发明名称
烟灰分散剂及含其的润滑油组合物

摘要
发现了一种连接的芳族化合物，其作为润滑油组合物中有效的烟灰分散剂；含有这种烟灰分散剂的润滑油组合物和由此可以获得该烟灰分散剂的前体化合物。
1. 式(I)的化合物

\[
\begin{array}{c}
\text{(Y)\text{\textsubscript{a}}} \\
\text{Ar} \rightarrow (\text{L} \rightarrow \text{Ar})\text{\textsubscript{m}} \\
\text{(I)}
\end{array}
\]

其中:
每个 Ar 独立地表示芳族部分，其具有选自烷基、烷氧基、烷氧基烷基、芳氧基、芳氧基烷基、烃基、烃基烷基、卤素和其组合的 0~3 个取代基；
每个 L 独立地为包含碳-碳单键或连接基的连接部分；
每个 Y 独立地为-OR”或者式 H(O(CR\textsubscript{2})\textsubscript{n})\textsubscript{y}X-的部分，其中 X 选自(CR\textsubscript{2})\textsubscript{2}, O 和 S；R 和 R'各自独立地选自 H、C\textsubscript{1}~C\textsubscript{6}烷基和芳基；R”选自 C\textsubscript{1}~C\textsubscript{100}烷基和芳基；z 为 1~10；n 在 X 为(CR\textsubscript{2})\textsubscript{2} 时为 0~10，且在 X 为 O 或 S 时为 2~10；且 y 为 1~30；
每个 a 独立地为 0~3，前提是至少一个 Ar 部分带有至少一个基团 Y；且 m 为 1~100。

2. 权利要求 1 的化合物，其中约 2%~约 98% 的 Y 单元为 H(O(CR\textsubscript{2})\textsubscript{2})\textsubscript{y}O-，其中 y 为 1~6，且约 98%~2% 的 Y 单元为-OR”。

3. 权利要求 2 的化合物，其中 Ar 为萘；40mol%~60 mol % 的 Y 单元为 H(O(CR\textsubscript{2})\textsubscript{2})\textsubscript{y}O-，且 60 mol %~40 mol % 的 Y 单元为-OCH\textsubscript{3}；且 L 为 CH\textsubscript{2}。

4. 权利要求 3 的化合物，其中约 65 mol%~约 75 mol% 的 Y 单元为 HOCH\textsubscript{2}CH\textsubscript{2}O-，且约 35 mol %~约 25 mol % 的 Y 单元为-OCH\textsubscript{3}。

5. 权利要求 4 的化合物，其衍生自约 65mol%~约 75mol% 的 2-(2-萘氧基)-乙醇和约 35mol%~约 25mol% 的 2-甲氧基萘，其中 m 为 1~约 25。

6. 一种形成权利要求 5 的化合物、或化合物的混合物的方法，包括在酸的存在下萘氧基乙醇和 2-甲氧基萘与甲醛的反应。

7. 权利要求 6 的方法，其中萘氧基乙醇为包括在碱催化剂的存在下
羟基醚化合物与碳酸亚乙酯的反应的方法的产物。

8. 权利要求7的方法，其中在引入所述甲醇之前用过量的酸将剩余的碱中和。

9. 权利要求8的方法，其中所述酸选自油溶性磺酸和固体酸催化剂。

10. 一种或多种如权利要求1中所述的化合物与酰化剂的反应产物。

11. 权利要求10的反应产物，其中所述酰化剂为选自聚烷基琥珀酰化剂和聚羧基琥珀酰化剂的至少一种，其衍生自Mn为约100~约5000的聚羧烯。

12. 权利要求10的反应产物，其中所述酰化剂为羟基异氰酸酯。

13. 亚甲基-桥接的氨基乙醇和2-甲氧基甲基化合物的混合物与选自聚烷基琥珀酰化剂和聚羧基琥珀酰化剂的反应产物。

14. 用于形成权利要求13的产物的方法，其中将所述亚甲基-桥接的氨基乙醇和2-甲氧基甲基化合物的混合物与酰化剂在酸催化剂的存在下反应。

15. 权利要求14的方法，其中所述亚甲基-桥接的氨基乙醇和2-甲氧基甲基化合物为这样的方法的产物，即其包括(i)将羟基醚化合物和碳酸亚乙酯在碱催化剂的存在下反应以形成氨基乙醇；(ii)用过量酸中和所述碱以提供中间体；和(iii)将所述中间体与2-甲氧基苯和甲醇在残留酸的存在下反应。

