wo 20207150315 A1 |0 0000 K00 OO 0

(12) INTERNATIONAL APPLICATION PUBLISHED

UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual Propert 3
O rgnisation =IO OO0 O O
International Bureau / (10) International Publication Number
(43) International Publication Date g WO 2020/150315 Al
23 July 2020 (23.07.2020) WIPO I PCT
(51) International Patent Classification: (72) Inventor: PARKER, Ronald, M.; 328 Joseph Dr.,
GO6F 9/54 (2006.01) GO6F 9/455 (2018.01) Boxborough, MA 01719 (US).
GOGF 9445 (2018.01) (74) Agent: HOBGOOD, John, V. etal.; Wilmer Cutler Picker-
(21) International Application Number: ing Hale And Dorr LLP, 60 State Street, Boston, MA 02109
PCT/US2020/013631 (US).

(22) International Filing Date:
15 January 2020 (15.01.2020)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 1IN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ, LA, LC,LK,LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/792,580 15 January 2019 (15.01.2019) UsS

(71) Applicant: AFFIRMED NETWORKS, INC. [US/US];
35 Nagog Park, 1st Floor, Acton, MA 01720 (US).

(54) Title: DYNAMIC AUTO-CONFIGURATION OF MULTI-TENANT PAAS COMPONENTS

BGrafana g

Prometheus
130 App Perf Mon
120

B
&

Z

ElastAlert

Graphing-
Config
Agent 232

" | pB-config
Agent 262

PM-Config
Agent222

mongolit
160B

+ Graphana Graphs

* ElastAlert Rules

* Kibana Dashboards

» Graphana Graphs
» ElastAlert Rules
» Kibana Dashboards

206

ConfigMap \¢ MongoDB Schemas Confi/gMap » MongoDB Schemas
~ ~
Microservice B Microservice A Microservice B
econcos |-l picaniay |
Microseniice & [enF 20n CNF 2048
290A 2908
FIG. 2

(57) Abstract: Embodiments of the present disclosure describe configuration agents, or "config-agents," that can identify new PaaS
component configuration information when a software system instance is deployed or updated without requiring a developer to manu-
ally configure each PaaS component instance whenever a new software system instance is installed or updated. In some examples, con-
fig-agents retrieve new configuration information from configuration files associated with the software system instances such as Con-
figMaps and/or Custom Resource Objects of a Custom Resource Definition type operated on by the config-agents. The config-agents
can keep track of each software system instance and PaaS component instance and ensure that necessary configurations are passed
onto PaaS component instances.

[Continued on next page]

WO 2020/1503 15 A | [0 00000 00O 0

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2020/150315 PCT/US2020/013631
DYNAMIC AUTO-CONFIGURATION OF MULTI-TENANT PAAS COMPONENTS
RELATED APPLICATIONS

[0001] This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional
Application No. 62/792,580, filed January 15, 2019, entitled “DYNAMIC AUTO-
CONFIGURATION OF MULTI-TENANT PAAS COMPONENTS,” the contents of which

is incorporated herein in its entirety.
TECHNICAL FIELD

[0002] The present disclosure relates to PaaS architecture, and more particularly to the

process of updating PaaS components when new configurations are deployed.
BACKGROUND

[0003] In cloud computing, a user of a cloud computing service can outsource certain
computing processes to third parties in order to streamline the computing experience of the
user. Platform as a Service (“PaaS”) is one form of cloud computing, where a user can
develop and run an application without having to create and manage each and every
dependent system component of the application from the ground up. For example, a user can
employ various PaaS components that are designed to perform specific tasks needed by the
user’s application. Typical users of PaaS architecture include, but are not limited to, network
operators that deploy Network Functions (“NFs”) with various configurations and
functionalities. These NFs (e.g., Virtual Network Functions, or “VNFs”) interface with PaaS

components to perform their various functions.

[0004] Example Platform as a Service (“PaaS”) components include databases such as
MongoDB and observability components such as Prometheus™ (key performance indicator
“KPI” management, threshold crossing alerts, and historical storage of KPIs), Grafana™
(graph visualization of KPIs), ElasticSearch™ (historical storage of log messages), ElastAlert
(rule-based logic to raise alerts from log messages), Kibana™ (dashboard visualization of
ElasticSearch and ElastAlert activity). These PaaS components are multi-tenant in that, when
implemented to support networked systems, there may be multiple distinct systems (e.g.,
Network Functions) making use of each of the PaaS components simultaneously. When a

new tenant (e.g., each Network Function) is deployed, configurations are applied at the PaaS

WO 2020/150315 PCT/US2020/013631

components. For example, a logical database name, list of document collections and their
keys are provided to MongoDB™; lists of supported KPIs are uploaded to Prometheus™;
identities of the endpoints from which the KPIs may be pulled are also be uploaded to
Prometheus™ (sometimes referred to as “service discovery”); Dashboards that reference to
the KPIs are uploaded to Grafana™; alerting rules are uploaded to ElastAlert; and dashboards
to visualize log message flows are uploaded to Kibana™. However, coordinating this
process for multi-tenant architectures is time-consuming and requires complicated manual
execution or complex centralized tools like Ansible™ offered by Red Hat™ to automate

changes across the platform and ensure that PaaS components receive the files they consume.
SUMMARY

[0005] In some embodiments, a method includes installing a service instance using a first
descriptor chart, the installing comprising: installing a plurality of microservices declared in
the first descriptor chart that comprise the service instance, at least one of the microservices
configured to request services from an instance of a Platform-as-a-Service (“PaaS”)
component of a PaaS component type, and creating at least one configuration file based on
the first descriptor chart; parsing, by a configuration agent associated with the PaaS
component type, the at least one configuration file for configuration data associated with the
PaaS component; and instructing, by the configuration agent, the instance of the PaaS

component to install the configuration data.

[0006] In some embodiments, the configuration file comprises descriptors of resources,
and wherein the method further comprises mounting the configuration file to the

configuration agent.
[0007] In some embodiments, the service instance comprises a network function (“NF”).

[0008] In some embodiments, the service instance is installed by a network operator, and

the PaaS component is developed and managed by a third-party.

[0009] In some embodiments, the method further includes updating the service instance
using a second descriptor chart, the updating comprising: updating at least one of the plurality
of microservices declared in the second descriptor chart that comprise the service instance,
the updated at least one of the plurality of microservices configured to request services from

the instance of the PaaS component, and updating the at least one configuration file based on

2.

WO 2020/150315 PCT/US2020/013631

the second descriptor chart; parsing, by the configuration agent, the at least one updated
configuration file to identify the update to the configuration data associated with the PaaS
component; and instructing, by the configuration agent, the instance of the PaaS component

to install the updated configuration data.

[0010] In some embodiments, the updating the software instance is performed by a

container orchestration engine (“COE”).

[0011] In some embodiments, a method includes: monitoring, by a configuration agent
associated with a Platform-as-a-Service (“PaaS”) component type, for a notification
identifying a configuration file change in at least one configuration file directory, the at least
one configuration file in the configuration file directory containing configuration data for at
least one instance of the PaaS component of the PaaS component type; monitoring, by the
configuration agent, a configuration of the at least one instance of the PaaS component type
to identify a lack of conformity with configuration data in the configuration file directory;
automatically transmitting, by the configuration agent, an instruction to the at least one
instance of the PaaS component when one or more of a configuration file change or a lack of
conformity is identified, the instruction comprising an instruction to install a configuration on
the at least one instance of the PaaS component based on the configuration data in the

configuration file directory.

[0012] In some embodiments, the at least one instance of the PaaS component is
configured to service at least one microservice of a plurality of microservices comprising a

network function (“NF”).

[0013] In some embodiments, the change in configuration data comprises a change in

data of a ConfigMap in the configuration file directory.

[0014] In some embodiments, the configuration data is associated with at least one
service instance, and wherein the method further comprises updating the at least one service
instance using a descriptor chart, the updating the at least one service instance causing the

change in the configuration data.

[0015] In some embodiments, the at least one service instance is updated by a network

operator, and the PaaS component is developed and managed by a third-party.

WO 2020/150315 PCT/US2020/013631

[0016] In some embodiments, a method includes: installing a service instance using a
first descriptor chart, the installing comprising: installing a plurality of microservices
declared in the first descriptor chart that comprise the service instance, at least one of the
microservices configured to request services from an instance of a Platform-as-a-Service
(“PaaS”) component of a PaaS component type, and creating at least one resource instance
based on the first descriptor chart, the resource instance having a type associated with a
resource definition, the resource instance containing configuration data associated with the
instance of the PaaS component; receiving, by a configuration agent that operates resource
instances of the type associated with the resource definition, a notification of the creation of
the at least one resource instance, the notification further comprising the configuration data
associated with the instance of the PaaS component; and instructing, by the configuration

agent, the instance of the PaaS component to install the configuration data.

