[54] 发明名称

管线用无缝钢管及其制造方法

[57] 摘要

本发明提供一种高强度的、具备稳定的韧性，在低温至常温下具备良好的耐硫化物腐蚀裂纹性的管线用无缝钢管。其特征在于，具有下述的化学组成，其中，以质量％计含有 C: 0.03～0.08％、Si: 0.05～0.5％、Mn: 1.0～3.0％、Mo: 0.4％～1.2％但不含0.4％、Al: 0.005～0.100％、Ca: 0.001～0.005％，余量由 Fe 及包含 P、S、O 及 Cu 的杂质组成。杂质中的 N 为 0.01％以下，P 为 0.05％以下，S 为 0.01％以下，O 为 0.01％以下，Cu 为 0.1％以下，且具有由贝氏体－马氏体双层组织构成的微观组织。
1. 一种低温耐硫化物应力裂纹性优异的管线用无缝钢管，其特征在于，具有下述的化学组成，其中，以质量%计含有 C: 0.03~0.08%、Si: 0.05%~0.5%、Mn: 1.0~3.0%、Mo: 0.4%~1.2% 但不含 0.4%、Al: 0.005~0.100%、Ca: 0.001~0.005%、Cr: 0~1.0%、Nb: 0~0.1%、Ti: 0~0.1%、Zr: 0~0.1%、Ni: 0~2.0%、V: 0~0.2%、B: 0~0.005%、余量：由 Fe 及杂质构成，杂质中的 N 为 0.01%以下、P 为 0.05%以下、S 为 0.01%以下、O 为 0.01%以下、Cu 为 0.1%以下，并且，屈服强度为 80ksi 以上，并且按照 NACE TM0177-2005 方法 D 所规定的 DCB 试验法，在 4℃环境中进行试验时，算出的应力放大系数 K_{issc} 为 20.1ksi√in.以上。

2. 根据权利要求 1 所述的管线用无缝钢管，其特征在于，所述化学组成以质量%计含有从 Cr: 0.02~1.0%、Nb: 0.002~0.1%、Ti: 0.002~0.1%、Zr: 0.002~0.1%、Ni: 0.02~2.0%、V: 0.05~0.2%、B: 0.0001~0.005%中选出的一种或二种以上的元素。

3. 一种管线用无缝钢管的制造方法，其特征在于，通过热加工从具有权利要求 1 或 2 所述的化学组成的钢片制成无缝钢管，在厚壁中央部从 800℃到 500℃之间的平均冷却速度为 20℃/s 以下的条件下，对该钢管实施淬火处理，其后实施回火处理。

4. 根据权利要求 3 所述的方法，其特征在于，在 600℃以上的温度进行回火处理。

5. 根据权利要求 3 所述的方法，其特征在于，对通过热加工制成的无缝钢管先进行冷却，其后进行再加热，然后进行淬火处理。

6. 根据权利要求 3 所述的方法，其特征在于，对通过热加工制成的无缝钢管直接实施淬火处理。
管线用无缝钢管及其制造方法

技术领域

本发明涉及具有优良的强度、韧性、耐腐蚀性的管线用无缝钢管。本发明涉及的无缝钢管，不仅具有 API（美国石油协会）规格规定的 X80 级的强度，具体地说，就是具有 80~95ksi（屈服强度 551~655MPa）的强度，并且具有良好的韧性和耐腐蚀性，特别是，即使在低温下也具有良好的耐硫化物应力裂纹性。因此，该无缝钢管作为管线用的高强度、高韧性的厚壁无缝钢管，尤其适宜在低温环境下使用，例如可以用作寒冷地域使用的管线钢管以及海底出油管道用钢管或立管用钢管。

背景技术

近年来，由于位于陆地和水深约 500 米为止的浅海区域的油田的石油、天然气资源逐渐枯竭，导致海面下 1000~3000 米的深海海底油田的开发日益活跃。在深海油田中，需要采用被称为出油管道和立管的钢管，将原油和天然气从设在海底的油井、天然气井的坑口输送到海面上的平台。

在构成铺设在深海中的出油管道或立管的钢管内部，除了承受深的地层压之外，还要承受高压的内部流体压，另外，生产作业时还有受到深海的海水压的影响。构成立管的钢管，还要承受波浪导致的反复应变的影响。在深海中，海水温度一般下降到 4℃左右。

这里所谓的出油管道是指沿着地表或海底面的地势铺设的输送用钢管，立管是指从海底面立起通到海上平台为止的输送用钢管。用于深海油田时，这些钢管的厚度通常需要达到 30mm 以上，实际上一般使用的是 40~50mm 的厚壁管。由此也可以看出出油管道和立管都是在严酷条件下使用的构件。

近年来开发的深海油田和油气田的生产流体多数含有腐蚀性的硫化氢。在这种环境中，高强度钢会发生被称为硫化物应力裂纹（Sulfide Stress Cracking，SSC）的氢致脆化，从而导致钢管的破坏。迄今为止，一般认
为 SSC 感受性在常温下变为最高，一直在常温环境下实施对耐 SSC 性进行评价的耐腐蚀性试验。但现在知道，实际上硫化物应力裂纹感受性在 4℃左右的低温环境中高于常温环境，导致更加容易产生裂纹。

