WO 02/088946 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 November 2002 (07.11.2002)

PCT

(10) International Publication Number

WO 02/088946 A2

(51) International Patent Classification”: GO6F 9/46

(21) International Application Number: PCT/GB02/01809
(22) International Filing Date: 18 April 2002 (18.04.2002)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
09/845,592 30 April 2001 (30.04.2001) US
(71) Applicant: INTERNATIONAL BUSINESS MA-
CHINES CORPORATION [US/US]; New Orchard

Road, Armonk, NY 10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth, Hampshire PO6 3AU (GB).

(72) Inventors: GRIFFIN, Kevin, Curtis; 5110 20 1/2 Avenue
Lane N.W, Rochester, MN 55901 (US). MCDERMOTT,
Michael, James; 2950 115th Street N.W, Oronoco, MN
55960 (US). RANWEILER, James, Gregory; 5720 Glen-
croft Lane S.W, Rochester, MN 55902 (US).

(74) Agent: BURT, Roger, James; IBM United Kingdom Lim-

ited, Intellectual Property Law, Hursley Park, Winchester,

Hampshire SO21 2JN (GB).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,

YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: RESOURCE ACTION IN CLUSTERED COMPUTER SYSTEM INCORPORATING PREPARE OPERATION

72
PREPARE FOR ACTION
1

00~/ VAUDFOR "\ g

RESOURCE
ACTION?

YES
CREATE LOCAL SANDBOX
{ACQUIRE LDCAL LOCK)

YE
0

104

162

RETURN ERRGR

112
PERFGRM

STANDALONE ggﬂﬁ'
PREPARE

108
STANDALONE?

N

ALREADY IN
CLUSTER
PROTOCOL?

14

END ACTION

CHANGE
GLUSTER OBJECT
PARAMETERS

RETURN
NO ERROR

(57) Abstract: An apparatus, clustered computer system, pro-
gram product and method utilize a unique prepare operation in
connection with a resource action to effectively "lock out" miss-
ing or inactive cluster entities such as nodes and cluster objects
from rejoining a clustered computer system subsequent to the re-
source action. The prepare operation includes modification of
one or more cluster configuration parameters associated with en-
tities in a clustered computer system, such that any such clus-
ter entity that is active during the prepare operation accepts the
modifications, while any cluster entity that is inactive during the
prepare operation does not accept the modifications. By modi-
fying cluster configuration parameters for active cluster entities,
attempts by previously-inactive cluster entities to activate or re-
join clustering after resource actions will generally fail due to
incorrect or stale cluster configuration parameters for such enti-
ties, and thus such entities will be effectively blocked from being
accepted into the clustered computer system.

wO 02/088946 A2 NI 10000 O OO D O

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), For two-letter codes and other abbreviations, refer to the "Guid-
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, ance Notes on Codes and Abbreviations" appearing at the begin-
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent ning of each regular issue of the PCT Gazette.

(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,

NE, SN, TD, TG).

Published:

— without international search report and to be republished
upon receipt of that report

WO 02/088946 PCT/GB02/01809

RESOURCE ACTION IN CLUSTERED COMPUTER SYSTEM
INCORPORATING PREPARE OPERATION

Field of the Invention

The invention is generally directed to clustered computer systems,

and in particular, to the handling of resource actions thereon.

Background of the Invention

“Clustering” generally refers to a computer system organization where
multiple computers, or nodes, are networked together to cooperatively
perform computer tasks. An important aspect of a computer cluster is that
all of the nodes in the cluster present a single system image — that is,
from the perspective of a user, the nodes in a cluster appear collectively

as a single computer, or entity.

Clustering is often used in relatively large multi-user computer
systems where high performance and reliability are of concern. For
example, clustering may be used to provide redundancy, or fault tolerance,
so that, should any node in a cluster fail, the operations previously
performed by that node will be handled by other nodes in the cluster.
Clustering is also used to increase overall performance, since multiple
nodes can often handle a larger number of tasks in parallel than a single
computer otherwise could. Often, load balancing can also be used to ensure
that _tasks are distributed fairly among nodes to prevent individual nodes
from becoming overloaded and therefore maximize overall system performance.
One specific application of clustering, for example, is in providing
multi-user access to a shared resource such as a database or a storage
device, since multiple nodes can handle a Eomparativgly large number of
user access requests, and since the shared resource is typically still

available to users even upon the failure of any given node in the cluster.

Clusters typically handle computer tasks through the performance. of
“jobs” or “processes” within individual nodes. 1In some instances, jobs
being performed by different nodes cooperate with one another to handle a
computer task. Such cooperative jobs are typically capable of
communicating with one another, and are typically managed in a cluster
using a logical entity known as a “group.” A group is typically assigned
some form of identifier, and each job in the group is tagged with that
identifier to indicate its membership in the group. Many cluster
management operations are also handled through the use of a group of

cooperative jobs, often referred to as a cluster control group.

WO 02/088946 PCT/GB02/01809

Member jobs in a group typically communicate with one another using
an ordered message-based scheme, where the specific ordering of messages
sent between group members is maintained so that every member sees messages
sent by other members in the same order as every other member, thus
ensuring synchronization between nodes. Reguests for operations to be
performed by the members of a group are oftgn referred to as “protocols,”
and it is typically through the use of one or more protocols that tasks are

cooperatively performed by the members of a group.

Clustered computer systems place a high premium on maximizing system
availability. As such, automated error detection and recovery are
extremely desirable attributes in such systems. One potential source of
errors is that of losses of any resources that are used in the management
and operation of a clustered computer system, e.g., memory address ranges

and input/output (I/0) devices.

Especially for system-critical applications that demand high
availability, managing resources, and in particular, recovering lost
resources, can substantially improve the reliability of an application that
uses those resources. In some situations, resources are transferred
between nodes and other entities in a cluster, and it is often during these
transfers that the risk of losing a resource is greatest. To avoid the
exposure of two entities owning the same resource, typically a clustered
computer system requires that an entity giving the resource release
ownership before transferring the rescurce. Therefore, if a fallure occurs
between thetgiyingrggtity releasing ownership of the resource and the other

entity taking ownership of the resource, the resource may be lost.

It would be highly desirable in many clustered computer systems to be
able to recover lost resources so that suchlr resources can be used by other
entities. However, conventional systems have not provided any reliable
manner of recovering lost resources. In addition, other types of
resource-related actions, e.g., transferring resources between entities or
types of entities, may also present similar risks. For example, for
resources such as virtual address ranges, it may be desirable to shift
resources between different entities, or between different types of

entities.

