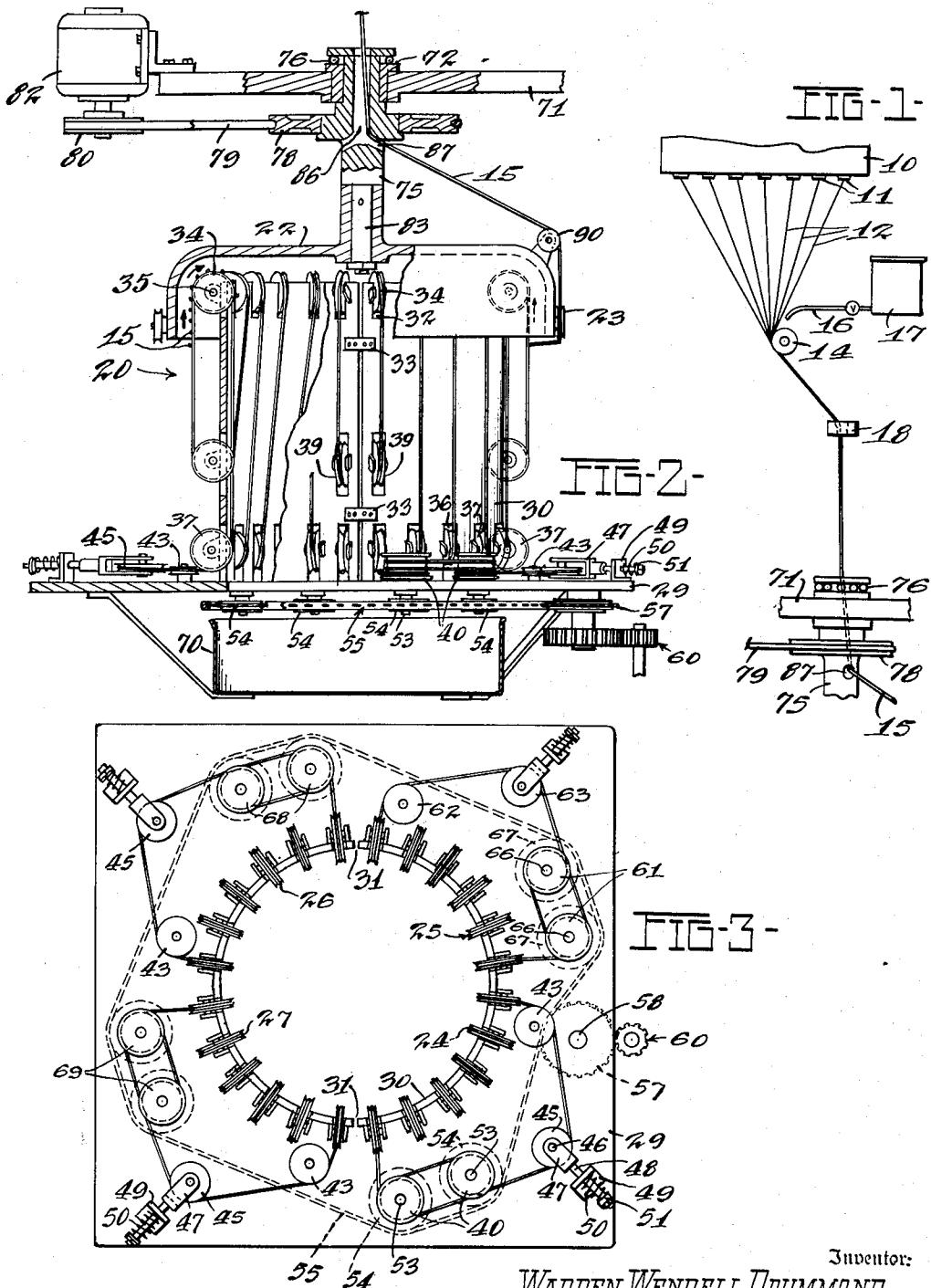


Feb. 28, 1956


W. W. DRUMMOND

2,736,070

METHOD AND APPARATUS FOR PRODUCING FIBERS

Filed May 31, 1950

2 Sheets-Sheet 1

By *Staelin + German*
Attorneys.

