picture to be coded, the predictor (635) may search the reference 

picture memory (634) for sample data (as candidate reference pixel blocks) or certain 

metadata such as reference picture motion vectors, block shapes, and so on, that may serve as 

an appropriate prediction reference for the new pictures. The predictor (635) may operate on 

a sample block-by-pixel block basis to find appropriate prediction references. In some cases, 

as determined by search results obtained by the predictor (635), an input picture may have 

prediction references drawn from multiple reference pictures stored in the reference picture 

memory (634).  

[0094] The controller (650) may manage coding operations of the source coder (630), 

including, for example, setting of parameters and subgroup parameters used for encoding the 

video data.  

[00951 Output of all aforementioned functional units may be subjected to entropy 

coding in the entropy coder (645). The entropy coder (645) translates the symbols as 

generated by the various functional units into a coded video sequence, by lossless
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compressing the symbols according to technologies such as Huffman coding, variable length 

coding, arithmetic coding, and so forth.  

[00961 The transmitter (640) may buffer the coded video sequences) as created by 

the entropy coder (645) to prepare for transmission via a communication channel (660), 

which may be a hardware/software link to a storage device which would store the encoded 

video data. The transmitter (640) may merge coded video data from the video coder (603) 

with other data to be transmitted, for example, coded audio data and/or ancillary data streams 

(sources not shown).  

[00971 The controller (650) may manage operation of the video encoder (603).  

During coding, the controller (650) may assign to each coded picture a certain coded picture 

type, which may affect the coding techniques that may be applied to the respective picture.  

For example, pictures often may be assigned as one of the following picture types: 

[0098] An Intra Picture (I picture) may be one that may be coded and decoded 

without using any other picture in the sequence as a source of prediction. Some video codecs 

allow for different types of intra pictures, including, for example Independent Decoder 

Refresh ("IDR") Pictures. A person skilled in the art is aware of those variants of I pictures 

and their respective applications and features.  

[0099] A predictive picture (P picture) may be one that may be coded and decoded 

using intra prediction or inter prediction using at most one motion vector and reference index 

to predict the sample values of each block.  

[0100] A bi-directionally predictive picture (B Picture) may be one that may be coded 

and decoded using intra prediction or inter prediction using at most two motion vectors and 

reference indices to predict the sample values of each block. Similarly, multiple-predictive 

pictures can use more than two reference pictures and associated metadata for the 

reconstruction of a single block.  

[0101] Source pictures commonly may be subdivided spatially into a plurality of 

sample blocks (for example, blocks of 4x4, 8x8, 4x8, or 16x16 samples each) and coded on a 

block-by-block basis. Blocks ma' be coded predictively with reference to other (already 

coded) blocks as determined by the coding assignment applied to the blocks' respective 

pictures. For example, blocks of I pictures may be coded non-predictively or they may be 

coded predictively with reference to already coded blocks of the same picture spatial 

prediction or intra prediction). Pixel blocks of P pictures may be coded predictively, via 

spatial prediction or via temporal prediction with reference to one previously coded reference
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picture. Blocks of B pictures may be coded predictively, via spatial prediction or via 

temporal prediction with reference to one or two previously coded reference pictures.  

[01021 The video encoder (603) may perform coding operations according to a 

predetermined video coding technology or standard, such as ITU-T Rec. 1-.265. In its 

operation, the video encoder (603) may perform various compression operations, including 

predictive coding operations that exploit temporal and spatial redundancies in the input video 

sequence. The coded video data, therefore, may conform to a syntax specified by the video 

coding technology or standard being used.  

[0103] In an embodiment, the transmitter (640) may transmit additional data with the 

encoded video. The source coder (630) may include such data as part of the coded video 

sequence. Additional data may comprise temporal/spatial/SNR enhancement layers, other 

forms of redundant data such as redundant pictures and slices, SEI messages, VUI parameter 

set fragments, and so on.  

10104] A video may be captured as a plurality of source pictures (video pictures) in a 

temporal sequence. Intra-picture prediction (often abbreviated to intra prediction) makes use 

of spatial correlation in a given picture, and inter-picture prediction makes uses of the 

(temporal or other) correlation between the pictures. In an example, a specific picture under 

encoding/decoding, which is referred to as a current picture, is partitioned into blocks. When 

a block in the current picture is similar to a reference block in a previously coded and still 

buffered reference picture in the video, the block in the current picture can be coded by a 

vector that is referred to as a motion vector. The motion vector points to the reference block 

in the reference picture, and can have a third dimension identifying the reference picture, in 

case multiple reference pictures are in use.  

[0105] In some embodiments, a bi-prediction technique can be used in the inter

picture prediction. According to the bi-prediction technique, two reference pictures, such as 

a first reference picture and a second reference picture that are both prior in decoding order to 

the current picture in the video (but may be in the past and future, respectively, in display 

order) are used. A block in the current picture can be coded by a first motion vector that 

points to a first reference block in the first reference picture, and a second motion vector that 

points to a second reference block in the second reference picture. The block can be 

predicted by a combination of the first reference block and the second reference block.  

[01061 Further, a merge mode technique can be used in the inter-picture prediction to 

improve coding efficiency.
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[0107] According to some embodiments of the disclosure, predictions, such as inter

picture predictions and intra-picture predictions are performed in the unit of blocks. For 

example, according to the HEVC standard, a picture in a sequence of video pictures is 

partitioned into coding tree units (CTU) for compression, the CTUs in a picture have the 

same size, such as 64x64 pixels, 32x32 pixels, or 16x16 pixels. In general, a CTU includes 

three coding tree blocks (CTBs), which are one luma CTB and two chroma CTBs. Each 

CTU can be recursively quadtree split into one or multiple coding units (CUs). For example, 

a CTU of 64x64 pixels can be split into one CU of 64x64 pixels, or 4 CUs of 32x32 pixels, or 

16 CUs of 16x16 pixels. In an example, each CU is analyzed to determine a prediction type 

for the CU, such as an inter prediction type or an intra prediction type. The CU is split into 

one or more prediction units (PUs) depending on the temporal and/or spatial predictability.  

Generally, each PU includes a luma prediction block (PB), and two chroma PBs. In an 

embodiment, a prediction operation in coding (encoding/decoding) is performed in the unit of 

a prediction block. Using a luma prediction block as an example of a prediction block, the 

prediction block includes a matrix of values (e.g., luma values) for pixels, such as 8x8 pixels, 

16x16 pixels, 8x16 pixels, 16x8 pixels, and the like.  

[0108] FIG. 7 shows a diagram of a video encoder (703) according to another 

embodiment of the disclosure. The video encoder (703) is configured to receive a processing 

block (e.g., a prediction block) of sample values within a current video picture in a sequence 

of video pictures, and encode the processing block into a coded picture that is part of a coded 

video sequence. In an example, the video encoder (703) is used in the place of the video 

encoder (403) in the FIG. 4 example.  

10109] In an HEVC example, the video encoder (703) receives a matrix of sample 

values for a processing block, such as a prediction block of 8x8 samples, and the like. The 

video encoder (703) determines whether the processing block is best coded using intra mode, 

inter mode, or bi-prediction mode using, for example, rate-distortion optimization. When the 

processing block is to be coded in intra mode, the video encoder (703) may use an intra 

prediction technique to encode the processing block into the coded picture; and when the 

processing block is to be coded in inter mode or bi-prediction mode, the video encoder (703) 

may use an inter prediction or bi-prediction technique, respectively, to encode the processing 

block into the coded picture. In certain video coding technologies, merge mode can be an 

inter picture prediction submode where the motion vector is derived from one or more motion 

vector predictors without the benefit of a coded motion vector component outside the 

predictors. In certain other video coding technologies, a motion vector component applicable
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to the subject block may be present. In an example, the video encoder (703) includes other 

components, such as a mode decision module (not shown) to determine the mode of the 

processing blocks.  

[0110] In the FIG. 7 example, the video encoder (703) includes the inter encoder 

(730), an intra encoder (722), a residue calculator (723), a switch (726), a residue encoder 

(724), a general controller (721), and an entropy encoder (725) coupled together as shown in 

FIG. 7.  

[0111] The inter encoder (730) is configured to receive the samples of the current 

block (e.g., a processing block), compare the block to one or more reference blocks in 

reference pictures (e.g., blocks in previous pictures and later pictures), generate inter 

prediction information (e.g, description of redundant information according to inter encoding 

technique, motion vectors, merge mode information), and calculate inter prediction results 

(e.g., predicted block) based on the inter prediction information using any suitable technique.  

In some examples, the reference pictures are decoded reference pictures that are decoded 

based on the encoded video information.  

[01121 The intra encoder (722) is configured to receive the samples of the current 

block (e.g., a processing block), in some cases compare the block to blocks already coded in 

the same picture, generate quantized coefficients after transform, and in some cases also intra 

prediction information (e.g., an intra prediction direction information according to one or 

more intra encoding techniques). In an example, the intra encoder (722) also calculates intra 

prediction results (e.g., predicted block) based on the intra prediction information and 

reference blocks in the same picture.  

10113] The general controller (721) is configured to determine general control data 

and control other components of the video encoder (703) based on the general control data.  

In an example, the general controller (721) determines the mode of the block, and provides a 

control signal to the switch (726) based on the mode. For example, when the mode is the 

intra mode, the general controller (721) controls the switch (726) to select the intra mode 

result for use by the residue calculator (723), and controls the entropy encoder (725) to select 

the intra prediction information and include the intra prediction information in the bitstream 

and when the mode is the inter mode, the general controller (721) controls the switch (726) to 

select the inter prediction result for use by the residue calculator (723), and controls the 

entropy encoder (725) to select the inter prediction information and include the inter 

prediction information in the bitstream.
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10114] The residue calculator (723) is configured to calculate a difference (residue 

data) between the received block and prediction results selected from the intra encoder (722) 

or the inter encoder (730). The residue encoder (724) is configured to operate based on the 

residue data to encode the residue data to generate the transforin coefficients. In an example, 

the residue encoder (724) is configured to convert the residue data from a spatial domain to a 

frequency domain, and generate the transform coefficients. The transform coefficients are 

then subject to quantization processing to obtain quantized transform coefficients. In various 

embodiments, the video encoder (703) also includes a residue decoder (728). Theresidue 

decoder (728) is configured to perform inverse-transform, and generate the decoded residue 

data. The decoded residue data can be suitably used by the intra encoder (722) and the inter 

encoder (730). For example, the inter encoder (730) can generate decoded blocks based on 

the decoded residue data and inter prediction information, and the intra encoder (722) can 

generate decoded blocks based on the decoded residue data and the intra prediction 

information. The decoded blocks are suitably processed to generate decoded pictures and the 

decoded pictures can be buffered in a memory circuit (not shown) and used as reference 

pictures in some examples.  

[0115] The entropy encoder (725) is configured to format the bitstream to include the 

encoded block. The entropy encoder (725) is configured to include various information 

according to a suitable standard, such as the IHEVC standard. In an example, the entropy 

encoder (725) is configured to include the general control data, the selected prediction 

information (e.g., intra prediction information or inter prediction information), the residue 

information, and other suitable information in the bitstream. Note that, according to the 

disclosed subject matter, when coding a block in the merge submode of either inter mode or 

bi-prediction mode, there is no residue information.  

[01161 FIG. 8 shows a diagram of a video decoder (810) according to another 

embodiment of the disclosure. The video decoder (810) is configured to receive coded 

pictures that are part of a coded video sequence, and decode the coded pictures to generate 

reconstructed pictures. In an example, the video decoder (810) is used in the place of the 

video decoder 410) in the FIG. 4 example.  

[0117] In the FIG. 8 example, the video decoder (810) includes an entropy decoder 

(871), an inter decoder (880), a residue decoder (873), a reconstruction module (874), and an 

intra decoder (872) coupled together as shown in FIG. 8.  

[0118] The entropy decoder (871) can be configured to reconstruct, from the coded 

picture, certain symbols that represent the syntax elements of which the coded picture is
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madeup. Such symbols can include, for example, the mode in which a block is coded (such 

as, for example, intra mode, inter mode, bi-predicted mode, the latter two in merge submode 

or another submode), prediction information (such as, for example, intra prediction 

information or inter prediction information) that can identify certain sample or metadata that 

is used for prediction by the intra decoder (872) or the inter decoder (880), respectively, 

residual information in the form of, for example, quantized transform coefficients. and the 

like. In an example, when the prediction mode is inter or bi-predicted mode, the inter 

prediction information is provided to the inter decoder (880); and when the prediction type is 

the intra prediction type, the intra prediction information is provided to the intra decoder 

(872). The residual information can be subject to inverse quantization and is provided to the 

residue decoder (873).  

[01191 The inter decoder (880) is configured to receive the inter prediction 

information, and generate inter prediction results based on the inter prediction information.  

10120] The intra decoder (872) is configured to receive the intra prediction 

information, and generate prediction results based on the intra prediction information.  

[01211 The residue decoder (873) is configured to perform inverse quantization to 

extract de-quantized transform coefficients, and process the de-quantized transform 

coefficients to convert the residual from the frequency domain to the spatial domain. The 

residue decoder (873) may also require certain control information (to include the Quantizer 

Parameter (QP)), and that information may be provided by the entropy decoder (871) (data 

path not depicted as this may be low volume control information only).  

[0122] The reconstruction module (874) is configured to combine, in the spatial 

domain, the residual as output by the residue decoder (873) and the prediction results (as 

output by the inter or intra prediction modules as the case may be) to form a reconstructed 

block, that may be part of the reconstructed picture, which in turn may be part of the 

reconstructed video. It is noted that other suitable operations, such as a deblocking operation 

and the like, can be performed to improve the visual quality.  

[01231 It is noted that the video encoders (403), (603), and (703), and the video 

decoders (410),(510), and (810) can be implemented using any suitable technique. Inan 

embodiment, the video encoders (403),(603), and (703), and the video decoders (410), (510), 

and(810)canbe implemented using oneor moreintegratedcircuits. In another embodiment, 

the video encoders (403), (603), and (603), and the video decoders (410), (510), and (810) 

can be implemented using one or more processors that execute software instructions.  