[0017] In some embodiments, the instructing the instance of the PaaS component to
install the configuration data comprises performing, by the configuration agent, an API call to

the instance of the PaaS component.
[0018] In some embodiments, the service instance comprises a network function (“NF”).

[0019] In some embodiments, the service instance is installed by a network operator, and

the PaaS component is developed and managed by a third-party.

[0020] In some embodiments, the method further includes: updating the service instance
using a second descriptor chart, the updating comprising: updating at least one of the plurality
of microservices declared in the second descriptor chart that comprise the service instance,
the updated at least one of the plurality of microservices configured to request services from
the instance of the PaaS component, and updating the at least one resource instance based on
the second descriptor chart by updating configuration data in the resource instance associated
with the instance of the PaaS component; receiving, by the configuration agent that operates
resource instances of the type associated with the resource definition, a notification of the
update to the at least one resource instance, the notification further comprising the updated
configuration data associated with the instance of the PaaS component; and instructing, by
the configuration agent, the instance of the PaaS component to install the updated

configuration data.

WO 2020/150315 PCT/US2020/013631

[0021] In some embodiments, the updating the software instance is performed by a

container orchestration engine (“COE”).

[0022] In some embodiments, a method includes: monitoring, by a configuration agent
associated with a resource definition type, for a notification identifying that a declaration in a
resource instance of the resource definition type has changed, the changed declaration being
associated with at least one instance of a Platform-as-a-Service (“PaaS”) component;
monitoring, by the configuration agent, a configuration of the at least one instance of the
PaaS component to identify a lack of conformity with the declaration in the resource instance
of the resource definition type; automatically transmitting, by the configuration agent, an
instruction to the at least one instance of the PaaS component when one or more of a
declaration change or a lack of conformity is identified, the instruction comprising an
instruction to install a configuration on the at least one instance of the PaaS component based

on the declaration in the resource instance.

[0023] In some embodiments, the at least one instance of the PaaS component is
configured to service at least one microservice of a plurality of microservices comprising an

instance of a network function (“NF”).

[0024] In some embodiments, the method further includes updating the instance of the
NF using a descriptor chart, the updating the instance of the NF causing the change in the

declaration.

[0025] In some embodiments, the instance of the NF is updated by a network operator,

and the PaaS component is developed and managed by a third-party

[0026] In some embodiments, the changed declaration comprises a change to a

consumable of the at least one instance of the PaaS component.
BRIEF DESCRIPTION OF FIGURES

[0027] Various objectives, features, and advantages of the disclosed subject matter can be
more fully appreciated with reference to the following detailed description of the disclosed
subject matter when considered in connection with the following drawings, in which like

reference numerals identify like elements.

WO 2020/150315 PCT/US2020/013631

[0028] FIG. 1 is a system diagram showing a configuration of a prior art multi-tenant

PaaS component configuration using Ansible™.

[0029] FIG. 2 is a system diagram showing an exemplary auto-configuration architecture

for multi-tenant PaaS components, according to some embodiments.

[0030] FIG. 3 shows a call flow diagram of an exemplary PaaS auto-configuration during

cloud-native network function (“CNF”) deployment, according to some embodiments.

[0031] FIG. 4 shows a call flor diagram for a PaaS auto-configuration during a

microservice upgrade, according to some embodiments.

[0032] FIG. 5 shows a call flow diagram of an exemplary PaaS auto-configuration during

cloud-native network function (“CNF”) deployment, according to some embodiments.

[0033] FIG. 6 shows a call flow diagram for a PaaS auto-configuration during a

microservice upgrade, according to some embodiments.
DETAILED DESCRIPTION

[0034] It is to be understood that the phraseology and terminology employed herein are

for the purpose of description and should not be regarded as limiting,

[0035] In multi-tenant PaaS implementations, individual instances of software systems,
such as NFs, can be installed as needed based on a descriptor file and input variables. Such
software systems can comprise an amalgamation of microservices, each of which performs a
particular service for the software system. Deployments of such software systems can
request particular instances of PaaS components to provide services to their software systems
based on custom configurations provided to the PaaS component instances using
configuration files. As developers scale both the number of software system instances, the
number of microservices in such instances, and number of instances of PaaS components that
provide services to the software system instances, managing configuration information for
each instance of software and PaaS components becomes cumbersome and error prone.
While configuration managers such as Ansible™ can facilitate deployment and updates to
such implementations, as described below, these solutions require manual scripting to keep
track of configuration information for each PaaS component instance. Accordingly,

embodiments of the present disclosure describe configuration agents, or “config-agents,” that

-6-

WO 2020/150315 PCT/US2020/013631

can identify new PaaS component configuration information when a software system instance
is deployed or updated without requiring a developer to manually configure each PaaS
component instance whenever a new software system instance is installed or updated. In
some examples, config-agents retrieve new configuration information from configuration
files associated with the software system instances such as ConfigMaps and/or Custom
Resource Objects of a Custom Resource Definition type operated on by the config-agents.
The config-agents can keep track of each software system instance and PaaS component
instance, for example by using a namespace of each, and ensure that necessary configurations

are passed onto PaaS component instances.

[0036] FIG. 1 is a system diagram showing a configuration of a prior art multi-tenant
PaaS component configuration 100 using Ansible™. Configuration 100 includes Ansible™
101, Kubernetes™ 170, and Helm™ 176, and PaaS components such as Prometheus™ 120,
Grafana™ 130, ElastAlert 140, Kibana™ 150, MongoDB™ 160A/B. These components are
described in more detail below. It should be appreciated that these components are merely
exemplary, and can be replaced with other PaaS components that perform similar or different

functions.

[0037] In general, a software system, such as a network function in a networked system,
can communicate with PaaS components 120, 130, 140, 150, 160A/B to request the
performance of particular services. Third-party deployers can manage PaaS component
instances, which can operate in the public cloud. Users of the PaaS components, such as
network operators, can customize PaaS components to serve their applications without having
to create, manage, and maintain each PaaS component. Instead, specific instances of PaaS
components can be deployed for use by particular software system instances (e.g., NFs),
which are customized based on configuration files that are sometimes referred to by different

2%

names such as “dashboards,” “schemas,” etc. Thus, these PaaS components can be multi-
tenant, in that multiple software systems (e.g., NFs) can use one or more instances of these

PaaS components based on particular configurations fed to the PaaS components.

[0038] Helm™ 176: an open source system orchestrator. Helm™ 176 is a package
manager that manages software deployments, such as deployments of NFs. Helm™ 176
takes descriptor files, referred to as Helm™ Charts, as input and decomposes them into
individual Kubernetes™ commands. For example, a Helm™ Chart can be deployed with a

command such as ‘helm install <chart.name> <variable values>...’, where <chart.name> is

-7-

WO 2020/150315 PCT/US2020/013631

the name of a particular chart, and the <variable values> are variables that are used to
customize a particular instance of a software system generated from the Helm™ Chart.
Multiple instances of software systems can be generated from the same Helm™ Chart using
different variable values. According to some embodiments, a Helm™ Chart is structured like
a Network Function (“NF”) descriptor. It can contain the instructions for Kubernetes™ (a
container orchestration engine described below) to deploy the microservices that comprise
the NF. For example, the Helm™ Chart can read as a set of declarations that declare various
microservices, etc. that will make up a software system, such as a NF. This can include
elements such as, but not limited to, versioned docker image file names, as well as metadata
such as replica counts, auto-scale policies, service definitions (e.g., an abstraction to hide the
individual members of the a microservice type’s replica set), and any Custom Resource
Definitions (“CRDs,” which can be arbitrary and changeable data that can be injected by the
COE (“Core Orchestration Engine,” e.g., Kubernetes™, Docker Swarm™, or Mesophere™)
to the running microservices). The docker images can be used to deploy microservices (e.g.,
pods) that make up the NF. The Helm™ Chart can also include additional data and files that
are necessary to configure the microservices. In addition, a ConfigMap, which can be a
dictionary of configuration settings that contains configuration information to be read from
microservices (e.g., as a key-value pair of strings), can be declared in the Helm™ Chart itself.
The Helm™ Chart can also indicate to which microservices the ConfigMaps should be
mounted (as a file) such that the microservices can see the configuration information
contained in the respective ConfigMap. As described in more detail below, unlike in FIG. 1,
according to some embodiments, the metadata in a Helm™ Chart can be used to specify
certain files to be consumed by various PaaS components. ConfigMaps allow for
configuration files to be separated from image content in order to make microservice
deployment more flexible. Furthermore, as described in more detail below with reference to
FIGS. 2-6, by including these files in the Helm™ Chart, these files may be passed through to
the various PaaS components without requiring coordination software like Ansible. Although
Helm™ 176 and Helm™ Charts are discussed in the present disclosure, it should be
appreciated that other types of orchestrators that allow for specification of docker images for

deploying software and metadata associated with the same can be used.

