
(19) United States
US 20060010235A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0010235 A1
Gbadegesin (43) Pub. Date: Jan. 12, 2006

(54) SERVER ACCESS CONTROL METHODS
AND ARRANGEMENTS

(75) Inventor: Abolade Gbadegesin, Seattle, WA (US)
Correspondence Address:
LEE & HAYES PLLC
421 W RIVERSIDEAVENUE SUTE 500
SPOKANE, WA 992.01

(73) Assignee: Microsoft Corporation, Redmond, WA

(21) Appl. No.: 11/218,359

(22) Filed: Sep. 2, 2005

Related U.S. Application Data

(63) Continuation of application No. 09/661,050, filed on
Sep. 14, 2000.

Publication Classification

(51) Int. Cl.
G06F I5/173 (2006.01)

104(c)

104(a)

Client Device

102(a)

internet/Intranet

Server Device

Client Device

(52) U.S. Cl. .. 709/225

(57) ABSTRACT

In accordance with certain aspects of the present invention,
improved methods and arrangements for controlling access
to a network Server in a client-server environment are
provided. In accordance with certain implementations, user
Software Selectively specifies a list of network interfaces or
addresses on which connections are to be accepted. This
“listing” is provided to the network server software and used
to Selectively filter (accept/reject) connection requests asso
ciated with a wildcard Socket. The network server Software
essentially treats the wildcard Socket as if the network Server
bound it not to the wildcard address, but instead to all of the
network interfaces and/or addresses Specified. The various
methods and arrangements are applicable to file-sharing
Software, all TCP-based and UDP-based client-server Soft
ware, including HTTP servers, digital media servers, DNS
Servers, database Servers, etc.

-100

Client Device

102(c)

104(b)

102(b)

Patent Application Publication Jan. 12, 2006 Sheet 1 of 5 US 2006/0010235 A1

-100

internet/Intranet Client Device

1 02(e)
104(c)

N-104(b)

104(a)

Client Device

Client Device

102(b)

US 2006/0010235 A1

E LOWER!!
67Z

BOV-IXJELNI XHONALEN

Patent Application Publication Jan. 12, 2006 Sheet 2 of 5

|×
|

192 992

Patent Application Publication Jan. 12, 2006 Sheet 3 of 5 US 2006/0010235 A1

302

310 308(a)
U se/ 306

Kernel 308(c)

308(b)

304

SMB File 302"
Service

304

Patent Application Publication Jan. 12, 2006 Sheet 4 of 5 US 2006/0010235 A1

4 00 N User Program.
Resource(s)

408

u-106'

404
OS Kernel
Resource

US 2006/0010235 A1

----------------------------->
N.
cy)

Patent Application Publication Jan. 12, 2006 Sheet 5 of 5

US 2006/0010235 A1

SERVER ACCESS CONTROL METHODS AND
ARRANGEMENTS

RELATED APPLICATIONS

0001. The present application claims priority under 35
U.S.C. S 120 as a continuation of U.S. patent application Ser.
No. 09/661,050, filed Sep. 14, 2000, the disclosure is which
is hereby incorporated by reference in its entirety.

TECHNICAL FIELD

0002 This invention relates to computers and computer
networks, and more particularly to methods and arrange
ments for use in controlling access to Servers in a client
Server communication environment.

BACKGROUND

0003. There is a continuing need for improved methods
and arrangements for controlling access to network Servers
or like devices, especially in the Internet/intranet networking
arena. The network Server logic (e.g., Software) can usually
be divided into an application or user-side portion, and an
operating System or kernel-Side portion. These two portions
are required to work together during a client Server com
munication Session.

0004 Server devices typically include at least one “net
work Server Software program that is operatively config
ured along with hardware to receive requests from one or
more client devices over a network and in response perform
one or more Services expressed in the request(s) on the
clients behalf. For example, “Berkeley Sockets” is one
name given to an application-programming interface (API)
that is commonly used to implement network Servers on the
Internet and other like networks. WindowsTM Sockets is the
name given to certain versions of another API associated
with the WindowsTM platform available from Microsoft
Corporation of Redmond, Wash., and configurable for use
on various networks, including, for example, the Internet,
intranets, LANs, etc.