[01241 II. Transform ProcessingTechniques
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10125] 1. Block partitioning structure including a quadtree partitioning 

structure 

[01261 A block partitioning structure can be referred to as a coding tree. In some 

embodiments, by using a quadtree structure, a coding tree unit (CTU) is split into coding 

units (CUs) to adapt to various local characteristics. A decision on whether to code a picture 

area using an inter-picture (temporal) or intra-picture (spatial) prediction is made at CU level.  

Each CU can be further split into one, two, or four prediction units(PUs) according toaPU 

splitting type. Inside one PU, a same prediction process is applied and relevant information 

is transmitted to a decoder on a PU basis.  

[01271 After obtaining a residual block by applying a prediction process based on the 

PUsplitting type, a CU can be partitioned into transform units(TUs) according to another 

quadtree structure. As can be seen, there are multiple partition conceptions including CU, 

PU, and TU. In some embodiments, a CU or a TU can only be square shape, while a PU may 

be square or rectangular shape. In some embodiments, one coding block may be further split 

into four square sub-blocks, and transform is performed on each sub-block, i.e., TU. Each 

TU can be further split recursively into smaller Tus using a quadtree structure which is called 

residual quadtree (RQT).  

[0128] At a picture boundary, in some embodiments, implicit quadtree split can be 

employed so that a block will keep quad-tree splitting until the size fits the picture boundary.  

[0129] 2. Quadtree plus binary tree (QTBT) block partitioning structure 

[0130] In some embodiments, a quadtree plus binary tree (QTBT) structure is 

employed. The QTBT structure removes the concepts of multiple partition types (the CU, PU 

andTU concepts), and supports more flexibility for CU partition shapes. In the QTBTblock 

structure, a CU can have either a square or rectangular shape.  

[01311 FIG. 9A shows a CTU (910) that is partitioned by using a QTBT structure 

(920) shown in FIG. 913. The CTU (910) is first partitioned by a quadtree structure. The 

quadtree leaf nodes are further partitioned by a binary tree structure or a quadtree structure.  

There can be two splitting types, symmetric horizontal splitting and symmetric vertical 

splitting, in the binary tree splitting. The binary tree leaf nodes are called CUs that can be 

used for prediction and transform processing without any further partitioning. Accordingly, 

CU, PU and TU have the same block size in the QTBT coding blockstruture.  

[01321 In some embodiments, a CU can include coding blocks (CBs) of different 

color components. For example, one CU contains one luma CB and two chroma CBs in the 

case of P and B slices of the 4:2:0 chroma format. A CU can include a CB of a single color
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component. For example, one CU contains only one luma CB or just two chroma CBs in the 

case of I slices.  

[01331 The following parameters are defined for the QTBT partitioning scheme in 

some embodiments: 

- CTUsize: the root node size of a quadtree, e.g. the same concept as in HEVC.  

-MinQTSize: the minimum allowed quadtree leaf node size.  

--- MarIaBize: the maximum allowed binary tree root node size.  

-MaxBTDepth: the maximum allowed binary tree depth.  

-- AinB7Size: the minimum allowed binary tree leaf node size.  

[01341 In one example of the QTBT partitioning structure, the CTUsize is set as 

128x128 luma samples with two corresponding 64:64 blocks of chroma samples, the 

MinQTSize is set as 16x16, theMaxBTSize is set as 64x64, the MinBTSize (for both width 

and height) is set as 4x4, and the MaxBIDepth is set as 4. The quadtreepartitioningis 

applied to the CTU first to generate quadtree leaf nodes. The quadtree leaf nodes may have a 

size from 16x16 (i.e., the MinO7ize) to 128x128 (i.e., the CTU size). If the leaf quadtree 

node is 128 x128, it will not be further split by the binary tree since the size exceeds the 

Ma.BTSize (i.e., 64x64). Otherwise, the leaf quadtree node could be further partitioned by 

the binary tree. Therefore, the quadtree leaf node is also the root node for the binary tree and 

it has the binary tree depth as 0.  

[0135] When the binary tree depth reaches MaxBiDeph (i.e, 4), no further splitting 

is considered. When the binary tree node has width equal to MinBiSize (i.e., 4), no further 

horizontal splitting is considered. Similarly, when the binary tree node has height equal to 

MnBTize, no further vertical splitting is considered. The leaf nodes of the binary tree are 

further processed by prediction and transform processing without any further partitioning. In 

an embodiment, a maximum CTU size is 256x256 luma samples.  

[0136] In FIGs. 9A and 9B, the solid lines indicate quadtree splitting and dotted lines 

indicate binary tree splitting. In each splitting (i.e., non-leaf) node of the binary tree, one flag 

is signaled to indicate which splitting type (i.e., horizontal or vertical) is used. For example, 

0 indicates a horizontal splitting and I indicates a vertical splitting. For the quadtree 

splitting, there is no need to indicate the splitting type since quadtree splitting always splits a 

block both horizontally and vertically to produce 4 sub-blocks with an equal size.  

[01371 In some embodiments, the QTBT scheme supports the flexibility for the luma 

and chroma to have a separate QTBT structure. For example, for P and B slices, the luma 

and chroma blocks in one CTU share the same QTBT structure. However, for I slices, the
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luma CTB is partitioned into CUs by a QTBTstructure, and the chroma blocks are 

partitioned into chrorna CUs by another QTBT structure. Thus, a CU in an I slice consists of 

a coding block of the luma component or coding blocks of two chroma components, and a 

CU in a P or B slice consists of coding blocks of all three color components.  

10138] In some embodiments, inter prediction for small blocks is restricted to reduce 

memory access of motion compensation. For example, bi-prediction is not supported for 4x8 

and 8:x4 blocks, and inter prediction is not supported for 4x4 blocks.  

[0139] 3. Ternary tree (TT) block partitioning structure 

[0140] In some embodiments, a multi-type-tree (MTIT) structure is used for 

partitioning a picture. The MTT structure is a more flexible tree structure than the QTBT 

structure. In MTT, in addition to quad-tree and binary-tree, horizontal center-side triple-tree 

and vertical center-side triple-tree as shown in FIG. 9C and FIG. 9D, respectively, are 

employed. Triple tree partitioning can complement quad-tree and binary-tree partitioning.  

For example, triple-tree partitioning is able to capture objects which locate in a block center, 

while quad-tree and binary-tree can split crossing block centers. The width and height of 

partitions by triple trees are a power of 2 so that no additional transform partition is needed.  

[0141] In an example, the design of a two-level tree is mainly motivated by 

complexity reduction. For example, the complexity of traversing of a tree is TD, where T 

denotes a number of split types, and D is a depth of tree.  

[01421 4. Primary transform examples 

[0143] In some embodiments, such as in HEVC, 4-point, 8-point, 16-point and 32

point DCT-2 transforms are used as primary transforms. FIGs. IA-IOD show transform 

core matrices of 4-point, 8-point, 16-point, and 32-point DCT-2, respectively. Elements of 

those transform core matrices can be represented using 8-bit integers, and thus those 

transform core matrices are referred to as 8-bit transform cores. As shown, the transform 

core matrix of a smaller DCT-2 is a part of that of a larger DCT-2.  

[0144] The DCT-2 core matrices show symmetry/anti-symmetry characteristics.  

Accordingly, a so-called"partial butterfly" implementation can be supported to reduce the 

number of operation counts (multiplications, adds/subs, shifts). Identical results of matrix 

multiplication can be obtained using the partial butterfly implementation.  

[0145] 5. Additional primary transform examples 

[0146] In some embodiments, in addition to 4-point, 8-point, 16-point and 32-point 

DCT-2 transforms described above, additional 2-point and 64-point DCT-2 are used. FIGs.  

I1A-1IE shows a 64x64 transform core matrix of the 64-point DCT-2 transform.
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10147] In some embodiments, in addition to DCT-2 and 4x4 DST-7 transforms, an 

adaptive multiple transform (AMT) (also known as enhanced multiple transform (EMT), or 

multiple transform selection (MTS)) is used for residual coding of both inter and intra coded 

blocks. The AMT uses multiple selected transforms from discrete cosine transform (DCT)/ 

discrete sine transform (DST) families in addition to DCT-2 transforms, such as transform 

core matrices of DST-7, or DCT-8 transform. FIG. 12 shows transform basis functions of the 

selected )ST/DCT transforms.  

[0148] In some embodiments, the DST/DCT transform core matrices used in AMT 

are represented with 8-bit representation. In some embodiments, AMT is applied to CUs 

with both width and height smaller than or equal to 32. Whether to apply AMT or not can be 

controlled by a flag (e.g., an mtsflag). For example, when the mtsflag is equal to 0, only 

DCT-2 is applied to coding a residue block. When the mts flag is equal to 1, an index (e.g., 

an mts idx), can further be signaled using 2 bins to specify a horizontal and vertical 

transforms to be used.  

[0149] FIG. 13 shows a table (1300) illustrating a mapping relationship between the 

index (e.g., the mts idx) value and respective horizontal or vertical transforms. A row (1301) 

with the mts idx having a value of -1 corresponds to the scenario where the flag (e.g., the 

mts flag) is equal to 0, and DCT-2 transform is used. Rows (1302)-(1305) with the mts idx 

having a value of 0, 1, 2, or 3 correspond to the scenario where the mtsflag is equal to 1. In 

the right two columns of the table (1300), 0 represents a transform type of DCT-2, I 

represents a transform type of DST-7, and 2 represents a transform type of DCT 8.  

[0150] FIGs. 14A-141) show transform core matrices of DST-7 transform. FIGs.  

15A-I5D show transform core matrices of DCT-8 transform.  

[0151] 6. Intra sub-partition (ISP) coding mode 

[01521 In some embodiments, an intra sub-partition (ISP) coding mode is employed.  

In ISP coding mode, a luma intra-predicted block can be partitioned vertically or horizontally 

into 2 or 4 sub-partitions. The number of sub-partitions can depend on a size of the block.  

FIG. 16 shows the number of sub-partitions depending on the block size. FIG. 17 shows an 

example where a block of 4x8 or 8x4 is partitioned into two sub-partitions. FIG. 18 shows an 

example where a block having a size that is larger than 4x8 or 8x4 is partitioned into four 

sub-partitions. In an example, all sub-partitions fulfill a condition of having at least 16 

samples. In an example, ISP is not applied to chroma components.  

[0153] In an example, for each of sub-partitions partitioned from a coding block, a 

residual signal is generated by entropy decoding respective coefficients sent from an encoder
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and then inverse quantizing and inverse transforming them. Then, a first one of the sub

partitions is intra predicted to generate a prediction signal. The prediction signal is added to 

the respective residual signal of the first sub-partition to obtain corresponding reconstructed 

samples. Thereafter, the reconstructed sample values of the first sub-partition can be 

available to generate a prediction of a second one of the sub-partitions. This process can be 

repeated sub-partition by sub-partition, until all sub-partitions from the coding block are 

reconstructed. In an example, all the sub-partitions share a same intra mode.  

[0154] In an embodiment, the ISP coding mode is only tested with intra modes that 

are part of a most probable mode (MPM) list. Accordingly, if a block uses ISP, then aMPM 

flag can be inferred to be one. In addition, when ISP is used for a certain block, then a 

respective MPM list will be modified to exclude DC mode and to prioritize horizontal intra 

modes for the ISP horizontal split and vertical intra modes for the vertical one.  

[0155] In ISP coding mode, each sub-partition can be regarded as a TU, since the 

transform and reconstruction is performed individually for each sub-partition.  

[0156] FIGs. 19A-19B shows an example of syntax elements (1900) signaled for an 

ISP codingmode. As shown in a frame (1910), a syntax element, e.g., 

intrasubpartitions mode flag, indicates whether ISP is used or not. A syntax element, e.g., 

intra subpartitionssplit flag, indicates a partition direction (vertical or horizontal).  

[01571 7. Sub-block transform (SBT) 

[0158] In some embodiments, a sub-block transform (SBT), also referred to as 

spatially varying transform (SVT), is employed. The SBT can be applied to inter prediction 

residuals. In some examples, residual block is included in the coding block and is smaller 

than the coding block. Thus a transform size in SBTis smaller than the coding block size.  

For the region which is not covered by the residual block, zero residual can be assumed, and 

thus no transform processing is performed.  

[0159] FIGs. 20A-20D shows sub-block types (SVT-H, SVT-V) (e.g., horizontally or 

vertically partitioned), sizes and positions (e.g., left half, left quarter, right half, right quarter, 

top half, top quarter, bottom half, bottom quarter) supported in SBT. The shaded regions 

labeled by letter "A" is residual blocks with transform, and the other regions is assumed to be 

zero residual without transform.  

[0160] As an example, FIGs. 21A-21I show changes to a specification text of a video 

coding standard (e.g., VVC) when SBT is used. The added texts are shown in frames from 

(2101) to (2113). As shown, additional syntax elements, e.g., additional overhead bits 

cu-sbt-flag, cu_sbt_quadflag, cu_sbthorizontalflag, and cu_sbtjposflag, can be signaled
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to indicate the sub-block type (horizontal or vertical), size (half or quarter) and position (left, 

right, top or bottom), respectively.  

[01611 8. YUV formats 

[0162] FIG. 22 shows different YUV formats (e.g., 4:4:4, 4:2:2. 4:1:1. and 4:2:0) 

used in some embodiments. In an example, a cross component linear model intra prediction 

is used for the 4:2:0 format. A six-tap interpolation filter can be applied to obtain a down

sampled luma sample corresponding to a chroma sample as shown in FIG. 22. In an 

example, a down-sampled luma sample Rec'Lx, y] can be calculated from nearby 

reconstructed luma samples (represented by Rec[x, y]) as follows: 

Rec' [xy=(2 x RecL [2x,2y]+2 x Rec, [2x,2y+|1]+ 

Rec,[ 2x-1, 2v| Rec [2x +1, 2y|+ 

Rec, [2x-1,2v1+Rec [2x+1,2y+1|+4)>>3 

The down-sampled luma sample Rec'L[x, y] can be used to predict a chroma sample using a 

cross component linear model mode.  