16. 权利要求15的方法，其中所述酸选自油溶性液体酸催化剂和固体酸催化剂。

17. 权利要求16的方法，其中所述酰化剂为聚丁烯琥珀酰化剂，其衍生自Mn为约300~约5000的聚丁烯。

18. 权利要求17的方法，其中琥珀酰化剂部分的总摩尔数与所述氨基乙醇和所述2-甲氧基苯的氨基部分的总摩尔数的比例为约1.10~约0.5。

19. 式(II)的化合物
其中：
每个 \(\text{Ar} \) 独立地表示芳族部分，其具有选自烷基、烷氧基、烷氧基烷基、
羟基、羟基烷基、酰氧基、酰氧基烷基、酰氧基烷氧基、芳氧基、芳氧基
烷基、芳氧基烷氧基、卤素和其组合的 0~3 个取代基；
每个 \(\text{L} \) 独立地为包含碳-碳单键或连接基的连接部分；
每个 \(\text{Y’} \) 独立地为式-Z’O 或者 Z(O(CR\(_2\))\(_n\))\(_y\)X- 的部分，其中 \(X \) 选自(CR’\(_2\))\(_2\)、
O 和 S; R 和 R’各自独立地选自 H, C\(_1\)~C\(_6\)烷基和芳基; \(z \) 为 1~10; \(n \) 在 X
为(CR’\(_2\))\(_2\) 时为 0~10, 且在 X 为 O 或 S 时为 2~10; 且 y 为 1~30; Z 为 H、
酰基、聚酰基、内酯酶基、和酸酯基、烷基、或芳基; Z’选自 C\(_1\)~C\(_{100}\) 烷
基和芳基;
每个 \(\text{a} \) 独立地为 0~3, 前提是至少一个 \(\text{Ar} \) 部分带有至少一个基团
Z(O(CR\(_2\))\(_n\))\(_y\)X-, 其中 Z 不为 H; 且
\(m \) 为 1~100。

20. 权利要求 19 的、下式(III)的化合物:

\[
\begin{align*}
(Y')_a & \quad (Y')_a \\
\text{Ar} \quad (L \quad \text{Ar})_m \\
\end{align*}
\]

\[
\begin{align*}
(Z^- & \quad (Y')_a \\
\text{Ar} \quad (L \quad \text{Ar})_m \\
Z^- & \quad (Y')_a \\
\text{Ar} \quad (L \quad \text{Ar})_m \\
\end{align*}
\]

其中，一个或多个 \(\text{Y’} \) 为基团 Z(O(CR\(_2\))\(_n\))\(_y\)X-, 其中 Z 衍生自式 IV 的内酯
酯、式 V 的酸酯、或其组合;
其中，R¹、R²、R³、R⁴、R⁵、R⁶和 R⁷独立地选自 H、烷基和聚烷基和聚链烯基，其具有最多 200 个 C；且 Z”为式 VI 的双酰基；

其中，R⁸和 R⁹独立地选自 H、烷基、和聚烷基和聚链烯基，其具有最多 300 个 C；m 为 0~100；且 p 和 s 各自独立地为约 0~约 25，前提是 p < m; s < m; 且 p+s ≥ 1。

21. 权利要求 20 的化合物，其中约 2%~约 98% 的 Y’单元为 Z(O(CR₂)₂)₅O-, 其中 Z 为酰基且 y 为 1~6, 且约 98%~2% 的 Y’单元为-OR’。

22. 权利要求 21 的化合物，其中 Ar 为萘；40%~98% 的 Y’单元为 ZOCH₂CH₂O-, 且约 60%~约 2% 的 Y’单元为-OC₃H₇；且 L 为 CH₂。

