Title: PROCESS FOR PREPARING AQUEOUS SOLUTIONS OF POLY(N-VINYL-CAPROLACTAM) AND THEIR USE

Bezeichnung: VERFAHREN ZUR HERSTELLUNG WÄSSRIGER LÖSUNGEN VON POLY(N-VINYL-CAPROLACTAM) UND IHRE VERWENDUNG

Abstract

A process is disclosed for preparing aqueous solutions of poly(N-vinyl-c-caprolactam) by polymerising poly(N-vinyl-c-caprolactam) in an aqueous medium in the presence of polymerisation initiators and 0.1 to 20 % by weight, in relation to the monomers used, of a water-soluble, polymer protective colloid. The thus obtained aqueous polymer solutions are useful as textile printing glues, raw materials for glues, lubricant additives, vehicles for cosmetic compositions, additives for washing products and as opacifiers in automatic shading systems.

Zusammenfassung

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlichen.

<table>
<thead>
<tr>
<th>Code</th>
<th>Land Deutsch</th>
<th>Land Englisch</th>
<th>Land Russisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Österreich</td>
<td>Austrian</td>
<td>Österreich</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
<td>Australia</td>
<td>Australia</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>Barbados</td>
<td>Barbados</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
<td>Belgium</td>
<td>Belgien</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>Burkina Faso</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
<td>Bulgaria</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>Benin</td>
<td>Benin</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
<td>Brazil</td>
<td>Brasilien</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>Belarus</td>
<td>Belarus</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
<td>Canada</td>
<td>Kanada</td>
</tr>
<tr>
<td>CF</td>
<td>Zentrale Afrikanische Republik</td>
<td>Central African Republic</td>
<td>中央非洲共和国</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
<td>Congo</td>
<td>Kongo</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
<td>Switzerland</td>
<td>Schweiz</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>Ivory Coast</td>
<td>Côte d'Ivoire</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
<td>Cameroon</td>
<td>Kamerun</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>China</td>
<td>China</td>
</tr>
<tr>
<td>CS</td>
<td>Tschechien</td>
<td>Czech Republic</td>
<td>Tschechien</td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
<td>Czech Republic</td>
<td>Chechische Republik</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
<td>Germany</td>
<td>Deutschland</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
<td>Denmark</td>
<td>Dänemark</td>
</tr>
<tr>
<td>ES</td>
<td>Spanien</td>
<td>Spain</td>
<td>Spanien</td>
</tr>
<tr>
<td>FI</td>
<td>Finnland</td>
<td>Finland</td>
<td>Finnland</td>
</tr>
<tr>
<td>FR</td>
<td>Frankreich</td>
<td>France</td>
<td>Frankreich</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>Gabon</td>
<td>Gabon</td>
</tr>
<tr>
<td>GB</td>
<td>Vereinigtes Königreich</td>
<td>United Kingdom</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>GE</td>
<td>Georgien</td>
<td>Georgia</td>
<td>Georgien</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
<td>Guinea</td>
<td>Guinea</td>
</tr>
<tr>
<td>GR</td>
<td>Griechenland</td>
<td>Greece</td>
<td>Griechenland</td>
</tr>
<tr>
<td>HU</td>
<td>Ungarn</td>
<td>Hungary</td>
<td>Ungarn</td>
</tr>
<tr>
<td>IE</td>
<td>Irland</td>
<td>Ireland</td>
<td>Irland</td>
</tr>
<tr>
<td>IT</td>
<td>Italien</td>
<td>Italy</td>
<td>Italien</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
<td>Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>KE</td>
<td>Kenya</td>
<td>Kenya</td>
<td>Kenya</td>
</tr>
<tr>
<td>KG</td>
<td>Kirgisistan</td>
<td>Kyrgyzstan</td>
<td>Kirgisistan</td>
</tr>
<tr>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
<td>Democratic Republic of Korea</td>
<td>朝鲜民主主义人民共和国</td>
</tr>
<tr>
<td>KR</td>
<td>Republik Korea</td>
<td>Republic Korea</td>
<td>Korea</td>
</tr>
<tr>
<td>KZ</td>
<td>Kasachstan</td>
<td>Kazakhstan</td>
<td>Kasachstan</td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
<td>Liechtenstein</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
<td>Sri Lanka</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LU</td>
<td>Luxemburg</td>
<td>Luxembourg</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>LV</td>
<td>Lettland</td>
<td>Latvia</td>
<td>Lettland</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
<td>Monaco</td>
<td>Monaco</td>
</tr>
<tr>
<td>MD</td>
<td>Moldawien</td>
<td>Moldova</td>
<td>Moldawien</td>
</tr>
<tr>
<td>MG</td>
<td>Madagaskar</td>
<td>Madagascar</td>
<td>Madagaskar</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
<td>Mali</td>
<td>Mali</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolei</td>
<td>Mongolia</td>
<td>Mongolei</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritanien</td>
<td>Mauritania</td>
<td>Mauritanien</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
<td>Malawi</td>
<td>Malawi</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
<td>Niger</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Niederlande</td>
<td>Netherlands</td>
<td>Niederlande</td>
</tr>
<tr>
<td>NO</td>
<td>Norwegen</td>
<td>Norway</td>
<td>Norwegen</td>
</tr>
<tr>
<td>NZ</td>
<td>Neuseeland</td>
<td>New Zealand</td>
<td>Neuseeland</td>
</tr>
<tr>
<td>PL</td>
<td>Polen</td>
<td>Poland</td>
<td>Polen</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
<td>Portugal</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Rumänien</td>
<td>Romania</td>
<td>Rumänien</td>
</tr>
<tr>
<td>RU</td>
<td>Russische Föderation</td>
<td>Russia</td>
<td>俄罗斯联邦</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>Sudan</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Schweden</td>
<td>Sweden</td>
<td>Schweden</td>
</tr>
<tr>
<td>SI</td>
<td>Slowenien</td>
<td>Slovenia</td>
<td>Slowenien</td>
</tr>
<tr>
<td>SK</td>
<td>Slowakei</td>
<td>Slovakia</td>
<td>Slowakei</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>Senegal</td>
<td>Senegal</td>
</tr>
<tr>
<td>TD</td>
<td>Tschad</td>
<td>Chad</td>
<td>Tschad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tadschikistan</td>
<td>Tajikistan</td>
<td>Tadschikistan</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad und Tobago</td>
<td>Trinidad and Tobago</td>
<td>特立尼达和多巴哥</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>Ukraine</td>
<td>Ukraine</td>
</tr>
<tr>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
<td>United States of America</td>
<td>美利坚合众国</td>
</tr>
<tr>
<td>UZ</td>
<td>Usbekistan</td>
<td>Uzbekistan</td>
<td>Usbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Vietnam</td>
<td>Vietnam</td>
<td>Vietnam</td>
</tr>
</tbody>
</table>
Verfahren zur Herstellung wässriger Lösungen von Poly(N-vinyl-ε-caprolactam) und ihre Verwendung