因此，用于出油管道和立管的管线用钢管，不仅应该具有高强度、高韧性，还需要其在含有硫化物的环境下具有高的耐腐蚀性。在这种用途中，为了确保高可靠性，不能采用焊接钢管，而应采用无缝钢管。

现有的管线用钢的耐腐蚀性，一直将重点放在防止氢致裂纹（Hydrogen Induced Cracking，HIC），即耐 HIC 性上。即使在迄今为止公开的超过 X80 的强度的耐腐蚀性管线用钢管中，也多强调的耐 HIC 性。例如，在特开平 09-324216 号公报、特开平 09-324217 号公报以及特开平 11-189840 号公报中，公开了具有优良的耐 HIC 性的 X80 级的管线用钢。在这些材料中，通过对钢中的夹杂物进行控制和提高淬火性，使钢的耐 HIC 性得到提高。但是，关于耐 SSC 性，不用说低温下的耐 SSC 性，就连常温下的耐 SSC 性也没有进行研究。

如上所述，随着深海油田和油气田的不断开发，用作出油管道和立管的管线用钢管的耐 SSC 性变得日益重要。在深海油田和油气田那样的低温环境中，高强度钢的 SSC 感受性升高，尤其是在屈服强度（YS）为 80ksi（551MPa）以上的高强度钢中，SSC 感受性升高到不能忽视的程度。因此，在由 X80 以上的高强度钢组成的管线用无缝钢管中，要求改善其耐 SSC 性。

发明内容

本发明的目的在于，提供一种具有高强度和稳定的韧性，以及良好的耐 SSC 性，特别是在包括低温环境在内的评价中具备良好的耐 SSC 性的管线用无缝钢管及其制造方法。

本发明的发明人员，针对各种钢材在常温和低温下的 SSC 感受性进行了调查，结果发现所有的材料在低温下都表现出高于常温的 SSC 感受性。从结果可知，在迄今为止的寻求改善常温下的耐 SSC 性的材料设计中，在低温下不能获得良好的耐 SSC 性，为了改善低温下的耐 SSC 性，需要设计出新的材料，基于这种想法进行研究的结果，确定出不仅在常温下，
而且在低温下也能表现出良好的耐 SSC 性的材料的化学组成及微观组织。

在选择提高淬火性的化学组成，再为了通过淬火实现高强度化而加快冷却速度的迄今为止的高强度低合金管线用钢中，即使可以改善常温下的耐腐蚀性，特别是耐 SSC 性，也不能改善低温环境下的耐腐蚀性。因此，以改善低温下的耐腐蚀性为目的，对钢的化学组成、冷却速度的影响进行了调查，结果发现通过添加 Mo 使淬火性和回火软化阻抗上升，而且使冷却速度下降，由此产生贝氏体-马氏体二相组织，使低温下的耐 SSC 性得到飞跃性提高。

本发明提供一种具有优良的低温耐硫化物应力裂纹性的管线用无缝钢管，其特征在于，具有下述的化学组成，其中，以质量%计含有 C: 0.03~0.08%、Si: 0.05%~0.5%、Mn: 1.0~3.0%、Mo: 0.4%~1.2% 但不含 0.4%、Al: 0.005~0.100%、Ca: 0.001~0.005%，余量：由 Fe 以及包含 N、P、S、O 及 Cu 的杂质组成，杂质中的 N 为 0.01% 以下，P 为 0.05% 以下，S 为 0.01% 以下，O (氧) 为 0.01% 以下，Cu 为 0.1% 以下，并且屈服强度为 80ksi 以上，且按照 NACE TM0177-2005 method D 所规定的 DCB 试验法，在 4℃ 环境下进行试验时，可以算出的应力扩大系数 K_{ISSC} 为 20.1ksi \sqrt{\text{in}} 以上。

所述化学组成，还可以含有从下述元素中选出的一种或二种：Cr: 1.0% 以下、Nb: 0.1% 以下、Ti: 0.1% 以下、Zr: 0.1% 以下、Ni: 2.0% 以下、V: 0.2% 以下、B: 0.005% 以下。

通过 DCB 试验获得的应力扩大系数 K_{I} 值，是表示在给予的腐蚀环境中龟裂能够扩展的最低的 K 值（龟裂前端部的应力场的强度）的指标，该值越大表示在给予的腐蚀环境中裂纹感受性越低。

在本发明中，通过按照 NACE（National Association of Corrosion Engineers）TM0177-2005 method D 进行的 DCB（Double Cantilever Beam）试验对耐硫化物应力裂纹性（耐 SSC 性）进行了评价，由该测定值计算出硫化物腐蚀环境下的应力扩大系数 K_{ISSC}。试验时采用的是使 1atm 的硫化氢气体饱和的低温（4℃）的 5wt% 食盐 + 0.5wt% 醋酸水溶液。