[0039] Kubernetes™ 170: an open source container orchestration engine (“COE”) for
automating deployment. Kubernetes™ can assist in deploying, scaling, and managing

software systems. For example, Kubernetes™ can manage addressing, scheduling, and

-8-

WO 2020/150315 PCT/US2020/013631

scaling of instances of services, which can be made up of multiple pods containing

containers.

[0040] Prometheus™ 120: an open source KPI /Statistics manager. Prometheus™ 120
includes a Time Series Database (“TSDB”) for intermediate term storage. Prometheus™ 120
can be regularly synchronized with list of endpoints from which KPIs are periodically
gathered. Service discovery can refer to the process by which Prometheus™ 120 discovers
various endpoints (e.g., nodes) from which to collect metrics. An instance of Prometheus™
120 that serves a particular NF needs to be provided with this configuration information in

order to learn about which contain KPIs to be gathered.

[0041] Kibana™ 150: an open source dashboard engine that allows visualization of log
flows and alerts. Multiple instances of Kibana™ 150 can be deployed to serve various
software systems, such as NFs. Each Kibana™ 150 consume a dashboard file containing
information about how to generate a particular dashboard, which it can use to construct
queries to ElasticSearch for data to visualize. According to some embodiments, dashboard
files can be created manually via the Kibana tool in Kibana™ 150. A user can create a
dashboard, add widgets to it, specify the log filters that can be applied to determine which
logs match to the added widget, and finally save the dashboard. Alternatively, network
operator can construct a set of these dashboards to accomplish particular desired
functionalities and then add them to a source code control system such that they are released
along with the software. In some embodiments, a release of software is comprised of at least
two things: a set of versioned docker images and the Helm™ Chart for the particular NF.
Thus, the dashboards can be declared within the Helm™ Chart. The packaging of the
Helm™ Chart can be done during the build of the NF release.

[0042] ElastAlert 140: an open source plugin to Kibana™ that can receive configuration
information in the form of alert rule files which it uses to construct appropriate queries to
ElasticSearch™, which is an intermediate term storage for log messages. According to some
embodiments, each microservice emits log messages, for example, by processes such as

“printf” or “stdout” file descriptors.

[0043] MongoDB™ 160A/B: an open source NoSQL database. MongoDB™ 160A/B
creates particular instances of logical databases based on configuration information contained

in schema files. As explained below, schema files can delineate the database structure and

-9.

WO 2020/150315 PCT/US2020/013631

corresponding nodes from which data is to be collected. Each instance of MongoDB™
160A/B can be for a particular software system, such as a NF. Instances of MongoDB™
160A/B can collect key information via API calls to various nodes in the system, based on
information contained in the schema. According to some embodiments, when a new NF is
deployed (e.g., via a “helm install” command), an instance of MongoDB™ 160A/B can be
pre-instructed regarding a logical DB name that the NF expects to use, document collections
(“repos”) within the logical DB, and the primary/secondary key information for each repo
based on a schema file. APIs can be offered by MongoDB™ 160A/B within the set of TCP-
based APIs defined by MongoDB™ 160A/B. After such steps have been accomplished,
microservices within the newly orchestrated NF can write and read documents to
MongoDB™ 160A/B using the proprietary TCP-based APIs that are defined by MongoDB™
160A/B.

[0044] As shown in FIG. 1, in prior art systems, Ansible™ 101, as a higher-level
configuration manager, is responsible for deploying new distinct software systems such as
NFs and pushing all relevant configurations to instances of the PaaS components used by that
new distinct software system. Ansible™ 101 does so via Playbooks 110, which are scripts
that are written to conform to Ansible™ 101 requirements. When a new software system is
deployed, Ansible™ 101 may need to push down information to each PaaS component
instance so that each PaaS component instance is aware of what the new system requires of it.
For example, Ansible™ 101 may push Helm™ Create 182 from a Helm™ chart to Helm™
176, install new dashboards (e.g., files with information about graphing templates) 183 for
Grafana™ 130, install new alerting rules 184 for ElastAlert 140, install dashboards 185 for
Kibana™ 150, and configure database(s) 186 for MongoDB™ 160A/B, all in new instances
of each PaaS component that are meant to serve a particular NF deployed via the Helm™
Chart. Some or all of these configurations are declared in playbooks 110. Playbooks take the
form of scripts. These scripts can be prepared by an IT or other operational professional.
Thus, in order to ensure that PaaS component instances receive the correct configuration to
provide services to a new NF instance, someone must manually script in a Playbook that the
information is to be provided to particular PaaS component instances. The construction and
maintenance of these scripts in Playbooks can be elaborate and time consuming, and make
the process of updating various components or adding new NFs/microservices more labor

intensive.

-10 -

WO 2020/150315 PCT/US2020/013631

[0045] Higher level automation software like Ansible™ 101 present a number of
drawbacks. For example, when deployed at production scale, it becomes awkward,
inefficient, and error-prone to utilize this approach. Deployment and automation solutions
like Ansible™ 101 and its Playbooks 110 must capture significant software system-specific
knowledge in order to know exactly how to coordinate the deployment of new software and
the update of the respective PaaS components that the new software will utilize. For
example, someone must specify a particular Helm™ Chart from which to deploy the software
instance, and further specify, as discussed above, how each PaaS component instance is to
learn of configuration to service that particular software instance. It should be appreciated
that the PaaS component instances can be instantiated using any suitable methods including,
but not limited to being deployed via a Helm™ Chart or being created by inputting data via a
graphical user interface or via an API called from a script. Thus, when deploying a new
software instance, someone must configure the Playbook to explicitly configure PaaS
components to create and/or update PaaS component instances. Furthermore, each time an
existing system is upgraded, the Ansible™ Playbooks 110 potentially need to be updated.
For example, for new deployments or if a software update requires a new or updated PaaS
component instance, the Playbooks 110 will need to be updated to specify that that PaaS
component instance is to receive the correct configuration information. In addition, the
Ansible Playbooks 110 do not sufficiently handle the needs of multiple versions of distinct
systems. Accommodating different versions that may have different configuration needs with
respect to the multi-tenant PaaS components is challenging. Versions can refer to either the
version of a particular PaaS components or the version of a particular NF. According to
some embodiments, a PaaS component instance can change versions and thus change its
approach to configuration, for example using different APIs or different structure of the data
it consumes. Such different data structures can relate, for example to the file format of a
Kibana™ dashboard, for example changing from JSON to YAML, or simply adding new
fields. For versioning of a NF, a new microservice version may add new log messages,
which can require new versions of ElastAlert rules files and/or Kibana™ dashboards to
accommodate such log messages. Another example can involve the introduction of new
KPIs. According to some embodiments, a new microservice version can modify the way it
interacts with a database, for example by introducing new collections or adding more
secondary keys to existing collections. According to some embodiments, an upgrade to a NF

can employ a new type of microservice that did not previously exist. While a NF can be

-11 -

WO 2020/150315 PCT/US2020/013631

upgraded to a new version using a ‘helm upgrade’ command, someone must still add updated

configuration information to be provided to PaaS components in the Playbook 110.

[0046] There are further drawbacks to this system. On a significant number of prior art
deployments, there is no universal scripting environment. Instead, before or after deploying a
particular software system (e.g., an NF), configuration or reconfiguration of the multi-tenant
PaaS components is performed manually via a CLI or GUI interface. This creates significant
disadvantages for production scale environments, where many manual configurations are
time-consuming and difficult to coordinate. In addition, particular deployments can require

additional debugging time.

[0047] FIG. 2 is a system diagram showing a multi-tenant PaaS component configuration
200 with config-agents, according to some embodiments. The configuration 200 includes
similar components to the system 100, including Prometheus™ 120, Grafana™ 130,
ElastAlert 140, Kibana™ 150, and MongoDB™ 160A and 160B. The system 200 also
includes CNF 204A, CNF 204B, microservices 290A, microservices 290B, ConfigMap 205,
ConfigMap 206 and graphing-config-agent 232, PM-config-agent 222, alert-config-agent
242, dashboard-config-agent 252, and database (“DB”)-config-agent 262. These elements
are described in more detail below. It should be appreciated that these elements are merely
exemplary, and can be replaced with other PaaS components that perform similar or different
functions. It should also be appreciated that the config-agents can be structured as separate

microservices on each CNF 204A, 204B.

[0048] As shown in FIG. 2, one or more NFs or other software systems (e.g., CNFs
204A, 204B) can be implemented using a microservices architecture. Accordingly, each of
CNFs 204A, 204B comprise at least one microservice 290A, 290B, respectively, that provide
one or services (e.g., functional logic) via API calls on behalf of the CNF. In some
embodiments, a CNF can be considered to be a federation of microservices, each of which
performs one service associated with the function of the CNF. Services can include, for
example, functional logic such as call control logic or MME tracking area management logic.
According to some embodiments, microservices 290A, 290B converse through APIs (for
example, RESTful over HTTP or gRPC). According to some embodiments, the
microservices 290A, 290B can be dynamically and multiply instantiated based on network
load. As discussed above, a COE, such as Kubernetes™, can manage microservices for each

CNF.