Feb. 28, 1956

W. W. DRUMMOND

2,736,070

METHOD AND APPARATUS FOR PRODUCING FIBERS

Filed May 31, 1950

2 Sheets-Sheet 2

United States Patent Office

2,736,070
Patented Feb. 28, 1956

1

2,736,070

METHOD AND APPARATUS FOR PRODUCING FIBERS

Warren Wendell Drummond, Newark, Ohio, assignor to Owens-Corning Fiberglas Corporation, a corporation of Delaware

Application May 31, 1950, Serial No. 165,260

6 Claims. (Cl. 19—144)

This invention relates to the production of fibers or fine filaments from fiber forming materials and more especially to method and apparatus for forming, collecting and processing mineral fibers or strands of mineral fibers derived from heat softenable materials. In connection with fiber forming and collecting processes heretofore employed, it has been a practice to form fibers or filaments into strands and collect them upon a drum from which they were subsequently unwound and further processed for various purposes and uses. Such processes have been in a measure unsatisfactory for several reasons. In collecting a strand of fibers upon a drum, the nature of the operation results in the establishment of a high degree of tension in the collected strand, and as the convolutions of the collected strand build up on the drum there is a tendency of the fibers to cohere and to abrade and sever one another by reason of such tension in the strand.

In processes of the above mentioned nature the collected fibers or strands may be severed to form hanks or groups of fibers. It has been found that by reason of the tension set up in winding the fibers or strands upon a drum, that the fibers of the individual groups or hanks cohere with such tenacity that they may be separated only with considerable difficulty involving mechanical picking operations which further augment the interabrasive action of the individual fibers with the consequent result that the fibers are greatly weakened.

The present invention eliminates or minimizes the difficulties above enumerated and embraces a novel method and apparatus for forming, collecting and processing mineral fibers or filaments rendering them adaptable for use in manufacturing and fabricating a variety of products on an economical basis.

The invention has for an object the provision of a method of forming fibers or filaments by attenuation from heat softenable materials in a manner whereby continuous strands of fibers may be collected, or if desired, the collected fibers or strands may be severed to varying lengths depending upon the uses or purposes intended.

The invention contemplates the provision of a method of forming and collecting fibers or strands of fibers which is readily adaptable for the formation, collection and disposition of continuous strands without disturbing the continuity thereof, for the production of severed lengths or groups of strands, the formation and collection of the fibers or strands being carried on under conditions minimizing the tension in the collected strands so as to substantially eliminate tendencies of the fibers or strands of fibers to cohere as well as to minimize the interabrasive action through the reduction in tension in the collected strands.

Another object of the invention resides in the formation and collection of a strand of fibers in a manner providing a comparatively loose orientation thereof whereby intercohesion of the fibers may be substantially eliminated.

Another object of the invention is the provision of a

2

strand collecting method and apparatus wherein the collected strand is disposed in convoluted helical formation in a manner minimizing the tendency of convolutions thereof to become snagged or tangled.

5 Another object of the invention resides in an apparatus for continuously collecting linear materials upon a flexible circularly shaped conveyor, said means being arranged to move the collected materials away from the collecting zone.

10 Another object of the invention resides in the provision of a flexible strand collector and conveyor of generally circular configuration wherein the strand collecting and conveying surfaces are movable in a direction to result in a helical orientation of the strands on the collector conveyor means.

15 Another object of the invention is the provision of a method and apparatus which are particularly suitable for continuously attenuating fibers from heat softenable, fiber forming material, the attenuated fibers accumulated

20 in a strand configuration and the strand collected by compactly arranged means and wherein the strand may be formed and collected at a high rate of speed whereby the cost of manufacturing and processing strand materials is greatly reduced.