5 Beschreibung

bekannt. Der Nachteil solcher Mikroemulsionen ist in dem hohen Emulgatorgehalt zu sehen.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von wässrigen Lösungen von Polyvinylcaprolactam zur Verfügung zu stellen, wobei man relativ rasch homogene wässrige Polymerlösungen erhält.

Bei der erfindungsgemäßen Polymerisation entstehen zunächst Suspensionen von feinverteilten Polymeren in dem wässrigen Medium. Solche Suspensionen haben gegenüber wässrigen Lösungen von Polyvinylcaprolactam bei gleichem Polymergehalt eine wesentlich geringere Viskosität. Sie sind leicht technisch handhabbar, d.h. sie können gut durchmischt und leicht mit Wasser zu gebrauchsfertigen Lösungen verdünnt werden, die beispielsweise Konzentrationen von 0,1 bis 50, vorzugsweise 1 bis 30 Gew.-% haben. Vorzugsweise stellt man die gebrauchsfertigen wässrigen Lösungen in der Weise her, daß man die zum Verdünnen erforderliche Menge an Wasser unter Rühren zu einer Polyvinylcaprolactamlösung oder Suspension gibt, deren Temperatur oberhalb der unteren kritischen Lösungstemperatur der Polymeren liegt. Unabhängig davon kann man die gebrauchsfertigen Lösungen auch direkt durch Polymerisieren
von Monomerlösungen herstellen, deren Konzentration der der Polymerlösungen entspricht.