Therefore, a significant need exists in the art for a manner of
performing resource actions on the resources in a clustered computer
system, and in particular, a manner of effectively managing resources with

reduced risk of resource conflicts and other potential errors.

WO 02/088946 PCT/GB02/01809

Summary of the Invention

The present invention accordingly provides, in a first aspect, a
method of performing a resource action in a clustered computer system of
the type including a plurality of resources and a plurality of cluster
entities configured to own the plurality of resources, the method
comprising: preparing the clustered computer system prior to performing the
resource action by modifying at least one cluster configuration parameter
associlated with the plurality of cluster entities in the clustered computer
system such that any cluster entity that is active during preparation of
the clustered computer system accepts the modification to the cluster
configuration parameter, and such that any cluster entity that is inactive
during preparation of the clustered computer system does not accept the
modification to the cluster configuration parameter; whereby any such
inactive cluster entity is thereafter blocked from being accepted into the

clustered computer system.

Preferably, the plurality of cluster entities includes a plurality of

cluster nodes.

Preferably, the cluster configuration parameter includes a cluster

identifier stored in each of the plurality of cluster nodes.

Preferably, the plurality of cluster entities includes a plurality of

cluster objects.

Preferably, the cluster configuration parameter includes an object
identifier and an ownership transfer count associated with each of the

plurality of cluster objects.

The method of the first aspect preferably further comprises

performing a resource action after preparing the clustered computer system.

Preferably, performing the resource action comprises performing a

resource recovery operation.

Preferably, the resource action comprises recovery of a resource
selected from the group consisting of virtual address range, cluster object
number, direct access storage device (DASD) number, and combinations

thereof.

Preferably the plurality of cluster entities comprises a plurality of
nodes and a plurality of cluster objects resident on the plurality of

nodes, and wherein performing the resource recovery action comprises: {a)

WO 02/088946 PCT/GB02/01809

querying the plurality of nodes in the clustered computer system to
determine which of a plurality of resources are owned; and (b)
transferring ownership of any unowned resources to a first node among the

plurality of nodes.

Preferably, preparing the clustered computer system includes
obtaining a lock on the clustered computer system prior to modifying the

cluster configuration parameter.

The method of the first aspect preferably further comprises releasing

the lock after performing the resource action.

Preferably, the cluster configuration parameter includes a value
pair, and wherein modifying the cluster configuration parameter includes

sequentially modifying each value in the value pair.

Preferably, preparing the clustered computer system includes starting

a cluster protocol.

Preferably, preparing the clustered computer system includes
detecting missing cluster entities capable of owning a resource to be acted

upon by the resource action.

The present invention may provide an apparatus, comprising: (a) a
memory; (b) a plurality of resources; (c) a plurality of cluster entities
resident in the memory and configured to own the plurality of resources;
and (d) a program configured to perform a resource action on at least a
subset of the plurality of resources in the clustered computer system, and
to prepare the clustered computer system prior to performing the resource
action by modifying at least one cluster cdénfiguration parameter associated
with the plurality of cluster entities in the clustered computer system
such that any cluster entity that is active during preparation of the
clustered computer system accepts the modification to the cluster
configuration' parameter, and such that any cluster entity that is inactive
during preparation of the clustered computer system does not accept the
modification to the cluster configuration parameter; whereby any such
inactive cluster entity is thereafter blocked from being accepted into the

clustered computer system.

Preferably, the plurality of cluster entities includes a plurality of

cluster nodes and a plurality of cluster objects.

Preferably, the cluster configuration parameter includes a cluster

identifier stored in each of the plurality of cluster nodes, and an object

WO 02/088946 PCT/GB02/01809

identifier and an ownership transfer count associated with each of the

plurality of cluster objects.

Preferably, the program is configured to perform the resource
recovery action by querying the plurality of nodes in the clustered
computer system to determine which of a plurality of resources are owned,
and transferring ownership of any unowned resources to a first node among

the plurality of nodes.

Preferably, the program is configured to perform the resource action
by performing a resource recovery operation on a resource selected from the
group consisting of virtual address range, cluster object number, direct

access storage device (DASD) number, and combinations thereof.

Preferably, the program is further configured to prepare the
clustered computer system by obtaining a lock on the clustered computer
system prior to modifying the cluster configuration parameter, and

releasing the lock after performing the resource action.

Preferably, the cluster configuration parameter includes a value
pair, and wherein the program is configured to modify the cluster
configuration parameter by sequentially modifying each value in the value

pair.

Preferably, the program is further configured to prepare the

clustered computer system by starting a cluster protocol.

Preferably, the program is further configured to prepare the
clustered computer system by detecting missing cluster entities capable of

owning a resource to be acted upon by the fesource action.

In a second aspect, the present invention provides a clustered
computer system, comprising: (a) a plurality of nodés coupled to one
another over a network; (b) a plurality of resources; (c) a plurality of
cluster entities configured to own the plurality of resources; and (d) a
program resident on a first node among the plurality of nodes, the program
configured to perform a resource action on at least a subset of the
plurality of resources, and to prepare the clustered computer system prior
to performing the resource action by modifying at least one cluster
configuration parameter associated with the plurality of cluster entities
such that any cluster entity that is active during preparation of the
clustered computer system accepts the modification to the cluster
configuration parameter, and such that any cluster entity that is inactive

during preparation of the clustered computer system does not accept the

WO 02/088946 PCT/GB02/01809
6

modification to the cluster configuration parameter; whereby any such
inactive cluster entity is thereafter blocked from being accepted into the

clustered computer system.

In a third aspect, the present invention provides a computer program
comprising computer program code to, when loaded in to a computer system
and executed, perform all the steps of a method according to the first

aspect.

Preferred features of the third aspect comprise computer program code
elements to perform steps corresponding to the preferred steps of the first

aspect.

Preferably, the present invention may provide a program product,
comprising: (a) a program configured to perform a resource action in a
clustered computer system of the type including a plurality of resources
and a plurality of cluster entities configured to own the plurality of
resources, and to prepare the clustered computer system prior to performing
the resource action by modifying at least one cluster configuration
parameter associated with the plurality of cluster entities in the
clustered computer system such that any cluster entity that is active
during preparation of the clustered computer system accepts the
modification to the cluster configuration parameter, and such that any
cluster entity that is inactive during preparation of the clustered
computer system does not accept the modification to the cluster
configuration parameter; whereby any such inactive cluster entity is
thereafter blocked from being accepted into the clustered computer system;

and (b) a signal bearing medium bearing the program.,

Preferably, the signal bearing medium includes at least one of a

recordable medium and a transmission medium.