23. 权利要求 22 的化合物，其中 m 为约 2~约 25；p 为 1~约 10；且 s 为 1~约 10。

24. 权利要求 21 的化合物，其中 Z 衍生自聚烷基或者聚链烯基琥珀酰化剂，其衍生自 Mᵣ 为约 100~约 5000 的聚链烯。

25. 权利要求 23 的化合物，其中 Z 衍生自聚烷基或者聚链烯基琥珀酰化剂，其衍生自 Mᵣ 为约 100~约 5000 的聚链烯。

26. 权利要求 21 的化合物，其中 Z 衍生自烃基异氰酸酯。

27. 权利要求 23 的化合物，其中 Z 衍生自烃基异氰酸酯。

28. 一种润滑油组合物，其包含主要量的润滑粘度的油和次要量的权利要求 20 的化合物。
29. 权利要求 28 的润滑油组合物，其进一步包含含氮的分散剂。

30. 权利要求 29 的润滑油组合物，其包含一定量的所述含氮的分散剂，使所述润滑油组合物具有约 0.03 质量％～约 0.15 质量％的氮和约 0.005～15 质量％的所述化合物。

31. 权利要求 29 的润滑油组合物，其中所述含氮的分散剂为聚丁烯基聚亚烷基胺琥珀酰亚胺，其衍生自 M_n 为约 900～约 2500 的聚丁烯。

32. 权利要求 29 的润滑油组合物，其进一步包含选自清洁剂、抗磨剂、抗氧剂、摩擦改性剂相容剂和粘度改性剂的至少一种添加剂。

33. 一种操作压缩点火型发动机的方法，该方法包括用权利要求 28 的润滑油组合物润滑所述发动机的曲轴箱，并操作该发动机。

34. 权利要求 33 的方法，其中在所述压缩点火型发动机中装备废气再循环系统。
发明领域

本发明涉及一种新型的连接的芳族化合物，其作为润滑油组合物中有效的烟灰分散剂，以及含其的润滑油组合物。更具体地，本发明涉及一种化合物，将其加到润滑油组合物中时提供了工业标准“Mack T11”发动机试验中的烟灰分散性能，且添加剂氮的水平降低。本发明进一步涉及一种新类型的前体化合物，由此可以获得该烟灰分散剂。

发明背景

全球重载柴油机(HDD)发动机排放法规要求在1989到2009之间逐步降低NOₓ和颗粒排放。许多柴油发动机制造商现在正在HDD发动机中加入废气再循环(EGR)系统，在至少一部分发动机运转的时间(例如，至少10%的发动机运转的时间)内将该系统以冷凝模式运转，且延迟发动机定时以降低NOₓ和颗粒排放。在提供有冷却的EGR系统的发动机中，将EGR流在NOₓ和SOₓ的露点之下冷却并在正压下注回到发动机中。在这种条件下，水蒸汽与NOₓ和SOₓ冷凝以在再循环的废气流中产生高水平的硝酸和硫酸。在这种条件下，即使在较低水平的烟灰(例如3质量％烟灰)的存在下，也已观察到润滑油组合物运动粘度(kv)的不可接受的增加。

润滑油组合物包括主要量的基础油和改善性能与增加润滑油的使用寿命的添加剂。含氮的分散剂为常用的润滑油添加剂。分散剂的作用是保持在油的使用期间由于氧化和其它机理而形成的不溶材料悬浮于该油中，由此防止不溶材料的油泥絮凝和沉淀。分散剂的另一作用是降低烟灰颗粒的聚积，由此降低使用时润滑油的粘度升高。在装备有冷却的EGR系统的发动机的严酷环境中，已发现烟灰导致的粘度升高，如“Mack T-11”试
验中测量的那样，通过传统分散剂不能控制，即使增加这种传统分散剂的用量。由此，已不断需要提供有效的烟粉分散性能的化合物和提供改进的
烟粉分散性能的曲轴箱润滑剂。