N-Vinyl-γ-caprolactam ist beispielsweise durch Vinylierung von Caprolactam erhältlich.

C₃-C₅-Carbonsäuren wie Acrylsäure, Methacrylsäure, Maleinsäure und Itakonsäure. Hierzu gehören auch Copolymere der monoethylenisch ungesättigten Carbonsäuren untereinander als auch Copolymere von monoethylenisch ungesättigten Carbonsäuren mit anderen, damit copolymerisierbaren Monomeren, wie Acrylsäure-

Besonders bevorzugt verwendet man als synthetische polymere Schutzkolloide Polyvinylalkohol und/oder teilverseiftes Polyvinylacetat mit einem Verseifungsgrad von 50 bis 99,9 mol-%.

Als synthetische polymere Schutzkolloide können außerdem Polymerisate von Sulfonsäuregruppen enthaltenden Monomeren, z.B. Ammonium- oder Alkalimetallsalze von Homo- oder Copolymerisaten von 2-Acrylamido-2-methylpropan sulfonsäure, Acrylamido propan sulfonsäure, Vinylsulfonsäure, Allylsulfonsäure und Methallylsulfonsäure, sowie Polymerisate von Phosphonsäuregruppen enthal-
tenden Monomeren eingesetzt werden, z.B. Ammonium- und Alkali-
metallsalze von Homo- oder Copolymerisaten von 2-Acrylamido-2-me-
ethylpropanphosphonsäure, Vinylphosphonsäure und Allylphosphon-
säure.

Die polymeren Schutzkolloide, die erfindungsgemäß eingesetzt wer-
den, werden dann als wasserlöslich bezeichnet, wenn sie in jedem
Verhältnis in Wasser mischbar sind oder sich zu mindestens
0,1 Gew.-% in Wasser bei 20°C lösen und aus diesen wäbrigen Lösun-
gen beim Verdünnen mit Wasser gleicher Temperatur nicht ausfal-
len. Das Molekulargewicht der wasserlöslichen, synthetischen po-
lymeren Schutzkolloide beträgt beispielsweise 10 000 bis
2 000 000, vorzugsweise 25 000 bis 1 500 000. Die Viskosität der
wäbrigen Lösungen der Schutzkolloide beträgt bei einer Konzen-
tration der wäbrigen Lösung von 4 bis 10 Gew.-% und einer
Temperatur von 20°C, beispielsweise 1 bis 10 000 mPas.

Für das erfindungsgemäße Verfahren eignen sich außerdem wasser-
lösliche natürliche Polymere. Stoffe dieser Art sind beispiels-
weise Gelatine, Pektine, Alginate, Casein, Stärke, Methyl-
cellulose, Hydroxypropylicellulose, Carboxymethylcellulose oder
Mischungen solcher Produkte. Stärke kann durch Erhitzen in wäbrigem
Medium auf Temperaturen oberhalb der Verkleisterungstempera-
tur der Stärke in wäbrige Lösungen überführt werden. Die Stärke
cann jedoch auch abgebaut werden, z.B. einem oxidativen, hydroly-
tischen oder enzymatischen Abbau unterworfen werden. In einigen
Fällen kann es von Vorteil sein, Mischungen aus einem syntheti-
schen und aus einem natürlichen Schutzkolloid einzusetzen, z.B.
eine Mischung aus Polyvinylalkohol und Casein. Weitere geeignete
natürliche Polymere sind sogenannte Mischether wie Methylhydro-
xyethylcellulose und Carboxymethylmethylcellulose.