Embodiments preferably provide a method of performing a resource
action on a resource in a clustered computer system of the type including a
plurality of nodes and a plurality of cluster objects resident on at least
a portion of the plurality of nodes, wherein the plurality of nodes and the
plurality of cluster objects are each capable of owning a resource, the
method comprising: (a) acquiring a lock on each active node among the
plurality of nodes; (b) modifying a node configuration parameter for each
active node among the plurality of nodes, such that any inactive node among
the plurality of nodes is thereafter blocked from being accepted into the
clustered computer system; (c) modifying an object configuration parameter
on each active cluster object that could own the resource, such that any

inactive cluster object that could own the resource is thereafter blocked

WO 02/088946 PCT/GB02/01809

from being accepted into the clustered computer system, and such that any
inactive node is thereafter blocked from accepting an active cluster
object; (d) performing the resource action on the resource after the lock
is acquired and the node and object configuration parameters are modified;
and (e) releasing the lock on each active node after performing the

resource action.

The method of such an embodiment may further comprise determining

that all cluster cbjects that could own the resource are active.

Embodiments of the invention address the problems associated with the
prior art by providing an apparatus, clustered computer system, program
product and method that utilize a unique prepare operation in connection
with a resource action to effectively “lock out” missing or inactive
cluster entities such as nodes and cluster objects from rejoining a
clustered computer system subsequent to the resource action. Doing so
minimizes the risk that inactive cluster entities will reactivate and
attempt to utilize resources that may have been transferred to other
cluster entities in a clustered computer system, which may potentially

create resource conflicts.

In the illustrated embodiments, a prepare operation includes the
modification of one or more cluster configuration parameters associated
with a plurality of entities in a clustered computer system, such that any
such cluster entity that is active during the prepare operation accepts the
modifications, while any such cluster entity that is inactive during the
prepare operation does not accept the modifications. Moreover, typically
in the illustrated embodiments, attempts by previously-inactive cluster
entities to activate or rejoin clustering subseguent to a resource action
will result in the detection of either incdrrect or stale cluster
configuration parameters for such entities, which will effectively block
such cluster entities from being accepted into the clustered computer

system.

Furthermore, various embodiments consistent with the invention also
incorporate a lock that is acquired on each node in the clustered computer
system prior to modifying a node configuration parameter associated with
the various nodes, and prior to modifying an object configuration parameter
associated with the various cluster objects. The lock is released upon
completion of the modifications, and thereafter any inactive nodes and/or
cluster objects that could own a resource of interest are blocked from

later acceptance into the clustered computer system.

WO 02/088946 PCT/GB02/01809

Brief Description of the Drawings

A preferred embodiment of the present invention will now be
described, by way of example only, with reference to the accompanying

drawings, in which:

FIGURE 1 is a block diagram of a clustered computer system consistent

with a preferred embodiment of the invention.

FIGURE 2 is a block diagram of a node in the clustered computer

system of Fig. 1.

FIGURE 3 is a block diagram of exemplary cluster entities in the

clustered computer system of Fig. 1.

FIGURE 4 is a flowchart illustrating the prograh flow of a resource

action routine performed by the clustered computer system of Fig. 1.

FIGURE 5 is a flowchart illustrating the program flow of the prepare

for action routine referenced in Fig. 4.

FIGURE 6 is a flowchart illustrating the program flow of a change ID
routine suitable for changing a cluster configuration parameter in the

prepare for routine of Fig. 5.

FIGURE 7 is a flowchart illustrating the program flow of a recover
resource routine implementing an exemplary resource management operation

performed by the resource action routine of Fig. 4.

FIGURE 8 is a flowchart illustrating the progrém flow of the end

action routine referenced in Figs. 4 and 5.

Detailed Description

The embodiments described hereinafter utilize a prepare operation in
connection with the performance of a resource action to effectively “lock
out” missing or inactive cluster entities from being accepted into a
clustered computer system subsequent to a modification in resource
ownership in the system. One or more cluster configuration parameters
associated with an affected type of cluster entity are modified during the
prepare operation, such that only active instances of such cluster entities
accept the modification. Inactive instances of such cluster entities do

not accept the modification, such that subsequent attempts by those

WO 02/088946 PCT/GB02/01809

inactive cluster entities to activate and rejoin clustering will fail due

to invalid parameters.

A resource 1n this context generally refers to a type of entity or
“thing” that is required to perform some processing task, where a limited
number of such things exist, and where any such thing is required to be
“owned” in order to be used. 'A cluster entity generally refers to a
logical software construct utilized in clustering, and which is capable of
“Yowning” a resource, i.e., of utilizing and/or managing the resource in its

operation.

In the illustrated embodiments, for example, cluster entities may
include cluster nodes (i.e., individual computer systems and/or logilcal
partitions residing within those systems that function as “nodes” in a
multi-node cluster) and/or cluster objects (i.e., logical entities within a
clustered computer system that participate in clustering and/or assist in
the management of a cluster). For example, in the embodiments discussed
hereinafter, a cluster object might represent a set or group of
Input/Output (I/0) devices such as Direct Access Storage Devices (DASD’s)

that are managed collectively and accessed as a single logical device.

In addition, in the illustrated embodiments, resources such as
virtual addresses or ranges of virtual addresses, Input/Output (I/0)
devices, and the like are managed in the manner described herein. More
specifically, such resources are typically represented via identifiers,
such that a resource is typically owned by virtue of the association of a -
particular identifier with a particular cluster entity. Thus, for example,
a range of addresses in a virtual memory space may be represented by the
boundary addresses of the range, while I/0 devices such as DASD’s may be
represented by unigque identifiers or numbers associated with such devices.
Moreover, in the illustrated embodiments, a cluster object may be
considered to be both a cluster entity and a resource insofar that cluster
objects, which are capable of owning other resources, are typically
themselves owned by a cluster node. In such instances, the cluster object
may be represented by a unique identifier such as an.object identifier that

is associated with an owning cluster node.

A cluster configuration parameter may represent any data maintained
in association with a cluster entity such as a cluster node or cluster
object that may be used to detect whether a particular instance of a
cluster entity was active prior to a resource action. The detection of the
status of a cluster configuration parameter may be used to simply signal an
error and/or prevent an entity from rejoining a cluster. In the

alternative, the detected parameter may be used to perform recovery

WO 02/088946 PCT/GB02/01809
10

operations suitable for releasing resources prior to-allowing a cluster

entity to rejoin a cluster.