25 Still a further object is the provision of apparatus embodying means for winding a continuous strand of fibers in a generally circular path around a flexible surfaced conveyor or collector, the surface of which is continuously movable in a direction to convey the collected strand

30 away from the strand collecting zone, the arrangement including compact fiber forming and strand collecting mechanism especially suitable for comparatively high winding speeds with a minimum of tension so that the liability of breakage of the strand is substantially eliminated.

35 A further feature of the invention resides in the provision of an annular group of flexible elements movable in directions relative to a strand winding or assembling mechanism to continuously deposit successive convolutions of strand on the group of flexible elements.

40 Another object of the invention is the provision of a method and apparatus for collecting strand material wherein a treatment of resin, binder or lubricant may be applied to the convolutions of the collected strands, the particular treatment being determined by the purposes or uses intended for the collected strands.

45 A further object of the invention is the provision of apparatus for practicing the method of collecting a continuous strand upon a movable carrier or conveyor which is operable to convey the collected strand away from the collecting zone and preserving the continuity of the strand which is collected at a zone remote from the conveyor.

50 Still a further object of the invention is the provision of a strand collecting and conveying means including one or more endless flexible elements oriented in a manner to move a strand to a zone where the strand may be deposited by the flexible elements in continuous form or the strand may be severed to predetermined lengths while in collected condition on the conveying means.

55 Further objects and advantages are within the scope of this invention such as relate to the arrangement, operation and function of the related elements of the structure, to various details of construction and to combinations of parts, elements per se, and to economies of manufacture and numerous other features as will be apparent from a consideration of the specification and drawing of a form of the invention, which may be preferred, in which:

60 Figure 1 is a semidiagrammatic view illustrating a means and method of producing fibers from heat softenable, fiber forming material and orienting the fibers into a strand;

65 Figure 2 is an elevational view partly in section illustrating a form of apparatus of the invention for collect-

ing and conveying a strand of fibers or other linear material;

Figure 3 is a top plan view illustrating the material collecting and conveying means of Figure 2;

Figure 4 is a view similar to Figure 2 illustrating a modified form of apparatus of the invention;

Figure 5 is a fragmentary detail sectional view taken substantially on line 5—5 of Figure 4 illustrating a form of strand severing means, and

Figure 6 is an elevational view of a portion of the strand collector and conveyor illustrating certain features of the guiding means.

The method and apparatus forming the subject matter of this invention may be utilized to advantage in the collection and processing of linear materials, as for example, strands of fibers obtained from organic or inorganic fiber forming materials, but is especially adaptable for use in the formation and collection of fibers formed from heat softenable material such as glass or other materials which may be attenuated to form comparatively fine fibers. The forms of apparatus illustrated in the drawings are particularly suited to form, collect and convey a continuous strand of fibers formed from glass or other mineral material. As will hereinafter be explained the collected strand may be conveyed to a point of deposition in continuous condition or the strand may be subdivided to form groups of strands of predetermined lengths if it is desired to utilize the strand or fibers thereof in subdivided formation for further processing or fabrication with other materials. The strand of fibers may be of twisted or untwisted character as desired, depending on the products to be fabricated embodying the fibers.

Referring to the drawings in detail and initially with respect to Figure 1, there is illustrated a feeder 10 which may be in the form of a forehearth of a furnace or other receptacle adapted to contain a supply of molten mineral, such as glass or other fiber forming material. The lower wall of the feeder 10 may be formed with a series of outlets or orifices 11 through which the molten glass may flow to provide a number of streams 12. The strand collecting and conveying means cooperates with a winding mechanism providing a motivating medium facilitating the attenuation of the molten glass streams 12 into comparatively fine fibers. The formed fibers are gathered into a strand or group by a suitable roll 14, and lubricant applied to the fibers in order to minimize surface friction and abrasion by means of the roll 14 to which lubricant is conveyed by a tube 16 connected with a lubricant supply 17. The strand of fibers 15 may be passed through a suitable guide or eye 18 as shown in Figure 1 to a winding mechanism.