Die Mengen an wasserlöslichen, polymeren Schutzkolloiden, die bei
dem erfindungsgemäßen Verfahren eingesetzt werden, betragen 0,1
bis 20, vorzugsweise 1 bis 5 Gew.-%, bezogen auf das bei der Po-
lymerisation eingesetzte N-Vinyl-ε-caprolactam.

Die Polymerisation des Vinylcaprolactams erfolgt in wäbrigem Me-
dium, wobei die Monomerkonzentration bis etwa 90 Gew.-% betragen
cann und vorzugsweise in dem Bereich von 10 bis 60 Gew.-% liegt.
Die Polymerisation wird vorzugsweise in reinem Wasser durchge-
führt, kann jedoch auch in einem wäbrigen Medium vorgenommen wer-
den, das bis zu 50 Gew.-% eines wasserlöslichen organischen Löse-
mittels enthält. Bei diesen Lösemitteln handelt es sich vorzugs-
weise um wasserlösliche, die Polymerisation regelnde Lösemittel,
beispielsweise Ether wie Tetrahydrofuran oder Dioxan, Alkohole
wie Methanol, Ethanol, Isopropanol und Ethylenglykol oder Glykol-
ether wie Diethylenglykol oder Diethylenglykoldimethylether. Falls man ein regelndes wasserlösliches Lösemittel mitverwendet, beträgt die angewendete Menge beispielsweise 5 bis 50 Gew.-%, bezogen auf das eingesetzte Monomere.

Bei der Polymerisation können gegebenenfalls außer einem regelnd wirkenden organischen Lösemittel übliche Polymerisationsregler mitverwendet werden, z.B. regelnd wirkende Verbindungen, die Schwefel in gebundener Form enthalten wie Mercaptane, z.B. Mercaptoethanol, Mercaptopropanol, Mercaptopbutanol, Dodecyl-mercaptan, Thioglykol, Mercaptoessigsäure und Mercaptopropionsäure. Außerdem eignen sich Allylverbindungen wie Allylkohol und Butenole sowie Aldehyde wie Formaldehyd oder Acetaldehyd. Falls gewünscht, kann die Polymerisation auch in Gegenwart mehrerer Regler vorgenommen werden. Sofern man bei der Polymerisation einen Regler einsetzt, betragen die Einsatzmengen beispielsweise 0,05 bis 20, vorzugsweise 0,1 bis 10 Gew.-%, bezogen auf N-Vinylcaprolactam.

Als radikalbildende Initiatoren sind vorzugsweise alle diejenigen Verbindungen geeignet, die bei der gewählten Polymerisations-temperatur eine Halbwertzeit von weniger als 3 Stunden aufweisen. Man kann auch die Polymerisation zunächst bei niedrigerer Temperatur starten, um sie bei höherer Temperatur zu Ende zu führen. Es kann dann zweckmäßig sein, mit mindestens zwei verschiedenen Temperaturen zerfallenden Initiatoren zu arbeiten, derart, daß mit einem bei niedriger Temperatur zerfallenden Initiator die Polymerisation gestartet wird, um sie dann mit einem bei höherer Temperatur zerfallenden Initiator zu Ende zu führen.