Davis(1931)的 US 1,815,022 公开了通过共的 Freidel Craft 烷基化而形成的、苯与基本直链的氯化蜡的缩合物。描述了这种化合物作为蜡结晶
改性剂或润滑油流动改性剂(LOFI)添加剂的作用，且将其加到油中以改性
其冷流特性。这些化合物由于高氯含量而并未使用多少年，认为这些化合物
并不适合用于现代客车、或者重载柴油机润滑油配方。在现代配方中，
这些化合物已被富马酸酯/乙酸乙烯酯共聚物或聚甲基丙烯酸酯基 LOFI 所
代替。

Davis 的 US 4,708,809 描述了一种含下式的酚化合物的润滑组合物：

(R)_{a}-Ar-(OH)_{b}

其中，R 为具有 10 个或更多脂肪族碳原子的饱和烃基；a 和 b 各自独立地
为 Ar 中存在的芳核数的 1~3 倍；且 Ar 为单一、稠合的或连接的多核环部
分，其任选地被取代。宣称将少量的这种化合物加到与燃料混合的润滑剂
组合物中，将导致二冲程发动机中活塞环粘着的降低。

Gutierrez 等的 US 6,495,496 描述了烷基芳族化合物、醛和胺的，含氮
的低分子量 Mannich 碱缩合物，适用作为润滑油中的烟粉分散剂。

Gutierrez 等的 US 6,750,183 公开了适用作为烟粉分散剂的一些低聚物，
该低聚物如下式所定义：

T—(Ar)\bigg(\begin{array}{c}
L-(Ar)\bigg)_{n}T
\end{array}\bigg)

其中，每个 Ar 独立地表示芳族部分，任选地由 1~6 个选自于 H、-OR_{1}、
-N(R_{1})_{2}、F、Cl、Br、I、-(L-(Ar)-T)_w、-S(O)_{w}R_{1}、-(CZ)_x-(Z)_x-R_{1}
和-(Z)_x-(CZ)_y-R_{1} 的取代基取代，其中 w 为 0~3，各个 Z 独立地为 O、
-N(R_{1})_{2} 或 S，x 和 y 独立地为 0 或 1，且各个 R_{1} 独立地为 H 或者直链或支化、饱和或不饱和、
任选取代的烃基，具有 1~约 200 个碳原子；各个 L 独立地为包括碳-碳单键或连接基的连接部分；各个 T 独立地为 H、-OR_1、-N(R_1)_2、F、Cl、Br、I、-S(O)_nR_1、-(CZ)_x-(Z)_y-R_1 或 -(Z)_y-(CZ)_x-R_1，其中 R_1、w、x、y 和 Z 如上所定义；且 n 为 2~约 1000。

Bera 等的 US 专利申请公开 2006/0189492 A1 公开了酰化剂和低聚物的一些反应产物，具有下面的结构:

![结构图](image)

其中，每个 Ar 独立地表示芳族部分，具有选自烷基、烷氧基、酰氧基烷基、羟基、酰基烷基、卤素和其组合的 0~3 个取代基；每个 L 独立地为包括碳-碳单键或连接基的连接部分；每个 Y 独立地为式 H(O(CR_2)_n)_yX-的部位，其中 X 选自 (CR’)_2、O 和 S；R 和 R’各自独立地选自 H、C_1~C_6 烷基和芳基；z 为 1~10；n 在 X 为 (CR’)_2 时为 0~10，且在 X 为 O 或 S 时为 2~10；y 为 1~30；每个 a 独立地为 0~3，至少一个 Ar 部分带有至少一个基团 Y；且 m 为 1~100；和

![结构图](image)

其中，每个 Ar 独立地表示芳族部分，具有 0~3 个选自烷基、烷氧基、酰氧基烷基、羟基、酰基烷基、酰氧基酰氧基烷基、芳氧基、芳氧基烷基、卤素及其组合的取代基；每个 L 独立地为包含碳-碳单键或连接基的连接部分；每个 Y’独立地为式 Z(O(CR_2)_n)_yX-的部位，其中 X 选自 (CR’)_2、O 和 S；R 和 R’各自独立地选自 H、C_1~C_6 烷基和芳基；z 为 1~10；n 在 X 为 (CR’)_2 时为 0~10，且在 X 为 O 或 S 时为 2~10；y 为 1~30；Z 为 H、酰基或烷基芳基；每个 a 独立地为 0~3，至少一个 Ar 部分带有至少一个基团 Y，其中 Z 不为 H；且 m 为 1~100。描述了后式的化合物为有用的烟灰分散剂。
发明概述