[0163] 9. Virtual pipeline data unit (VPDJ) 

[01641 Virtual pipeline data units (VPDUs) can be defined as non-overlapping MxM

luma (L)/NxN-chroma (C) units in a picture. In some hardware decoder implementations, 

successive VPDUs are processed by multiple pipeline stages at the same time. Different 

stages process different VPDUs simultaneously. A VPDU size can be roughly proportional 

to a buffer size in pipeline stages, so that it is desired to keep the VPDU size at a certain size 

(e.g., 64x64 or smaller). In certain decoders, a VPDU size is set to a maximum transform 

nit(T) size.Enlargingamaximum TU size from 32x32-L/16x16-C in HEVC to64x64

L/32x32-C in current VVC can bring a coding gain, which expectedly results in 4 times of 

VPDU size in comparison with HEVC. However, BT andTT structures that are adopted in 

VVC for achieving additional coding gains can be applied to 128x128-L/64x64-C coding tree 

blocks recursively, leading to 16 times of VPDU size (128x28-L/64x64-C) in comparison 

with IHEVC.  

[0165] FIG. 23 shows certain TT and BT partitioning that are disallowed.  

10166] In order to keep the VPDU size as 64x64 luma samples, certain partition 

restrictions (with syntax signaling modification) are applied in some embodiments: 

- TT split is not allowed for a CU with either width or height, or both width and 

height equal to 128.  

- For a 128xN CU with N < 64 (i.e., width equal to 128 and height smaller than 

128), horizontal BT is not allowed.
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- For an Nx128 CU with N 64 (i.e., height equal to 128 and width smaller than 

128), vertical BT is not allowed.  

[01671 IIL Transform Block Partitioning and Processing Techniques 

[0168] In some embodiments, a fixed maximum allowable transform unit (TU) size or 

maximumTU size (e.g., 64x64 pixels or samples) is used. In some embodiments, 

controllable or configurable maximum TU sizes are employed since a maximum TU size can 

have an impact on hardware complexity, such as for encoder implementation (e.g., pipeline 

intermediate buffer size, number of multipliers, and the like). For example, in addition to a 

size of 64x64 samples, a maximum TU size can be of other sizes, such as 32x32 samples, 

16x16 samples, or the like.  

[0169] In certain video standards, SBTand ISP can be used. For example, in SBT, a 

SPS flag, e.g., sps_sbtmaxsize_64_flag is signaled to indicate whether a largest SBT size is 

32-length or 64-length. When sps sbt max size_64_flag is true (i.e., the largest SBT size is 

64-length) and the maximum TU size is 32-point, an encoder crash may be triggered. In 

general, an L-length or L-point size refers to a maximum dimension of a CU, a TU, a CB, a 

TB, a VPDU, or the like. For example, when the maximum TU size is 32-point or 32-length, 

a width and a height of a TU are less than or equal to 32.  

[0170] In some embodiments, the ISP mode is allowed for various CU sizes, 

however, when the maximum TU size is set to be smaller than 64, a conflict can occur 

whether an implicit transform split is performed or an explicit transform split using ISP with 

signaling is performed. For example, when the maximum TU size is 16, for a 64x16 CU, 

without ISP, theCUan be implicitly split into four 16x16 TUs. With ISP, the 64x16 CU 

may be partitioned with a vertical ISP and thus may be split into four 16x16 TUs, but using 

signaling.  

[01711 When the maximum TU size is smaller than 64x64, a TU processing order is 

needed to align with an implementation of VPDUs.  

10172] Embodiments described herein may be used separately or combined in any 

order. Further, the embodiments may be implemented by processing circuitry (e.g., one or 

more processors or one or more integrated circuits) in an encoder, a decoder, or the like. In 

one example, the one or more processors execute a program that is stored in a non-transitory 

computer-readable medium.  

[01731 In the disclosure, a high-level syntax (HLS) element can refer to a Video 

Parameter Set (VPS), a Sequence Parameter Set (SPS), a Picture Parameter Set (PPS), a Slice 

header, a Tile header, aTile group header, or the like. A CTU header can refer to syntax
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element(s) signaled for a CTU, e.g., as header information. In an example, a CTU size is a 

maximum CU size.  

[01741 In general, when a luma size (represented by luma samples) of a certain unit 

(e.g., a TU, a CU) is known, a corresponding chroma size that is specified by a number of 

chroma samples can be obtained. In an example, a YJV format is 4:2:0 is used and a CU has 

a CU size of 64x64 luma samples (or 64x64-L). Accordingly, the CU has a CU size of 32x32 

chroma samples (or 32x32-C). The CU size can be referred to as 64x64-L, 32x32Cor 

64x64-L/32x32-C. Similarly, a TU has a TU size of 64x64 luma samples (or 64x64-L).  

Accordingly, theTU has a TU size of 32x32 chroma samples (or 32x32C).TheTU size can 

be referred to as 64x64-L, 32x32-C, or 64x64-L/32x32-C. For example, the TU includes a 

luma transform block (TB) and two chroma TBs. The lumaTB has a size of 64x64-L and 

each of the chroma TBs has a size of 32x32-C. In general, embodiments and methods 

described for a CU or a TU can be suitably adapted to a CB and a TB, respectively.  

10175] The CU can include a luma block of 64x64-L and two chroma blocks of 

32x32-C. In the descriptions below, a TU size is represented using luma samples in the TU.  

For example, a maximumTU size of M samples refers to a maximum TU size of M luma 

samples. Similarly, other sizes, such as a VPDU size and a CU size, are also represented 

using respective luma samples in corresponding units, such as a VPDU and a CU, 

respectively. Of course, the TU size, the VPDU size, the CU size, or the like can be 

represented using chroma samples or a combination of luma and chroma samples.  

[0176] A unit size may refer to a width, a height, or an area of the unit. For example, 

a maximum TU size may refer to a width, a height, or an area of a maximum TU. In general, 

a TU, a CU, a VPDU, or the like can have any suitable shape, including a rectangular shape, 

a square shape, an L' shape, or any suitable shape. When the shape of the unit is irregular, 

such as an L' shape, the unit size can specify an area of the unit.  

[0177] In some embodiments, a VPDU size and/or a maximum TU size can be 

signaled in a coded video bitstream, such as in a SPS and a PPS. As described above, the 

VPDU size and/or the maximum TU size can be signaled in terms of luma samples.  

Alternatively, the VPDU size and/or the maximum TU size can be signaled in terms of 

chroma samples.  

[0178] In some embodiments, aVP)U size and/or a maximum TU size can be stored 

in an encoder and/or a decoder, thus the VPDU size and/or the maximum TU size is not 

signaled. In one example, the VPDU size and/or the maximum TU size can be stored in
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profile and/or level definitions. The VPDU size and/or the maximum TU size can be stored 

in terms of luma or chroma samples.  

[01791 In some embodiments, VPDUs share the same size but may have different 

shapes. For example, when a VPDU size is 4096 in terms of luma samples, the VPDU can 

have a square shape of 64x64 or a rectangular shape of 32x128. The VPDU can also have 

other shapes, such as an L shape, as long as the VPDU size is 4096 in terms of luma samples.  

The above description is also applicable to certain TUs.  

[0180] 1. Example A 

[0181] According to aspects of the disclosure, a maximum allowable U size(also 

referred to as a maximum TU size) is M samples (e.g., a size of MxM samples). In an 

example, the maximum width and the maximum height of theTU is M. In an example, the 

maximum area of the TU is MxM. A processing data unit size (such as a VPDU size) is K 

samples (e.g., a size of KxK samples). In an example, the maximum width and the maximum 

height of the processing data unit size is K. In an example, the maximum area of the 

processing data unit size is KxK. A CU of WxH has a width of W samples and a height of H 

samples. The CU can be partitioned into multiple sub-units, referred to as sub-processing 

units (SPUs), based on the CU size and the processing data unit size K. The CU can be 

partitioned into the SPUs using any suitable partitioning structures or a combination of any 

suitable partitioning structures, such as QTBT, QT, BT, TT, or a combination thereof The 

SPUs may have a same size or different sizes.  

[0182] In an embodiment, the CU is partitioned into the SPUs when the width W or 

the height - is larger than K. In an example, the SPUs have a same size i.e., a SPU size) and 

each SPU has a size of Min(W, K) x Min(H, K) samples. Thus, a width of each SPU is a 

minimum of W and K, and a height of the SPU is a minimum of H and K. In some examples, 

prior to partitioning the CU, whether to partition the CU can be determined based on the size 

of the CU and the processing data unit size K.  

10183] A SPU in the CU can be further partitioned intoTUs having a size of, for 

example, MxM samples. In some examples, the SPU can be partitioned into the TUs having 

a size of Min( WK, M) x Min(,K, M). In some examples, prior to partitioningthe SPU, 

whether to partition the SPU can be determined based on the size of the SPU and the 

maximum TU sizeM.The SPU can be partitioned using any suitable partitioning structures 

or a combination of any suitable partitioning structures, such as QTBT, QT, BT, TT, or a 

combination thereof Accordingto aspects of the disclosure, one ormore partitioning 

structures to partition the SPU can be determined based on the size of the SPU and the
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maximum'TU size M. In an example, the SPU can be recursively split into thelTbs using the 

determined one or more partitioning structures.  

[01841 In an example, when the width and the height of the SPU are larger than the 

maximum TUbsize M, the SPU is split into the TUs of MxM using a quadtree partitioning 

structure. The SPU can be recursively split into the TJs using the quadtree partitioning 

structure.  

[0185] In an example, when the width of the SPU is larger than M and the height of 

the SPU is equal to M, the SPU is split into the TUs of MxM using a vertical binary tree 

partitioning structure. For example, M is 32and the SP has a size of 64x32. Thus the 

width of the SPU is 64 and the height of the SPU is 32. Accordingly, the vertical binary tree 

partitioning structure can be used to split theSPIintotwoTUs of 32x32. The SPIcan be 

recursively split into the TLs using the vertical binary tree partitioning structure.  

[0186] In an example, when the width of the SPU is larger than M and the height of 

the SPU is less M, the SPU can be split into the TUs using the vertical binary tree partitioning 

structure where the width of the TUs is M and the height of the TUs is equal to the height of 

the SPU.  

[0187] In an example, when the height of the SPU is larger than M and the width of 

the SPT isequal to M, the SPU is split into these T of MxM using a horizontal binary tree 

partitioning structure. The SPU can be recursively split into the TUs using the horizontal 

binary tree partitioning structure. For example, M is 32 and the SPU has a size of 32x64.  

Thus the width of the SPU is 32 and the height of the SPU is 64. Accordingly, the horizontal 

binary tree partitioning structure can be used to split the SPintotwoTUsof 32x32 

10188] When the height of the SPIT is larger than M and the width of the SPU is less 

M, the SPU can be split into the Tbsusing the horizontal binary tree partitioning structure 

where the height of the TUs is M and the width of the TUs is equal to the width of the SPU.  

[0189] The transform tree syntax in FIG. 24 shows an example of splitting the SPU 

and a processing order used to process the TUs.  

[0190] In an example, the CU of WxH can be partitioned in two steps. In a first step, 

theCUispartitionedintotheSPUswhere each SPU has the size of Min(W, K) x Min(IK) 

Subsequently, in a second step, each SPU is further partitioned into the TUs where each TU 

has the size of MxM.  

[01911 When processing the TUs in the CU, the SPUs in the CU can be scanned and 

processed in a first scan order (also referred to as a first order). Further, within each of the
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SPUs, theTUs can be scanned and processed in a second order (also referred to as a second 

order).  

[01921 In various embodiments, the first order for processing the SPUs can be a raster 

scan order, a vertical scan order (e.g., scans SPUs column-wise from left to right or vice 

versa), a zig-zag order, a diagonal scan order, or the like.  

[01931 In various embodiments, the second order for processing the TUs within each 

SPU can be a raster scan order, a vertical scan order (e.g., scans the TUs column-wise from 

left to right or vice versa), a zig-zag order, a diagonal scan order, or the like.  

[0194] The first order and the second order can be the same or different in different 

embodiments. For example, the first order for processing the SPUs and the second order for 

processing the TBs within each of the SPUs are both the raster scan order in an embodiment.  

[01951 2. Example B 

[0196] FIG. 25 shows a CU (2510) having a size of Wx samples where W=128, and 

H=64. A maximumTU size M is 32 samples. The processing data unit size K, such as a 

VPDU size, is 64 samples. The CU (2510) is first split into a first 64x64 SPU (2520) and a 

second 64x64 SPU (2530). The first SPU (2520) and the second SPU (2530) can then be 

further partitioned into TUs 0-7 each having a size of MxM samples. The TUs 0-3 are 

included in the first SPU (2520), and the TUs 4-7 are included in the second SPU (2530).  

[01971 According to the first order, the first SPU (2520) can first be processed 

followed by the second SPU (2530). Within the first SPU (2520) or the second SPU (2530), 

the second order used for processing the TUs 0-3 or 4-7 is the raster scan order. Accordingly, 

the TUs 0-7 are processed according to an order indicated by arrowa (2551). Thefirstorder 

and/or the second order can be determined explicitly (e.g., via signaling from an encoder to a 

decoder) or implicitly.  

[01981 In some examples, partitioning a CU into SPUs where each of the SPUs 

further includes TUs as described above improves coding efficiency. Referring to FIG. 25., in 

an example, the first SPU (2520) is a first VPDU and the second SPU (2530) is a second 

VPDU. Each of the first VPDU (or the first SPU (2520)) and the second VPDU (or the 

second SPU (2530)) can sequentially pass through a multi-stage pipeline including a first 

stage (e.g., entropy decoding), a second stage (e.g., de-quantization), a third stage (e.g., an 

inverse transform), and/or the like. According to the first order shown in FIG 25, the first 

SPU (2520) is to be processed prior to the second SPU (2530), thus the first SPU (2520) is 

processed by the first stage and then goes to the second stage. In an example, when the first 

SPU (2520) is processed by the second stage, the second SPU (2530) is processed by the first
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stage to improve the coding efficiency. Subsequently, the first SPU (2520) goes to the third 

stage and the second SPU (2530) can move to the second stage. When the first SPU (2520) is 

processed by the third stage, the second SPU (2530) can be processed by the second stage.  