-12 -

WO 2020/150315 PCT/US2020/013631

[0049] In some embodiments, the CNFs 204A, 204B can operate on a PaaS architecture,
and can therefore each access instances of PaaS components, for example, Prometheus™
120, Grafana™ 130, ElastAlert 140, Kibana™ 150, and MongoDB™ 160A/B, to accomplish
particular functions associated with each PaaS component. According to some embodiments,
PaaS components instances themselves can also be dynamically scalable based on the load

which they receive.

[0050] In some embodiments, each CNF 204A, 204B includes at least one ConfigMap
205, 206, respectively. ConfigMaps 205, 206 can be used in implementations that employ
Kubernetes. In such implementations, a ConfigMaps can be specified in a Helm™ Chart and
implemented for each deployed CNF. According to some embodiments, each deployed CNF
can have many ConfigMaps. A ConfigMap can be, in some embodiments, a resource that
allows for injection of configuration data into a pod or other resource. ConfigMaps can be
separated so as to be mounted separately to distinct microservice types. In an example, the
type of data used by the DB-config-agent can be located in one ConfigMap which includes
the collection of DB requirements files of each microservice type in the CNF that makes use
of the DB. Similarly, according to some embodiments, the collection of Kibana™
dashboards that can be released with each microservice type can be orchestrated into their
own ConfigMap for purposes of mounting it to the Dashboard-config-agent. According to
some embodiments, mounting can denote that a ConfigMap is visible in a microservice’s
local files system at some specified coordinate, such as /etc/config-maps/dashboard-config-

map/<actual-config-map-file>.

[0051] In some embodiments, the contents of the ConfigMaps 205, 206 can be mounted
to each microservice 290A, 290B, respectively, as a file system containing the files that were
present in a Helm™ Chart. The Helm™ Chart can include raw data that can be put into a
ConfigMap, such as, for example, the Kibana™ dashboard files (i.e., configuration
information for an instance of a Kibana™ PaaS component), and can also include instruction
that such data be assembled into a ConfigMap and a directive that one or more microservice
types should mount the ConfigMap at a given file system path. According to some
embodiments, the ConfigMap is a general mechanism that is similar to an “environment
variable” but, that can be changed during the lifetime of the running microservice. According
to some embodiments, the ConfigMaps discussed throughout the present disclosure can

instead be replaced by Custom Resource Definitions (“CRDs”) in an API-oriented solution

-13 -

WO 2020/150315 PCT/US2020/013631

rather than a file-oriented solution, as described in more detail with reference to FIGS. 5 and

6.

[0052] According to some embodiments, CNFs 205, 206 can be associated config-agents
associated with each PaaS component, such as Prometheus™ 120, Grafana™ 130, ElastAlert
140, Kibana™ 150, and MongoDB™ 160A/B, of the PaaS component configuration 200.
Each config-agent can be managed by a separate entity from the PaaS component and can be
singleton microservice that i1s deployed as a member of each CNF 204A, 204B that can make
API calls to the PaaS component instances associated with the config-agent . As described in
more detail with reference to FIGS. 3-4, each config-agent is configured to extract files from
the mounted ConfigMap 205, 206 and recognizes dynamic changes in the structure thereof
(e.g., additions, changes, or deletions of configuration information). The extracted files can
be renamed to include the CNF ID. This can be performed, for example, to ensure that there
are not any naming collisions. For example, two CNFs may have different life cycles (e.g.,
upgrades at different times), which means their metadata may diverge. Accordingly, by
naming files based on the CNF instance name, the life cycle of these files can also be
independently controlled separately from other CNF instances. The files can then be installed
in each PaaS component using API calls to enable the operation of each respective
component. For example, a config-agent can pass changes to configuration information for a
specific instance of a PaaS component associated with a CNF via an API call to that PaaS
component instance. Accordingly, when the ConfigMap is updated during an upgrade, the
config-agents can identify the updated portion of the ConfigMap and synchronize the relevant

PaaS component instances with the update.

[0053] According to some embodiments, CRDs can be used in addition to or instead of
ConfigMaps. A CRD can be used to define a consumable of a PaaS component, such as a
schema for MongoDB™. The CRD can be provided to a COE, such as Kubernetes™. Once
defined, the CRD becomes one of the types of resources that the COE (e.g., Kubernetes™)

can understand.

[0054] In some embodiments, particular resource instances, such as Custom Resource
Objects (“CROs”) can be deployed via a Helm™ Chart. These CROs are of a type defined in
the CRD, and can contain specific information therein, such as configuration information for
a PaaS component instance. for example, when software or upgrades are deployed, the

Helm™ Chart can include declarations of various CROs, which can include a CRD type

-14 -

WO 2020/150315 PCT/US2020/013631

(already understood by Kubernetes™, name, and indication to Kubernetes™ 170 that it exists
as a CRO. Furthermore, in the Helm™ Chart, certain files can be specified to be included in
the CRO which include, for example, dashboard files to be consumed by a PaaS component
instance such as Grafana™ 130. In another example, a particular schema CRO can be
created of the type defined in a schema CRD, and can contain information about a database
(e.g., KPIs, etc.) for a MongoDB™ instance. Each CRO can contain multiple files or a single
file. CRDs operate using a publish and subscribe model where publishing occurs at
deployment of the CROs, for example, when they are specified in a Helm™ Chart acted upon
by Helm™. Although the present disclosure describes operation of Config-Agents based on
information in CROs, ConfigMaps, or both, a person of skill in the art would understand from
the present disclosure that Config-Agents can operate in other software environments using

other types of resources intended to be bound to particular instances.

[0055] In some embodiments, config-agents can be created to operate CROs of certain
CRD types in order to provide new, changed, or deleted configuration information to a PaaS
component instance. In such embodiments, a microservice, such as a config-agent, can be
instantiated and configured to inform the COE (e.g., Kubernetes™) that it operates resources
of the type defined by a CRD (i.e., is subscribed to CROs of the CRD type). For example, a
developer of the PaaS- config-agent microservice can document the type, name, and structure
of the CRD that it consumes. When a new CRO of the CRD type is deployed, or when a
CRO of that type is updated, in a Helm™ Chart, the COE (e.g., Kubernetes™ 170 can make
the CROs, including the files referenced therein, available to microservices subscribing to
that particular CRD type. For example, the COE can inform that microservice (e.g., config-
agent) that a CRO of that type has been created. The microservice can then read
configuration information from the CRO via an API call, and then place another API call to
the associated PaaS component instance to provide that information so that the PaaS
component instance can properly supply services to an NF. Thus, microservice config-agents
that subscribe to particular CRD types can listen for CROs to which it subscribes, which may
be new or updated, such as those having dashboard files embedded therein, and then forward
them to respective PaaS component instances. In this way, developers do not need to
coordinate the process by which each respective PaaS component instance receives new or
updated files. Config-agents and associated CNFs can operate using ConfigMaps, CROs, or

both, in order to adequately provide configuration information to PaaS instances.

-15 -

WO 2020/150315 PCT/US2020/013631

[0056] In some embodiments, both CROs and ConfigMaps can be used in the same
system 200. For example, one Helm™ Chart can be deployed to instantiate CNFs that
provide configuration information only in ConfigMaps, while a second Helm™ Chart can be
deployed to instantiate CNFs that provide configuration information only via CROs. In
another example, on Helm™ Chart can be deployed to instantiate a CNF that provides
configuration information to one PaaS component instance using information read by config-
agents read from ConfigMaps, while a second PaaS component instance can receive
configuration information from a config-agent that receives such information from an API
call to a CRO of the CRD type it operates. In any of these examples, a configuration
manager, such as Ansible™, is not needed to ensure that configuration is provided to PaaS
component instances. Instead, when an NF is instantiated or updated from a Helm™ Chart
that may specify new, changed, or deleted configuration information for one or more PaaS
components, config-agents associated with each PaaS component can pass updated
configuration information to their respective PaaS components instances without requiring

someone to manually code such an action in an Ansible™ playbook.