依据本发明的第一方面，提供了一类新的连接的芳族化合物，发现其作为润滑油组合物中有效的烟灰分散剂。

依据本发明的第二方面，提供了含有第一方面的新化合物的润滑油组合物，该润滑油组合物能够提供优异的烟灰分散性能。

依据本发明的第三方面，提供了一种操作装备有 EGR 系统的压缩点火型(柴油)发动机的方法，该方法包括用第二方面的润滑油组合物润滑该发动机的曲轴箱、和操作该发动机的步骤。

依据本发明的第四方面，提供了一种新类型的前体化合物，由其可以获得第一方面的化合物。

发明详述

适合作为由其可以获得本发明的烟灰分散剂的前体的化合物可以由下式(I)来定义:

\[\text{Ar} \xrightarrow{\text{Y}_a} (\text{L} \xrightarrow{\text{Y}_a} \text{Ar})_m \] \hspace{1cm} (I)

其中，每个 \(\text{Ar} \) 独立地表示芳族部分，具有选自烷基、烷氧基、烷氧基烷基、芳氧基、芳氧基烷基、羟基、羟基烷基、卤素和其组合的 0~3 个取代基；每个 \(\text{L} \) 独立地为包括碳-碳单键或连接基的连接部分；每个 \(\text{Y} \) 独立地为-OR”或者式 H(O(CR2)n)X-，其中 X 选自 (CR’2)z、O 和 S；R 和 R’各自独立地选自 H、C1~C6 烷基和芳基；R”选自 C1~C100 烷基和芳基；z 为 1~10；

n 在 X 为 (CR’2)z 时为 0~10，且在 X 为 O 或 S 时为 2~10；且 y 为 1~30；每个 a 独立地为 0~3，前提是至少一个 Ar 部分带有至少一个基团 Y；且 m 为 1~100。

式 I 的芳族部分 \(\text{Ar} \) 可以是单核碳环部分(苯基)或者多核碳环部分。多核碳环部分可以包含两个或多个稠合的环，每个环具有 4~10 个碳原子(例如，萘)或者可以是连接的单核芳族部分，如联苯基，或者可以包括连接的、
稠合的环（例如联苯基）。适宜多核环芳族部分的实例包括萘、蒽、菲、环戊烯并菲、苯并蒽、二苯并蒽、䓛、芘、苯并[c,d]芘和晕苯，以及其他二聚体、三聚体和更高的聚合物。Ar 也可以表示单-或多核杂环部分。杂环部分 Ar 包括包含一个或多个含有 4〜10 个原子的环的那些，包括一个或多个自 N、O 和 S 的杂原子。适宜单环杂环芳族部分的实例包括咔唑、咔吩、咪唑、噻唑、噻嗪、吡啶、嘧啶和嘌呤。适宜多核杂环部分 Ar 包括，例如，喹啉、异喹啉、咔唑、二吡啶、崎啉、2,3-二氮杂萘、喹唑啉、喹喔啉和菲咯啉。每个芳族部分 (Ar) 可以独立地选择，使得所有部分 Ar 相同或不同。优选多环碳芳族部分。最优选的是式 I 的化合物，其中每个 Ar 为萘。每个芳族部分 Ar 可以独立地是未取代的或由 1〜3 个选自烷基、烷氧基、烷氧基烷基、羟基、羟基烷基、卤素、及其组合的取代基取代的。优选地，每个 Ar 是未取代的（除基团 Y 和端基之外）。

每个连接基 (L) 可以相同或不同，且可以是相邻部分 Ar 的碳原子之间的碳-碳单键，或者连接基。适宜连接基包括亚烷基连接基、醚连接基、二酰基连接基、醚-酰基连接基、氨基连接基、酰胺基连接基、脲基连接基、尿烷连接基、和硫连接基。优选的连接基为亚烷基连接基，如 -CH₃CH₂(CH₃)₂ -，或 C(CH₃)₂ -；二酰基连接基如 -COOC - 或 -CO(CH₂)₃ CO -；和硫连接基，如 -S₁ - 或 -S₈ -。更优选的连接基为亚烷基连接基，最优选 -CH₂ -。