The above description is given using VPDUs and a multi-stage pipeline as an example and 

can be suitably adapted to other architectures or video coding methods. The above 

description can be adapted when the first SPU (2520) is included in the first VPDU and the 

second SPU (2530) is included in the second VPDU. At least a part of the processing of the 

SPUs in the different stages is performed simultaneously.  

[0199] As described above, when the SPU size is larger than theTU size, multiple 

TUs in the CU can be grouped into a processing data unit, such as a SPU (or a VPDU) where 

theSPUs canbe processed in a multi-stage pipeline that allows parallel processing (or 

simultaneous processing) of successive SPUs. In some examples, The description can be 

modified as follows: the CU is partitioned into first units. Further, each of the first units can 

be partitioned into second units. Each of the second units may be partitioned into third units.  

In an example, a size of the first units is larger than a size of the second units, and the size of 

the second units is larger than a size of the third units. Such partitioning may be beneficial 

when a first multi-stage pipeline is nested within a second multi-stage pipeline.  

[0200] 3. Example C 

[02011 FIG. 26A shows a CU (2610A) having a size of WxH samples where W=128, 

and H1=32. Themaximum TU size Mis16 samples. The processing data unit size K, such as 

a VPDU size, is 64 samples. A minimum of W and K is 64, while a minimum of H and K is 

32. Thus, a size of a SPUcan be determined to be 64x32 samples, for example, to align 

transform blocks with VPDUs. The CU (2610A) can be partitioned into a left SPU (2620A) 

and a right SPU (2630A) each having a size of 64x32 samples. The two SPUs (2620A) and 

(263OA) can be scanned and processed in an order from left to right.  

[0202] Each of the two SPUs (2620A) and (2630A) can be further split into TUs each 

having the maximum TU size, 16x16 samples. As shown, the left SPU (2620A) is partitioned 

into the TUs 0-7, while the right SPU (2630A) is partitioned into the TUs 8-15. In the SPU 

(2620A), theTUs 0-7 can be processed in the raster scan order. In the SPU (2630A), theTTs 

8-15 can be processed in the raster scan order. Accordingly, the TUs 0-15 can be scanned 

and processed in an order indicated by arrows (2651 A) where the TU 0 is processed first and 

the TU 15 is processed after the TUs 0-14 are processed.  

[0203] 4. Example D
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10204] FIG. 26B shows a CU (2610B) having a size of WxH samples where W=128, 

and -::::32. The maximum TU size M is 16 samples. The processing data unit size K. such as 

a VDLJ size, is 64 samples. In a similar way as in the FIG. 25 example, the CU (2610B) can 

be partitioned into two SPUs (2620B) and (2630B) that can each be further partitioned into 

TUs. The SPUs (2620B) and (2630B) can be processed from left to right in the same order as 

in FIG. 25. However, different from the FIG. 25 example, the TUs 0-7 in the SPU (2620B) 

are processed in the zig-zag scan order, and the TUs 8-15 in the SPU (2630B) are processed 

in the zig-zag scan order.  

[0205] 5. Example E 

[02061 FIG. 27 shows a flow chart outlining a transform block partitioning and 

processing process (2700) according to an embodiment of the disclosure. The process (2700) 

can be used in the reconstruction of a block coded in intra mode or inter mode. In various 

embodiments, the process (2700) are executed by processing circuitry, such as the processing 

circuitry in the terminal devices (210), (220), (230) and (240), the processing circuitry that 

performs functions of the video encoder (403), the processing circuitry that performs 

functions of the video decoder (310), the processing circuitry that performs functions of the 

video decoder (410), the processing circuitry that performs functions of the video encoder 

(603), and the like. In some embodiments, the process (2700) is implemented in software 

instructions, thus when the processing circuitry executes the software instructions, the 

processing circuitry performs the process (2700). The process starts at (S2701) and proceeds 

to (S2710).  

[0207 At (S2710), coded information of a CU in a picture can be decoded from a 

coded video bitstream. The coded information can indicate a width of W samples and a 

height of - samples of the CU.  

[02081 At (S2720), the CU can be partitioned into SPUs, for example, when at least 

one of the width W and the height H of the CU is larger than the processing data unit size K, 

such as described with reference to FIGs. 24-26. Based on the processing data unit size K 

and the size of the CU, a size of the SPUs can be determined. A width of the SPUs can be a 

minimum one of W and K, and a height of the SPUs can be a minimum one of - and K.  

Accordingly, the CU can be partitioned into the SPUs each having the determined width and 

height. For example, when W is 128, H is 64, and K is 64, the CU can be divided into a first 

SPU of 64x64 and a second SPU of 64x64. For example, the processing data unit can be a 

VPDU, and thus K can be a VPDU size.
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10209] At (S2730), one or more partitioning structures to partition each of the SPUs 

can be determined, for example, based on one or a combination of the width and the height of 

the SPUs and a maximumTU size of M samples. In an example, at least one of the width 

and the height of the SPUs is larger than M 

10210] As described above, any suitable partitioning structure can be used to partition 

or split each of the SPUs. In an example, when the width and the height of the SPU are larger 

than M, the one or more partitioning structures is determined to be a quadtree partitioning 

structure. In an example, when the width of the SPU is larger than M and the height of the 

SPU is not larger than M, the one or more partitioning structures is determined to be a 

vertical binary tree partitioning structure. In an example, when the height of the SPU is 

larger than M and the width of the SPU is not larger than M, the one or more partitioning 

structures is determined to be a horizontal binary tree partitioning structure.  

[0211] At (S2740), each of the SPUs can be partitioned into TUs based on the 

determined one or more partitioning structures. In an example, the respective SPU can be 

recursively partitioned into the TUs using the determined one or more partitioning structures.  

[02121 At (S2750), theTUs of the SPUs are processed according to a processing 

order. For example, the SPUs can be processed according to the first order, and the TUs in 

each of the SPUs can be processed according to the second order, as described above.  

Residual data of each TU can be determined by various decoding operations (e.g., entropy 

decoding of transform coefficients, inverse quantization or de-quantization, inverse 

transforming, and/or the like). The process (2700) can proceed to (S2799) and terminate.  

[0213] The process (2700) is described using a CU as an example. The process 

(2700) can be suitably adapted for a CB, such as a luma block, a chroma block, or the like.  

For purposes of brevity, the description for a CB is omitted.  

[02141 The process (2700) can be suitably adapted. For example, one or more steps 

can be modified, omitted, or combined. For example, steps (S2730) and (S2740) can be 

combined into a single step. Additional step(s) can also be added. An order that the process 

(2700) is executed can also be modified.  

[0215] IV. Computer System 

[0216] The techniques described above, can be implemented as computer software 

using computer-readable instructions and physically stored in one or more computer-readable 

media. For example, FIG. 28 shows a computer system (2800) suitable for implementing 

certain embodiments of the disclosed subject matter.
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10217] The computer software can be coded using any suitable machine code or 

computer language, that may be subject to assembly, compilation, linking, or like 

mechanisms to create code comprising instructions that can be executed directly, or through 

interpretation, micro-code execution, and the like, by one or more computer central 

processing units (CPUs), Graphics Processing Units (GPUs), and the like.  

[02181 The instructions can be executed on various types of computers or components 

thereof, including, for example, personal computers, tablet computers, servers, smartphones, 

gaming devices, internet of things devices, and the like.  

[0219] The components shown in FIG. 28 for computer system (2800) are exemplary 

in nature and are not intended to suggest any limitation as to the scope of use or functionality 

of the computer software implementing embodiments of the present disclosure. Neither 

should the configuration of components be interpreted as having any dependency or 

requirement relating to any one or combination of components illustrated in the exemplary 

embodiment of a computer system (2800).  

[0220] Computer system (2800) may include certain human interface input devices.  

Such a human interface input device may be responsive to input by one or more human users 

through, for example, tactile input (such as: keystrokes, swipes, data glove movements), 

audio input (such as: voice, clapping), visual input (such as: gestures), olfactory input (not 

depicted). The human interface devices can also be used to capture certain media not 

necessarily directly related to conscious input by a human, such as audio (such as: speech, 

music, ambient sound), images (such as: scanned images, photographic images obtain from a 

still image camera), video (such as two-dimensional video, three-dimensional video including 

stereoscopic video).  

[0221] Input human interface devices may include one or more of (only one of each 

depicted): keyboard (2801), mouse (2802), trackpad (2803), touch screen (2810), data-glove 

(not shown),joystick (2805), microphone (2806), scanner (2807), camera (2808).  

10222] Computer system (2800) may also include certain human interface output 

devices. Such human interface output devices may be stimulating the senses of one or more 

human users through, for example, tactile output, sound, light, and smell/taste. Such human 

interface output devices may include tactile output devices (for example tactile feedback by 

the touch-screen (2810), data-glove (not shown), or joystick (2805), but there can also be 

tactile feedback devices that do not serve as input devices), audio output devices (such as: 

speakers (2809), headphones (not depicted)), visual output devices (such as screens (2810) to 

include CRTscreens, LCD screens, plasma screens, OLED screens, each with or without
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touch-screen input capability, each with or without tactile feedback capability-some of 

which may be capable to output two dimensional visual output or more than three 

dimensional output through means such as stereographic output; virtual-reality glasses (not 

depicted), holographic displays and smoke tanks (not depicted)), and printers (not depicted).  

10223] Computer system (2800) can also include human accessible storage devices 

and their associated media such as optical media including CD/DVD ROM/RW (2820) with 

CD/DVD or the like media (2821), thumb-drive (2822), removable hard drive or solid state 

drive (2823), legacy magnetic media such as tape and floppy disc (not depicted), specialized 

RO0M/ASIC/PLD based devices such as security dongles (not depicted), and the like.  

[02241 Those skilled in the art should also understand that term "computer readable 

media" as used in connection with the presently disclosed subject matter does not encompass 

transmission media, carrier waves, or other transitory signals.  

[0225] Computer system (2800) can also include an interface to one or more 

communication networks. Networks can for example be wireless, wireline, optical.  

Networks can further be local, wide-area, metropolitan, vehicular and industrial, real-time., 

delay-tolerant, and so on. Examples of networks include local area networks such as 

Ethernet, wireless LANs, cellular networks to include GSM, 3G, 4G, 5G, LTE and the like, 

TV wireline or wireless wide area digital networks to include cableTV, satellite TV, and 

terrestrial broadcast TV, vehicular and industrial to include CANBus, and so forth. Certain 

networks commonly require external network interface adapters that attached to certain 

general purpose data ports or peripheral buses (2849) (such as, for example USB ports of the 

computer system (2800)); others are commonly integrated into the core of the computer 

system (2800) by attachment to a system bus as described below (for example Ethernet 

interface into a PC computer system or cellular network interface into a smartphone computer 

system). Using any of these networks, computer system (2800) can communicate with other 

entities. Such communication can be uni-directional, receive only (for example, broadcast 

TV), uni-directional send-only (for example CANbus to certain CANbus devices), or bi

directional, for example to other computer systems using local or wide area digital networks.  

Certain protocols and protocol stacks can be used on each of those networks and network 

interfaces as described above.  

[0226] Aforementioned human interface devices, human-accessible storage devices, 

and network interfaces can be attached to a core (2840) of the computer system (2800).  

[0227] The core (2840) can include one or more Central Processing Units (CPU) 

(2841), Graphics Processing Units (GPU) (2842), specialized programmable processing units
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in the form of Field Programmable Gate Areas (FPGA) (2843), hardware accelerators for 

certain tasks (2844), and so forth. These devices, along with Read-only memory (ROM) 

(2845),Random-accessmemory(2846), internal mass storage such as internal non-user 

accessible hard drives, SSDs, and the like (2847). may be connected through a system bus 

(2848). In some computer systems, the system bus (2848) can be accessible in the form of 

one or more physical plugs to enable extensions by additional CPUs, GPU, and the like. The 

peripheral devices can be attached either directly to the core's system bus (2848), or through 

a peripheral bus (2849). Architectures for a peripheral bus include PCI, USB, and the like.  

[0228] CPUs(2841), GPUs (2842), FPGAs (2843). and accelerators (2844) can 

execute certain instructions that, in combination, can make up the aforementioned computer 

code. That computer code can be stored in ROM (2845) or RAM (2846). Transitional data 

can be also be stored in RAM (2846), whereas permanent data can be stored for example, in 

the internal mass storage (2847). Fast storage and retrieve to any of the memory devices can 

be enabled through the use of cache memory, that can be closely associated with one or more 

CPU (2841), GPU (2842), mass storage (2847), ROM (2845), RAM (2846). and the like.  

[02291 The computer readable media can have computer code thereon for performing 

various computer-implemented operations. The media and computer code can be those 

specially designed and constructed for the purposes of the present disclosure, or they can be 

of the kind well known and available to those having skill in the computer software arts.  

[0230] As an example and not by way of limitation, the computer system having 

architecture (2800), and specifically the core (2840) can provide functionality as a result of 

processor(s)(incdingCPUs,GPUs, FPGA, accelerators, and the like) executing software 

embodied in one or more tangible, computer-readable media. Such computer-readable media 

can be media associated with user-accessible mass storage as introduced above, as well as 

certain storage of the core (2840) that are of non-transitory nature, such as core-internal mass 

storage (2847) or ROM (2845). The software implementing various embodiments of the 

present disclosure can be stored in such devices and executed by core (2840). A computer

readable medium can include one or more memory devices or chips, according to particular 

needs. The software can cause the core (2840) and specifically the processors therein 

(including CPU, GPU, FPGA, and the like) to execute particular processes or particular parts 

of particular processes described herein, including defining data structures stored in RAM 

(2846) and modifying such data structures according to the processes defined by the software.  