通过沿长度方向的中心线楔入规定的楔子，使应力作用于两根梁分开的方向（即，龟裂在梁的根部上扩展的方向）上，将该试验片浸渍在上述
试验浴中 336 小时，根据下述公式，由浸渍后的龟裂扩展长度 a 和楔子开
放大应力 P，可以计算出应力扩大系数 K_{ISSC}。

[公式 1]

$$K_{ISSC} = \frac{P a (2\sqrt{3} + 2.38 h/a) (B/a) \sqrt[3]{8}}{B h^{1/2}}$$

公式中 B 表示试验片的厚度，h 表示两侧的两根梁的宽度，Bn 表示龟
裂扩展部的试验片厚度。

通过图 4 所示的简易模型进行说明，假设无限大的材料具有深度为 a
的初期龟裂（或者因腐蚀产生的缺陷），对该材料的龟裂开口的方向上施
加应力 $\delta \sigma$ 时，应力扩大系数 K_1 可以用下述公式表示。

$$K_1 = \sigma \sqrt{\pi a} \times 1.1215$$

即，初期龟裂越深，另外应力越高，K_1 值变得越大，龟裂前端附近的
应力越高。初期龟裂的最大值可以估计为 0.5mm。另一方面，施加的应力
为 API 规格 X80 级的强度，即屈服强度（YS）80~95ksi（551~655MPa），
因此在耐腐蚀性试验中，一般被荷载的应力变为 YS 的 90%，即 72~85.5ksi
（496~590MPa），算出对应应力值的 K_1 值时，得到 20.1ksi $\sqrt{\text{in}(22.1MPa}}$
$\sqrt{\text{m}) \sim 23.9ksi \sqrt{\text{in}(26.2MPa}\sqrt{\text{m})}$

本发明的管线用无缝钢管，在 4℃的应力扩大系数 K_{ISSC} 为 20.1ksi $\sqrt{\text{in}(22.1MPa}\sqrt{\text{m})}$ 以上。这表明本发明的无缝钢管即使在 SSC 感受性较常温
高的低温条件下，也具有非常优异的耐 SSC 性，能够在 X80 级的标准耐
SSC 性试验中，防止硫化物腐蚀裂纹的产生。优选 4℃的 K_{ISSC} 值为 23.9ksi
$\sqrt{\text{in}(23.9MPa}\sqrt{\text{m})}$. 由此，在施加具有 X80 级的最大强度即 95ksi 的 YS
的材料的 90%载重的耐 SSC 性试验中，也可以防止出现裂纹，可以确保极
高的耐 SSC 性。

从另外一个侧面来看，本发明涉及一种管线用无缝钢管的制造方法，
其特征在于，通过热加工从具有上述化学组成的钢片制成无缝钢管，以 20
℃/s 以下的冷却速度对该钢管实施淬火处理，其后实施回火处理。

在本说明书中，“冷却速度”是指厚壁中央部从 800℃到 500
℃之间的平均冷却速度。

淬火可以先对无缝钢管进行冷却，其后再加热，或者也可以对通过热加工制成的无缝钢管直接进行淬火。优选在600℃以上的温度进行回火。

根据本发明，通过对无缝钢管的化学组成即钢组成，及其制造方法进行如上所述的规定，可以制成即使是厚度30mm以上的厚壁无缝钢管，仅通过淬火、回火的热处理，就可以获得具有X80级（屈服强度551MPa以上）的高强度和稳定韧性的，即使在低温下也具有如上所述的良好耐SSC性能的，可以在深海油田那样的含有硫化氢的低温环境中使用的管线用无缝钢管。

这里使用的“管线”，是指用于输送原油、天然气等流体的管构件，既可以在陆地上使用，也可以在海上、海中使用。本发明涉及的无缝钢管，特别适用于铺设在深海的出油管道、立管等可以在海上、海中使用的管线，和铺设在寒冷地域的管线，但其用途并不限定于此。

本发明的无缝钢管，对其形状、尺寸并不作特殊限定，但在无缝钢管的制造工序中，对其尺寸有所限制，一般最大外径为500mm左右，最小外径为150mm左右。用于出油管道和立管的情况下，多数情况下将钢管的壁厚设定为30mm以上（例如：30~60mm），但在用于陆地上的管线时，也可以采用更薄的钢管，例如5~30mm，更普遍的是10~25mm左右的薄壁管。

本发明的管线用无缝钢管，尤其是在有可能含有硫化氢且低温的深海油田中，作为立管和出油管道使用时，具有优异的机械特性和耐腐蚀性，因此对于能源的稳定供给贡献巨大，具有很高的实用意义。

附图说明

图1是表示钢的Mo含量对屈服强度（YS）和应力扩大系数（Kissc）造成的影响的曲线图。

图2是表示因板厚而变化的淬火时的冷却速度对屈服强度（YS）和应力扩大系数（Kissc）造成的影响的曲线图。

图3是表示淬火时的冷却速度为20℃/s以下的钢（▲）和超过20℃/s的钢（△）的屈服强度（YS）和应力扩大系数（Kissc）的关系的曲线图。
图 4 是表示开口型龟裂扩展的模型的说明图。