In the illustrated embodiment, for example, the cluster configuration
parameter used in connection with a cluster node is a cluster identifier
(CID), which is used as a common “token” or unique identifier shared by all
of the active nodes in a particular instance of a cluster. The cluster
management software in the cluster is then required to validate the CID for
a particular node that attempts to join the cluster, otherwise the cluster
node is rejected and blocked from joining the cluster. Typically, the CID
is used outside of resource management as a security mechanism to permit
only authorized nodes to join a cluster. Thus, typically no modification
of the node management routines in a clustered computer system is required

to implement the herein-described functionality.

For cluster objects, the cluster configuration parameter used is an
object configuration parameter such as an ownership transfer count (OTC)
maintained in each cluster object, which may optionally be used in

connection with a cluster object identifier.

It should be appreciated that other parameters may be used to block
inactive cluster entities from rejoining a cluster consistent with a
preferred embodiment of the invention. In addition, it should be
appreciated that different types of resources may only be capable of being
owned by certain types of entities, whereby a prepare operation as
discussed herein may only affect certain types of entities that are
relevant for a particular type of resource being acted upon. Therefore,
embodiiments of the invention are not limited to the particular
implementations discussed herein.

Now turning to the Drawings, wherein like numbers denote like parts
throughout the several views, Fig. 1 shows a clustered computer system 2
including a plurality of nodes 4 interconnected with one another via a
network fabric 5. Any number of network topologies commonly utilized in
clustered computer systems may be used consistent with a preferred
embodiment of the invention, e.g., a high speed point-te-point bus or link,
a local area network, a wide area network, a public network such as the
Internet, etc., and combinations thereof. Moreover, individual nodes 4 may
be physically located in close proximity with other nodes, or may be

geographically separated from other nodes, as is well known in the art.

Typically, a clustered computer system will also incorporate one or
more I/0 devices such as I/0 devices 7, which may be interconnected with

individual nodes through network fabric 5. Moreover, in some instances,

WO 02/088946 PCT/GB02/01809
11

access to a device 7 over network fabric 5 may be managed by an
intermediate node, rather than the device 7 being directly coupled to the
network fabric. Various I/0 devices are contemplated, e.g., DASD’s,
workstations, storage controllers, workstation controllers, network

adaptors, printers, displays, etc.

Consistent with a preferred embodiment of the invention, a plurality
of cluster entities are resident in clustered computer system 2. For
example, a plurality of nodes 4 (also denoted separately as nodes A-E) are
shown. A cluster configuration parameter therefore, referred to herein as
a cluster ID (CID) 7, is maintained within each node. A plurality of
cluster objects 8 (an exemplary number of which are denoted separately as
objects 01-04) are also shown in Fig. 1, with each incorporating a cluster

configuration parameter (not shown in Fig. 1).

The various cluster entities described above are configured to manage
and utilize a plurality of resources 9, an exemplary number of such
resources are designated separately in Fig. 1 as resources RL-R5. The
manner in which such resources are owned and managed by the cluster
entities described above are described in more detail in connection with

Figs. 3-8 below.

Now turning to Fig. 2, an exemplary hardware configuration for one of
the nodes 4 in clustered computer system 2 is shown. Node 4 generically
represents, for example, any of a number of multi-user computers such as a
network ‘server, a midrange computer, a mainframe-computer; etc., e.g:, an
AS/400 or iSeries midrange computer system available from International
Business Machines Corporation. However, it should be appreciated that
embodiments of the invention may be implemented in other computers and data
processing systems, e.g., in stand-alone of single-user computers such as
workstations, desktop computers, portable computers, and the like, or in
other programmable electronic devices (e.g., incorporating embedded

controllers and the like).

Node 4 generally includes one or more system processors 12 coupled to

a main storage 14 through one or more levels of cache memory disposed
within a cache system 16. Furthermore, main storage 14 is coupled to a
number of types of external devices via a system input/output (I/0) bus 18
and a plurality of interface devices, e.g., an input/output adaptor 20, a
workstation controller 22 and a storage controller 24, which respectively
provide external access to one or more external networks (e.g., a network
26), one or more workstations 28, and/or one or more storage devices such
as a direct access storage device (DASD) 30. Any number of alternate

computer architectures may be used in the alternative.

WO 02/088946 PCT/GB02/01809
12

To implement the herein-described clustering functionality in an
AS/400 environment, each node in a cluster typically includes system
program code partitloned into system licensed internal code (SLIC) 32, a
machine interface 34 and an operating system 36, each of which is shown
resident in main storage 14, but which is typically selectively paged in
and out of the main storage in practice using a virtual memory management
system that is well known in the art. Tasks are performed on behalf of
users by one or more jobs or applications 38 which utilize the underlying

system program code in performing such tasks.

A portion of the SLIC 32 is typically allocated to managing memory
and external storage, represented by storage management block 40.
Moreover, when utilized in a clustering environment, node 4 typically
executes a clustering infrastructure referred to as clustering resource
services 42 to manage the clustering~ related operations on the node. 1In
addition, clustering may require the execution of a cluster control (CTL)
job as one of jobs 38 that participates in a cluster control group to
assist in managing clustering functionality on behalf of the node. It is
within these programs that much of the herein-described resource management

functionality is implemented.

It will be appreciated, however, that the functionality described
herein may be implemented in other layers of software in node 4, and that
the functionality may be allocated among other programs, computers or

components in clustered computer system 2. In particular, in non-AS/400

_environments;” the system program code as well as clustering infrastructure

may be implemented in other layers of program code. Moreover, other
clustering environments typically rely on functionality analogous to a
clustering infrastructure and a cluster control group. Therefore, the
embodiments of the invention are not limitéd to the specific software

implementation described herein.

The discussion hereinafter will focus on the specific routines
utilized to implement the above-described resource management
functionality. The routines executed to implement the embodiments of the
invention, whether implemented as part of an operating system or a specific
application, component, program, object, module or sequence of
instructions, will also be referred to herein as “computer programs,” or
simply “programs.” The computer programs typically comprise one or more
instructions that are resident at various times in various memory and
storage devices in a computer, and that, when read and executed by one or
more processors in a computer, cause that computer to perform the steps
necessary to execute steps or elements embodying the various aspects of the

invention. Moreover, while the embodiments of the invention have and

WO 02/088946 PCT/GB02/01809
13

hereinafter will be described in the context of fully functioning computers
and computer systems, those skilled in the art will appreciate that the
various embodiments of the invention are capable of being distributed as a
program product in a variety of forms, and that the invention applies
equally regardless of the particular type of signal bearing media used to
actually carry out the distribution. Examples of signal bearing media
include but are not limited to recordable type media such as volatile and
nonvolatile memory devices, floppy and other removable disks, hard disk
drives, optical disks (e.g., CD-ROM’s, DVD’s, etc.), among others, and

transmission type media such as digital and analog communication links.