[0057] According to some embodiments, config-agents 232, 222, 242,252, 262can take
the form of singleton microservices. Config-agents232, 222, 242, 252 262 can be declared
in and installed via a separate Helm™ chart, which can provide the config-agents with
information on how to discover updates to PaaS instance configurations (e.g., via monitoring
for changes of a certain type to ConfigMaps or informing Kubernetes™ 170 that it operates
CROs of particular CRD types. When a new piece of software containing one or more new
types of microservices (e.g., via a Helm™ Chart) is instantiated or updated to implement new
configuration on a PaaS component instance (e.g., dashboards in Grafana™ 130, endpoints to
be accessed by Prometheus™ 120, alert-rules in an alert file to be implemented by ElastAlert
140, dashboards to be consumed by Kibana™, or schemas to be consumed by MongoDB™
160A/B) for one of CNFs 204A, 204B, the respective Graphing-, PM-, Alert-, Dashboard-,
and/or DB-config-agent 232, 222, 242 252, and/or 262 can extract files from ConfigMaps
205 or 206, rename them to include the CNF ID, and install them in an instance of the PaaS
component 130, 120, 140, 150, 160A/B associated with the CNF via API calls. Accordingly,
one or more of config-agent 232,222 242,252, 262 can also recognize new or dynamic
changes to the ConfigMaps 205, 206 and synchronize with instances of PaaS components
120, 130, 140, 150, 160A/B via API calls without having to specify in a Playbook or the
Helm™ Chart that changed the ConfigMap which particular PaaS component instances need

-16 -

WO 2020/150315 PCT/US2020/013631

updated configuration information. For synchronization, in some examples, Microservices
will utilize a Linux file system change notification mechanism (e.g., inotify) in order to get a
callback from Linux when a change is detected. Kubernetes™ can be responsible for
remounting the regenerated ConfigMap such that inotify can detect it and inform the

microservice.

[0058] In some embodiments, files extracted from the ConfigMaps can include
Grafana™-specific files that instruct it how to paint a web display in a browser and which
KPIs to request from the data source (e.g., Prometheus™) in order to plot the lines on the

web display

[0059] In some embodiments, files extracted from the ConfigMaps can include files that
cause an instance of Prometheus™ 120 to perform remote service discovery (e.g., provide
Prometheus™ 120 with endpoints (microservice instances) that are to data available to it.
Since Prometheus™ 120 can be hierarchical — a parent Prometheus™ instance can need to
know which child Prometheus™ instances make (aggregated) data available to it, PM-config-
agent 222 can automate synchronization of a CNF microservice members list with
Prometheus™ 120 to enable automated data collection by Prometheus™ 120 for hierarchical

instances.

[0060] In some embodiments, files extracted from the ConfigMaps can include alert-rule
files containing alert rules. An alert rule can be associated with a log message declaring that
database connectivity has been lost — an operator may have created such a rule, declaring that
this type of log message should result in a human detectable notification over email, SMS,
slack, or many other communications schemes. Alert-rule files can be consumed by an

instance of ElastAlert 140.

[0061] In some embodiments, files extracted from the ConfigMaps can include dashboard
files to be consumed by an instance of Kibana™ 152. For example, an SMF-call-control
microservice can have an associated dashboard constructed to view log activity emanating
from the SMF-call-control, which can contain filters used to identify the specific log

messages that are desired to be displayed in widgets on the dashboard (via a web browser).

[0062] In some embodiments, files extracted from the ConfigMaps can include DB-

config-schema files to be consumed by an instance of MongoDB™ 160A/B to create or

-17 -

WO 2020/150315 PCT/US2020/013631

modify a logical DB. In some examples, each associated set of schema files associated with a

tenant can use the same file names to refer to different files for each tenant.

[0063] As described throughout the present disclosure, the information listed above can
instead be retrieved by a config-agent 232, 222, 242, 252, or 262 via an API call to a CRO
after receiving a notification that a CRO of the CRD type monitored by the config-agent has

been instantiated.

[0064] As shown in FIG. 2, PaaS components can be multiple instantiated. For example,
there are two instances of MongoDB™: 160A and 160B. In some embodiments, multiple
network functions 204A, 204B can be served by the same PaaS component instance, such as
Grafana™ 130. In some embodiments, each network function 204A, 204B can be serviced
by a single PaaS component instance, such as MongoDB™ 160A and 160B, respectively. In
some embodiments, PaaS components can be located in the cloud 209, while NFs 204A,
204B and configmaps 205, 206 are located in a data center 208. However, a person of skill in
the art would understand that NFs 204A, 204B; ConfigMaps 205, 206; Config-Agents 232,
222,242,252, and 262; and/or PaaS components 130, 120, 140, 150, 160A, and 160B could
be located in any configuration spread across multiple or a single data center 208 and/or with

some or all elements residing in the cloud 209.

[0065] FIG. 3 is a call flow diagram showing an exemplary PaaS auto-configuration
during CNF instantiation (e.g., installation), according to some embodiments. At step 302, a
‘helm install” command can be called for a new CNF instance 204A, which is made up of at
least one microservice, Microservice 290A, based on a Helm™ Chart. As discussed above,
Microservice A 290A can assist with one portion of a NF, such as SMF call control, AMF
call control, or AMF Tracking Area Management. Other microservices are contemplated. At
step 304, as discussed above, a ConfigMap 205 can be created, which can include
configuration information contained in the Helm™ Chart to be consumed by PaaS
components (e.g., dashboards to be consumed by Grafana™ 130 and dashboards to be
consumed by Kibana™ 150). The ConfigMap 205 allows for deployment of such
information, which can take the form of files that are contained in the Helm™ Chart, to be
passed through to PaaS component instances and to be mounted as a file system to the
running microservice. At step 306 Helm™ 176 can provide, via the Helm™ Chart,
instructions for Kubernetes™, which coordinates with the container runtime agent (e.g.,

Docker or a CRI-O) to create at least one instantiation of Microservice 290A based on the

-18 -

WO 2020/150315 PCT/US2020/013631

docker images contained in the Helm™ Chart. The number of instantiations can also be

declared in the Helm™ Chart.

[0066] Config-agents 232, 252 can continuously or periodically watch Linux for file
changes at 314 and 354 (e.g., by issuing an inotify watchpoint to Linux for a file directory
such that the software is notified with an event if there are any file deletes, adds, or modifies
in the watched directory). Accordingly, when new CNFs are deployed or upgraded, for
example via “helm install” or “helm upgrade” commands, config-agents simplify deployment
automatically updating instances of PaaS components like Grafana™ 130 and Kibana™ 150.
Thus, deploying new metadata to PaaS components instances does not require scripting
commands that cause new PaaS component consumables to be installed to respective PaaS
component instances, but rather config-agents continuously monitor for new files and pass
them to respective PaaS components as needed. Once config-agents have been implemented,
a developer need only declare such files in a Helm™ Chart using ConfigMaps, and the
config-agents will take care of ensuring that they are properly installed on respective PaaS

components instances.

[0067] In steps 330, 350, Graphing- and Dashboard-config-agents 232, 252 see changes
to ConfigMap 205, including new dashboards. According to some embodiments, this
involves gaining access to docker images that each respective config-agent runs and
metadata, such as ConfigMaps, that should be mounted (such as that built by Helm™ and
Kubernetes™ from data embedded in the Helm™ Chart). These steps can be accomplished
in tandem or at different times. The config-agents 232, 252 can parse the changes new
configurations that relate to the particular PaaS component which they serve. Upon
identifying a new configuration, the config-agent 232, 252 can identify which PaaS
component instance requires this new configuration (e.g., by using a namespace of the NF
instance with which the configuration information is associated) and use POST API calls
332/352 to install the dashboards contained in the ConfigMap to Grafana™ 130 and
Kibana™ 150, respectively. According to some embodiments where such an API call is not
available, a separate config-agent can be deployed at the PaaS component in order to receive
updated configurations (e.g., dashboards) and manipulate files local to the config-agent to
accommodate the new configurations. According to some embodiments, each config-agent
can be specifically designed to relay data to its respective PaaS component instance in the

manner required by that PaaS component. For example, for ElastAlert™, a file that is locally

-19 -

WO 2020/150315 PCT/US2020/013631

mounted to ElastAlert can be changed, where the file is not a ConfigMap mount. In such an
example, the system can run a “sidecar” — a new type of container that runs alongside the
ElastAlert container in a manner where their lifecycle is conjoined. The sidecar can have all
the privileges of the ElastAlert container, including the ability to manipulate its files.
According to this example, the config-agent, as part of a CNF, can be the client side of the
API relationship and the sidecar, as part of ElastAlert, can be considered to be on the server
side. Accordingly, a remote API scheme can be implemented for this type of communication
where none existed before. In an example, the sidecar and the ElastAlert Container can

reside in the same Kubernetes™ pod.