One form of strand collecting and conveying means of the invention is illustrated in Figures 2 and 3. The strand collecting and conveying means 20 may be formed of one or more endless flexible elements or strand carriers arranged so as to provide a substantially circular or cylindrical means on which the strand is deposited or collected. It is to be understood that the fiber forming means illustrated in Figure 1 is preferably arranged above the strand winding, collecting and conveying mechanism at a substantial distance so that the strand may be directed to the winding member with a minimum of change of direction to reduce winding tension.

The strand 15 is collected or wound on the conveyor 20 through the medium of a relatively movable cap or member 22 supported adjacent the conveyor and in the embodiment illustrated is adapted for relative rotation about the axis of the conveyor. A guide means in the form of a diabolo-shaped member or roller 23 is journally supported on the periphery of the cap member 22 in position to engage the strand 15 and direct or wind the latter in a circular path upon the conveyor 20.

It should be noted that the guide 18 is preferably positioned in alignment with the axis of rotation of the cap member 22, and the rotation of the member 22 not only

attenuates the molten glass or other material to fiber form but imparts a twist to the strand 15 formed of the fibers. The twist is in most instances rather small because of the relatively large diameter of the cylindrical means on which the strand is wound. For this reason it is desirable to provide an added degree of integrity to the strand to prevent unraveling thereof by applying an adhesive or binder to the strand, especially when the strands are severed into lengths and used in forming a mat of short strands or as a reinforcing medium for molded plastic articles and the like.

In the embodiments of the invention illustrated herein, the collector and conveyor means includes one or a plurality of endless elements formed of stranded wire cable, rope, reinforced rubber or other flexible material having adequate tensile strength for the purpose. As particularly illustrated in Figures 2 and 3, the arrangement is inclusive of four independent flexible elements 24, 25, 26 and 27 which are preferably driven by a common or single means in order to assure uniform linear or axial travel of the strand engaging surfaces of the flexible elements. The apparatus is supported on a suitable base plate or frame member 29 upon which is mounted a cylindrically shaped support 30 adapted to provide means for supporting and guiding the conveyor elements 24, 25, 26, and 27. The support 30 may be a length of large diameter tube, split as at 31 to admit of assembly of the flexible conveyor elements, the juxtaposed edges of the support being joined by means of removable brackets 33, the upper edge portions of the support being formed with slots or recesses 32 accommodating pulleys or guiding means 34. Each of the pulleys may be journaled upon a supporting shaft 35 supported upon the upper peripheral portion of the tubular support 30 or in brackets carried thereby. The lower portion of the tubular member 30 is likewise provided with a plurality of peripherally spaced recesses or slots 36 to accommodate a series of pulleys 37 journally supported upon stub shafts mounted on the tubular member 30 or in brackets secured thereto. If desired, a plurality of circularly arranged, vertically disposed struts may be used in lieu of the tubular support 30, each strut being mounted upon the frame and arranged to support a pair of guiding pulleys for a flexible element or cable.

As particularly shown in Figure 3, the four flexible cables or elements 24, 25, 26 and 27 of endless character are respectively threaded or looped around four sets of upper and lower groups of pulleys, a set being disposed in each quarter section of the tubular support 30. In the illustrated embodiment, there are six pulleys in each upper and lower group. In the first sector, one set of pulleys 34 and 37 support and guide the element 24. In the second sector, upper and lower groups of pulleys 34 and 37 support the flexible element 25. The same arrangement is established for supporting and guiding the flexible elements 26 and 27 in the remaining sectors, the four elements and their disposition in a generally circular or cylindrical shape presenting exterior axially parallel surfaces adapted to receive the strand 15 wound thereon by the cap member 22.

As illustrated in Figure 6, each group of lower pulleys or cable guiding means is supplemented with a pair of pulleys 39, one arranged adjacent and above each end pulley of the group. These pulleys serve to guide the end strand engaging portions of the flexible element and form a transition means whereby the flexible element may be guided around the end pulleys of the lower group so as to engage with an element driving means. In this manner the strand engaging portions may be equally spaced peripherally of the support 30 as shown in Figure 3.