It will be appreciated that various programs described hereinafter
may be identified based upon the application for which they are implemented
in a specific embodiment of the invention. However, -it should be
appreciated that any particular program nomenclatureythat follows is used
merely for convenience, and thus the invention should not be limited to use
solely in any specific application identified and/or implied by such

nomenclature.

Now turning to an exemplary implementation of the aforementioned
resource management functionality, it has been found that, with the
above-described system, to ensure that a resource action such as a resource
recovery or resource ownership transfer is accurate and complete, four

conditions should be satisfied:

* All clustefr nodes must be present, and any cluster node that is inactive.
or missing when the resource action is performed cannot be accepted into
the cluster at a later time.

* No transfer of résources between cluster nodes can occur concurrently
with the resource action. i

* All cluster objects that could own the specific resource must be
present, and any cluster object that is inactive or missing when the
resource action is performed cannot be accepted into any cluster node at
a later time.

e No transfer of resources between a cluster node and a cluster object can

occur concurrently with the resource action.

In the embodiment described hereinafter, to satisfy these conditions,
a unique prepare operation is used in connection with and precedes a

resource action to perform the following operations:

¢ Serialize all cluster nodes to ensure all cluster nodes are active and

obtain a lock on each cluster node to prevent the transfer of resources,

WO 02/088946 PCT/GB02/01809
14

prevent nodes from leaving or joining the cluster, and prevent the
creation or deletion of cluster objects. If a lock cannot be acquired
within a reasonable time, the prepare will fail and the resource action
will be prevented from being performed.

* Change a unique identifier that ties cluster nodes together, such that
any inactive cluster node cannot be later accepted into the cluster.

* Ensure that all cluster objects that could own the specific resource are
present, otherwise the prepare fails.

* Change the configuration data (e.g., a cluster object identifier) for
all such cluster objects, such that any inactive cluster object cannot
be accepted into the cluster at a later time, and such that any inactive

node cannot accept an active cluster object at a later time.

Fig. 3 next illustrates an exemplary set of cluster entities, as well
as the relevant data structures maintained within each of those entities in
connection with resource management consistent with a preferred embodiment
of the invention. For example, a pair of nodes 4 are illustrated, each
including configuration data 50 including a Cluster ID (CID) 52 and a table
or list of known object ID’'s 54, reéresenting the handles or tokens
assoclated with the various cluster objects known to be resident within the
clustered computer system. Moreover, each node 4 typically maintains a
list 56 of owned resources including, for example, virtual address ranges,
object numbers, DASD unit numbers, and the like. 1In the illustrated
embodiment, objects include both identifiers and numbers which each
uniquely identify the object. In other embodiments, however, a single

unique identifier may be used to identify each object.

Also shown in Fig. 3 is an exemplary cluster object 8, which includes
configuration data 60 and a list or table 62 of owned resources. The
configuration data includes, for example, an object ID 64 associated with
the cluster object, as well as an Ownership Transfer Count (OTC) 66 for
that object. Moreover, the owned resources associated with that cluster
object may include various virtual address ranges, as well as the object
number for the cluster object. A cluster object may represent, for
example, one or more DASD units implemented within an I/0 tower coupled to
an AS/4QO—based clustered computer system. Thus, for example, the cluster
object may logically represent various hierarchical devices within the
interface chain to one or more DASD units, including multiple Input/Output
Adaptors (IOA’s), as well as one or more Input/Output Processors (IOP’s).
Moreover, the owned resources may include the identification of one or more

DASD units owned by the cluster object.

In the illustrated embodiment, the cluster configuration parameter

tracked for each node 4 is the CID 52, while the cluster parameter tracked

WO 02/088946 PCT/GB02/01809
.15

for each cluster object is the combination of the object ID 64 and OTC 66,

with typically the OTC 66 modified during each resource action.

Fig. 4 next illustrates an exemplary routine 76 for implementing a
resource action consistent with a preferred embodiment of the invention.
As discussed above, a resource action typically includes a preceding
prepare for action operation that is performed, for example, by a prepare
for action routine 72. Routine 72 returns a result indicating whether the
operation was performed successfully. If not, the resource action is
terminated prematurely by passing control from block 74 to block 76, with
an error returned as the result. If the prepare for action occurred
successfully, however, block 74 passes control to block 78 to perform the

desired resource action.

In some embodiments, it may be desirable to pegform multiple resource
actions subsequent to a single prepare. As such, it may be desirable to
perform one or more additional resource actions as represented by optional
routine 82. Moreover, it may be desirable to query the result of a
preceding resource action prior to performing subsequent resource actions,
as represented by optional block 80. Regardless, once a prepare action has
been successfully performed, and one or more resource actilons are
attempted, an end action routine 84 is typically performed to release the
lock placed on the clustered computer system as a result of the prepare
action. Upon completion of end action routine 84, the appropriate result
is returned to the original calling routine as shown in block 86. The
‘result may dndicate an error or the lack of an error, depending upon the

progression of the routine, as will be discussed in greater detail below.

Fig. 5 illustrates prepare for action routine 72 in greater detail.
Routine 72 is typically called by a node in a clustered computer system
whenever it is determined that a resource action needs to be performed.
For example, in response to a detection of a lost resource, or low
resources on a particular node, that node in the clustered computer system

may initiate the resource action.

Routine 72 begins in block 100 by determining whether the environment
is valid for a prepare, including various checks such as whether the node
is in an appropriate clustering environment. If not, block 100 passes
control to block 102 to return an error condition and terminate the

resource action.

Otherwise, block 100 passes control to block 104 to create a local
sandbox and thus acquire a local lock on the node. In this context, a

sandbox refers to a software object that creates a workspace for the node

WO 02/088946 PCT/GB02/01809
16

and serializes the operation of the node. Typically, only one sandbox may
be executing at a given time on a node, and moreover, the modifications
made to a cluster when in a sandbox must be committed or finalized before
they are persisted to the cluster upon termination of the sandbox. The
result of creating the sandbox is that the node is serialized, to the
extent that cluster objects cannot be created or deleted, resource
ownership cannot be modified, and nodes may not be added or removed (from
the perspective of the local node) to and from the clustered computer
system. It should be appreciated, however, that other forms of locks or
semaphores may be utilized to serialize the operation of the local node

consistent with a preferred embodiment of the invention.