[0068] FIG. 4 is a call flow diagram showing a PaaS auto-configuration during a
microservice upgrade, according to some embodiments. At 402, a Helm™ Chart is updated,
for example, by a developer delivering a new version thereof that indicates new or different
docker image versions and/or sets of metadata. This can be, for example, a “child” Helm™
Chart associated with a particular CNF comprising microservices that is referenced in a top-
level Helm™ Chart. Thus, according to some embodiments, the update may be, for example,
to a particular microservice (Microservice A) or for a number of microservices in the CNF.
Updates can also involve, for example, new, changed, or deleted configuration information
for PaaS components, such as new, changed or deleted dashboards. When the top-level
Helm™ Chart is updated to reference the new “child” Helm™ Chart, a “helm upgrade”
command can be performed that associates an already-deployed CNF with the new top-level
chart. Helm™ 173 can then decompose the Helm™ Chart and make calls to Kubernetes™ to
effectuate the required changes to the already-deployed CNF. In such cases, Helm™ 176 can
call Kubernetes™ to provide an update in step 404, which Kubernetes™ can use to replace
files in ConfigMaps (or replace CRD objects for CRD implementations). Similarly, Helm™
176 can update Microservice A 290A, for example on a rolling basis, by sending an update in

step 406.

[0069] After ConfigMap 205 is updated, the Graphing- and Dashboard-config-agents
232A, 252A can identify changes in the ConfigMap, for examples based on file directory
changes via receipt of notifications 432 and 452, respectively, as discussed above. In some
embodiments, Linux may send a notification to config-agents 232, 252 of file directory
changes as discussed above. For example, where files have been replaced in response to the

updated Helm™ Chart, Linux can notify any microservice (e.g., config-agents 232 or 252) to

-20 -

WO 2020/150315 PCT/US2020/013631

which the ConfigMap is mounted that a change in the files has occurred. After determining
(e.g., being notified of) changes to the ConfigMap 205, the Graphing- and Dashboard-config-
agents 232, 252 can send and/or install updates 434 and 454 including new dashboards to
Grafana™ 130 and Kibana™ 150, respectively. Accordingly, higher level provisioning
software like Ansible™ is not required in order to ensure that instances of PaaS components
like Grafana™ and Kibana™ are kept up to date with new configurations across each CNF.
Instead, config-agents become aware of updates to the ConfigMap and manage updates to
individual components automatically. Such a system is scalable for larger deployments, and
can significantly reduce costs for upgrading where a large number of open source
components are used. Furthermore, the upgrade process does not require a single part of the
system to both keep track of which CNFs use particular PaaS components that will need to be
updated and coordinate the updating process. Thus, as a CNF is instantiated or updated to
require different configurations of PaaS components, the respective PaaS component

instances associated with that CNF are automatically updated to meet those requirements.

[0070] FIG. 5 is a call flow diagram showing an exemplary PaaS auto-configuration
during CNF instantiation using CRDs, according to some embodiments. As discussed above,
CRDs can be used by config-agents instead of, alongside, or in place of ConfigMaps. At step
502, a ‘helm install” command can be called for a new CNF instance 204A, which is made up
of at least one new microservice, Microservice 290A, based on a Helm™ Chart. As
discussed above, Microservice A 290A can assist with one portion of a NF, such as SMF call
control, AMF call control, or AMF Tracking Area Management. Other microservices are
contemplated. At step 504, Helm™ 176 instructs Kubernetes™ 170 to instantiate a CROs of
certain CRD types (which can be declared and deployed in a separate Helm™ Chart prior to
step 504 such that Kubernetes™ understand such CRD types), such as CRO 505 having, for
example, new graphs or dashboards contained therein as declared in the Helm™ Chart. As
discussed above, CRO 505 can be constructed such that subscribing microservices can see
their contents, for example by completing API calls thereto. In step 506, Microservices are
created and replicated based on docker images and metadata contained in the Helm™ Chart.

For example, Microservice A (290A) is created.

[0071] At step 530, the Graphing-config-agent 232 can subscribe to (e.g., informed
Kubernetes™ 170 that it operates) CROs of a particular CRD type (e.g., for Grafana™ 130)
that publish specified dashboard files for which the Graphing-config-agent 232 is configured

-21 -

WO 2020/150315 PCT/US2020/013631

to watch. This can occur before the Helm™ Chart is installed in 502. In step 531,
Kubernetes™ 170 notifies the Graphing-config-agent 232, which is subscribed to the CRO
505, that dashboard files are available and passes the files contained in the CRO 505 to the
Graphing-config-agent 232. Graphing-config-agent 232 can then identify the correct PaaS
component instance (e.g., via a namespace of the CNF with which the CRO 505 is
associated) and make a POST API call to the particular instance of Grafana™ 130 to install
these dashboards contained in the CROs by indicating that they should add a fully specified
object, remove an object, and/or over write an object with a fully specified replacement value
in step 532. The API call can also indicate the new CNF instance 204A which is to be
associated with a new instance of the PaaS component Grafana™ 130. Accordingly, an
instance of Grafana™ 130 is provided with new dashboards upon deployment of the CNF
without requiring special scripting in the Helm™ Chart or an Ansible™ Playbook specifying
that they be installed. Similarly, at 550, the Dashboard-config-agent 252 can subscribe to
CROs of a particular CRD type (e.g., for Kibana™ 150) that publish specified dashboard
files for which the Dashboard-config-agent 252 is configured to watch. This can occur
before the Helm™ Chart is installed in 502. In step 551, Kubernetes™ 170 notifies the
Dashboard-config-agent 252, which is subscribed to the CRO 505 of a particular CRD type
that dashboard files are available along with the files contained in the CRO 505. Dashboard-
config-agent 252 can then identify the correct PaaS component instance (e.g., via a
namespace of the CNF with which the CRO 505 is associated) and make a POST API call to
particular instance of Kibana™ 150 to install these dashboards contained in the CROs on a
particular Kibana™ instance as described above. Accordingly, Kibana™ 150 is provided
with new dashboards upon deployment of the CNF without requiring special scripting in the

Helm™ Chart specifying that they be installed.

[0072] FIG. 6 is a call flow diagram showing a PaaS auto-configuration during a CNF
upgrade using CRDs, according to some embodiments. At 602, a Helm™ Chart is updated,
for example, by a developer delivering a new version thereof that indicates new docker image
versions and/or metadata. This update can be similar to the one discussed with reference to
FIG. 4, but can use CRDs in combination with config-agents. At 604, Helm™ 176 can call
Kubernetes™ 170 to provide an update, which Kubernetes™ 170 can use to update object(s)
in CRO 505. In response, at 605 and 607, Kubernetes™ 170 notifies all subscribing config-
agents (e.g., those that operate CROs of the particular CRD type of CROs 505), such as
Graphing-config-agent 232 and Dashboard-config-agent 252 that there are new or updated

0D

WO 2020/150315 PCT/US2020/013631

dashboard files and passes the files in the CROs 505 to the config-agents 232, 252.
Graphing-config-agent 232 and Dashboard-config-agent 252 then execute
POST/PUT/DELETE API calls to install/update/delete any new or updated dashboards to
instances Grafana™ 130 and Kibana™ 150, respectively, associated with the updated CNF in
steps 634/654. In 606, Helm™ 176 may instruct Kubernetes™ 170 to upgrade microservices
as specified in the Helm™ Chart (e.g., loading new software from docker images) in step

606.

[0073] In some embodiments, a Config-Agent can further monitor PaaS component
instances to ensure that configurations thereof are consistent with declarations contained in
the CROs and/or ConfigMaps monitored by the Config-Agent. For example, if a PaaS
component instance fails and is re-instantiated without the necessary configuration
information, the Config-Agent can identify that the configuration of the PaaS component
instantiation is either incomplete or missing (e.g., via an API call) and push the necessary
configuration information thereto (e.g., via an API call). Accordingly, a Config-Agent can
ensure that adequate configuration is installed on PaaS component instances at all times
whenever a difference occurs between CROs and/or ConfigMaps monitored by the Config-
Agent and the associated PaaS component instance, regardless of where the difference

occurred from.

[0074] The subject matter described herein can be implemented in digital electronic
circuitry, or in computer software, firmware, or hardware, including the structural means
disclosed in this specification and structural equivalents thereof, or in combinations of them.
The subject matter described herein can be implemented as one or more computer program
products, such as one or more computer programs tangibly embodied in an information
carrier (e.g., in a machine readable storage device), or embodied in a propagated signal, for
execution by, or to control the operation of, data processing apparatus (e.g., a programmable
processor, a computer, or multiple computers). A computer program (also known as a
program, software, software application, or code) can be written in any form of programming
language, including compiled or interpreted languages, and it can be deployed in any form,
including as a stand-alone program or as a module, component, subroutine, or other unit
suitable for use in a computing environment. A computer program does not necessarily
correspond to a file. A program can be stored in a portion of a file that holds other programs

or data, in a single file dedicated to the program in question, or in multiple coordinated files

-23 -

WO 2020/150315 PCT/US2020/013631

(e.g., files that store one or more modules, sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or on multiple computers at one

site or distributed across multiple sites and interconnected by a communication network.