In addition or as an alternative, the computer system can provide functionality as a result of 

logic hardwired or otherwise embodied in a circuit (for example: accelerator (2844)), which
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can operate in place of or together with software to execute particular processes or particular 

parts of particular processes described herein. Reference to software can encompass logic, 

and vice versa, where appropriate. Reference to a computer-readable media can encompass a 

circuit (such as an integrated circuit (IC)) storing software for execution, a circuit embodying 

logic for execution, or both, where appropriate. The present disclosure encompasses any 

suitable combination of hardware and software.  

Appendix A: Acronyms 

ASIC: Application-Specific IntegratedCircuit 

BMS: benchmark set 

CANBus: Controller Area Network Bus 

CBF: Coded Block Flag 

CD: Compact Disc 

CPUs: Central Processing Units 

CRT: Cathode R-ay Tube 

CTBs: CodingTree Blocks 

CTUs: Coding Tree Units 

CU: CodingUnit 

DVD: Digital Video Disc 

FPGA: Field Programmable Gate Areas 

GOPs: Groups of Pictures 

GPUs: Graphics Processing Units 

GSM: Global System for Mobile communications 

HEVC: High Efficiency Video Coding 

HRD: Hypothetical Reference Decoder 

ISP: Intra Sub-Partitions 

IC: Integrated Circuit 

JEM: joint exploration model 

LAN: Local Area Network 

LCD: Liquid-Crystal Display 

LTE.: Long-Term Evolution 

MIPM: Most Probable Mode 

MV: Motion Vector 

OLED: Organic Light-Emitting Diode
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PBs: Prediction Blocks 

PCI: Peripheral Component Interconnect 

PLD: Programmable Logic Device 

PUs: Prediction Units 

RAM: Random Access Memory 

ROM: Read-Only Memory 

SBT: Sub-blockTransform 

SEI: Supplementary Enhancement Information 

SNR: Signal Noise Ratio 

SSD: solid-state drive 

TUs: Transfor Units, 

USB: Universal Serial Bus 

VPDU: Virtual Pipeline Data Unit 

VUT: Video Usability Information 

VVC: versatile video coding 

[0231] While this disclosure has described several exemplary embodiments, there are 

alterations, permutations, and various substitute equivalents, which fall within the scope of 

the disclosure. It will thus be appreciated that those skilled in the art will be able to devise 

numerous systems and methods which, although not explicitly shown or described herein, 

embody the principles of the disclosure and are thus within the spirit and scope thereof.
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The claims defining the invention are as follows: 

1. A method for video decoding in a decoder, comprising: 

decoding coded information of a coding unit (CU) in a picture from a coded video 

bitstream, the coded information indicating a width of the CU as W samples and a height of 

the CU as H samples; 

partitioning the CU into sub-processing units having a width and a height, wherein the 

width of the sub-processing units is a minimum one of W and K or the height of the sub

processing units is a minimum one of H and K, at least one of the width W and the height H 

of the CU being larger than a processing data unit size K; 

determining a maximum transform unit (TU) size M based on whether at least one of the 

width of the sub-processing unit or the height of the sub-processing unit is greater than 64, 

the maximum TU size M being equal to 64 responsive to the at least one of the width of the 

sub-processing unit or the height of the sub-processing unit being greater than 64, and equal 

to a maximum sub-processing unit size responsive to the width of the sub-processing unit and 

the height of the sub-processing unit not being greater than 64; 

determining a partitioning structure to further partition the sub-processing units based on 

the width and the height of the sub-processing units and the maximum TU size M; and 

partitioning each of the sub-processing units into TUs of MxM based on the determined 

partitioning structure.  

2. The method of claim 1, wherein 

when the width and the height of the sub-processing units are larger than M; 

the determining the partitioning structure includes determining the partitioning structure 

to be a quadtree partitioning structure; and 

the partitioning the sub-processing units into the TUs includes partitioning the sub

processing units into the TUs based on the quadtree partitioning structure.  

3. The method of claim 1, wherein 

when the width of the sub-processing units is larger than M and the height of the sub

processing units is equal to M; 

the determining the partitioning structure includes determining the partitioning structure 

to be a vertical binary tree partitioning structure; and
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the partitioning the sub-processing units into the TUs includes partitioning the sub

processing units into the TUs based on the vertical binary tree partitioning structure.  

4. The method of claim 1, wherein 

when the height of the sub-processing units is larger than M and the width of the sub

processing units is equal to M; 

the determining the partitioning structure includes determining the partitioning structure 

to be a horizontal binary tree partitioning structure; and 

the partitioning the sub-processing units into the TUs includes partitioning the sub

processing units into the TUs based on the horizontal binary tree partitioning structure.  

5. The method of any one of claims 1 to 4, wherein the partitioning the sub-processing 

units into the TUs includes partitioning one of the sub-processing units recursively into the 

TUs based on the partitioning structure.  

6. The method of any one of claims I to 5, further comprising: 

processing the sub-processing units according to a first scan order; and 

processing the TUs in each of the sub-processing units according to a second scan order.  

7. The method of claim 6, wherein at least one of the first scan order and the second scan 

order is one of (i) a raster scan order, (ii) a vertical scan order, (iii) a zig-zag order, and (iv) a 

diagonal scan order.  

8.The method of claim 7, wherein the first scan order and the second scan order are the 

raster scan order.  

9. The method of any one of claims I to 8, wherein 

the processing data unit size K indicates a size of a virtual pipeline data unit (VPDU); 

a first one of the sub-processing units is included in a first VPDU and a second one of 

the sub-processing units is included in a second VPDU in the picture; and 

the method further includes: 

after processing the first VPDU in a first stage of a multi-stage pipeline, simultaneously 

processing the first VPDU in a second stage of the multi-stage pipeline and the second VPDU 

in the first stage.
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10. The method of claim 1, wherein at least two TUs in one of the sub-processing units 

are configured to be processed simultaneously at different stages of a multi-stage pipeline.  

11. The method of claim 1, wherein partitioning the CU comprises: 

selecting a partitioning structure from among plural partitioning structures to partition 

the CU based on a comparison of at least one of the width W and the height H of the CU to 

the TU size M.  

12. The method of claim 11, wherein the plural partitioning structures comprise at least 

one of a quadtree partitioning structure, a vertical binary tree partitioning structure, and a 

horizontal binary tree partitioning structure; and the method further comprises: 

in response to the width W being greater than M and the width W being greater than the 

height H, selecting the vertical binary tree partitioning structure to partition the CU into two 

partitions, each having a size of W/2 x H; 

in response to the height H being greater than M and the height H being greater than the 

width W, selecting the horizontal binary tree partitioning structure to partition the CU into 

two partitions, each having a size of W x H/2.  

13. An apparatus for video decoding, comprising processing circuitry configured to 

perform the method of any one of claims I to 12.
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4x4 transform

16x16 transform

(64, 64, 64, 64)
{83, 36, - 36, -83)

(64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64)

[64,-64,-64, 64)

(90 87 80 70 57 43 25 9 -9-25-43-57-70-80-87-901

{36, -83, 83, -36)

(89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89]

(87 57 9-43-80-90-70-25 25 70 90 80 43 -9-57-87)

(83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83} (80 9-70-87-25 57 90 43-43-90-57 25 87 70 -9-80}

FIG. 10A

(75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75} (70-43-87 9 90 25-80-57 57 80-25-90 -9 87 43-70) (64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64)

(57-80-25 90 -9-87 43 70-70-43 87 9-90 25 80-57)

(50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50)

(43-90 57 25-87 70 9-80 80 -9-70 87-25-57 90-43}

(36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36)

(25-70 90-80 43 9-57 87-87 57 -9-43 80-90 70-25}

(18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18)

(

9-25 43-57 70-80 87-90 90-87 80-70 57-43 25 -9}

8x8 transform

(64,64, 64, 64, 64, 64, 64, 64)

FIG. 10C

{89, 75, 50, 18, - -18, -50, - 75, -89} (83, 36,-36,-83,-83,-36, 36, 83} (75,-18,-89,-50, 50, 89, 18, -75)

164,-64,-64, 64, 64,-64,-64, 64)

(50,-89, 18, 75,-75,-18, 89, -50)

(36,-83, 83,-36,-36, 83,-83, 36}

(18,-50, 75,-89, 89,-75, 50,-18}

FIG. 10B



32x32 transform

(64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 -4-13-22-31-38-46-54-61-67-73-78-82-85-88-90-90) 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64)

(90

90

88

85

82

78

73

67

61

54

46

38

31

22

13

4

-9

9

25

43

57

70

80

87

90)

(90

87

80

70

57

43

25

9

4-22-46-67-82-90

(90

82 75 50 67 46 18-18-50-75-89-89-75-50-18 18 50 75 89 89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 891

22

-4-31-54-73-85-90-88-78-61-38-13 13

38

61

78

88

90

85

73

54

31

(89 (88

57 67 9-43-80-90-70-25 25 70 90 80 43 -9-57-87-87-57 -9 43 80 90 70 25-25-70-90-80-43 9

31-13-54-82-90-78-46 -4 38 73 90 85 61 22-22-61-85-90-73-38 4 46 78 90 82 54 13-31-67-88} 57 87)

(87 (85 46-13-67-90-73-22 38 82 88 54 -4-61-90-78-31 31 78 90 61 4-54-88-82-38 22 73 90 67 13-46-85)

36-36-83-83-36 36 83 83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83)

(83 22-54-90-61 13 78 85 31-46-90-67 4 73 88 38-38-88-73 -4 67 90 46-31-85-78-13 61 90 54-22-82)

(82 {80 9-70-87-25 57 90 43-43-90-57 25 87 70 -9-80-80 -9 70 87 25-57-90-43 43 90 57-25-87-70 9 801

-4-82-73 13 85 67-22-88-61 31 90 54-38-90-46 46 90 38-54-90-31 61 88 22-67-85-13 73 82 4-781

(75-18-89-50 (78 50 89 18-75-75 18 89 50-50-89-18 75 75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75)

(73-31-90-22 78 67-38-90-13 82 61-46-88 85 54-54-85 4 88 46-61-82 13 90 38-67-78 22 90 31-73) 9 90 25-80-57 57 80-25-90 -9 87 43-70-70 43 87 -9-90-25 80 57-57-80 25 90 9-87-43 70)

(70-43-87 38 85-22-90 4 90 13-88-31 82 46-73-61 61 73-46-82 31 88-13-90 -4 90 22-85-38 78 54-67) (67-54-78 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 641

(64-64-64 (61-73-46 82 31-88-13 90 -4-90 22 85-38-78 54 67-67-54 78 38-85-22 90 4-90 13 88-31-82 46 73-61) 90 -9-87 43 70-70-43 87 9-90 25 80-57-57 80 25-90 9 87-43-70 70 43-87 -9 90-25-80 57)

(54-85 (57-80-25 -4 88-46-61 82 13-90 38 67-78-22 90-31-73 73 31-90 22 78-67-38 90-13-82 61 46-88 4 85-54) (50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50 50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50)

38 54-90 31 61-88 22 67-85 13 73-82 4 78-78 -4 82-73-13 85-67-22 88-61-31 90-54-38 90-46)

(46-90 (43-90 57 25-87 70 9-80 80 -9-70 87-25-57 90-43-43 90-57-25 87-70 -9 80-80 9 70-87 67 25 4-73 57-90 88-38) 43)

78-85

31

46-90
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13
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90-61 4 54-88 82-38-22 73-90 67-13-46 85-85 46 13-67 90-73 22 38-82 88-54 -4 61-90 78-31)

(31-78 90-80 43 9-57 87-87 57 -9-43 80-90 70-25-25 70-90 80-43 -9 57-87 87-57 9 43-80 90-70

25)
(22-61 (25-70 85-90 73-38 -4 46-78 90-82 54-13-31 67-88 88-67 31 13-54 82-90 78-46 4 38-73 90-85 61-22) (18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18 18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18)
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a,aa,aa,aa,aa,aa,aa,aa,aa,aa)

bf,bg,bh,bi,bj,bk,bl,bm,bn,bo,bp,bq,br,bs,bt,bu,bv,bw,bx,by,bz,ca,cb,cc,cd,ce,cf,cg.ch,

op,-bo,-bn,-bm,-bl,-bk,-bj,-bi,-bh,-bg,-

bf}{ap,aq,ar,as,at,au,av,aw,ax,ay,az,ba,bb,bc,bd,be,-be,-bd,-bc,-bb,-ba,-az,-ay

aw,-av,-au,-at,-as,-ar,-aq,-ap,-ap,-aq,-ar,-as,-at,-au,-av,-aw,-ax,-ay,-az,-ba,-bb,-bc,-

d,-be,be,bd,bc,bb,ba,az,ay,ax,aw,av,au,at,as,ar,aq,ap

ck,-ch,-ce,-cb,-by,-bv,-bs,-bp,-bm,-bj,-bg}ah,ai,aj,ak,al,am,an,ao,-ao,-an,-am,-al,-ak

aj,-ai,-ah,-ah,-ai,-aj,-ak,-al,-am,-an,-ao,ao,an,am,al,ak,aj,ai,ah,ah,ai,aj,ak,al,am,an,a

ao,-an,-am,-al,-ak,-aj,-ai,-ah,-ah,-ai,-aj,-ak,-al,-am,-an,-ao,ao,an,am,al,ak,aj,ai,ah]