0005. In an IP network, each network server typically has
one or more network interfaces, each having one or more IP
addresses assigned thereto. For the Sake of Security,
improved manageability, load-distribution, and/or other rea
Sons, it is often desirable to limit or otherwise restrict the
number or set of network interfaces and/or IP addresses via
which the network Server will accept requests. Thus there is
a need to control which client can access the Server.

0006 Conventional control methodologies tend to: (1)
place a heavy burden on the kernel-side Software by requir
ing the opening and management of a plurality of commu
nication Sockets, each being bound to a specific network/
address; or, (2) place a heavy burden on the user-side
Software by having the network Server Software open a
wildcard Socket bound to several networks that relies on the
user Software for the requisite management/policing.
Method (1) usually requires complicated Software and Sig
nificant resources. Method (2) requires fewer resources, but
is more Vulnerable to denial of Service attacks when over
loaded with client requests, and does not always provide
Sufficient information to terminated client nodes regarding
the reason for the rejection/termination.

Jan. 12, 2006

SUMMARY

0007. In accordance with certain aspects of the present
invention, improved methods and arrangements for control
ling access to the network Server in a client-Server environ
ment are provided.
0008. In accordance with certain implementations, user
Software Selectively specifies a list of network interfaces or
addresses on which connections are to be accepted. This
“listing” is provided to the network server software and used
to Selectively filter (accept/reject) connection requests asso
ciated with a wildcard Socket. The network server Software
essentially treats the wildcard Socket as if the network Server
bound it not to the wildcard address, but instead to all of the
network interfaces and/or addresses Specified.
0009. The various methods and arrangements are appli
cable to file-sharing software, all TCP-based and UDP
based client-server software, including HTTP servers, digi
tal media Servers, DNS servers, database Servers, etc.
0010) By way of further summary/example, the above
Stated needs and others are met by a method for controlling
access to a Server device by at least one client device that is
connected to the Server device through at least one inter
connecting network. The method includes having a user-side
portion of a network Server logic within the Server device
Specify at least one or more networks from which the
user-Side portion would accept client device information.
The method further includes having a kernel-side portion of
the network Server logic accept the client device information
from the interconnecting network only if the client device
information has been provided via the Specified network.

BRIEF DESCRIPTION OF THE DRAWINGS

0011. A more complete understanding of the various
methods and arrangements of the present invention may be
had by reference to the following detailed description when
taken in conjunction with the accompanying drawings
wherein:

0012 FIG. 1 is a block diagram depicting an exemplary
client-Server arrangement that spans a plurality of intercon
necting networks.
0013 FIG. 2 is a block diagram depicting an exemplary
computing System Suitable for use as either a Server device
or as a client device in the arrangement of FIG. 1.
0014 FIG. 3 is a block diagram depicting a conventional
Server Software architecture Suitable for use in a Server in
FIG. 1 for example, having a selected plurality of commu
nication Sockets provided between a network interface pro
tocol driver program or the like that is associated with an
operating System kernel and an application or the like that is
asSociated with a user program.
0.015 FIG. 4 is a block diagram similar to FIG. 3
depicting yet another conventional Server Software architec
ture having only a Single communication Socket provided
between a network interface protocol driver program or the
like and an application or the like.
0016 FIG. 5 is a block diagram depicting an improved
Server Software architecture that, in accordance with certain
exemplary implementations of the present invention,
includes at least one communication Socket between an

US 2006/0010235 A1

operating System kernel resource and a user program
resource and at least one related Socket interface list that can
be selectively defined by a user program resource and
provided or otherwise made available to the operating
System kernel resource.
0017 FIG. 6 is a block diagram depicting an improved
server architecture as in FIG. 5 suitable for certain
Microsoft WindowsTM computing environments, in accor
dance with certain further exemplary implementations of the
present invention.
0.018 FIG. 7 is an operational block diagram depicting
an exemplary client-Server communication process over a
plurality of networks having Servers configured in accor
dance with certain implementations of present invention, for
example, as in FIG. 5.