[0075] The processes and logic flows described in this specification, including the
method steps of the subject matter described herein, can be performed by one or more
programmable processors executing one or more computer programs to perform functions of
the subject matter described herein by operating on input data and generating output. The
processes and logic flows can also be performed by, and apparatus of the subject matter
described herein can be implemented as, special purpose logic circuitry, e.g., an FPGA (field

programmable gate array) or an ASIC (application specific integrated circuit).

[0076] Processors suitable for the execution of a computer program include, by way of
example, both general and special purpose microprocessors, and any one or more processor
of any kind of digital computer. Generally, a processor will receive instructions and data from
a read only memory or a random access memory or both. The essential elements of a
computer are a processor for executing instructions and one or more memory devices for
storing instructions and data. Generally, a computer will also include, or be operatively
coupled to receive data from or transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto optical disks, or optical disks. Information carriers
suitable for embodying computer program instructions and data include all forms of
nonvolatile memory, including by way of example semiconductor memory devices, (e.g.,
EPROM, EEPROM, and flash memory devices), magnetic disks, (e.g., internal hard disks or
removable disks); magneto optical disks; and optical disks (e.g., CD and DVD disks). The
processor and the memory can be supplemented by, or incorporated in, special purpose logic

circuitry.

[0077] To provide for interaction with a user, the subject matter described herein can be
implemented on a computer having a display device, e.g., a CRT (cathode ray tube) or LCD
(liquid crystal display) monitor, for displaying information to the user and a keyboard and a
pointing device, (e.g., a mouse or a trackball), by which the user can provide input to the
computer. Other kinds of devices can be used to provide for interaction with a user as well.
For example, feedback provided to the user can be any form of sensory feedback, (e.g., visual
feedback, auditory feedback, or tactile feedback), and input from the user can be received in

any form, including acoustic, speech, or tactile input. The subject matter described herein can

-24 -

WO 2020/150315 PCT/US2020/013631

be implemented in a computing system that includes a back end component (e.g., a data
server), a middleware component (e.g., an application server), or a front end component (e.g.,
a client computer having a graphical user interface or a web browser through which a user
can interact with an implementation of the subject matter described herein), or any
combination of such back end, middleware, and front end components. The components of
the system can be interconnected by any form or medium of digital data communication, e.g.,
a communication network. Examples of communication networks include a local area

network (“LAN”) and a wide area network (“WAN”), e.g., the Internet.

[0078] It is to be understood that the disclosed subject matter is not limited in its
application to the details of construction and to the arrangements of the components set forth
in the following description or illustrated in the drawings. The disclosed subject matter is
capable of other embodiments and of being practiced and carried out in various ways. Also, it
is to be understood that the phraseology and terminology employed herein are for the purpose

of description and should not be regarded as limiting.

[0079] As such, those skilled in the art will appreciate that the conception, upon which
this disclosure is based, may readily be utilized as a basis for the designing of other
structures, methods, and systems for carrying out the several purposes of the disclosed
subject matter. It is important, therefore, that the claims be regarded as including such
equivalent constructions insofar as they do not depart from the spirit and scope of the

disclosed subject matter.

[0080] Although the disclosed subject matter has been described and illustrated in the
foregoing exemplary embodiments, it is understood that the present disclosure has been made
only by way of example, and that numerous changes in the details of implementation of the
disclosed subject matter may be made without departing from the spirit and scope of the

disclosed subject matter, which is limited only by the claims which follow.

-25.

WO 2020/150315 PCT/US2020/013631
CLAIMS
1. A method comprising:
installing a service instance using a first descriptor chart, the installing comprising:

installing a plurality of microservices declared in the first descriptor chart that
comprise the service instance, at least one of the microservices configured to request
services from an instance of a Platform-as-a-Service (“PaaS”) component of a PaaS

component type, and
creating at least one configuration file based on the first descriptor chart;

parsing, by a configuration agent associated with the PaaS component type, the at

least one configuration file for configuration data associated with the PaaS component; and

instructing, by the configuration agent, the instance of the PaaS component to install

the configuration data.

2. The method of claim 1, wherein the configuration file comprises descriptors of resources,
and wherein the method further comprises mounting the configuration file to the

configuration agent.
3. The method of claim 1, wherein the service instance comprises a network function (“NF”).

4. The method of claim 3, wherein the service instance is installed by a network operator,

and the PaaS component is developed and managed by a third-party.
5. The method of claim 1, further comprising:

updating the service instance using a second descriptor chart, the updating

comprising:

updating at least one of the plurality of microservices declared in the second
descriptor chart that comprise the service instance, the updated at least one of the
plurality of microservices configured to request services from the instance of the PaaS

component, and

-26 -

WO 2020/150315 PCT/US2020/013631

updating the at least one configuration file based on the second descriptor

chart;

parsing, by the configuration agent, the at least one updated configuration file to

identify the update to the configuration data associated with the PaaS component; and

instructing, by the configuration agent, the instance of the PaaS component to install

the updated configuration data.

6. The method of claim 5, wherein the updating the software instance is performed by a

container orchestration engine (“COE”).
7. A method comprising:

monitoring, by a configuration agent associated with a Platform-as-a-Service (“PaaS”)
component type, for a notification identifying a configuration file change in at least one
configuration file directory, the at least one configuration file in the configuration file
directory containing configuration data for at least one instance of the PaaS component of the

PaaS component type;

monitoring, by the configuration agent, a configuration of the at least one instance of
the PaaS component type to identify a lack of conformity with configuration data in the

configuration file directory;

automatically transmitting, by the configuration agent, an instruction to the at least
one instance of the PaaS component when one or more of a configuration file change or a
lack of conformity is identified, the instruction comprising an instruction to install a
configuration on the at least one instance of the PaaS component based on the configuration

data in the configuration file directory.

8. The method of claim 7, wherein the at least one instance of the PaaS component is
configured to service at least one microservice of a plurality of microservices comprising a

network function (“NF”).

9. The method of claim 7, wherein the change in configuration data comprises a change in

data of a ConfigMap in the configuration file directory.

-27 -

WO 2020/150315 PCT/US2020/013631

10. The method of claim 7, wherein the configuration data is associated with at least one
service instance, and wherein the method further comprises updating the at least one service
instance using a descriptor chart, the updating the at least one service instance causing the

change in the configuration data.

11. The method of claim 10, wherein the at least one service instance is updated by a

network operator, and the PaaS component is developed and managed by a third-party.

12. A method comprising:
installing a service instance using a first descriptor chart, the installing comprising:

installing a plurality of microservices declared in the first descriptor chart that
comprise the service instance, at least one of the microservices configured to request
services from an instance of a Platform-as-a-Service (“PaaS”) component of a PaaS

component type, and

creating at least one resource instance based on the first descriptor chart, the
resource instance having a type associated with a resource definition, the resource
instance containing configuration data associated with the instance of the PaaS

component;

receiving, by a configuration agent that operates resource instances of the type
associated with the resource definition, a notification of the creation of the at least one
resource instance, the notification further comprising the configuration data associated with

the instance of the PaaS component; and

instructing, by the configuration agent, the instance of the PaaS component to install

the configuration data.

13. The method of claim 12, wherein the instructing the instance of the PaaS component to
install the configuration data comprises performing, by the configuration agent, an API call to

the instance of the PaaS component.

14. The method of claim 12, wherein the service instance comprises a network function
(((NF”).

-08 -

WO 2020/150315 PCT/US2020/013631

15. The method of claim 14, wherein the service instance is installed by a network operator,

and the PaaS component is developed and managed by a third-party.
16. The method of claim 12, further comprising:

updating the service instance using a second descriptor chart, the updating

comprising:

updating at least one of the plurality of microservices declared in the second
descriptor chart that comprise the service instance, the updated at least one of the
plurality of microservices configured to request services from the instance of the PaaS

component, and

updating the at least one resource instance based on the second descriptor
chart by updating configuration data in the resource instance associated with the

instance of the PaaS component;

receiving, by the configuration agent that operates resource instances of the type
associated with the resource definition, a notification of the update to the at least one resource
instance, the notification further comprising the updated configuration data associated with

the instance of the PaaS component; and

instructing, by the configuration agent, the instance of the PaaS component to install

the updated configuration data.

17. The method of claim 5, wherein the updating the software instance is performed by a

container orchestration engine (“COE”).
18. A method comprising:

monitoring, by a configuration agent associated with a resource definition type, for a
notification identifying that a declaration in a resource instance of the resource definition type
has changed, the changed declaration being associated with at least one instance of a

Platform-as-a-Service (“PaaS”) component;

monitoring, by the configuration agent, a configuration of the at least one instance of
the PaaS component to identify a lack of conformity with the declaration in the resource

instance of the resource definition type;

-20 .

WO 2020/150315 PCT/US2020/013631

automatically transmitting, by the configuration agent, an instruction to the at least
one instance of the PaaS component when one or more of a declaration change or a lack of
conformity is identified, the instruction comprising an instruction to install a configuration on
the at least one instance of the PaaS component based on the declaration in the resource

instance.