{bh,bm,br,bw,cb,cg,-ck,-cf,-ca,-bv,-bq,-bl,-bg,-bi,-bn,-bs,-bx,cc,

ch,cj,ce,bz,bu,bp,bk,bf,bj,bo,bt,by,cd,ci,-ci,-cd,-by,-bt,-bo,-bj,-bf,-bk,-bp,-bu,-bz,ce

cj,ch,cc,bx,bs,bn,bi,bg,bl,bq,bv,ca,cf,ck,-cg,-cb,-bw,br,-bm,-bh}{aq,at,aw,az,bc,-be

bb,-ay,-av,-as,-ap,-ar,-au,-ax,-ba,-bd,bd,ba,ax,au,ar,ap,as,av,ay,bb,be,-bc,-az,-aw,at,

aq,-aq,-at,-aw,-az,-bc,be,bb,ay,av,as,ap,ar,au,ax,ba,bd,-bd,-ba,-ax,-au,-ar,-ap,-a

av,-ay,-bb,-be,bc,az,aw,at,aq}{bi,bp,bw,cd,ck,-ce,-bx,-bq,-bj,-bh,-bo,-bv,-cC,-

cj,cf,by,br,bk,bg,bn,bu,cb,ci,-cg,-bz,-bs,bl,-bf,-bm,-bt,-ca,-

ch,ch,ca,bt,bm,bf,bl,bs,bz,cg,-ci,-cb,-bu,-bn,-bg,-bk,-br,-

of,cj,cc,bv,bo,bh,bj,bq,bx,ce,-ck,-cd,-bw,-bp,-bi}

ad,ae,af,ag,-ag,-af,-ae,-ad,-ad,-ae,-af,-ag,ag,af,ae,ad,ad,ae,af,ag,-ag,-af,-ae,-ad,-ad,

-ag,ag,af,ae,ad,ad,ae,af,ag,-ag,-af,-ae,-ad,-ad,-ae,-af,

ag,ag,af,ae,ad,ad,ae,af,ag,-ag,-af,-ae,-ad,ad,-ae,-af,-ag,ag,af,ae,ad}{bj,bs,cb,ck,-cc,-

bt,-bk,-bi,-br,-ca,-cj,cd,bu,bl,bh,bq,bz,ci,-ce,-bv,-bm,-bg,-bp,-by,-

be,ba,av,aq,as,ax,bc,-bc,-ax,-as,-aq,-av,-ba,be,az,au,ap,at,ay,bd,-bb,-aw,-ar,-ar,-aw,

ob,bd,ay,at,ap,au,az,be,-ba,-av,-aq,-as,-ax,-bc,bc,ax,as,aq,av,ba,be,-az,-au,-ap,-at,-

ay,-bd,bb,aw,ar}{bk,bv,cg,-ce,-bt,-bi,-bm,-bx,-ci,cc,br,bg,bo,bz,ck,-ca,-bp,-bf,-bq,-

cb,cj,by,bn,bh,bs,cd,-ch,-bw,-bl,-bj,-bu,-cf,cf,bu,bj,bl,bw,ch,-cd,-bs,-bh,-bn,-by,-

ah,-ak,-an,an,ak,ah,aj,am,-ao,-al,-ai,-ai,-al,-ao,am,aj,ah,ak,an,-an,-ak,-ah,-aj,

am,ao,al,ai,ai,al,ao,-am,-aj,-ah,-ak,-an,an,ak,ah,aj,am,-ao,-al,-ai,-ai,-al,

ao,am,aj,ah,ak,an,-an,-ak,-ah,-aj,-am,ao,al,ai}{bl,by,-ck,-bx,-bk,-bm,-bz,cj,bw,bj,bn,ca,-

by,bl}{as,az,-bd,-aw,-ap,-av,-bc,ba,at,ar,ay,be,-ax,-aq,-au,bb,bb,au,aq,ax,be,-ay,-

ar,-at,-ba,bc,av,ap,aw,bd,-az,-as,-as,-az,bd,aw,ap,av,bc,-ba,-at,-ar,-

ay,be,ax,aq,au,bb,-bb,-au,-aq,-ax,-be,ay,ar,at,ba,-bc,-av,-ap,-aw,-bd,az,as}{bm,cb,-cf,-

bq,-bi,-

FIG. 11A
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Continue from FIG. 11A

cj,bx,bi,bq,cf,-cb,-bm}{ab,ac,-ac,-ab,-ab,-ac,ac,ab,ab,ac,-ac,-ab,-ab,-ac,ac,ab,ab,ac,-ac,-

ab,-ab,-ac,ac,ab,ab,ac,ac,-ab,-ab,-ac,ac,ab,ab,ac,-ac,-ab,-ab,-ac,ac,ab,ab,ac,-ac,-ab,ab

ac,ac,ab,ab,ac,-ac,-ab,-ab,-ac,ac,ab,ab,ac,-ac,-ab,-ab,-ac,ac,ab)

aw,be,av,ar,ba,-ba,-ar,-av,be,aw,aq,az,-bb,-as,-au,-bd,ax,ap,ay,bc,-at,-at,-bc,ay,ap,ax

bd,-au,-as,bb,az,aq,aw,-be,-av,-ar,-ba,ba,ar,av,be,-aw,-aq,-az,bb,as,au,bd,-ax,-ap,-

ay,bc,at}

bx,cf,bm,bq,cj,-bt,-bj,-cc,ca,bh,bv,-ch,-bo}{aj,ao,-ak,-ai,-an,al,ah,am,-am,-ah,-al,an,ai,ak,-

ah,-al,an,ai,ak,-ao,-aj,-aj,-ao,ak,ai,an,-al,-ah,-am,am,ah,al,-an,-ai,-ak,ao,aj}{bp,ck,-bq,-bo,-

br,cj.bo,bq,-ck,-bp}

au,-be,-at,-av,bd,as,aw,-bc,-ar,-ax,bb,aq,ay,-ba,-ap,-az,az,ap,ba,-ay,-aq,-bb,ax,ar,bc,

(ae,-ag,-ad,-af,af,ad,ag,-ae,-ae,ag,ad,af,-af,-ad,-ag,ae,ae,-ag,-ad,af,af,ad,ag,-a

ae,ag,ad,af,-af,-ad,-ag,ae,ae,-ag,-ad,-af,af,ad,ag,-ae,-ae,ag,ad,af,-af,-ad,-ag,ae,ae,-ag,

bw,ca,bi,ch,-bp,-bt,cd,bf,ce,bs,-bq,cg,bh,cb,-bv,bn,cj,bk,by,by,-bk,-cj,bn,bv,-cb,-bh,-

(av,-bb,-ap,-bc,au,aw,-ba,-aq,bd,at,ax,-az,-ar,-be,as,ay,-ay,-as,be,ar,az,-ax,-at,bd,aq,ba

aw,-au,bc,ap,bb,-av,-av,bb,ap,bc,-au,-aw,ba,aq,bd,-at,-ax,az,ar,be,-as,-ay,ay,as,-be,-ar,-

bw,by,bm,-ci,-bh,-cd,br,bt,-cb,-bj,-ck,bk,ca,-bu,-bq,ce,bg,ch,-bn,-bx,bx,bn,-ch,-bg,-

{ak,-am,-ai,ao,ah,an,-aj,-al,al,aj,-an,-ah,-ao,ai,am,-ak,-ak,am,ai,-ao,-ah,-an,aj,al,-al,-

aj,an,ah,ao,-ai,-am,ak,ak,-am,-ai,ao,ah,an,-aj,-al,al,aj,-an,-ah,-ao,ai,am,-ak,-ak,am,ai,

ah,-an,aj,al,-al,-aj,an,ah,ao,-ai,-am,ak}{bt,-bz,-bn,cf,bh,ck,bi,-ce,bo,by,-bu,-bs,ca,bm,-cg,-

bv,bx,bp,-cd,-bj,cj,bg,cg,-bm,-ca,bs,bu,-by,-bo,ce,bi,-ck,-bh,-cf,bn,bz,bt}

FIG. 11B
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Continue from FIG. 11B

{aw,-ay,-au,ba,as,-bc,-aq,be,ap,bd,-ar,bb,at,az,-av,-ax,ax,av,-az,-at,bb,ar,-bd,-ap,-be,aq,bc,-

as,ba,au,ay,-aw,-aw,ay,au,-ba,-as,bc,aq,-be,-ap,-bd,ar,bb,-at,-az,av,ax,-ax,-av,az,at,-bb,

aa,aa,aa,-aa,-aa,aa,aa,-aa,-aa,aa}

by,bs,bw,bu,-bu,-bw,bs,by,-bq,-ca,bo,cc,bm,-ce,bk,cg,bi,-ci,bg,ck,-bf,cj,bh,-ch,-bj,cf,bl,-cd,-

as,ba,au,-ay,-aw,aw,ay,-au,-ba,as,bc,-aq,-be,ap,-bd,-ar,bb,at,-az,av,ax}

al,aj,an,-ah,ao,ai,-am,-ak,ak,am,-ai,-ao,ah,-an,-aj,al,al,-aj,-an,ah,ao,-ai,am,ak,-ak,-am,ai,ao

ah,an,aj,-al,-al,aj,an,-ah,ao,ai,-am,-ak,ak,am,-ai,-ao,ah,-an,-aj,al}

bx,-bn,-ch,bg,-ce,-bq,bu,ca,-bk,-ck,bj,-cb,-bt,br,cd,-bh,ci,bm,-by,-bw

av,av,bb,-ap,bc,au,-aw,-ba,aq,-bd,-at,ax,az,-ar,be,as,-ay,-ay,as,be,-ar,az,ax,-at,-bd,aq,-ba,

w,au,bc,-ap,bb,av,-av,-bb,ap,-bc,-au,aw,ba,-aq,bd,at,-ax,-az,ar,-be,-as,ay}{by,-bk,cj,bn,-bv,

cj,bk,-by}

af,-ad,ag,ae,-ae,-ag,ad,-af,-af,ad,-ag,-ae,ae,ag,-ad,af,af,-ad,ag,ae,-ae,-ag,ad,-af,-af,ad,-ag,-

ae,ae,ag,-ad,af,af,-ad,ag,ae,-ae,-ag,ad,-af,-af,ad,-ag,-ae,ae,ag,-ad,af,af,-ad,ag,ae,-ae,-ag,ad,-

af,-af,ad,-ag,-ae,ae,ag,-ad,af}{bz,-bh,ce,bu,bm,cj,bp,-br,-ch,bk,-bw,-cc,bf,-cb,-bx,bj,-cg,-

bo,bs,cg,-bj,bx,cb,bf,cc,bw,-bk,ch,br,-bp,-cj,bm,-bu,-ce,bh,-bz}

{az,-ap,ba,ay,-aq,bb,ax,-ar,bc,aw,-as,bd,av,-at,be,au,-au,-be,at,-av,-bd,as,-aw,-bc,ar,-ax

bb,aq,-ay,ba,ap,-az,-az,ap,-ba,-ay,aq,-bb,-ax,ar,-bc,-aw,as,-bd,-av,at,-be,-au,au,be,-at,a

cg,-bu,bk,-cf,-bv,bj,-ce,bw,bi,-cd,bx,bh,-cc,-by,bg,-cb,-bz,bf,-ca

{am,-ah,al,an,-ai,ak,ao,-aj,aj,-ao,-ak,ai,-an,-al,ah,-am,-am,ah,-al,-an,ai,-ak,-ao,aj,-aj,ao,ak,-

ai,an,al,-ah,am,am,-ah,al,an,-ai,ak,ao,-aj,aj,-ao,-ak,ai,-an,-al,ah,-am,-am,ah,-al,-an,ai,-ak

ao,aj,-aj,ao,ak,-ai,an,al,-ah,am}{cb,-bi,bu,ci,-bp,bn,-cg,-bw,bg,-bz,-cd,bk,-

FIG. 11C
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Continue from FIG. 11C

bq,bm,-cf,-bx,bf,-by,-ce,bl,-br,ck,bs,-bk,cd,bz,-bg,bw,cg,-bn,bp,-ci,-bu,bi,-cb}

(ba,-ar,av,-be,-aw,aq,-az,-bb,as,-au,bd,ax,-ap,ay,bc,-at,at,-bc,-ay,ap,-ax,-bd,au,-as,b

aq,aw,be,-av,ar,ba,ba,ar,-av,be,aw,-aq,az,bb,-as,au,-bd,-ax,ap,-ay,-bc,at,-at,bc,ay,-

ap,ax,bd,-au,as,-bb,-az,aq,-aw,-be,av,-ar,ba}{cc,-bl,bp,-cg,-by,bh,-bt,ck,bu,-bg,bx,ch,-bq,bk

{ac,-ab,ab,-ac,-ac,ab,-ab,ac,ac,-ab,ab,-ac,-ac,ab,-ab,ac,ac,-ab,ab,-ac,-ac,ab,-ab,ac,ac,-ab,ab

(bb,-au,aq,-ax,be,ay,-ar,at,-ba,bc,av,-ap,aw,-bd,-az,as,-as,az,bd,-aw,ap,-av,bc,ba,-at,ar,-ay,

be,ax,-aq,au,-bb,-bb,au,-aq,ax,-be,-ay,ar,-at,ba,bc,-av,ap,-aw,bd,az,-as,as,-az,-bd,aw,-ap,av,-

bi,bo,-cb,-ch,bu,-bh,bp,-cc,-cg,bt,-bg,bq,-cd,-cf,bs,-bf,br,-ce}

{an,-ak,ah,-aj,am,ao,-al,ai,-ai,al,-ao,-am,aj,-ah,ak,-an,-an,ak,-ah,aj,-am,-ao,al,-ai,ai,-al,ao,am,-

aj,ah,-ak,an,an,-ak,ah,-aj,am,ao,al,ai,-ai,al,-ao,-am,aj,-ah,ak,-an,-an,ak,-ah,aj,-am,-ao,al,-

ai,ai,-al,ao,am,-aj,ah,-ak,an}{cf,-bu,bj,-bl,bw,-ch,-cd,bs,-bh,bn,-by,cj,cb,-bq,bf,-bp,ca,ck,

ck,-ca,bp,-bf,bq,-cb,-cj,by,bn,bh,-bs,cd,ch,-bw,bl,-bj,bu,-cf}

{bc,-ax,as,-aq,av,ba,be,az,-au,ap,-at,ay,-bd,-bb,aw,-ar,ar,-aw,bb,bd,-ay,at,-ap,au,-az,be,|