Bevorzugt werden in Wasser oder niedrigen Alkoholen wie Methanol, Ethanol und Isopropanol, lösliche Initiatoren verwendet, beispielsweise 2,2′-Azobisis(4-methoxy-2,4-dimethylvaleronitril), 2,2′-Azobisis(2,4-dimethylvaleronitril), 2,2′-Azobisis(2-methylpropionsäurenitril), 4,4′-Azobisis(4-cyanoveraliansäure), Dimethyl-2,2′-Azobisis(2-methylpropionat), 1,1′-Azobisis(1-cyclohexancarbonitril), 2,2′-Azobisis(N,N′-dimethylenisobutyramidin), (1-Phenylethyl)azidiphenyliethan, 1-[(1-Cyano-1-methyl-ethyl)azo]formamid, 2,2′-Azobisis(N,N′-dimethylenisobutyramidin)dihydrochlorid oder 2,2′-Azobisis(2-amidinopropan)dihydrochlorid, sowie Acetylcyclohexansulfonylperoxid, Diacetylperoxydcarbonat, Diisopropylperoxydicarbonat, t-Amylperneodecanoat, t-Butylperneodecanoat, Bis(4-chlorbenzoyl)peroxid, Bis(2,4-dichlorbenzoyl)peroxid, t-Butylperpivalat, Bis(3,5,5-trimethylhexanoyl)peroxid, Di-oktanoylperoxid, Diisononanoylperoxid, Didecanoylperoxid, Dilauroylperoxid, Bis(2-methylbenzoyl)peroxid, Succinylperoxid, Diacetylperoxid, Dibenzyloperoxid, Di-2-ethylhexylperoxydicarbonat, Dicyclohexylperoxydicarbonat, t-Butyl-
per-2-ethylhexanoat, t-Butylperisobutyrat und t-Butylpermaleinat. Die Auswahl des oder der am besten geeigneten Initiatoren ergibt sich letztendlich aus der Temperatur, bei der die Polymerisation reaktion ausgeführt werden soll.

Weniger bevorzugt, aber auch einsetzbar sind Redoxinitiator-
systeme, bestehend z.B. aus Peroxidgruppen aufweisenden Initiato-
ren, die durch den Zusatz von Reduktionsmitteln wie Übergangsme-
tallsalzen, Natriumsulfit, Natriumbisulfit, Natriumformaldehyd-
sulfoylat und/oder Hydrazin oder organischen Verbindungen wie
Benzoin, Dimethylanilin und Ascorbinsäure gespalten werden. Der-
artige Redoxinitiatorsysteme ermöglichen die Polymerisation bei
Temperaturen, die deutlich unter der Zerfallstemperatur der Pero-
xidgruppen aufweisenden Initiatoren liegen.

Bezogen auf N-Vinyl-ß-caprolactam setzt man beispielsweise 500 bis
50000, vorzugsweise 1000 bis 20000 ppm eines Initiators oder
einer Mischung mehrerer Initiatoren ein.

Die Polymerisation von Vinylcaprolactam kann kontinuierlich oder
diskontinuierlich erfolgen. Bevorzugt ist die diskontinuierliche
Polymerisation in Rührbehältern, die mit wirksamen Mischorganen
wie Blatt-, Anker-, Impeller- oder Propellerrührern ausgestattet
sind oder in anderen geeigneten Aggregaten wie Knetern. Die Poly-
merisation wird üblicherweise in einer Inertgasatmosphäre, z.B.
Stickstoff, durchgeführt. Die Temperaturen bei der Polymerisation
betragen etwa 40 bis 150, vorzugsweise 60 bis 100°C, wobei man bei
Temperaturen, die oberhalb des Siedepunkts des Reaktionsgemisches
liegen, die Reaktion in druckdicht verschlossenen Apparaturen
unter erhöhtem Druck durchführt.

Man erhält nach dem erfindungsgemäßen Verfahren wäßrige Lösungen
von Poly(N-vinyl-ß-caprolactam), die während der Polymerisation
oder nach Abschluß der Polymerisation ohne Schwierigkeit mit Was-
ser zu homogenen wäßrigen Lösungen einer gewünschten Konzen-
tration verdünnt werden können. Die Wassergabe kann dabei konti-
nuierlich, absatzweise oder auf einmal erfolgen. Während man
gemäß dem Stand der Technik bei der Herstellung wäßriger Lösungen
von Polyvinylcaprolactam selbst feinteiliges Polyvinylcaprolactam
lange in Wasser rühren muß, erhält man nach dem erfindungsgemäßen
Verfahren wäßrige Polymerlösungen, die durch Zugabe von Wasser
rasch auf die gewünschte niedrigere Polymerkonzentration verdünnt
werden können.