DETAILED DESCRIPTION

0.019 FIG. 1 is a block diagram depicting an exemplary
client-Server arrangement 100. This interconnected arrange
ment includes client devices 102(a-c), each being opera
tively coupled through a respective network 104(a-c) to a
Server device 106.

0020. As depicted in this simple arrangement, networks
104(a-c) provide two-way communication services between
their respective server devices 102(a-c) and server device
106. Networks 104(a-c) may include, for example, one or
more routers or like devices that complete the necessary
communication paths during a client-Server Session. Here,
for example, networks 104(a-c) may be a packet Switched
networks that are configured to use Transmission Control
Protocol/Internet Protocol (TCP/IP) to transfer information
between server device 102 and client device 104 in packets
appropriately addressed and delivered via the routers 108.
Retransmission Services may also be provided for missing/
corrupted packets. These and other well known protocols
and techniques can be implemented to provide specific
Services between these communicating devices and/or pro
grams.

0021 Attention is now drawn to FIG. 2, which is a block
diagram depicting an exemplary computing System 200
Suitable for use as either server device 106 or as a client
device 102(a-c).
0022 Computing system 200 is, in this example, in the
form of a personal computer (PC), however, in other
examples computing System may take the form of a dedi
cated Server(s), a Special-purpose device, an appliance, a
handheld computing device, a mobile telephone device, a
pager device, etc.
0023. As shown, computing system 200 includes a pro
cessing unit 221, a System memory 222, and a System bus
223. System bus 223 links together various system compo
nents including System memory 222 and the processing unit
221. System bus 223 may be any of several types of bus
Structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. System memory 222 typically includes read
only memory (ROM) 224 and random access memory
(RAM) 225. A basic input/output system 226 (BIOS), con
taining the basic routine that helps to transfer information
between elements within computing System 200, Such as
during Start-up, is Stored in ROM 224. Computing System

Jan. 12, 2006

200 further includes a hard disk drive 227 for reading from
and writing to a hard disk, not shown, a magnetic disk drive
228 for reading from or writing to a removable magnetic
disk 229, and an optical disk drive 30 for reading from or
writing to a removable optical disk 231 such as a CD ROM
or other optical media. Hard disk drive 227, magnetic disk
drive 228, and optical disk drive 230 are connected to
system bus 223 by a hard disk drive interface 232, a
magnetic disk drive interface 233, and an optical drive
interface 234, respectively. These drives and their associated
computer-readable media provide nonvolatile Storage of
computer readable instructions, data Structures, computer
programs and other data for computing System 200.
0024. A number of computer programs may be stored on
the hard disk, magnetic disk 229, optical disk 231, ROM 224
or RAM 225, including an operating system 235, one or
more application programs 236, other programs 237, and
program data 238.
0025. A user may enter commands and information into
computing System 200 through various input devices Such as
a keyboard 240 and pointing device 242 (Such as a mouse).
A camera/microphone 255 or other like media device
capable of capturing or otherwise outputting real-time data
256 can also be included as an input device to computing
system 200. The real-time data 256 can be input into
computing system 200 via an appropriate interface 257.
Interface 257 can be connected to the system bus 223,
thereby allowing real-time data 256 to be stored in RAM
225, or one of the other data Storage devices, or otherwise
processed.

0026. As shown, a monitor 247 or other type of display
device is also connected to the System buS 223 via an
interface, Such as a video adapter 248. In addition to the
monitor, computing System 200 may also include other
peripheral output devices (not shown), Such as speakers,
printers, etc.
0027 Computing system 200 may operate in a networked
environment using logical connections to one or more
remote computers, Such as a remote computer 249. Remote
computer 249 may be another personal computer, a Server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
elements described above relative to computing system 200,
although only a memory storage device 250 has been
illustrated in FIG. 2.

0028. The logical connections depicted in FIG. 2 include
a local area network (LAN) 251 and a wide area network
(WAN) 252. Such networking environments are common
place in offices, enterprise-wide computer networks, Intra
nets and the Internet.