[ag,-af,ae,-ad,ad,-ae,af,-ag,-ag,af,-ae,ad,-ad,ae,-af,ag,ag,-af,ae,-ad,ad,-ae,af,-ag,

ae,ad,-ad,ae,-af,ag,ag,-af,ae,-ad,ad,-ae,af,-ag,-ag,af,-ae,ad,-ad,ae,-af,ag,ag,-af,ae,-ad,ad,-

ae,af,-ag,-ag,af,-ae,ad,-ad,ae,-af,ag}{ch,-ca,bt,-bm,bf,-bl,bs,-bz,cg,ci,-cb,bu,-bn,bg,-bk,br,-

av,ay,-bb,be,bc,-az,aw,-at,aq,-aq,at,-aw,az,-bc,-be,bb,-ay,av,-as,ap,-ar,au,-ax,ba,-bd,-bd,ba,

ax,au,-ar,ap,-as,av,-ay,bb,-be,-bc,az,aw,at,-aq,aq,-at,aw,-az,bc,be,bb,ay,-av,as,-ap,ar,-

au,ax,-ba,bd}{ci,-cd,by,-bt,bo,-bj,bf,bk,bp,-bu,bz,-ce,cj,ch,-cc,bx,-bs,bn,-bi,bg,-bl,bq,bv,ca

cj,ce,-bz,bu,-bp,bk,-bf,bj,-bo,bt,-by,cd,-ci}(ao,-an,am,-al,ak,-aj,ai,-ah,ah,-ai,aj,-akal,-

FIG. 11D
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Continue from FIG. 11D

am,an,-ao,-ao,an,-am,al,-ak,aj,-ai,ah,-ah,ai,-aj,ak,-al,am,-an,ao,ao,-an,am,-al,ak,-aj,ai,-

bk,bh,-bf,bi,-bl,bo,-br,bu,bx,ca,-cd,cg,-cj)

{be,-bd,bc,-bb,ba,-az,ay,-ax,aw,-av,au,-at,as,-ar,aq,-ap,ap,-aq,ar,-as,at,-au,av,-aw,ax,-

ay,az,-ba,bb,bc,bd,-be,-be,bd,bc,bb,ba,az,-ay,ax,-aw,av,-au,at,-as,ar,-aq,ap,-ap,aq.

ck}}

where

,ab,ac,ad,ae,af,ag,ah,ai,aj,ak,al,am,an,ao,ap,aq,ar,as,at,au,av,aw,ax,ay,az,ba,bb,b

,cg,ch,ci,cj,ck}=

(64,83,36,89,75,50,18,90,87,80,70,57,43,25,9,90,90,88,85,82,78,73,67,61,54,46,38,31

(22,13,4,91,90,90,90,88,87,86,84,83,81,79,77,73,71,69,65,62,59,56,52,48,44,41,37,33

,28,24,20,15,11,7,2}

FIG. 11E
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Transform basis functions of DCT-2, DST-7 and DCT-8 for N-point input

Transform Type Basis function T(()), i.j=0, 1,..., N-1

Ti(j)

DCT-2

where Wo =LE
DCT-8

= 4N + 2

DST-7

FIG. 12

1300

mts_idx Transform Type Transform type

Horizontal Vertical

0 0
-1 1301

1 1

0 1302

2 1
1

1303

1 2
2 1304

2 2
3 1305

Transform Type

0 - DCT2

1 - DST7

2 am DCT8

FIG. 13



4-point DST-7:

8-point DST-7:

b, C, d

b, C, d, e, f, g, h,1

f, h, e, b,

{d,-a,-c,b

9, b, -c, a, f,

-d, C, - a

- , a, h, b, b, f, -e,

where {a,b,c, d} 29,55. 74,84}

g, -d, h,

-C, g, -f, b,)
E, -h, g, -e, c, -a,)

FIG. 14A

where {a.b,c,d,e.f.g.h}= 17,32,46,60, 71, 78, 85,86}

FIG. 14B

16-point DST-7:

a, b, C, d, e, E, 9, h, i, j, k, 1, m, n, o, p,3 ( c, f, i, 1, o, o, 1, i, f, C, 0, -c, -f, -i, -1, -0,1 ( e, j, a, m, h, C, -b, -g, -1, -p, -k, -f, -a, d, i, n,}

{ g, n, 1, e, -b, -j, -c, d, k, o, h, a, -f, -m,

i, o, f, -c, -1, -1, -c, f, o, i, 0, -1, -0, -f, C, 1,1

k, k, 0, -k, 0, k, k, 0, -k, -k, 0, k, k, 0, -k,) II, g, -f, -n,-a, 1, h, -e, -0,-b, k, i, -d, -p, -c, i,1

o, C, -1,-f, i, i, -f, -1, C, 0, 0, -c, 1, f, -1,1

n, -c, -m, d, 1, -e, -k, f, j, -g, i, h, )

-e,-i, j, d, -0, a, m, -f, -h, k, C, -p, b, 1, -g,1

1,-1,-c, -f, -f, o, -c, -i, 1, 0, -1, i, C, -0, f,

j,-m, c, 9,-P, E, d, -n, i, a, -k, 1,-b,-h, o, (e,)

h, p. i, -a,-g, o,-j, b, E, -n, k, -c, -e, m, -1, d,1

f, 11, 0,-1, C, c,-1, o, -1, f, 0, -f, 1,-0, i, -c,}

d, hh, 1, - p, m, -i, e, -a, -c, g, -k, o, -n, j, -f, b,)

b, -d, f, hh, j, -1, n, -p, o, -m -i, g, -e, C, -a,1

where {a, ={ 9,17,25,33,41,49,56,62,66,72,77.81,83

87,89,90}

FIG. 14C
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32-pointDST-7:

26,30,34,38,42,45,50,53,56,60,63,66,68,72,74,77,78,80,82,84,85,86,88,88,89,90

90}

FIG. 14D

SUBSTITUTE SHEET (RULE 26)



4-point DCT-8:

8-point DCT-8:

b, C, d, )

a, b, C, d, e, f, g, h,1

{

b, 0, -b,

b, e, h, -g, -d, -a, -c, -f,}

{

c,-b,-d, a, )

C, h, -e,-a,-f, 9, b, d, )

{ -b, a, -c, }

d, -g, -a, -h, C, e, -f, -b,

e, -d, -f, C, g, -b, -h, a, )

where {a.b.c.d} = (84,74.55,29)

f, -a, 9, e, -b, h, d, -c,

g, -c, b, -f, -h, d, -a, e,}

FIG. 15A

h, -f, d, -b, a, -c, e, -g,1

where (a.b, c. d. f, g, h} = { 186,85,78,71,60,46,32,17}

FIG. 15B

16-point DCT-8:

( a, b, C, d, e, f, 9, h, i, j, k, 1, m, n, o, p, 1

(b, e, h, k, n, 0, -n, -k, -h, -e, -b, -b, -e, -h, -k, -n, } { c, h, m, -p, -k, -f, -a, -e, -j,-0, n, i, d, b, g, 1,1

d, k, -p, -1, -b, -f, -m, n, 9, a, h, o, -1, -e, -c, -j, }

{ e, n, -k, -b, -h, 0, h, b, k, -n, -e, -e, -n, k, b, h, )

E, 0, -f, -f, 0, f, f, 0, -f, - , , 0, f, f, 0, -f, -f, } 9, -n, -a, -m, h, f, -o, -b, -1, i, e, -p, -c, -k, j, d, } h, -k, -e, n, b, 0, -b, -n, e, k, -h, -h, k, e, -n, -b, 1 i, -h, -j, g, k, -f, -1, e, m, -d, -n, C, O, -b, -p, a, )

-e, -o, a, -n, -f, i, k, -d, -p, b, -m, -g, h, 1, -c,

k,-b, n, h,-e, 0, e, -h, -n, b, -k, -k, b, -n, -h, e,}

1, -b, i, o, -,e, f, -p,-h, C., -m, -k, a, -j, -n, d, -g,}

-e, d, -1, -n, f, -c, k, o, -g, b, -j, -p, h, -a, i,}

n,-h, b, -e, k, 0, -k, e, -b, h, -n, -n, h, -b, e, -k, )

-k, g, -c, b, -f, j, -n, -p, 1, -h, d, -a, e, -i, m, )

p, -n, 1, -j, h, -f, d, -b, a, -c, e, -g, i, -k, m, -0,1

where (a. b. c. d, e. f g, h, i. 1. m, n, o. p} ={ 90,89,87,83,81,77.72.66,62.56,49,41,33,25,1

9}

FIG. 15C
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32-pointDCT-8:

88,86,85,84,82,80,78,77,74,72,68,66,63,60,56,53,50,45,42,38,34,30,26,21,17,1

3,9,4}

FIG. 15D

SUBSTITUTE SHEET (RULE 26)



WO
(mm/dd/yyyy)

Number of sub-partitions depending on the block size

Block Size

Number of Sub-Partitions

4 X 4

Not divided

4 X 8 and 8 X 4

2

All other cases

4

23145

FIG. 16

INFORMATION
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Horizontal

H/2

W

W/2

H

Original HxW partition

Vertical
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W

HIA

Horizontal

W

W/A

H

Vertical
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coding_unite x0, y0, cbWidth, cbHeight, treeType)

Descriptor

if( tile_group_type l=I | sps_ibc_enabled_flag)

1900

if( treeType e!=DUAL_TREE_CHROMA)

cu_skip_flag[x0][y0]

ae(v)

if(cu_skip_flag[x0][y0]==0 && tile_group_type!=I

pred_mode_flag

ae(v)

if( ((tile_group_type ==I && cu_skip_flag[x0][y0]==0)

sps_ibc_enabled_flag)

pred_mode_ibc_flag

ae(v)

}

if( CuPredMode[x0]][y0]] == MODE_INTRA)

if( sps_pcm_enabled_flag &&

cbWidth >= MinIpcmCbSizeY && cbWidth <= MaxIpcmCbSizeY &&

cbHeight >= MinIpemCbSizeY && cbHeight <= MaxIpcmCbSizeY )

pcm_flag[x0][y0]

ae(v)

if(

!byte_aligned())

pcm_alignment_zero_bit

f(1)

ocm sample( cbWidth, cbHeight, treeType)

} else {

if( (treeType==SINGLE_TREE I treeType == DUAL_TREE_LUMA) {

if( (y0%CtbSizeY)>0)

intra_luma_ref_idx[x0][ y0)

ae(v)

FIG. 19A



1910

Continue from FIG. 19A

/

if (intra_luma_ref_idx[x0 ][ y0 ] ==0 &&

cbWidth MaxTbSizeY I I cbHeight <= MaxTbSizeY ) &&

(cbWidth * cbHeight > MinTbSizeY * MinTbSizeY))

intra_subpartitions_mode_flag[x0

y0 ]

ae(v)

if( subpartitions_mode_flag[x0 y0]==1 &&

cbWidth <= MaxTbSizeY && cbHeight <= MaxTbSizeY )

intra_subpartitions_split_flag[x0 y0 ]

ae(v)

if( htra_luma_ref_idx[x0][y0

intra_subpartitions_mode_flag[x0]| y0 ] = 0)

1900

intra_luma_mpm_flag[x0][ y0 ]

ae(v)

if( intra_luma_mpm_flag[x0

intra_luma_mpm_idx[x0][y0]

ae(v)

else

intra_luma_mpm_remainder

ae(v)

}

if( treeType= =SINGLE_TREE II treeType = = DUAL_TREE_CHROMA)

intra_chroma_pred_mode[x0][ y0 ]

ae(v)

}

} else if( treeType!=DUAL_TREE_CHROMA) (/*MODE_INTER orMODE_IBC*/

}

FIG. 19B



FIG. 20A

FIG. 20B

W

W

DCT-8

DST-7

A

A

w1=1/2 W or 1/4 W

w1

w-w1

W-w1

w1

SVT-V, position 0

SVT-V, position 1

DST-7

A

h1

h-h1

DST-7

h

h1=1/2 h or 1/4 h

A

h-h1

h1

SVT-H, position 0

SVT-H, position 1

FIG. 20C

FIG. 20D
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Sequence parameter set RBSP syntax

seq_parameter_set_rbsp()

{

Descriptor

sps_seq_parameter_set_id

ue(v)

sps_mts_intra_enabled_flag

u(1)

2101

sps_mts_inter_enabled_flag

u(1)

/

sps_sht_enable_flag

u(1)

rbsp_trailing_bits()

29145

)

FIG. 21A



WO 2020/197957 PCT/US2020/023752

30/45

General slice header syntax

slice_header() ( Descriptor

slice_pic_parameter_set_ie ue(v)

slice address u(v)

slice_type ue(v)

if (slice_type := 1) {

log2_diff_ctu_max_bt_size ue(v)

(sps_sbtmvp_enabled_flag)

sbtmvp_size_override_flag u(1)

if(sbtmvp_size_override_flag)

log2_sbtnivp_active_size_minus2 u(3)

)

(sps_temporal_mvp_enabled_flag)

slice_temporal_mvp_enabled_flag u(1)

if(slice_type ==B)

mvd_l1_zero_flag u(1)

if(slice_temporal_mvp_enabled_flag){

if(slice_type ==B)

collocated from 10_flag u(1)

)

six_minus_max_num_merge_cand ue(v)

sps_sbt_enable_flag)

slice_max_sbt_size_64_flag u(1)

)

if (sps_alf_enabled_flag)

slice_alf_enabled_flag u(1)

slice_alf enabled_flag)

alf_data()

}

dep_quant_enabled_flag n(1)

if(!dep_quant_enabled_flag)

sign_data_hiding_enabled_flag u(1)

byte_alignment()

}

2102

FIG. 21B
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Coding unit syntax

coding unit( x0, y0, cbWidth, cbHeight, treeType) ( Descriptor

if CuPredMode(x0][y0]!=MODE_INTRA &&

cu_cbf ae(v)

if(cu_cbf)