Journalized upon the frame 29 is a pair of capstans or drums 40, the end pulley 34 of the group supporting the flexible element 24 being in radial alignment with the periphery of one of the capstans so that the element 24 may be passed or looped around the capstans a suf-

ficient number of times as may be necessary to secure a satisfactory friction driving connection between the capstans 40 and the flexible element 24. The pulley 37 at the other end of the first group of pulleys directs the element 24 to a pulley 43 supported upon a stub shaft carried by the frame, and intermediate one of the capstans 40 and the pulley 43 is an idler pulley 45. The idler pulley 45 forms a component of a tensioning mechanism for maintaining the element 24 in taut condition. As illustrated the idler pulley 45 is journaled upon a shaft 46 carried by a clevis 47 having a tenon portion 48 extending through an opening in a bracket or projection 49 carried by the frame 29. The end of the portion 48 may be threaded to receive an adjusting nut, an expansive coil spring 50 being disposed between the projection 49 and a collar 51 adjacent the nut, the spring exerting force on the idler pulley 45 in a direction to set up the desired degree of tension on the flexible element 24. Other forms of tensioning means may be used as, for example, the adjusting nut may be threaded on to the tenon portion 48 into direct engagement with the projection 49 without the interpositioning of the expansive spring 50 and in this manner establish a substantially nonresilient tension factor effective in a flexible element.

The capstans 40 are driven by suitable means in order to effect movement of the flexible cable 24. As illustrated the shafts 53 carrying the capstans are provided with sprockets 54 which are overtaken by a driving chain or other driving medium 55. The chain 55 is engaged by a sprocket 57 mounted upon the shaft 58 and is connected through suitable reduction gearing 60 with a motor (not shown) or other suitable source of power.

The arrangement for driving the flexible element 25 is the same as that described as utilized in driving the flexible element 24. Element 25 is threaded over a pair of driving capstans 61, a pulley 62, an idler pulley 63, the latter being part of a tensioning mechanism for tensioning the element 25 of the same character as hereinbefore described in connection with the means for tensioning the flexible element 24. The driving capstans 61 are mounted upon shafts 66 which are provided with sprockets 67 engaged by the driving chain 55 in the manner illustrated in Figure 3.

The remaining flexible elements 26 and 27 are respectively driven by capstans 68, 69 and associated means described in connection with the driving of the flexible elements 24 and 25. It should be noted that each of the driving mechanisms for effecting linear movement of the flexible elements 24, 25, 26 and 27 are driven by common means viz. the chain 55 so that the elements move at a uniform speed.

It is to be understood that a single flexible element of the endless type may be used in lieu of the four flexible elements 24, 25, 26 and 27 if desired without departing from the spirit and scope of the invention. A plurality of flexible collector elements is preferred however because of favorable mechanical expediencies.

The apparatus illustrated in Figures 2 and 3 is especially adapted for collecting and conveying strand material in a manner whereby a continuous strand may be removed or discharged from the conveyor without interrupting its continuity whereby continuous strand material is available for subsequent fabrication in the production of various articles of manufacture. The flexible elements 24, 25, 26 and 27 are arranged in a manner so that the outermost or strand engaging surfaces thereof move upwardly or toward an open end of the conveyor in the direction of the arrows as viewed in Figure 2, carrying the collected strand 15 thereon over the uppermost pulleys 34 to the interior space bounded by the flexible elements. The continuous strand is deposited in a suitable receptacle 70 disposed beneath the conveyor 20.

The strand winding member or cap 22 may be sup-

ported upon a suitable frame 71 disposed above the member 22. As illustrated, the frame 71 is provided with guide bearings 72 in which is journaled a shaft 75, an antifriction thrust bearing arrangement 76 being arranged to support the shaft 75 and member 22. Driving means is provided for rotating the shaft 75 and member 22 and includes a pulley wheel 78 mounted upon the shaft 75 connected by means of a belt 79 with a pulley 80 driven by a motor 82 or other source of power. The shaft 75 is formed with a portion 83 which carries the cap member 22. The shaft 75 is provided with a hollow interior or channel 86 which has an outlet or opening 87 through which the strand 15 is channeled or directed to the winding member. The strand may engage a suitable roller 90 carried by the cap member 22 to properly direct the strand to the roller 23 over which the strand passes during rotation of the winding member to deposit the strand upon the conveyor 20.