0029 When used in a LAN networking environment,
computing system 200 is connected to the local network 251
through a network interface or adapter 253. When used in a
WAN networking environment, computing system 200 typi
cally includes a modem 254 or other means for establishing
communications over the wide area network 252, Such as the
Internet. Modem 254, which may be internal or external, is
connected to system bus 223 via the serial port interface 246.
0030. In a networked environment, computer programs
depicted relative to the computing System 200, or portions
thereof, may be Stored in the remote memory Storage device.

US 2006/0010235 A1

It will be appreciated that the network connections shown
are exemplary and other means of establishing a communi
cations link between the computers may be used.
0031. In accordance with certain exemplary implemen
tations of the present invention, novel methods and arrange
ments are provided for creating high-performance network
Servers that Support various access control restrictions.
These methods and arrangements provide the technology for
the development of highly Scalable Internet Services, for
example, and in doing So provide Solutions that tend to be
Significantly more efficient and more resource-friendly than
any of the mechanisms previously in use.
0032. With this in mind, certain existing problems in
conventional network servers will now be described with
reference to FIGS. 3 and 4. In the examples that follow, the
network Server is operatively associated with file-sharing
Software. However, it should be noted that the problems and
the various implementations in accordance with the present
invention are also applicable to many other, if not all,
TCP-based and UDP-based client-server Software, includ
ing, e.g., HTTP servers, digital media servers, DNS servers,
database Servers, etc.

0033. There are two mechanisms commonly employed
by network servers to selectively restrict the local network
interfaces and IP addresses on which requests are accepted.
In both of these conventional approaches (which are
described below), the network server is first configured with
a list of local network interfaces and/or IP addresses on
which connection-requests are to be processed.

0034. The first mechanism commonly employed by net
work Servers to Selectively restrict the local network inter
faces and IP addresses essentially binds sockets to individual
IP addresses. An exemplary arrangement is depicted in
network server architecture 300 of FIG. 3. As shown in this
example, FIG. 3 includes a server device 106 having an
SMB file service program 302 that is logically associated
with a user-Side programming resource, as opposed to an
operating system (OS) kernel-side resource 304 (see illus
trative demarcation line 306). Here, OS kernel-side resource
304 includes a TCP/IP driver, for example.
0.035 AS graphically depicted, network server architec
ture 300 further includes a plurality of listening sockets 308,
one bound to each network interface and/or IP address on
which connections are permitted. For example, Socket
308(a) may be bound to listen to network 104(a), socket
308(b) may be bound to listen to network 104(b), and socket
308(c) may be bound to listen to network 104(c) (see, FIG.
1). Thus, any unauthorized connection requests to network
server architecture 300 are simply rejected by OS kernel
Side resource 304 Since no process is listening for them.
For example, assume that socket 308(c) is not longer a valid
or listened to (as illustrated by crossed lines 310). Any
Subsequent client requests from client device 102(c), for
example, will be rejected outright.

0036. At least two significant problems arise with this
approach, however. The first problem is that this approach
consumes considerable resources and tends to result in very
unwieldy Source code. Here, for example, network Server
300 must now maintain many listening Sockets. In the case
of large Internet Servers, the number of listening Sockets
may number in the thousands, and each of these Sockets

Jan. 12, 2006

consumes Scarce kernel-mode resources. This is particularly
true when each Socket has a corresponding allocation of
buffers, its own queue of idle connections, and/or its own
queue of unaccepted connections. Moreover, the network
Server's connection acceptance may be required to pass
around arrays of potentially thousands of listening Sockets.

0037. The second problem is that this approach usually
forces the network Server to participate in numerous System
events that might affect the Status of network interfaces
and/or IP addresses. By way of example, network device
insertion and removal, IP address addition, removal, recon
figuration, etc. These are all events that are of no concern to
a network server that uses only the wildcard IP address, but
which must be handled by any network server that binds
Specifically to particular IP addresses. The resulting Source
code for Simply managing these So-called network plug
and-play events can be quite complicated and is often
error-prone.