19. The method of claim 18, wherein the at least one instance of the PaaS component is
configured to service at least one microservice of a plurality of microservices comprising an

instance of a network function (“NF”).

20. The method of claim 19, further comprising updating the instance of the NF using a

descriptor chart, the updating the instance of the NF causing the change in the declaration.

21. The method of claim 20, wherein the instance of the NF is updated by a network

operator, and the PaaS component is developed and managed by a third-party

22. The method of claim 18, wherein the changed declaration comprises a change to a

consumable of the at least one instance of the PaaS component.

-30 -

PCT/US2020/013631

WO 2020/150315

1/6

(1¥V ¥OI14d)

194 A1an02sIQg
¢LT 921MIBS 04T
210WaY mmuwfwn:x
ovT "~ uow @
omw 05T s SETIVALLTE J1ad ddy L81 _
EASALAsis \\\\\\\\\\\ snagRUNIg
4 i 0€T juawAo|daqg
DUDGH \\\\ \\\ DUDIDIO € Y
YT spieoquseq \\N\\\\“ comn 4 W13H 9/1
ey oo g ozt sydeis A

guis|y

lleasu]

aseqeleq 381 =3 HED
€81
51n31,U07 _— W|aH woudj
981 91e31) W|aH
81
yoogAe|d
wouJ4
4N Aordag 3TISNY
........................... 10T 00T

PCT/US2020/013631

WO 2020/150315

2/6

¢ O

o
QYoM \\\\

q06¢ v06¢C
avoz 4ND oo vv0Z AND P
g 9IIAIISOIINN ERTYESE] : oumese o
_Im ERILVENFRIITT] _ V 9IIAIISODIN 8 9UAISSOIN v
_ \.
sewayd oSuoly . \
U2S 8QOSUOIN + o n81u0) Sewayas ggosuoNl <\ depSiyuo)
spieoqyseq eueqry - 007 spieoquseq eueqry - \
sa|ny M9|vise|3 . m sa|ny tw_eamm._m_ . : s0¢
sydeto eueydesn . . sydeso eueydeso s
m_omH
riaduon
mme:um. 8q 797 Wasy wawcﬂ:%u v 222 Wdsdy waN_ v.u::%u v
3yuod-4d -pieoqyseq M3y Ayuod-Wd -3uiydesn
voor 0ST 5_535 UOW thHo_% 0€T
ey Y
> | \ ShaYioilodd OO N

@ UDJOIS Cy

PCT/US2020/013631

WO 2020/150315

3/6

0GT

¢

Old

3uno3 edjjdaJ paJisap Joj yeaday
1\ 92IAIISOLIIIA 913D 190€

spJeoqysep pue sydeio

:dey8iyuo) a1eal) (pos

SAFV UGN}
, yiy

sy W13H
e
0LT 9/1

spJeoqysep
pue sydead

{SUOISJIA IIAISOLIIIN

ey

wawhold2a oy Aojdaq :zoe

dejAIs1juo)
ul pauleuod sa3ueyd sa9s
spJeoqysep 1ady-3iyuoyfpieoqyseq :05€
|leEasul 01 s|jed
IdV 1S0d ‘ZS€
denSyuo)
ul pauIEIu0d sadueyd soas|
sydess 1uady Syudp-3uiydeso :0gg
|leEasul 01 s|jed
IdV 1SOd ‘Z€€
23ueyd "
3|1} 4o} yarem 25ueyd
Xnun pSe 9]} 1o} yaiem
- Xnun pTe
denSyyuo)
Q 5 hUEY: 17 wady
AM.l[D_Y— PUDJRIS @ Syuod Syuo) IIAIISCINN
) 0} -paeoqyseq -8uiydesn
rd*Y4 (44 v06¢ S0¢

PCT/US2020/013631

WO 2020/150315

4/6

QYoM
0sT

¥ 'Ol

v 321A43s0.01IA Speaddn Suljjoy 190

depnSyuo)
u1 paulejuod adueyd
spJeoqysep Asoyaug
213|2p 34 jo
/31epdn/jjeasul uoniedIoN
01 sjjed |dv 3 xnur :gsp
1313a/1nd/1S0d
82974
denSyyuo)
ol
uj paulejuod e—
syde.3 s19jop
Aoraaa1Q
/a1epdn/jjeasuy o 10
2151123 1V 3 uonesyno
1313a/1nd/1S0d RESLRON
Xnur :
pED n:zey
denSyyuo)
jualdy 1uasy
GCEU&@@ Syuod Syyuo) v
0€T -paeoqyseq -Suydesn 92IAI3SOIININ
(474 (434 v06¢ S0¢

spJeoqysep pue sydeio

:dejy Syuo) a1epdn :yop I

spJeoqysep pue sydead
paSueyd Jo/pue maN
{UOISIBA Y 3INIBSOIN
eyd

wisH aepdn :zov

sajuIgm} wawAodag
, yhv

x@, W13H
A
0/T 9/1

PCT/US2020/013631

WO 2020/150315

5/6

0GT

S 'O

SQyd
Ul paulejuod
spJeoqysep
|leasul 03 s|jea squD sol
1dV 1SOd -ZSS spJeoqyseq
AjnoN :1s§
SQyd
Ul paulejuod
sydei3 Mn_m_u
lieisui 03 sjjes mME syaeto
10N :
IdV 150d :T€S 4HON TE5
e
jUnod ealjdaJ paiisap Joj jeaday
1Y 92IAIISOMIIAl 23E3) 1905
spJeoqysep pue sydein
:sqyd 2181 405 [[¢
SAYI s9Iy
spJeoqyseq saw)
aIquIsqns 0SS so|y mSQN._mv
aquasqns
‘0€s
sO¥d sejeuIPgRY wawiodag
GS _ DUDIDICY wady wady 4 v\[
%l.lD Y.— PIRIS @ Syuo) Syuod 92IAIIS0IN W13H
0} -paeoqyseq -8uiydesn Y—\h
767 434 V062 S0S 01 oL1

spJeoqysep
pue sydead

{SUOISJIA IIAISOLIIIN

ey

w|aH Aojdaq :z0s

PCT/US2020/013631

WO 2020/150315

6/6

9 'Ol

sQyd
ul pauleluod
spJeoqysep
219p
/o1epdn/jjeisul
031sj|e3 |dv 3
1313a/Lnd/1s0d Sayd saIl
1S9 spJeoqyseq
1 AynoN :£09
sayd
Ui pauiejuod [1¢ e
syde.3 s19jop sapy sydesn
/o1epdn/jeisul AJON :509
03 s|je3 |dv 3
1313a/1nd/150d
vEI v 921350001/ Speaddn Suljjoy :909
spJeoqysep pue sydein ke
sy 93epdn ;709 spJeoqysep pue sydead
paSueyd Jo/pue maN
{UOISIDA \ DIIAIDSOINIA
eyd
wiaH arepdn :209
soYd SAFPUIBGRY wawhojdag
ady Juady \ 3 (1 ¢
ﬂ%ﬂ_v._ PURJRIH CY 8yuod 8yuod v @ WT3IH
! IINIISOIIN N .
0} -paeoqyseq -Buiydesn , f
05t 0LT 9.1
ST (474 v06¢ S0s

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2020/013631

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/54 GO6F9/445
ADD.

GO6F9/455

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X Matt Butcher: "TechnoSophos: How Helm 1-6,
Uses ConfigMaps to Store Data", 12-17

1 November 2018 (2018-11-01), XP055688779,
Retrieved from the Internet:

URL:http://web.archive.org/web/20181101124
257 /http://technosophos.com/2017/03/23/how

[retrieved on 2020-04-23]
page 1 - page 4

figure 10

-helm-uses-configmaps-to-store-data.html

A US 20147075412 A1 (KANNAN MAHESH [US] ET 1-6,
AL) 13 March 2014 (2014-03-13)
paragraph [0045] - paragraph [0155];

12-1

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

24 April 2020

Date of mailing of the international search report

26/06/2020

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Kalejs, Eriks

Form PCT/ISA/210 (second sheet) (April 2005)

International application No.
INTERNATIONAL SEARCH REPORT PCT/US2020/013631
Box No.ll Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. I:' Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. I:' Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. |:| Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

-

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. I:' As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1-6, 12-17
Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the

payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

I:' No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

International Application No. PCT/ US2020/ 013631

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-6, 12-17

Installing microservices using descriptor charts

2. claims: 7-11, 18-22

Monitoring by an agent configuration files of a microservice
for lack of conformity and updating microservices if
nonconformity detected

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2020/013631
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2014075412 Al 13-03-2014 US 2014075412 Al 13-03-2014
WO 2014039892 Al 13-03-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - wo-search-report
	Page 40 - wo-search-report
	Page 41 - wo-search-report
	Page 42 - wo-search-report