In the operation of the apparatus shown in Figures 1 through 3, the streams of molten glass 12 produce fibers which are passed over the roller 14 and gathered into strand configuration 15 which is directed through the guiding member or eye 18, the channel 86 and an outlet 87 in the shaft 75, thence over the guide 90 and roller 23 carried by the cap member 22, the latter being rotated by the motor 82. The rotation of the cap member 22 continuously attenuates the glass streams into fine fibers, and the strand 15 formed of the fibers is continuously wound or deposited upon the collector and conveyor mechanism 20. Concomitantly with the rotation of the cap member 22 and the winding of the strand 15 upon the conveyor 20, the flexible cables 24, 25, 26 and 27 driven by the capstans 40, 61, 68 and 69 through the speed reducing mechanism 60 advance the strand engaging surfaces thereof in the direction of the arrows as viewed in Figure 2. By this method the strand 15 is continuously collected upon the flexible cables in convoluted configuration and as the portions of the flexible cables carrying the strands are moving axially of the conveyor, the convolutions of strand are thereby advanced in an upward direction. As the strand engaging surfaces of the flexible elements 24, 25, 26 and 27 move around the upper groups of pulleys 34, the convolutions of strand 15 are moved around the pulleys 34. As the successive convolutions reach the space circumscribed by the flexible elements, they are ejected thereinto and pass downwardly into the receptacle 70 where they are deposited in continuous strand formation.

A continuous strand is thus formed by attenuating fibers, gathering them into strand formation, collecting the strand upon a movable conveyor under a minimum of winding tension, and moving the strand to a zone of discharge from the conveyor yet maintaining the continuity thereof so that continuous strands are obtained for further processing, orientation or incorporation in other articles of manufacture. Continuous strands are particularly useful as reinforcing mediums in manufactured articles such as resilient mats of mineral fibers, particularly those of glass fibers, reinforcement for mats of insulation materials especially for industrial purposes, reinforcement laminae for laminated paper, cardboard and the like, and reinforcement for mats of mineral fibers utilized for wrapping pipes to prevent corrosion and deterioration particularly where the pipes are laid underground.

It should be noted that by varying the comparative speeds of rotation of the cap member 22 and the linear travel of the strand collecting and conveying cables 24, 25, 26 and 27 by changing the speed ratio of the mechanism 60 or changing the sizes of the pulley wheels 78 and 80, the winding speed of the strand 15 may be correlated with the linear movement of the conveyor so that different amounts of overlap of the convolutions of strands may be obtained or the speeds may be regulated

so that successive convolutions of strands deposited upon the conveyor do not overlap at all.

It is furthermore to be noted that the driving means for the strand collecting and conveying cables is of a comparatively simple nature yet very effective and reliable in its operation and one which occupies comparatively small space. It is also of such a compact nature as to render the apparatus readily portable for use with different types and kinds of fiber forming means without material change or adjustment of the apparatus. The arrangement is admirably suited for producing continuous strand or linear material at comparatively high rates of speed resulting in effective savings in the cost of such materials.

Figure 4 illustrates a modified form of apparatus for carrying out the principles of the invention. The strand collecting and conveying means 20' is of the same character as illustrated in Figures 2 and 3 and is inclusive of four flexible cables or elements mounted on a support 30' and providing strand collecting and conveying means, two of the elements being illustrated in the sectional view at 25' and 26'. The driving arrangement for the flexible cables in this form of invention is identical with that disclosed in Figures 2 and 3 hereinbefore described. In this form of the invention the strand collecting and conveying cables are moved in the opposite direction, that is, the outermost portions presenting the strand collecting and conveying surfaces are moved downwardly in the direction of the arrows in Figure 4, thus carrying the strand downwardly to a strand discharge zone.