0038. The second mechanism commonly employed by
network servers to selectively restrict the local network
interfaces and IP addresses on which requests are accepted
takes on a “validation of accepted connections' approach.
FIG. 4 depicts an exemplary network server architecture
300' that is similar to network server architecture 300 in
FIG. 3. Here, however, network server architecture 300'
creates a Single listening Socket 312 that is bound to a
wildcard IP address (e.g., *, or INADDR ANY) and OS
kernel-side resource 304' accepts all connection requests on
that Socket. Once a connection request is accepted, then
SMB file service program 302 then queries a network stack
(e.g., a database) to determine the network interface and/or
IP address on which the request arrived. If that network
interface and/or IP address is not in a list of those permitted,
then SMB file service program 302' terminates the previ
ously accepted connection.

0039 Since the connection requests are fully accepted
before being Subjected to validation, Several problems arise.
One significant problem, for example, is that network Server
architecture 300' is susceptible to intentional/unintentional
“denial of Service' attacks. Even on disabled network inter
faces and/or IP addresses, network server architecture 300'
can be flooded with connection requests. Since each of the
requests are fully accepted before being validated, the result
ing connections can accumulate and consume user-side
resources faster than SMB file service program 302" can
terminate those connections that are not validated.

0040 Another problem is that from the point of view of
the network clients, terminating connections after fully
accepting a connection request can be quite different from a
rejection of a connection request outright. Here, for
example, let us assume that client device 102(c) does not
have permission to access the services of SMB file service
program 302". Theoretically, the desired behavior calls for
network server architecture 300' to reject the unauthorized
connection request from client device 102(c). Unfortunately,
this does not occur because the behavior implemented by
this conventional approach essentially terminates unautho
rized connections. The error code returned to client device
102(c) by the former event (i.e., a rejection) is different from
that returned by the latter event (i.e., a termination). Con
Sequently, in many situations this difference has produced
unacceptable consequences from the point of View of the

US 2006/0010235 A1

Service being provided, Since it becomes impossible for
client device 102(c) to distinguish between a refusal of
Service and a failure of Service.

0041. With these problems and other known drawbacks
in mind, certain exemplary methods and arrangements in
accordance with the present invention will now be described
in greater detail.

0042. As described below and shown in the correspond
ing drawings, the various methods and arrangements Solve
the above problems by essentially shifting responsibility for
rejecting unauthorized connection requests to the network
ing subsystem (e.g., a OS kernel resource 404 in FIG. 5).
This reallocation is configured to allow a network server 400
to operate with a single listening socket 408 that is bound to
a wildcard IP address or the like.

0043. In the exemplary arrangement in FIG. 5, the infor
mation required for the validation/authorization proceSS is
provided and/or otherwise made available to OS kernel
resource 404 by a user program resource(s) 402. The process
of providing the requisite information is illustratively
depicted in FIG. 5 by the curved arrow pointing towards a
listing 412, which is available to OS kernel resource 404.
Note that listing 412 includes information in the form of
data, this data can take any conventional form, and can be
held in whole or in part(s) within/without network server
400.

0044 Thus, for example, in certain implementations, user
program resource 402 Specifies an explicit listing 412 of
local network interfaces and/or IP addresses on which it
wishes to accept connection requests on Socket 408. The
networking Subsystem, in this example OS kernel resource
404, then essentially treats socket 408 as if the network
server 400 bound it not to the wildcard IP address, but
instead to all of the network interfaces and/or IP addresses
Specified.

0.045. Several benefits arise from this approach. First,
network server 400 will be immune from denial of Service
attacks on its unauthorized network interfaces and/or IP
addresses, since OS kernel resource 404 has all the infor
mation it needs to reject connection requests promptly.
Secondly, client devices 102 are able to distinguish clearly
between refusal of Service and failure of Service, Since this
approach relies on OS kernel resource 404 to reject connec
tion requests rather than relying on the network Server (e.g.,
user program resources 402) to terminate accepted connec
tions. Thirdly, network server 400 has only one socket to
manage, rather than thousands. Fourthly, in the case where
the listing 412 of authorized local network interfaces and/or
IP addresses contains thousands of items, the resource
consumption of the list in kernel-mode is an order of
magnitude lower than the resource consumption would be if
one full Socket were opened for each 11 item. Additionally,
network server 400 need not implement code for processing
network plug-and-play events, since it never actually binds
Specifically to any particular IP addresses.