具体实施方式

以下，对在本发明中对钢管的化学组成进行如下所述的规定的理由进行说明。此外，如前所述，表示化学组成含量（浓度）的“%”的含义是“质量%”。

C: 0.03~0.08%

为了提高钢的淬火性和强度，需要含有 C，为了获得足够的强度，将 C 的含量设为 0.03%以上。另一方面，C 含量过剩时会导致钢的韧性下降，因此将其上限设为 0.08%。优选 C 含量为 0.04%以上、0.06%以下。

Si: 0.05~0.5%

Si 可以作为钢的脱氧剂，作为脱氧所需的最低量，需要添加 0.05%以上的 Si。但是，由于 Si 具有使用于连接管线的圆周焊接时的焊接热影响部的韧性下降的作用，因此其含量越少越好。添加 0.5%以上的 Si 时，不仅钢的韧性显著下降，也促使作为软化相的铁素体层的析出，从而导致钢的耐 SSC 性下降。因此，将 Si 含量的上限设为 0.5%。优选 Si 含量为 0.3%以下。

Mn: 1.0~3.0%

为了提高钢的淬火性和强度，同时确保钢的韧性，需要使其含有一定量的 Mn。当 Mn 含量低于 1.0%时，不能获得上述效果。但 Mn 含量过高时，会导致钢的耐 SSC 性下降。因此将其上限设为 3.0%。为了确保钢的韧性，优选将 Mn 含量的下限设为 1.5%。

P: 0.05%以下

P 为杂质，偏析到晶界，使耐 SSC 性下降。其含量超过 0.05%时，上述影响变得显著，因此将其上限设为 0.05%。优选极力减少 P 含量。

S: 0.01%以下

与 P 同样，S 也偏析到晶界，使耐 SSC 性下降。其含量超过 0.01%时，上述影响变得显著，因此将其上限设为 0.01%。优选极力减少 S 含量。

Mo: 0.4%~1.2%但不含 0.4%

Mo 可以提高淬火性，使钢的强度得到提高，同时可以提高回火软化
阻抗，使高温回火成为可能，因此是提高钢的韧性的主要元素。为了获得这些效果，需要含有超过 0.4%的 Mo。更优的 Mo 含量下限为 0.5%。将 Mo 的上限设为 1.2%，是因为 Mo 价格昂贵，且超过该上限值时，钢的韧性提高会出现饱和。

Al：0.005~0.100%

Al 元素对钢的脱氧有效，其含量低于 0.005%时不能获得脱氧效果。另一方面，即使含量超过 0.100%，其效果也会饱和。因此 Al 含量的优选范围是 0.01~0.05%。本发明的 Al 含量是指酸可溶 Al（即所谓的“sol.Al”）。

N：0.01%以下

N（氮）作为杂质存在于钢中，其含量超过 0.01%时，会形成粗大的氮化物，使钢的韧性和耐 SSC 性下降。因此将其上限设为 0.01%。优先极力减少 N（氮）含量。

O：0.01%以下

O（氧）作为杂质存在于钢中，其含量超过 0.01%时，会形成粗大的氧化物，使钢的韧性和耐 SSC 性下降。因此将其上限设为 0.01%。优先极力减少 O（氧）含量。

Ca：0.001~0.005%

为了通过控制夹杂物的形态，改善钢的韧性、耐腐蚀性，以及抑制浇注时的喷嘴堵塞，改善浇注特性，而添加 Ca。为了获得这些效果，使钢中含有 0.001%以上的 Ca。另一方面，Ca 含量过多时，夹杂物变得容易团簇化，反而会导到韧性、耐腐蚀性下降，因此将其上限设为 0.005%。

Cu：0.1%以下（杂质）

一般情况下 Cu 是提高耐腐蚀性的元素，但已知 Cu 和 Mo 复合添加时，会导致钢的耐 SSC 性下降，这种影响在低温环境下尤其显著。本发明的管线用无缝钢管，如上述所述含有较通常更多量的 Mo，且应用于低温环境，因此为了提高钢的耐 SSC 性，不使钢中含有 Cu。但是，在制造过程中，有可能以杂质的形式混入若干量的 Cu 元素，因此当其与 Mo 共存时，将其含量控制到 0.1%以下，以防止其对耐腐蚀性造成实质性的不良影响。

本发明的管线用无缝钢管，通过向上述的成分组成中，根据需要添加从以下元素中选出的一种或二种以上，可以获得更高的强度、韧性及/或耐
腐蚀性。

Cr：1.0%以下

Cr可以提高淬火性使钢的强度得到提高，因此根据需要可以向钢中添加Cr。但是，Cr含量过少时，会导致钢的韧性下降，因此将其上限设为1.0%。对Cr含量的下限并不作限制，但为了提高淬火性，最少也要添加0.02%的Cr。进行添加时，优选Cr含量的下限为0.1%。

 Nb、Ti、Zr：分别为0.1%以下

Nb、Ti、Zr都可以和C、N结合后形成碳氮化物，通过消住（Pinning）效果，有效地促进晶粒化，从而改善韧性和机械特性，因此可以根据需要进行添加。为了确实获得该效果，优选任何一种元素的含量都在0.002%以上。另一方面，任何一种元素的含量即使超过0.1%，其效果也会饱和，因此将它们的含量的上限设为0.1%。优选含量均为0.01～0.05%。