A cap member 100 of similar construction to the cap member 22 is provided with a guide or roller 23' for directing or winding the strand on the conveyor formed by the flexible cables through the rotation of the cap member 100. The cap member is preferably supported upon a shaft 101 mounted in suitable antifriction bearings 102 and guide bushings 103 supported by a frame 104. Driving means is provided for the shaft 101 in the form of a motor 106, the shaft 107 of which is provided with a pulley 108 driving a belt 109 overtaking a pulley 110 secured to the shaft 101. The motor 106 may be mounted upon a suitable bracket 112 depending from the frame 104.

The form of the invention illustrated in Figure 4 is especially adaptable for continuously collecting strand material and conveying the strand material to a discharge zone, the arrangement including means for severing or dividing the continuous strand collected on the flexible elements into predetermined lengths. In fulfillment of this purpose there is provided strand severing means which, in the embodiment illustrated in Figures 4 and 5, may consist of one or more severing units disposed peripherally of the flexible elements in position to engage and sever the strands into desired lengths. One form of strand severing means includes a severing wheel 115 mounted upon a stub shaft 116 carried by a bracket 117 the latter being journaled by means of a stub shaft 118 on a bracket 119 secured or mounted upon the frame 104, an expansive spring 120 biasing the severing wheel 115 toward strand severing position. The severing wheel 115 is adapted for cooperation with an abutment roller 121 which may be journaled upon a stub shaft 122 carried by a bracket 123. The backing roller 121 may be supported by the tubular support 35, the latter being provided with a recess 125 formed therein to accommodate the roller 121. The arrangement of strand severing means illustrated is shown in Figure 5. The bracket 123 may be secured to the tubular support 35 by removable means such as screws 127 whereby the severing unit may be disposed at any desired position peripherally of the support 30'. The convolutions of strand are successively cut by the severing wheels 115 as they move into contact therewith. A plurality of severing units may be utilized and spaced about the periphery of the strand conveyor 20', the particular positions of the severing units depending upon the lengths of strand desired. It is to be

understood that any type of strand severing means may be utilized as for example an electrically heated wire or a strand severing flame may be utilized in lieu of the mechanical means illustrated.

Means may be provided for carrying away the severed lengths of strand from the severing or strand discharge zone. In the embodiment illustrated a shield or hood 130 encompasses the strand severing devices and the discharge zone. A suitable tubular means 131 is in communication with the hood 130 and a suitable suction device employed to establish a zone of reduced pressure or subatmospheric pressure within the hood 130, the differential pressure causing the severed strands to be moved through the tubes 131 and discharged at a point remote from the strand collecting device.

For certain particular uses of the strands it may be desirable to apply a resin or binder to the convolutions of strand as they are collected upon the flexible elements. As illustrated in Figure 4, a plurality of nozzles or jets 135 may be disposed adjacent the collected strands for spraying or delivering suitable resin or binder to the strand. If desired, the resin may be cured by suitable heating elements or burners 136 disposed adjacent the resin or binder applying devices.

It is apparent that, within the scope of the invention, modifications and different arrangements may be made other than is herein disclosed, and the present disclosure is illustrative merely, the invention comprehending all variations thereof.

I claim:

1. Apparatus for collecting and conveying fibers including a support; an endless cable; guiding means for supporting said cable whereby portions thereof are disposed in adjacent relation presenting fiber collecting surfaces; means for driving said cable at a substantially constant speed to move the fiber collecting surfaces simultaneously in one direction; means movable relative to the collecting surfaces for depositing fibers on said surfaces; means for establishing tension in said cable, said cable guiding means being arranged to modify the direction of movement of the fiber collecting surfaces to effect a discharge of the collected fibers therefrom.