Durch geeignete Kombination von Monomerkonzentration, Polymerisa-
tionstemperatur, Schutzkolloid, Initiator und Regler sowie der
Konzentrationen der Einsatzstoffe erhält man Poly(N-vinyl-ß-capro-

Beispiele

In einer zylindrischen Rührapparatur, die mit einem Ankerrührer und Rückflußkühler ausgestattet war, wurden unter Stickstoffatmosphäre die in Tabelle 1 genannten Einsatzstoffe in den angegebenen Mengen vorgelegt und unter Rühren auf 70 bzw. 75°C erwärmt. Nachdem die daraufhin einsetzende exotherme Reaktion beendet war, wurde die Masse für 0,25 bis 2 h bei einer Temperatur des Heizbads von 90°C nachgerührt.

Im Fall der Vergleichsbeispiele lagen hochzähe bis glasartige Polymermassen vor, die von Wasser umgeben waren und die vom Ankerrührer nicht mehr durchmischt werden konnten. Bei den Beispielen erhielt man gut bewegliche, gut durchmischbare homogene Polymer-in-Wasser-Suspensionen.

Beispiel 4 und Vergleichsbeispiel 6 wurden jeweils in einem Laborkneter durchgeführt.
Tabelle

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>300</td>
<td>259</td>
<td>7,5 A</td>
<td>Y</td>
<td>46 %</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>300</td>
<td>252</td>
<td>-</td>
<td>Y</td>
<td>46 %</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>300</td>
<td>620</td>
<td>7,5 A</td>
<td>Y</td>
<td>29 %</td>
</tr>
<tr>
<td>-</td>
<td>2</td>
<td>300</td>
<td>610</td>
<td>- Q</td>
<td>Y</td>
<td>30 %</td>
</tr>
<tr>
<td>-</td>
<td>3</td>
<td>300</td>
<td>660</td>
<td>15 Q</td>
<td>Y</td>
<td>28 %</td>
</tr>
<tr>
<td>-</td>
<td>4</td>
<td>300</td>
<td>694</td>
<td>60 Q</td>
<td>Y</td>
<td>27 %</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>300</td>
<td>685</td>
<td>15 A<sup>c1</sup></td>
<td>Z<sup>c2</sup></td>
<td>29 %</td>
</tr>
<tr>
<td>-</td>
<td>5</td>
<td>300</td>
<td>655</td>
<td>-</td>
<td>Z<sup>c2</sup></td>
<td>30 %</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>300</td>
<td>130</td>
<td>30 A<sup>c1</sup></td>
<td>Y<sup>c3</sup></td>
<td>67 %</td>
</tr>
<tr>
<td>-</td>
<td>6</td>
<td>300</td>
<td>130</td>
<td>-</td>
<td>Y<sup>c1</sup></td>
<td>67 %</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>300</td>
<td>650</td>
<td>15 B</td>
<td>Y</td>
<td>28 %</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>300</td>
<td>650</td>
<td>15 C</td>
<td>Y</td>
<td>28 %</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>300</td>
<td>650</td>
<td>15 D<sup>c1</sup></td>
<td>Y</td>
<td>28 %</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>300</td>
<td>650</td>
<td>15 D<sup>c1</sup></td>
<td>Y</td>
<td>28 %</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>300</td>
<td>650</td>
<td>15 E</td>
<td>Y</td>
<td>28 %</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>300</td>
<td>650</td>
<td>15 F</td>
<td>Y</td>
<td>28 %</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>300</td>
<td>650</td>
<td>15 G</td>