Upon completion of block 104, block 106 determines whether the
creation of the local sandbox was successful. If not, control passes to
block 102 to terminate routine 72. Otherwise, control passes to block 108
to optionally determine whether the local node is standalone mode, and not
participating in clustering. If so, control passes to block 110 to perform
a standalone prepare operation, and then to block 112 to return the result
of that prepare operation. A standalone prepare operation may be
implemented, for example, by verifying that all configured cluster objects
on the node are owned and active and updating the cluster object
configuration data as appropriate to lock out any missing cluster objects.
Typically, in a standalone configuration, much of the node-related
functionality described hereinafter in connection with the clustering
environment prepare may be omitted, although in certain circumstances it
‘may_be desirable -to utilize similar functionality, such as when' a node is
in standalone mode due to the elimination of other nodes in a clustering

environment.

Returning to block 108, if the node is not in standalone mode,
control passes to block 114 to determine whether the prepare operation is
being performed within an existing cluster protocol. In particular, a
resource action may be performed within or separate from a cluster
protocol, and multiple resource actions may be performed within a single
cluster protocol. 1In the illustrated embodiment, a cluster protocol must
be initiated prior to performing any resource action, so that nodes may
communicate with one another to ensure completion of the prepare and
resource actions. Thus, if no cluster protocol has been established as
yet, block 114 passes control to block 116 to start a cluster protocol and
initiate communication between the nodes. Block 118 next determines
whether the attempt to start the protocol was successful. If not, block
118 calls end action routine 84 (discussed below) or another routine with
similar functionality, which results in an error being generated and that

error returned as the result of the prepare.

WO 02/088946 PCT/GB02/01809
17

However, if the attempt to start the cluster protocol was successful,
block 118 passes controcl to block 120 to start a sandbox on the other
nodes, thus acquiring locks on each of the other nodes. In addition,
returning to block 114, if the cluster protocol already exists, control

passes directly to block 120.

By initiating a sandbox in each other node, a local sandbox 1is
created on each local node. Typically, some delay is utilized in the first
node to wait for each other node to create the sandbox and return an
appropriate response. If appropriate responses are not returned within a
set period of time, block 122 will determine that the prepare has failed,
and thus pass control to end action routine 84 to terminate the prepare
operation. In addition, if any node is not active, but is sent a message
to start a sandbox, that node will not respond in an appropriate time
period, and will thus cause failure of the prepare operation. As such, the
operation of starting the sandbox on the other nodes effectively determines

whether every known node is active on the system.

If the sandboxes are successfully created, block 122 passes control
to block 124 to query the other nodes for missing cluster objects. 1In the
illustrated implementation, block 124 is implemented by passing queries to
each other node to determine whether each known object (as stored in the
list 54 of known object ID’s, Fig. 3) has an owner. Block 126 then
determines whether any missing objects (objects without owners) exist. If
so, control passes to routine 84, and the prepare action is terminated.
Otherwise, control passes to block 128 to implement ‘a change CID routine

that updates the configuration parameter for each cluster node.

In the illustrated implementation, the operations of starting the
sandbox on the other nodes, querying for missing cluster objects, and the
like, are implemented using ordered messages via the cluster protocol
initiated in connection with the resource action. Thus, for example, a
request to start a sandbox on the other nodes resulté in a message being
sent to each node, and with the response message sent by each node
indicating whether the sandbox was successfully started on that node.
Likewise, a gquery for a missing cluster object results in a message being
sent to each node identifying the cluster object of interest. Each node
then responds with a message indicating whether that object is owned by the
node. A missing object may therefore be detected by the reception of only
messages that do not indicate ownership of an object by the responding

node.

Change CID routine 128 is used to change the cluster identifier

associated with each active node, such that any inactive nodes will not be

WO 02/088946 PCT/GB02/01809
18 ‘

similarly updated, and will thus be prevented from participating in

clustering subsequent to the prepare.

Routine 128 returns a result, which is gqueried in block 130. If the
change was not performed successfully, routine 84 is called, and the
prepare operation fails. Otherwise, control passes to block 132 to change
the cluster object parameters for the various cluster objects of interest
to lock out any inactive cluster objects from rejoining the cluster. It
should be appreciated that, if a prepare operation is being performed in
connection with a particular type of resource action on a specific type of
resource, only the cluster objects owning resources of that type (e.g., a
virtual address range versus a DASD unit number) may be changed. Changing
the cluster object parameters typically incorporates passing messages to
the node that .owns the object, as well as the all additional nodes, so that
each node may update the object configuration parameter data that is local
to its node. The node that does own the cluster object, however,

additionally changes the local information with the cluster object.

Routine 132 similarly returns a result, which is queried in block
134. 1If the change operation was not performed successfully, control
passes to routine 84 to end the action and terminate the prepare.
Otherwise, a successful result is indicated by returning with a “no error”

condition, as represented by block 136.

Changing a cluster configuration parameter may be performed by simply
.changing a single value associated with a parameter, and typically
utilizing ordered messaging to ensure that the change is propagated to
every relevant cluster entity. In the alternative, it may be desirable to
utilize multiple values for each cluster configuration parameter,
representing a current value and a “to become” value. When changing the
parameter, first the “to become” value is changed to the new value, then
the regular copy is changed to the new value. Thus, i1f the process fails

at any point, all of the nodes may still match on at least one value.

An exemplary routine which may be used to change either the cluster
ID or the cluster object parameters using value pairs is illustrated by
change ID routine 140 of Fig. 6., It should be appreciated that any
reference to an “ID” may refer to either a cluster ID or a clustered object
parameter depending on the particular cluster configuration parameter being

modified.

Routine 140 begins in block 142 by querying for the current ID pair

values stored on each node. Typically, block 142 is implemented using

WO 02/088946 PCT/GB02/01809
19

ordered messages, with each node responding with its current values for a

particular parameter in response to a request.

Block 144 next determines whether the first value is synchronized,
i.e., whether the same first value is stored on each node. If not, control
passes to block 146 to set the first value on each node to an arbitrary
value selected by the node upon which routine 140 is-executing. The set
operation also is performed via ordered messages, and as a result,
appropriate response messages are awalted to confirm that each node has
successfully updated its value. Block 148 therefore determines whether the
first value was successfully updated, and if any error is detected, control
‘"passes to block 150 to terminate routine 140 and return an error condition.
Otherwise, block 148 passes control to block 152 to determine whether the
second value 1s synchronized. Also, if block 144 determines the first

value is synchronized, control passes directly to block 152.