Ni：1.0%以下

Ni元素可以提高淬火性，提高钢的强度，并且提高钢的韧性，可以根据需要进行添加。但，由于Ni价格昂贵，另外即使含量过少时其效果也会饱和，因此添加Ni时将上限设为2.0%。对Ni含量的下限并不作特殊限定，但当其含量为0.02%以上时，可以获得特别显著的效果。

V：0.2%以下

V元素的含量由强度和韧性的平衡决定。当通过添加其他的合金元素能够获得足够的强度时，不添加V可以获得良好的韧性。但是，含有V元素时，会与Mo一起生成微细碳化物即MC（M为V及Mo），Mo含量超过1%时，抑制针状Mo2C（成为SSC的起点）的生成，并且具有提高淬火温度的效果。从这一点来看，优选至少添加0.05%以上的量，且使V含量与Mo含量保持平衡。另一方面，过量含有V元素时，淬火时固溶的V元素出现饱和，提高回火温度的效果饱和，因此将其上限设为0.2%。

B：0.005%以下

B具有促进晶界粗大碳化物M23C6（M为Fe、Cr、Mo）的生成的作用，会导致钢的耐SSC性能下降。但是，由于B具有提高淬火性的效果，因此也可以根据需要，在对耐SSC性能的影响小，确认能够提高淬火性的适度范围内，添加0.005%以下的B。为了获得上述效果，优选添加0.0001%
以上的 B。

其次，对本发明的管线用无缝钢管的制造方法进行说明。在本发明中，除了造管后的为了实现高强度化而进行的热处理（淬火和回火）之外，对制造方法本身并不作特殊的限定，可以采用惯用的制造方法。通过适当选择钢的化学组成和造管后的热处理条件，可以制造出具备高强度和稳定的韧性，且在低温下也具有优良的耐 SSC 性的无缝钢管。以下对本发明的制造方法相关的优选制造条件进行说明。

无缝钢管的制造：

将经调整后具有上述化学组成的熔钢，例如通过连续铸造法制成截面呈圆形的铸片，将该铸片原样作为轧制原料（钢坯）使用，或者先制成截面呈方形的铸片，之后通过轧制制成截面呈圆形的钢坯后使用。对制备的钢坯进行热穿孔、延伸及定径轧制，制成无缝钢管。

此时的制造条件，与通常的热加工制造无缝钢管的条件相同即可，在本发明中，对制造条件并不作特殊限定。但为了通过对夹杂物的控制而确保其后的热处理时的淬火性，优选在热穿孔时的加热温度为 1150℃以上，轧制结束温度为 1100℃以下的条件下进行造管。

造管后的热处理：

对通过造管制成的无缝钢管，施加淬火及回火的热处理。淬火可以采用对制成的高温钢管先进行冷却，其后进行再加热，然后进行急冷淬火的方法，和利用刚造管后的钢管具有的热量，不进行再加热而急冷淬火的方法中的任何一种。

淬火前先对钢管进行冷却时，不规定冷却结束温度。或者将钢管放置冷却到室温后，进行再加热，然后进行淬火；或者冷却到发生转变的 500℃左右后，进行再加热，然后进行淬火，也可以在搬运到再加热炉的过程中，冷却后直接用再加热炉进行加热，然后进行淬火。再加热温度优选为 880℃~1000℃。

淬火时的急冷，以 20℃/s 以下的较慢的冷却速度（在厚壁中央部从 800℃到 500℃之间的平均冷却速度）进行。如此，生成贝氏体-马氏体双相组织。具有该二相组织的钢，进行淬火处理后，不仅具有高强度和高韧性，在 SSC 感受性增大的低温条件下，也能够表现出高的耐 SSC 性。当
冷却速度大于 20°C/s 时，淬火组织变为马氏体单相，钢的强度变高，但低温下的耐 SSC 性大幅下降。因此淬火时的冷却速度的优选范围是 5~15°C/s。冷却速度过低时，淬火变得不充分，导致钢的强度下降。淬火时的冷却速度可以通过钢管的厚度及冷却水的流量进行调整。

淬火后的回火优选在 600°C以上的温度下进行。在本发明中，由于钢的化学组成中含有较多的 Mo，钢的回火软化阻抗高，可以在 600°C以上的高温下进行回火，因此可以提高钢的韧性并改善耐 SSC 性。对回火温度的上限并不作特殊限定，但通常不超过 700°C。

如此，根据本发明可以稳定地制造出即使厚壁也具有 X80 级以上的高强度和高韧性，通过使钢具有贝氏体-马氏体双相组织而具有所述的 K_{ISSC} 值，低温耐 SSC 性良好的管线用无缝钢管。

下面的实施例是对本发明的效果的例证，本发明并不受其任何的限制。在实施例 1 及 2 中，采用与无缝钢管的制造条件相同的、施加了热加工及热处理的厚板，对其性能进行了评价。厚板的实验结果也可以适用于无缝钢管的性能评价。