<td>Y</td>
<td>28 %</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>300</td>
<td>650</td>
<td>15 H</td>
<td>Y</td>
<td>28 %</td>
</tr>
<tr>
<td>Bsp. Vgl.Bsp.</td>
<td>Wasserzugabe<sup>a)</sup></td>
<td>Nachrührzeit</td>
<td>Aussehen des Prod. bei 23°C</td>
<td>Feststoffgehalt<sup>e)</sup> [%]</td>
<td>Viskosität<sup>f)</sup></td>
<td>K-Wert<sup>g)</sup></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1 -</td>
<td>350</td>
<td>>24h</td>
<td>homogen</td>
<td>30,4</td>
<td>21 s</td>
<td>71,3</td>
</tr>
<tr>
<td>- 1</td>
<td>350</td>
<td>>24h</td>
<td>inhomog.</td>
<td>29,4</td>
<td>18,5 s</td>
<td>67,2</td>
</tr>
<tr>
<td>2 -</td>
<td>350</td>
<td>>24h</td>
<td>homogen</td>
<td>31,4</td>
<td>21 s</td>
<td>73,7</td>
</tr>
<tr>
<td>- 2</td>
<td>350</td>
<td>>24h</td>
<td>inhomog.</td>
<td>18,5</td>
<td>17 s</td>
<td>67,9</td>
</tr>
<tr>
<td>10</td>
<td>350</td>
<td>12h</td>
<td>homogen</td>
<td>29,1</td>
<td>14,1 s</td>
<td>schäumt</td>
</tr>
<tr>
<td>4 -</td>
<td>350</td>
<td>>24h</td>
<td>inhomog.</td>
<td>30,7</td>
<td>11,5 s</td>
<td>44,0</td>
</tr>
<tr>
<td>3 -</td>
<td>350</td>
<td>>24h</td>
<td>inhomog.</td>
<td>31,1</td>
<td>17,5 s</td>
<td>68,2</td>
</tr>
<tr>
<td>- 5</td>
<td>620</td>
<td>>24h</td>
<td>homogen</td>
<td>29,1</td>
<td>14,5 s</td>
<td>schäumt</td>
</tr>
<tr>
<td>15</td>
<td>550</td>
<td>>5h</td>
<td>inhomog.</td>
<td>32,5</td>
<td>17,5 s</td>
<td>73,0</td>
</tr>
<tr>
<td>6 -</td>
<td>550</td>
<td>>5h</td>
<td>homogen</td>
<td>31,1</td>
<td>25 s</td>
<td>78,5</td>
</tr>
<tr>
<td>5 -</td>
<td>550</td>
<td>>5h</td>
<td>homogen</td>
<td>30,1</td>
<td>18 s</td>
<td>70,6</td>
</tr>
<tr>
<td>6 -</td>
<td>550</td>
<td>>5h</td>
<td>homogen</td>
<td>31,4</td>
<td>26 s</td>
<td>schäumt</td>
</tr>
<tr>
<td>7 -</td>
<td>550</td>
<td>>5h</td>
<td>homogen</td>
<td>29,8</td>
<td>18 s</td>
<td>74,3</td>
</tr>
<tr>
<td>8 -</td>
<td>550</td>
<td>>5h</td>
<td>homogen</td>
<td>30,4</td>
<td>20 s</td>
<td>74,1</td>
</tr>
<tr>
<td>9 -</td>
<td>550</td>
<td>>5h</td>
<td>homogen</td>
<td>30,2</td>
<td>26,5 s</td>
<td>84,0</td>
</tr>
<tr>
<td>10 -</td>
<td>550</td>
<td>>5h</td>
<td>homogen</td>
<td>30,4</td>
<td>18,5 s</td>
<td>72,7</td>
</tr>
<tr>
<td>11 -</td>
<td>550</td>
<td>>5h</td>
<td>homogen</td>
<td>30,0</td>
<td>18 s</td>
<td>69,1</td>
</tr>
<tr>
<td>12 -</td>
<td>550</td>
<td>>5h</td>
<td>homogen</td>
<td>29,9</td>
<td>17 s</td>
<td>67,4</td>
</tr>
</tbody>
</table>

a) A = teilverseiftes Polyvinylacetat, Verseifungsgrad 88 mol-%; Viskosität (4%ige ws. Lösung, 25°C) 26 mPa·s
B = Poly(N-vinylpyrrolidon), K-Wert 90 (1 % in Wasser)
C = Poly(natriumacrylat), K-Wert 110 (Säureform, 1 % in Wasser)
D = Polyether, vgl. l und m
E = Polyethylenimine, Molmasse 1,2 Mio.
F = Hydroxyethylcellulose, Substitutionsgrad 2,5
G = Hydroxypropyl-Kartoffelstärkeether
H = Gelatine
Q = Sulfobersteinsäure-bis(2-ethylhexylester) Natriumsalz