0.046 Reference is now made to FIG. 6, which depicts in
similar fashion to FIG. 5, one exemplary implementation of
a network server 400' that is Suitable for use in a WindowsTM
operating environment. Here, as a result of the above
described methods and arrangements, a conventional Win
dowsTM Sockets API was modified to provide Support for

Jan. 12, 2006

Specifying a listing of local network interfaces and/or IP
addresses on Sockets. This is illustratively represented by the
shaded block within user program resource 402', and
described in greater detail below. OS kernel resource 404
has also been modified to provide the requisite Support in the
WindowsTM networking Subsystem for rejecting connection
requests or datagrams on behalf of network server 400'.
0047 FIG. 7 is block diagram that builds upon the above
examples and illustrates an exemplary logical proceSS based
on an operational Scenario. Here, it is assumed that the
exemplary sockets API further includes socket I/O control
logic. The Socket I/O control is essentially issued by a
network Server on a Socket to Specify the listing of network
interfaces on which the Server is willing to accept connec
tions (e.g., in the case of listening TCP Sockets) or receive
datagrams (e.g., in the case of UDP Sockets). Here, listing
412 is termed an "If List'.

0048. The following exemplary controls may be included
in the Socket I/O control logic:
0049 SIO IFLIST-set to a non-zero value to treat the
Socket as if it is bound only to those interfaces Set via an
SIO ADD IFLIST. When set to a zero value, this clears the
network interface list and restores a wildcard normal opera
tion.

0050 SIO ADD IFLIST-atomically adds one or more
local network interfaces to the list of authorized interfaces
for the Socket.

0051) SIO DEL IFLIST-atomically removes one or
more local network interfaces from the list of authorized
interfaces for the Socket.

0052 Certain implementations, for example, also extend
the WindowsTM networking subsystem with Support for the
SIO IFLIST I/O control in a socket-management module
and an input-processing module (neither of which are
shown).
0053 Continuing with the example above and with spe
cific reference to FIG. 7, each Socket includes an additional
field: the IfList field, which holds a NULL-terminated list of
the network interfaces on which requests are authorized for
the Socket.

0054) When the SIO IFLIST I/O control is issued by an
application (e.g., user program resource 402 or 402), the
networking Subsystem (e.g., OS kernel resource 404 or 404")
initializes the IfList field to be empty. When the SIO AD
D IFLIST I/O control is issued, the network interface(s)
Specified is (are) added to the IfList field (e.g., listing 412),
if not already present. When the SIO DEL IFLIST I/O
control is issued, the network interface(s) specified is (are)
removed from the IfList field, if present.
0055 When an incoming connection request is matched
to a listening TCP Socket or an incoming datagram is
matched to a UDP socket, the networking Subsystem deter
mines whether the IfList field is non-empty. If so, the
networking Subsystem Searches the contents of the IfList
field to determine whether the receiving network interface is
present in the list of authorized interfaces. If the receiving
network interface is present in the list, then it is processed
normally and the connection request accepted or the data
gram delivered. Otherwise, the networking Subsystem dis
cards the previous match (i.e. no longer considers the Socket

US 2006/0010235 A1

to be a match) and continues Searching for a matching Socket
as though no match had been found. If no other Sockets
match the incoming message, then the message is rejected as
though no match had been found; for TCP connection
requests, a TCP reset is sent, while for UDP datagrams, an
ICMP destination unreachable message is sent.
0056 FIG. 7 provides additional descriptive text for
StepS 1 through 9 associated with an exemplary attempted
connection operation. Here, the numbered dashed arrows
illustrate the functional flow associated with the correspond
ing numbered Steps.
0057 Although some preferred embodiments of the vari
ous methods and arrangements of the present invention have
been illustrated in the accompanying Drawings and
described in the foregoing Detailed Description, it will be
understood that the invention is not limited to the exemplary
embodiments disclosed, but is capable of numerous rear
rangements, modifications and Substitutions without depart
ing from the spirit of the invention as set forth and defined
by the following claims.