实施例 1

将具有表 1 所示化学组成的 50kg 的各种钢在真空中进行熔炼，加热到 1250°C 后，通过热轧制成厚 100mm 的块材。将这些块材加热到 1250°C 后，通过热轧制成厚 40mm 或 20mm 的板材。将该板材在 950°C 保持 15 分钟后，在同一条件下水冷后进行淬火，接着在 650°C（一部分为 620°C）保持 30 分钟后，通过放置冷却进行回火，制成供试验用的厚板。水冷时的冷却速度，可以推算为在板厚 20mm 的情况下，大约 40°C/s，在板厚为 40mm 的情况下，大约为 10°C/s。

[表 1]

<table>
<thead>
<tr>
<th>钢记载号</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Mo</th>
<th>Ti</th>
<th>V</th>
<th>Al</th>
<th>N</th>
<th>O</th>
<th>Ca</th>
<th>Ceq</th>
<th>Pcm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.047</td>
<td>0.29</td>
<td>1.52</td>
<td>0.002</td>
<td>0.001</td>
<td>0.31</td>
<td>0.2</td>
<td>0.008</td>
<td>0.04</td>
<td>0.035</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.41</td>
<td>0.17</td>
</tr>
<tr>
<td>2</td>
<td>0.047</td>
<td>0.28</td>
<td>1.53</td>
<td>0.005</td>
<td>0.001</td>
<td>0.31</td>
<td>0.5</td>
<td>0.008</td>
<td>0.05</td>
<td>0.036</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
<td>0.47</td>
<td>0.19</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
<td>0.29</td>
<td>2.05</td>
<td>0.004</td>
<td>0.001</td>
<td>0.31</td>
<td>0.7</td>
<td>0.008</td>
<td></td>
<td></td>
<td>0.034</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.58</td>
</tr>
<tr>
<td>4</td>
<td>0.049</td>
<td>0.28</td>
<td>1.54</td>
<td>0.004</td>
<td>0.001</td>
<td>0.31</td>
<td>1</td>
<td>0.008</td>
<td>0.05</td>
<td>0.037</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
<td>0.57</td>
<td>0.22</td>
</tr>
</tbody>
</table>
在表1中，Ceq以及Pcm是可以分别通过下述公式算出的C当量式的值，为淬火性的指标:

\[
Ceq = C + \frac{Mn}{6} + \frac{(Cr + Mo + V)}{5} + \frac{(Ni + Cu)}{15}
\]

\[
Pcm = C + \frac{Si}{30} + \frac{(Mn + Cu + Cr)}{20} + \frac{Ni}{60} + \frac{Mo}{15} + \frac{V}{10} + 5B.
\]

通过从各供试材上采取JIS12号拉伸试验片，按照JISZ2241规格进行拉伸试验，测定出屈服强度（YS），对强度进行了评价。

通过DCB（Double Cantilever Beam）试验对各供试材的耐SSC性进行了评价。从供试材上采用厚10mm、宽25mm、长100mm的DCB试验片，按照NACE（National Association of Corrosion Engineers）TM0177-2005 method D进行了DCB试验。作为试验液，采用了使1atm的硫化氢气体饱和的、常温（24°C）或低温（4°C）的5wt%食盐+0.5wt%醋酸水溶液（以下称为A浴）。

通过沿试验片的长度方向的中心线楔入规定的楔子，使应力作用于两根梁分开的方向，即裂纹在梁的根部上扩展的方向上，将该试验片浸渍在24°C或4°C的A浴中336小时，根据下述公式，由浸渍后的试验片上可见的裂纹扩展长度a和楔子开放应力P，导出应力扩大系数KISSC。将相当于YS为80ksi（80ksi级的下限）的材料的、KISSC值为20.1ksi√in.以上供试材的耐SSC性判定为良好，将相当于YS为95ksi（80ksi级的上限）的材料的、KISSC值为23.9ksi√in.以上供试材的耐SSC性判定为非常良好。

[公式2]

\[
K_{ISSC} = \frac{Pa(2\sqrt{3} + 2.38h)}{\alpha(a/B_{n})^{\sqrt{3}}}\frac{B}{B_{h}^{\sqrt{3}}}
\]

公式中B表示试验片的厚度，h表示冲口两侧的两根梁的宽度，B_{n}表示裂纹扩展部的试验片的厚度。

图1及2是表示DCB试验结果的曲线图，图中横轴表示钢的YS，纵轴表示KISSC值。

图1表示板厚为20mm和40mm的供试材，当表1的Mo含量为0.2%、0.5%、0.7%以及1.0%（钢1~4）的4种钢的试验温度为24°C（空心记号）
及 4°C（实心记号）下的结果。同一个记号分别有两个，但位于右侧的表示板厚为 20mm 的情况，位于左侧的表示板厚为 40mm 的情况。

从图 1 可以确认到随着强度（YS）的增大，测定温度的下降，K_{ISSC} 值的下降（即耐 SSC 性的下降）。但，在增加 Mo 的添加量提高了强度的材料中，即使在低温下也可以获得较高的 K_{ISSC} 值。该结果表明通过添加 Mo 使高温回火成为可能，使高强高硫、高韧性化，从而可以提高耐 SSC 性。