b) Y = 0,5 Teile 2,2'-Azobis(2-methylpropionsäurenitril) in 100 Teilen Methanol
Z = 0,85 Teile 2,2'-Azobis(2-amidinopropan) dihydrochlorid in 50 Teilen Wasser; Lsg. wurde mit NaOH neutralisiert
c) in der Flotte
d) kontinuierlich während 3 h
e) von Ungelöstem abgetrennte Lösung
f) Auslaufviskosität Ford-Becher Düse Ø 4 mm einer 5,9-%igen
 Lösung bei 23°C
g) 1 % in Wasser
h) teilverseiftes Polyvinylacetat, Verseifungsgrad 88 mol-%,
 Viskosität (4 %-ige Ws. Lösung, 25°C), 18 mPa·s
i) 0,5 Teile 2,2′-Azobis(2-methylpropionsäurenitril) in 20 Teilen
 Methanol
l) Polyethylenlykol, M = ca. 35000
m) Polyethylenlykol-Polypropylenlykol-Polyethylenlykol Block-
 copolymer, M = ca. 14000, HLB = 16
n) Zusatz von 0,3 Teilen Mercaptoethanol als Regler
Patentansprüche

1. Verfahren zur Herstellung wässriger Lösungen von Poly(N-vinyl-\(\varepsilon\)-caprolactam) durch Polymerisieren von N-Vinyl-\(\varepsilon\)-caprolactam in wässrigem Medium in Gegenwart von Polymerisationsinitiatoren, dadurch gekennzeichnet, daß man die Polymerisation in Gegenwart von 0,1 bis 20 Gew.-%, bezogen auf die eingesetzten Monomeren, eines wasserlöslichen, polymeren Schutzkolloids durchführt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Schutzkolloid ein wasserlösliches synthetisches Polymer einsetzt.

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man wasserlösliche natürliche Polymere einsetzt.

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6* C08F26/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6* C08F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP,A,0 526 800 (BASF AG) 10 February 1993 see page 4, line 25; claim 1 ----</td>
<td>1,5,6</td>
</tr>
<tr>
<td>X</td>
<td>KHIM. ATSEFILENA, 1968 MOSCOW SU, pages 382-5, SIDELOKOVSKAYA, IBRAMIGO, ASKAROV 'synthesis of graft copolymers of cellulose and poly(n-vinylactams)' see page 382 - page 5 ----</td>
<td>1</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another document where such publication date is not ascertainable
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search: **19 January 1996**

Date of mailing of the international search report: **26.01.96**

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fac. (+31-70) 340-3016

Authorized officer

Schueler, D
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA-A- 2074747</td>
<td>04-02-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 5194673</td>
<td>03-08-93</td>
</tr>
</tbody>
</table>
A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 6 C08F26/06

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Rechercherter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 6 C08F

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP,A,0 526 800 (BASF AG) 10.Februar 1993 siehe Seite 4, Zeile 25; Anspruch 1</td>
<td>1,5,6</td>
</tr>
<tr>
<td>X</td>
<td>KHIIM. ATSETILENA, 1968 MOSKOW SU, Seiten 382-5, SIDEL'KOVSKAYA, IBRAMIGOV, ASKAROV 'synthesis of graft copolymers of cellulose and poly(n-vinylactams) siehe Seite 382 - Seite 5</td>
<td></td>
</tr>
</tbody>
</table>

Absendetdatum des internationalen Recherchenberichts: 26.01.96

Name und Portanschrift der Internationale Recherchebehörde

Europäisches Patentamt, P.B. 3818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax (+31-70) 340-3016

Bevollmächtigter Bediensteter

Schueler, D
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA-A- 2074747</td>
<td>04-02-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 5194673</td>
<td>03-08-93</td>
</tr>
</tbody>
</table>

Formblatt PCT/ISA/318 (Anhang Patentfamilie) Juli 1992