1. A method for controlling access to a server device by
at least one client device that is operatively coupled to the
Server device through at least one interconnecting network,
the method comprising:

causing a user-Side portion of a network Server logic
within the Server device to Selectively specify at least
one network from which the user-side portion would
accept client device information; and

causing a kernel-Side portion of the network Server logic
to accept the client device information only if the client
device information has been provided via the Specified
network.

2. The method as recited in claim 1, further comprising:

if the client device information has not been provided via
the Specified network, causing the kernel-Side portion
to reject the client device information and notify the
client device in a manner that identifies the rejection.

3. The method as recited in claim 1, further comprising:

providing a communication Socket for use by the kernel
Side portion; and

causing the kernel-Side portion to compare client device
information received on the communication Socket to
the Specified network.

4. The method as recited in claim 1, wherein causing the
user-Side portion to Selectively specify at least one network
from which the user-Side portion would accept the client
device information, further includes causing the user-side
portion to Selectively specify a plurality of networks from
which the user-Side portion would accept the client device
information; and

wherein causing the kernel-side portion to accept the
client device information only if the client device
information has been provided via the Specified net
work, further includes causing the kernel-Side portion
to accept the client device information only if the client
device information has been provided via at least one of
the Specified plurality of networkS.

Jan. 12, 2006

5. The method as recited in claim 1, wherein causing the
user-Side portion to Selectively specify the at least one
network from which the user-Side portion would accept the
client device information further includes having the user
Side portion Specify at least one local network interface.

6. The method as recited in claim 1, wherein causing the
user-Side portion to Selectively specify the at least one
network from which the user-Side portion would accept the
client device information further includes having the user
Side portion Specify at least one IP address.

7. The method as recited in claim 1, wherein the network
Server logic is operatively configured to Support at least one
client-Server based process Selected from a group of pro
ceSSes comprising a file-sharing communication process, a
TCP-based communication process, a UDP-based commu
nication process, a HTTP-based communication process, a
digital media based communication process, a DNS-based
communication process, and a database related communi
cation process.

8. The method as recited in claim 1, wherein the user-side
portion includes an application-programming interface
(API) operatively configured to allow an application to
Specify the at least one network from which the user-side
portion would accept the client device information.

9. The method as recited in claim 8, wherein the API is
further operatively configured to allow the application to
Specify a listing of networks from which the user-side
portion would accept the client device information.

10. The method as recited in claim 9, wherein the API is
further operatively configured to allow the application to
selectively modify the listing of networks from which the
user-Side portion would accept the client device information.

11. The method as recited in claim 1, wherein the kernel
side portion includes a TCP/IP driver.

12. A method comprising executing network Server Soft
Ware to:

receive a listing from user Software that Specifies a listing
of network interfaces, on which, connections are
acceptable; and

filter connection requests associated with a wildcard
Socket based on the listing.

13. The method as recited in claim 12, wherein the
network Server Software is executed via kernel logic.

14. The method as recited in claim 12, wherein the
connection requests are filtered Such that connection
requests which do not comply with the listing are rejected
before full acceptance.

15. The method as recited in claim 12, wherein the
connection requests are filtered Such that wildcard Socket
acts as if bound to each of the network interfaces Specified
in the listing.

16. The method as recited in claim 15, wherein the
network interfaces are referenced using Internet Protocol
addresses.

17. The method as recited in claim 12, wherein the
connection requests are filtered Such that a device executing
the network Server Software is protected against a denial of
Service attack.

US 2006/0010235 A1

18. The method as recited in claim 12, further comprising
when the connection request has not been provided via a
Specified network in the listing, causing rejection of the
connection request and notifying a client device that origi
nated the connection request in a manner that identifies the
rejection

19. The method as recited in claim 12, wherein the
network Server Software includes an application-program
ming interface (API) operatively configured to allow an
application to specify the listing.

20. A method for establishing per-Socket interface listings,
the method comprising:

Jan. 12, 2006

a) issuing, by a user-Side application, at least one network
identifier from which the user-side application would
accept client device information;

b) receiving, by a user-side portion of a network Server
process, the at least one network identifier;

c) issuing, by the user-side portion, the at least one
network identifier; and

d) receiving, by a kernel-side portion of a network Server
process, the at least one network identifier.

k k k k k