图 2 是表示板厚分别为 20mm 和 40mm 情况下的结果的曲线图。在任何一种板厚中，都出现越是 Mo 含量增大，强度变高，K_{ISSC} 值越下降（即耐 SSC 性也下降）的情况。对比不同板厚时，可以确认到热处理时的板厚的影响，即热处理时的板厚越厚（因此冷却速度慢）的材料，其 K_{ISSC} 值变得越大。

如图 2 所示，通过添加 Mo 而提高强度，或者通过降低材料热处理时的冷却速度，形成贝氏体-马氏体双相组织，提高了 K_{ISSC} 值。在形成二相组织的板厚为 40mm 的供试材中，YS 为 95ksi，K_{ISSC} 值达到 23.9ksi√in. 以上，可以获得即使在低温下也表现出非常好的耐 SSC 性的材料。

实施例 2

采用具有表 2 所示的化学组成的钢 A~G，反复进行实施例 1 的试验。钢 A~C 的化学组成在本发明的范围内，且板厚为 40mm，因此它们是在淬火时的冷却速度为 20°C/s 以下（冷却速度慢）的条件下可以进行热处理的材料。另一方面，钢 D~E 的化学组成在本发明的范围内，但板厚为 20mm，是淬火时的冷却速度超过 20°C/s（冷却速度快）的材料。钢 F~G 的板厚为 40mm，淬火时的冷却速度为 20°C/s 以下，但是钢的化学组成位于本发明的范围外的材料。

在本实施例的拉伸试验中，除了屈服强度对拉伸强度也进行了测定。与实施例 1 相同，在 4°C 和 24°C 下进行了耐腐蚀性（耐 SSC 性试验）试验。试验结果的汇总如表 2 所示。
[表 2]

钢的化学组成 (质量%，余量：实际上是 Fe)

<table>
<thead>
<tr>
<th>钢号</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Mo</th>
<th>Al</th>
<th>N</th>
<th>O</th>
<th>Ca</th>
<th>Cr</th>
<th>Ti</th>
<th>Nb</th>
<th>Ni</th>
<th>V</th>
<th>Cu</th>
<th>冷却速度</th>
<th>YS</th>
<th>TS</th>
<th>KISSC 值*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.050</td>
<td>0.30</td>
<td>1.50</td>
<td><0.012</td>
<td><0.001</td>
<td>0.5</td>
<td>0.035</td>
<td><0.005</td>
<td><0.003</td>
<td>0.002</td>
<td>0.30</td>
<td>0.008</td>
<td></td>
<td></td>
<td>0.05</td>
<td><0.01</td>
<td>慢</td>
<td>82.0</td>
<td>94.3</td>
<td>32.5</td>
</tr>
<tr>
<td>B</td>
<td>0.050</td>
<td>0.30</td>
<td>2.00</td>
<td><0.012</td>
<td><0.001</td>
<td>0.7</td>
<td>0.035</td>
<td><0.005</td>
<td><0.003</td>
<td>0.002</td>
<td>0.30</td>
<td>0.008</td>
<td></td>
<td></td>
<td><0.01</td>
<td>慢</td>
<td>91.1</td>
<td>105.2</td>
<td>27.5</td>
<td>40.0</td>
</tr>
<tr>
<td>C</td>
<td>0.050</td>
<td>0.30</td>
<td>1.50</td>
<td><0.012</td>
<td><0.001</td>
<td>1.0</td>
<td>0.035</td>
<td><0.005</td>
<td><0.003</td>
<td>0.002</td>
<td>0.30</td>
<td>0.008</td>
<td></td>
<td></td>
<td>0.05</td>
<td><0.01</td>
<td>慢</td>
<td>96.2</td>
<td>107.9</td>
<td>24.4</td>
</tr>
<tr>
<td>D</td>
<td>0.050</td>
<td>0.30</td>
<td>1.50</td>
<td><0.012</td>
<td><0.001</td>
<td>0.5</td>
<td>0.035</td>
<td><0.005</td>
<td><0.003</td>
<td>0.002</td>
<td>0.30</td>
<td>0.008</td>
<td></td>
<td></td>
<td>0.05</td>
<td><0.01</td>
<td>慢</td>
<td>91.9</td>
<td>103.7</td>
<td>18.4</td>
</tr>
<tr>
<td>E</td>
<td>0.050</td>
<td>0.30</td>
<td>2.00</td>
<td><0.012</td>
<td><0.001</td>
<td>0.7</td>
<td>0.035</td>
<td><0.005</td>
<td><0.003</td>
<td>0.002</td>
<td>0.30</td>
<td>0.008</td>
<td></td>
<td></td>
<td><0.01</td>
<td>慢</td>
<td>101.5</td>
<td>111.0</td>
<td>15.8</td>
<td>27.2</td>
</tr>
<tr>
<td>F</td>
<td>0.050</td>
<td>0.30</td>
<td>2.50</td>
<td><0.012</td>
<td><0.001</td>
<td>0.2</td>
<td>0.035</td>
<td><0.005</td>
<td><0.003</td>
<td>0.002</td>
<td>0.30</td>
<td>0.008</td>
<td></td>
<td></td>
<td>0.05</td>
<td><0.01</td>
<td>慢</td>
<td>84.1</td>
<td>94.6</td>
<td>×</td>
</tr>
<tr>
<td>G</td>
<td>0.050</td>
<td>0.20</td>
<td>1.60</td>
<td><0.012</td>
<td><0.001</td>
<td>0.4</td>
<td>0.035</td>
<td><0.005</td>
<td><0.003</td>
<td>0.002</td>
<td>0.30</td>
<td>0.015</td>
<td>0.020</td>
<td>0.6</td>
<td>0.03</td>
<td>0.3</td>
<td>慢</td>
<td>88.4</td>
<td>99.6</td>
<td>×</td>
</tr>
</tbody>
</table>