2. Apparatus for collecting linear material including a support; a nonrotatable material collecting means including an endless flexible element associated with said support; said flexible element being arranged whereby portions thereof are disposed to form a plurality of material collecting surfaces; means movable relative to the collecting surfaces for depositing linear material on said surfaces; actuating means for said flexible element to continuously move the material collecting surfaces in a direction lengthwise of the collecting surfaces to convey the material away from the collecting surfaces; guiding means for said element for effecting a change in direction of movement of the material collecting surfaces to effect disengagement of the material therewith, and means for maintaining said flexible element in a state of tension.

3. Apparatus for attenuating and collecting fibers in strand formation from streams of heat-softenable material including a rotatable member, a nonrotatable strand-collecting means including an endless flexible cable arranged to present a plurality of strand-collecting surfaces, strand-guiding means carried by the rotatable member engageable with the strand of fibers, means for rotating said member to attenuate the fibers by winding the strand of fibers upon the strand-collecting surfaces, means for continuously moving the cable at a substantially constant speed to cause the strand to be deposited thereon in successive, spaced convolutions and to convey the strand convolutions away from the fiber-depositing zone, said cable-moving means including a rotating means including a rotating capstan in frictional engagement with the cable, means for rotating the capstan at a substantially constant speed, and a tensioning mechanism for maintaining said cable in taut condition.

4. The method of orienting a strand of mineral fibers including the steps of continuously winding the strand around a generally cylindrical nonrotatable support with the strand convolutions deposited in spaced helical formation, advancing the strand while in helical formation in a rectilinear direction along the support into an enclosed zone, serving the strand into predetermined lengths within the enclosed zone, establishing differential pressure in the enclosed zone to move air through the zone, and removing the severed lengths of strand from the severing zone by the air moving through the enclosed zone.

5. Apparatus for attenuating and collecting a strand of fibers formed from streams of heat-softenable material including a frame, a rotatable member, a nonrotatable strand-collecting means carried by the frame and including an endless flexible cable, a plurality of pulleys carried by said frame and supporting the cable whereby portions of the cable are disposed in substantial parallelism, strand-guiding means carried by the rotatable member engageable with the strand of fibers, means for rotating said member to attenuate the fibers by winding the strand upon parallel portions of the cable of the strand-collecting means, driving means for continuously moving the cable at a substantially constant speed to cause the strand to be deposited thereon in successive spaced convolutions and to convey the strand convolutions away from the fiber collecting zone, and resiliently biased tensioning means for maintaining the cable in taut condition.

6. The method of attenuating and collecting mineral fibers including the steps of continuously gathering a plurality of mineral fibers into a strand, attenuating the fibers

of the strand by continuously winding the strand around the exterior of a circular cylindrical formation of strand receiving surfaces, advancing the strand receiving surfaces longitudinally at a substantially uniform rate of speed to cause the strand to be deposited thereon in spaced convolutions and to move the convolutions away from the collecting zone, and altering the paths of movement of the surfaces in directions establishing a second circular cylindrical formation of the surfaces interiorly of the first circular cylindrical formation whereby the strand is continuously discharged from the surfaces into a zone bounded by the second circular cylindrical formation of the surfaces.

15 References Cited in the file of this patent

UNITED STATES PATENTS

1,609,438	Stoll	-----	Dec. 7, 1926
1,960,743	Junkers	-----	May 29, 1934
1,969,770	Taylor	-----	Aug. 14, 1934
1,978,826	Walton et al.	-----	Oct. 30, 1934
2,135,072	Forster	-----	Nov. 1, 1938
2,208,497	Coleshill et al.	-----	July 16, 1940
2,234,986	Slayter et al.	-----	Mar. 18, 1941
2,388,591	Andreas	-----	Nov. 6, 1945
2,439,903	O'Connell	-----	Apr. 20, 1948
2,527,502	Simison et al.	-----	Oct. 24, 1950
2,691,852	Slayter et al.	-----	Oct. 19, 1954

20 FOREIGN PATENTS

30	101,457	Germany	-----	Feb. 6, 1899
	244,887	Great Britain	-----	Dec. 31, 1925