If the second value 1s not synchronized, control passes to block 154
to set the second value in the same manner as the first value was set in
connection with block 146. Block 156 then determines, whether the set
operation was successful, passing control to block 150 if an error is
detected. Otherwise, block 156 passes control to block 158 to generate new
ID pair values, e.g., by incrementing the values from their original state.
In the alternative, any arbitrary number may be selected for each value, as
long as the change is propagated to all of the nodes. Also, returning to
block 152, if the second value is synchronized, control passes directly to

block 158..

Once the new parameter values are generated, control passes to block
160 to éhange ‘the first value. As with block 146, changing the first value
is performed via ordered messages, and block 162 subsequently determines
whether the first value was successfully changed. If not, control passes
to block 150 to return an error. Otherwise, control passes to block 164 to
change the second value in the same manner as discussed above. Based upon
the result, block 166 either passes control to block-.150 to return an
error, or to block 168 to return a no error condition, thus signifying that

the change was successfully completed.

Returning now to Fig. 4, once the prepare for action has been
completed, and if a successful result is returned, the desired resource
action is performed. As discussed above, a number of different resource
actions are contemplated. Fig. 7, for example, illustrates an exemplary
recover resource routine 180 that may be performed to recover a particular
type of resource, e.g., in response to detecting that a resource of a

particular type has been lost.

WO 02/088946 PCT/GB02/01809
20

Routine 180 begins in block 182 by querying all nodes to determine
what resources are owned by the other nodes, and what resources are owned
by cluster objects that are owqed by those other nodes. Block 182
essentially corresponds to taking an inventory of the existing resources in
the system. Typically, such inventory consists of the generation of
multiple queries to the various nodes, with appropriate responses generated
in response the query. Block 182 results in the generation of a list or

table of owned resources.

Upon completion of block 182, block 184 determines whether the query
was successful, and whether a valid table of owned resources has been
generated. If not, control passes to block 186, terminating routine 180
and returning an error condition. Otherwise, control passes to block 188
to compare the owned resources with the known resources that exist in the
system. Through this comparison, a list of unowned resources 1s generated,
and as such, block 190 is executed to recover these missing resources to
obtain ownership of the missing resources. These unowned resources are
also referred to as missing resources, as these resources have become lost

by virtue of their lack of ownership by any cluster entity.

Once the missing resources are recovered and claimed by the
initiating node, control passes to block 192 to terminate the routine and

return a no error condition. The resource recovery is therefore complete.

It should be appreciated that various types of resources may be
recovered consistent with a preferred embodiment of the invention.. For
example, it may be desirable to support the ability to separately recover

virtual address ranges, cluster objects, and DASD units.

It may be desirable to support other forms of resource actions. For
example, it may be desirable to support a “boundary move” in a virtual
address space. In the illustrated embodiment, for example, the virtual
address may be partitioned into two ranges allocated respectively to the
cluster nodes and the cluster objects. As virtual addresses are allocated
to different nodes and objects, the memory space may be consumed from each
end of the virtual address space and toward the boundary between the two
partitions. If either the cluster nodes or the cluster objects utilize all
of the available space within their respective partition, it may be
desirable to move the boundary and thus allocate additional memory space to
the full partition. Moreover, in the illustrated embodiment, the partition
allocated to the nodes permits the reuse of virtual addresses within each
node, since the virtual addresses are utilized locally on each node.
However, since cluster objects can be owned by various nodes, each virtual

address allocated to an object must be unique. Therefore, to perform a

WO 02/088946 PCT/GB02/01809
21

move boundary operation, each node must be queried to make sure that
movement of the boundary does not conflict with used virtual addresses in

the partition that is losing a range of addresses.

Returning again to Fig. 4, upon completion of the performance of
various resource actions, end action routine 84 is called to complete the
resource action process. Also, as shown in Fig. 5, routine 84 may be
called during a prepare operation anytime after the local ‘sandbox is

acquired on the local node.

End action routine 84 is illustrated in greater detail in Fig. 8.
Routine 84 begins in block 200 by determining whether the local node is in
standalone mode. If not, control passes to block 202 to end the sandbox on
the other nodes, typically by sending a message to each other node to
terminate the local sandbox thereon. Next, block 204 determines whether
the resource action is nested in another cluster protocol. Assuming first
that the resource action is not nested, control passes to block 206 to end
the cluster protocol, and then to block 208 to end the local sandbox on the
node. The result of the operation is then returned, and routine 84 is

terminated in block 210.

Returning to block 200 and 204, if the node is either in standalone
mode, or if the resource action is nested in another cluster protocol, the
intervening blocks are omitted, and control passes directly to block 208 to

end the local sandbox on the node.

WO 02/088946 PCT/GB02/01809
22

CLAIMS

1. A method of performing a resource action in a clustered computer
system of the type including a plurality of resources and a plurality of
cluster entities configured to own the plurality of resources, the method

comprising:

preparing the clustered computer system prior to performing the
resource action by modifying at least one cluster configuration parameter
associated with the plurality of cluster entities in the clustered computer
system such that any cluster entity that is active during preparation of
the clustered computer system accepts the modification to the cluster
configuration parameter, and such that any cluster entity that is inactive
during preparation of the clustered computer system does not accept the
modification to the cluster conflguration parameter; whereby any such
inactive cluster entity is thereafter blocked from being accepted into the

clustered computer system.

2. A method as claimed in claim 1, wherein the plurality of cluster

entities includes a plurality of cluster nodes or cluster objects.

3. A method as claimed in claim 2, wherein the cluster configuration
parameter includes a cluster identifier stored in each of the plurality of
cluster nodes, or wherein the cluster configuration parameter includes an
object identifier and an ownership transfer count associated with each of

the plurality of cluster objects.

4. A method as claimed in any preceding claim, further comprising
performing a resource action after preparing the clustered computer system.
5. A method as claimed in claim 4, wherein the plurality of cluster
entities comprises a plurality of nodes and a plurality of cluster objects
resident on the plurality of nodes, and wherein perfﬁrming the resource
action comprises: (a) querying the plurality of nodes in the clustered
computer system to determine which of a plurality of resources are owned;
and (b) transferring ownership of any unowned resources to a first node

among the plurality of nodes.