下划线表示本发明范围之外；*×表示龟裂贯通K值的计算不可能。
如表 2 所示，在本发明例的钢 A~C 中，与试验温度无关，低温 (4℃) 下的 K_{ISC} 值超过 X80 级的下限强度水平所需的 20.1ksi√in，还超过 X80 级的上限强度水平所需的 23.9ksi√in，可以确认其耐 SSC 性非常优良。以此相对，在比较例的钢 D、E 中，低温下的 K_{ISC} 值大幅低于最低水平即 20.1ksi√in，耐 SSC 性显著冷却。其原因可以考虑为由于冷却速度快，导致生成马氏体单相组织所致。同样，在比较例的钢 F 中，由于 Mo 添加量不足，在比较例的钢 G 中，由于 Mo 和 Cu 的复合添加，导致裂纹扩展到贯通试验片的程度，从而使耐 SSC 性极端恶化。

在本发明例的钢 A~C 中，从强度值来看，可以判定钢的微观组织变为贝氏体-马氏体双相组织。另一方面，比较例的钢 E、D，从强度值来看，可以判定钢的微观组织为马氏体单相。

图 3 是一起表示大量含有表 2 所示成分的供试钢的 4℃ 的 K_{ISC} 值和 YS 值的曲线图。图中的△表示从左向右的顺序的钢 A~C（即淬火时的冷却速度为 20℃/s 以下的例子）的结果。剩余的△均表示板厚为 20mm 的冷却速度变快的例子。可知当冷却速度超过 20℃/s 时，强度 YS 为 80ksi 级的上限的 95ksi 时的 K_{ISC} 值低于 23.9ksi√in，不能获得良好的低温耐 SSC 性。

在以上的实施例中，板厚为 20mm 的情况下，淬火时的冷却速度快，不能形成贝氏体-马氏体双相组织，导致耐 SSC 性下降的结果。但，如果通过对冷却水的水量进行控制，即使是板厚为 20mm 或者更厚的板材，也可以使淬火组织形成上述双相组织，从而获得良好的耐 SSC 性。因此，本发明并不限定于厚壁的无缝钢管。

实施例 3

经过通常的熔炼、铸造以及粗轧制，制成具有表 3 所示的化学组成的圆柱状钢片。将该钢片作为钢坯（轧制原料），通过曼内斯曼-芯棒式无缝管轧机方式的造管设备，进行热穿孔、延伸及定径轧制，制成外径 323.9mm、壁厚 40mm 的无缝钢管。在轧制完成后，立即以 15℃/s 的冷却速度对制备的无缝钢管进行淬水，之后在 650℃均热保持 15 分钟后，通过防止冷却进行回火，制成 YS 82.4(568MPa)的无缝钢管。
[表 3]

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>Ti</th>
<th>Al</th>
<th>N</th>
<th>Cu</th>
<th>Ca</th>
<th>Ceq</th>
<th>Pcm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.04</td>
<td>0.27</td>
<td>1.54</td>
<td>0.006</td>
<td>0.001</td>
<td>0.02</td>
<td>0.74</td>
<td>0.009</td>
<td>0.036</td>
<td>0.0038</td>
<td>0.02</td>
<td>0.0025</td>
<td>0.59</td>
<td>0.22</td>
<td></td>
</tr>
</tbody>
</table>

为了调查耐 SSC 性，从该无缝钢管的厚壁中央部上沿长度方向采取厚 2mm、宽 10mm、长 75mm 的试验片，按照 ASTM G39 进行了 4 点弯曲试验。试验浴采用了通过将 0.41atm 的硫化氢气体和 0.59atm 的二氧化碳气体混合后的气体，使其饱和的低温（4℃）的 21.4wt%食盐 +0.007wt%碳酸氢钙水溶液（以下称为 B 浴）。

在向试验片施加 4 点弯曲试验的负荷方法中，向材料施加相当于 YS 的 90%应力的应变后，在 B 浴中浸渍 720 小时，对浸渍后有无裂纹（SSC）进行了确认，但发现没有出现裂纹（SSC）。由此结果可以确认即使在钢管中也具有良好的耐低温 SSC 性。
图 1

图 2

图 3
图 4