-
if(cbWidth <= maxSbtSize &&& cbHeight <= maxSbtSize) I

allowSbfVerHalf = cbWidth >=

allowSbtVerQuad = cbWidth>=

allowSbtHorHalf = cbHeight >

allowSbtHorQuad = cbHeight >= 16

if( allowSbfVerHalf II allowSbtHorHalf

allowSbtVerQuad allowSbtHorQuad)

cu_sbt_flag[x0][y0] ae(v)

)

if (cu_sbt_flag[x0][]0])(

if( ( allowSbtVerHalf I allowSbtHo:Half) &d

(allowSbtVerQuad allowSbtHorQuad)

cu_sbt_quad_flag[x0][y0] ae(v)

if( (cu_sbt_quad_flag[x0][y0]&& allowSbtVerQuad&& allowSbtHorQuad

cu_sbt_horizoutal_flag[x0][y0] ae(v)

cu_sbt_pos_flagíx0][y0 ae(v)

)

}

transform_tree( x0, yo, cbWidth, cbHeight, treeType )

}

FIG. 21C 2103
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Transform tree syntax

transform tree( x0, y0, tb Width, tbHeight, treeType) ( Descriptor

if( tbWidth > MaxTbSizeY II fbHeight>MaxTbSizeY) (

trafoWidth = (tbWidth y MaxTbSizeY) ? (tbWidth/2): tbWidth

traffHeight = (tbHeight > MaxTbSizeY) ? (tbHeight/ 2) tbHeight

transform_tree(x0.y0,trafo Width, trafoHeight)

if( tb Width 2 MaxTbSizeY )

transform_tree(x0+trafoWidth,y0,trafoWidth,trafoHeight, treeType)

if( tbHeight > MaxTbSizeY )

transform_tree( x0, y0 + trafoHeight, trafoWidth, trafeHeight, treeType)

if tb Width > MaxTbSizeY && tbHeight > MaxTbSizeY )

transform_tree(x0+trafoWidth, y0 + trafoHeight, trafo Width, trafeHeight, treeType)

) else if (cu_sbt_flag[x0][yo])

factorTb0 = cu_sbt_quad_flag[x0]y0]?1:2

factorTb0 = cu_sbt_pos_flag[x0][y0]?(4-factorTb0) : factorTb0

noResiTb0 = cu_sbt_pos_flag[x6

ifftcu_sbt_horizontal_flag[x0][y0])

trafoWidth = tbWidth*factorTb0/4

transform_tree(x0,y0,trafoWidth,tbHeight, treeType, noResiTb0)

transform tree( x0 + trafoWidth. y0, tb Width - trafo Width, tbHeight, treeType

!noResiTb0)

}

else {

trafoHeight = tbHeight * factorTb0/4

transform_tree( x0. y0, tb Width, trafeHeight, treeType, noResiTb0)

transform tree( x0. y0 + traffHeight. tb Width, tbHeight - trafeHeight, treeType,

!noResiTb0)

}

} else {

transform_unit(x0,y0,tbWidth, tbHeight. treeType 0)

}

}

FIG. 21D
2104



2105

2106

Transform unit syntax

transform unit( x0, y0, tb Width, tbHeight, treeType,

noResi )

Descriptor

if( (treeType = SINGLE_TREE 11 treeType = = =DUAL TREE LUMA 1 &&

!noResi )

tu_cbf_luna[x0] y0 ]

ae(v)

if((treeType==SINGLE_TREE I I treeType = = =DUAL_TREE_CHROMA

&&!noResi)

{

tu_cbf_cb[ x0][y0]

ae(v)

tu_cbf_cr[ x0][y0]

ae(v)

}

if((((CuPredMode[x0][y0] = = MODE INTRA ) && sps_mts_intra_enabled_flag)l

(CuPredMode[ <0][y0] == MODE_INTER ) . && sps_mts_inter_enabled_flag))

&& u_cbf_luma[ && treeType!=DUAL_TREE_CHROMA =

&& ( tbWidth 32) && (tbHeight <= 32) && !cu_sbt_flag[x0][y

cu_ints_flag[

ae(v)

if(tu_cbf_luma[x0][yo])

residual_coding( x0, y0. log2( tbWidth),log2(tbHeight),(

if(tu_cbf_cb[x0 [[ y0])

residual_coding! x0, y0, log2(tbWidth/2),log2(tbHeight/2).1)

if(tu_cbf_cr[x0][y0])

residual_coding(x0,y0,log2(tbWidth/2),log2(tbHeight/2),2)

)

2107

FIG. 21E
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Sequence parameter set RBSP semantics

sps_sbt_enabled_flag e equal to 0 specifies that sub-block transform for inter-predicted CU

is disabled. sps_sbt_enabled_flag equal to 1 specifies that sub-block transform for inter-

2108

predicted CU is enabled.

General slice header semantics

slice_sbt_max_size_64_flag equal to 0 specifies that the maximum CU width and height

for allowing sub-block transform is 32. slice_sbt_max_size_64_flag equal to 1 specifies

2109

that the maximum CU width and height for allowing sub-block transform is 64.

maxSbtSize = slice_sbt_max_size_64_flag? 64:32

FIG. 21F

REPRESENTATIVE
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Coding unit semantics

cu_sbt_flag[ x0 ][ y0 ] equal to 1 specifies that for the current coding unit, sub-block

transform is used. cu_sbt_flag[ x0 I[ y0 ] equal to 0 specifies that for the current coding

-unit, the sub-block transform is not used.

When cu_sbt_flag[ x0 ][ y0 ] is not present, its value is inferred to be equal to 0.

NOTE - : When sub-block transform is used, a coding unit is tiled into two transform

units, one transform unit has residual, the other does not have residual.

cu_sbt_quad_flag[ x0 ][ y0 ] equal to 1 specifies that for the current coding unit, the sub-

block transform include a transform unit of 1/4 size of the current coding unit.

cu_sbt_quad_flag[ x0 ][ y0 ] equal to 0 specifies that for the current coding unit the sub-

block transform include a transform unit of 1/2 size of the current coding unit.

When cu_sbt quad_flag[ x0 ][ y0 ] is not present, its value is inferred to be equal to 0.

cu_sbt_horizontal_{lag[ x0 ][ y0 ] equal to 1 specifies that the current coding unit is tiled

into 2 transform units by a horizontal split. cu sbt horizontal flag[ x0 I[ y0 I equal to 0
specifies that the current coding unit is tiled into 2 transform units by a vertical split.

When cu_sbt_horizontal_flag x0 ][ y0 ] is not present, its value is derived as follows:

-
If cu_sbt_quad_flag[ x0 ][ y0 ] is equal to 1. cu_sbt_horizontal_flag x0 ][ y0 ] is set

to be equal to allowSbfHoriQuad.

-
Otherwise (cu_sbt_quad_flag[x0][ y0 ] is equal to 0),

cu_sbt_horizontal_flag[ x0 I[ y0 ] is set to be equal to allowSbtHoriHalf.

cu_sbt_pos_flag| x0 I[ y0 ] equal to 1 specifies that the tu_cbf_luma, tu cbf cb and

tu_cbf_cr of the first transform unit in the current coding unit are not present in the

bitstream. cu_sbt_pos_flag[ x0 ][ y0 ] equal to 0 specifies that the tu_cbf_luma, tu_cbf_cb

and tu cbf cr of the second transform unit in the current coding unit are not present in the

bitstream.

FIG. 21G 2110
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Transformation process for scaled transform coefficients

General

Inputs to this process are:

-
a luma location (xTbY, yTbY) specifying the top-left sample of the current luma transform

block relative to the top-left luma sample of the current picture.

a variablen? specifying the width of the current transform block,

a variablenTbH specifying the height of the current transform block,

a variable cldx specifying the colour component of the current block,

-
an (nTbW)x(nTbH) array d[x][y] of scaled transform coefficients with X = 0..nTbW 1,

=0..nTbH - 1.

Output of this process is the (nTbW)x(nTbH) array of residual samples with

X = 0..nTbW 1,y=0.nTbH-1.

2112 If cu_sbt_flag[ xTbY ][ yTbY] is equal to 1, the variable trTypeHor specifying the horizontal

transform kernel and the variable trTypeVer specifying the vertical transform kernel are derived in

Table 8-X depending on
cu_sbt_horizontal_flag[xTbY][yTbY] and

cu_sbt_pos_flag[xTbY][yTbY].

Otherwise (cu_sbt_flag[ xTbY I[ yTbY ] is equal to 0), the variable trTypeHor specifying the

horizontal transform kernel and the variable trlypeVer specifying the vertical transform kernel are

derived in Table 8-9 depending on mts_idx[xTbY ][ yTbY ] and CuPredMode[xTbY] I[ yTbY]

The (nTbW)x(nTbH) array I of residual samples is derived as follows:

1. Each (vertical) column of scaled transform coefficients d[x][y] with x x 0..nTbW

y= 0..nTbH 1 is transformed to e[ x ][y] with x = 0..nTbW - 1, y=0..nTbH- by

invoking the one-dimensional transformation process for each column X 0.nTbW - 1 with

the height of the transform block nTbH, the list d[x][y] with 0..nTbH- and the

transform type variable trType set equal to trTypeVer as inputs, and the output is the list

e[x]y]withy=0.nTbH - - 1.

2. The intermediate sample values g[x][y] with X= 0..nTbW- 1. 0..nTbH- 1 are derived

as follows:

g[x][y]= = Clip3( CoeffMin, CoeffMax, (e(x)[y]+256) >> 9)

FIG. 21H
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Continue from FIG. 21H

3. Each (horizontal) row of the resulting array gl x][y] with x=0..nTbW-1,y=0.nTbH -1

is transformed to [x][y] with 0..nTbW -1. y=0..nTbH-1 by invoking the one-

dimensional transformation process for each row y=0..nTbH-1 with the width of the

transform block nTbW, the list g[x][y ] with x=0.nTbW-land the transform type variable

trType set equal to trTypeHor as inputs, and the output is the list with

=0..nTbW-1

Table 8-X - Specification of trTypeHon and trTypeVer depending on mts_idx[x][y] and

CuPredModel x][v]

cu_sbt_horizontal_flag cu_sbt_horizontal_flag

[xTbY][yTbY]==0 [xTbY][yTbY]==1

cu_sbt_pos_flag cu_sbt_pos_flag cu_sbt_pos_flag cu_sbt_pos_flag

[xTbY][yTbY] [xTbY][yTbY] [xTbY][yTbY] [ xTbY][yTbY]
2113

==0 ==1 ==0 ==1

trTypeHor 2 I nTbW>3270:1 nTbW>3270:1

trTypeVer nTbH>3270:1 nTbH>32?0:1 2 1

Table 8-9 - Specification of trTypeHon and trTypeVer depending on mts_idx[x][y] and

CuPredMode| x][y]

nats_idx[xTbY][yTbY] CuPredMode[xTbY](yTbY] CuPredMode[xTbY]xTbY]

==MODE INTRA === MODE INTER

trTypeHor trTypeVer trTypeHor trTypeVer

-1 (inferred) 0 0 0 0

0 (00) I 1 2 2

(01) 2 1 1 2

2 (10) I 2 2 1

3 (11) 2 2 1 1

FIG. 211
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4:4:4 4:2:2 Luminance

Chrominance

4:1:1 4:2:0

Different YUV formats

FIG. 22
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128 (luma)

128

Examples of disallowed TT and BT partitioning

FIG. 23
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transform tree( x0, y0, tbWidth, tbHeight treeType) ( Descriptor

InferTuCbfLuma = 1

if( IntraSubPartSplitType = = NO ISP SPLIT) {

MaxShSizeY = (tbWidth > 64 | thHeight >64)264 MaxThSizeY

if( tbWidth > MaxSbSizeY II tbHeight >MaxSbSizeY) -

trafoWidth === (tbWidth > MaxSbSizeY ? ? (tb Width / 2) : tbWidth

trafoHeight == (tbHeight > MaxSbSizeY ? (tbHeight / 2) : tbHeight

transform_tree( x0, y0, trafoWidth, trafoHeight

if( tbWidth > MaxSbSizeY )

transform tree( x0 + trafoWidth, y0, trafoWidth, traffHeight, treeType )

if( tbHeight > MaxSbSizeY )

transform tree( x0, y0 + trafoHeight, trafoWidth, trafoHeight, treeType )

if( tbWidth > MaxSbSizeY && tbHeight > MaxSbSizeY )

transform tree( x0 + trafo Width y0 + trafoHeight, trafoWidth, trafoHeight, treeType )

} else {

transform_unit( x0, y0. tb Width, tbHeight, treeType, 0)

}

) else if( cu sbt flag ) /

if( |cu_sbt_horizontal_flag) {

trafoWidth === tbWidth * SbtNumFourthsTb0 / 4

transform unit( x0, y0, trafoWidth, tbHeight, treeType 0 )

transform unit( x0 + Width, y0, tb Width - trafo Width tbHeight, treeType 1)

) else {

trafoHeight = tbHeight * SbtNumFourthsTb0/ 4

transform unit( x0, y0, tbWidth, trafoHeight, treeType, 0)

transform unit( x0. y0 + trafoHeight, tbWidth, tbHeight - trafoHeight, treeType, , 1)

)

} else if( IntraSubPartitionsSplitType = == ISP HOR_SPLIT) {

trafoHeight = tbHeight / NumIntraSubPartitions

for( partIdx = 0; partIdx V NumIntraSubPartitions: partIdx++ )

transform unit( x0, y0 + trafoHeight * partIdx, tbWidth, trafoHeight, treeType, partIdx )

) else if( IntraSubPartitionsSplitType = = ISP_VER_SPLIT) (

trafoWidth == tbWidth / NumIntraSubPartitions

for partidx = 0: partidx < NumIntraSubPartitions: partIdx++ )

transform unit( x0 + trafo Width * partIdx, y0, trafoWidth, tbHeight, tree Type, partidx )

)

)
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