6. A method as claimed in any preceding claim, wherein preparing the
clustered computer system includes obtaining a lock on the clustered

computer system prior to modifying the cluster configuration parameter.

7. A method as claimed in claim 6, further comprising releasing the lock

after performing the resource action.

WO 02/088946 PCT/GB02/01809
23

8. A clustered computer system, comprising:
(a) a plurality of nodes coupled to one another over a network;
(b) a plurality of resources;

(c) a plurality of cluster entities configured to own the plurality

of resources; and

(d) a program resident on a first node among the plurality of nodes,
the program configured to perform a resource action on at least a
subset of the plurality of resources, and to prepare the clustered
computer system prior to performing the resource action by modifying
at least one cluster configuration parameter associated with the
plurality of cluster entities such that any cluster entity that is
active during preparation of the clustered computer system accepts
the modification to the cluster configuration parameter, and such
that any cluster entity that is inactive during preparation of the
clustered computer system does not accept the modification to the
cluster configuration parameter; whereby any such inactive cluster
entity is thereafter blocked from being accepted into the clustered

computer system.

9. A computer program comprising computer code to, when loaded into a
computer system and executed, cause said computer system to perform all the

steps of a method as claimed in any of claims 1 to 7.

WO 02/088946

PCT/GB02/01809

114
.9 A I/_ 8 9
\ 7 i/0 DEVICE NODEE ["y /
6 CID
| 4
))
NODEA [0t |1/ fs
— NETWORK NODED [g&
\ FABRIC
A~ 7j .
N] FIG. 1
NODE B
\
CiD NODE C 9
e
m/ i
6
_| /0O DEVIGE
SYSTEM SYSTEM SYSTEM
PROCESSOR PROCESSOR coo PROCESSOR
h N \
77 N)
12
16\ CACHE /
SYSTEM | 4g "
- 38
¥))/ /
MAIN STORAGE [JOBIAPP J<=o [JOBIAPP 1L,
36\ 0S| CLUSTERING RESOURCE SERVICES Jig
l MACHINE INTERFACE 40
32 4
| stc STORAGE MANAGEMENT]
. 18
20 &3 / 24
N) 1/
- WORKSTATION STORAGE
}f0 ADAPTOR CONTROLLER | ©°° | CONTROLLER
X yy ™99 y
Y 2

26

. b6

WO 02/088946 PCT/GB02/01809
214
OBJECT OWNED FIG. 3
BY ONE NODE AT
4 [nopEA NODE B B
50 | | CONFIGURATION DATA CLUSTER OBJECT gp | 2| | CONFIGURATION DATA
52 | g | KNOWN g | Ko
S~ OBJECT ID'S CONFIGURATION [¥ g4) | OBJECTID'S
54— DATA [OBJECT 54
/’ 1D .
OWNED RESOURCES, E.G.: OWNED RESOURCES, E.G.:
\| | -VARANGES 66| oWNED RESOURCES, - VA RANGES
| . OBJECT #'S EG.: . - OBJECT #'S
- BASD UNIT #'S - MY VA RANGES - DASD UNIT #'S -
- MY OBJECT #]
oy |/ -MYDASDUNIT#S |K g o 1
70
Ny , 180
GESOURCE ACTI@ \6500%3 RESOUR@
72— ¥ FIG. 4 182 !
F([)J:E\P(?TTSN QUERY ALL NODES TO DETERMINE WHAT
RESOURCES ARE OWNED BY OTHER NODES AND

YES

»)
-

il

80

{ 0K? r——

PERFORM
ACTION

7N NO

\\
\,

| ORIV 4

ES
Y

%

PERFORM
ACTION

T

A

END ACTION

86
RETURN RESULT

76
RETURN ERROR

WHAT RESOURCES ARE OWNED BY CLUSTER
OBJECTS OWNED BY OTHER NODES

| 184 X
FIG. 7 \<EK?

Y

186

RETURN ERROR

188~

COMPARE OWNED
RESQURCES WITH
KNOWN RESOURCES

¥

190

| RECOVER MISSING
RESOURCES T0 OBTAIN

OWNERSHIP OF MISSING

RESOURCES

192

N

('RETURN NO ERROR)

WO 02/088946

PCT/GB02/01809
374
72
@EPARE FORACTI@ FIG. 5
100/ VALIDFOR _ g
RESOURCE
104 YES §
CREATE LOCAL SANDBOX
(ACQUIRE LOCAL LOCK)
106 ; 102 v
CREATE _NO >
wr) »(_RETURN ERROR)
YES] 110 112

N

NOJ

108 PERFORM
<\STANDALONE? YES STANDALONE gﬁgﬂ'ﬁ?
PREPARE

116
114/ ALREADY IN

ey 0T e
PROTOCOL?
120 YES | 118 |

, 84

START SANDBOX ON OTHER | YES,”'START _NO END ACTION
NODES (ACQUIRE LOCKS) 0K?
1

hd

A

% STI(RT \ NO
0K? /

124 YES |

QUERY FOR MISSING
CLUSTER OBJECTS

hd

Y

: N0 132 S 134 NO
CHANGE CID CHANGE\YES 1 \o \1oTER OBUECT CHANGE
0K? - 0K?

PARAMETERS
' YES
RETURN

NO ERROR

WO 02/088946

14

N
(CHANGE D >

142, :
 QUERY FOR CURRENT

ID PAIR VALUES

144 :
IS FIRST VALUE™ NO| SET FIRST
SYNCHRONIZED? VALUE

YES

L]

146

Y

YES

154

162 S SECOND VALUEN_NO
SYNCHRONIZED?

SET SECOND
VALUE

YES]
158 \

PAIR VALUES

160

™ CHANGE FIRST
VALUE

182 v

™ GENERATENEWID |YES

,
0K? NO

oK? N0
148

156 -

150

A 4

\zi;gg? NO

164 YESI
CHANGE SECOND
VALUE

\/
—>(_RETURN ERROR)

66 Y
1 \<_E_K? NO

168 Yooy
"(CRETURN NO ERROR)

FIG. 6

PCT/GB02/01809

84

Ny

(END ACTION)
A0 ' YES
STANDALGONE?

NO.

™ END SANDBOX ON
OTHER NODES

202

r

NESTED IN
ANOTHER CLUSTER
PROTOCOL?

204

YES

NO

.
206._| END CLUSTER
PROTOCOL

y

|END SANDBOX |
ON THIS NODE [

210 4
RETURN RESULT

FIG. 8

208._

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