优选地，式 (I) 的 Ar 表示萘。优选地，约 2 mol%〜约 98 mol% 的 Y 单元为 H(O(CR₂)₂)₃O -，其中 y 为 1〜6，且约 98 mol%〜2 mol% 的 Y 单元为 -OR”。更优选地，约 2 mol%〜约 98 mol% 的 Y 单元为 HOCH₂CH₂O -，且约 98 mol%〜2 mol% 的 Y 单元为 -OCH₃；且 L 为 CH₂。在一种特别优选的实施方式中，Ar 表示萘，约 40 mol%〜约 60 mol% 、如约 65 mol%〜约 75 mol% 的 Y 单元为 HOCH₂CH₂O -，且约 60 mol%〜40 mol% 、如约 35 mol%〜约 25 mol% 的 Y 单元为 -OCH₃，且 L 为 CH₂。优选地，式 (I) 的化合物衍生自约 65 mol%〜约 75 mol% 的 2-(2-萘氧基)-乙醇和约 35 mol%〜约 25 mol% 的
2-甲氧基苯，其中 m 为 1~约 25。

形成式(I)化合物的方法对于本领域技术人员来说是显然的。可以将羟基芳族化合物如苯酚与碳酸亚烷基酯(例如碳酸亚乙酯)反应以提供式 AR-(Y)_n 的化合物。优选地，在碱催化剂如氢氧化钠水溶液的存在下，和在约 25~约 300°C 的温度下、优选地在约 50~约 200°C 的温度下，使该羟基芳族化合物和碳酸亚烷基酯反应。反应期间，可以通过共沸蒸馏或其它常规手段将水从反应混合物中除去。如果期望分离获得的中间产物，在反应结束时(由 CO_2 放出的停止来表示)，可以收集反应产物，并冷却以凝固。另外，可以将羟基芳族化合物如苯酚与环氧化物如环氧乙烷、环氧丙烷、环氧丁烷或氧化苯乙烯在类似的条件下反应，由此引入一个或多个氧-亚烷基基团。

为了形成式(I)的化合物，可以进一步将获得的中间化合物 Ar-(Y)_n 与多卤代(优选四氯代)烃(例如 1,4-二氯丁烷、2,2-二氯丙烷等)、或者二-或多-烯烃(例如丁二烯、异戊二烯、二乙烯基苯、1,4-已二烯、1,5-己二烯等)反应，由此产生具有亚烷基连接基的式(I)化合物。Ar-(Y)_n 和酮或醛(例如甲醛、丙酮、二苯甲酮、苯乙酮等)的反应提供了亚烷基连接的化合物。通过将 Ar-(Y)_n 部分与二酸或酸酐(例如草酸、丙二酸、琥珀酸、戊二酸、己二酸、琥珀酸酐等)反应，可以形成酰基-连接的化合物。通过 Ar-(Y)_n 部分与适宜双官能硫化试剂(例如单氯化硫、二氯化硫、亚硫酰氯(SOCl_2)、硫酰氯(SO_2Cl_2)等)的反应，可以提供硫化物、多硫化物、亚磺酰和磺酰连接基。为了提供具有亚烷基醚连接基的式(I)化合物，可以将 Ar-(Y)_n 部分与二乙烯基醚反应。其中 L 为直接的碳-碳连接的式(I)化合物，可以借助于氧化偶联聚合来形成，其中采用氯化铝和氯化亚铜的混合物，例如如 P. Kovacic 等，J. Polymer Science: Polymer Chem. Ed., 21, 457 (1983)所述的那样。另外，这种化合物可以通过将 Ar-(Y)_n 部分与碱金属反应来形成，例如如 "Catalytic Benzene Coupling on Caesium/Nanoporous Cabron Catalysts", M.G. Stevens, K.M. Sellers, S. Subramoney 和 H.C. Foley, Chemical
Communications, 2679-2680 (1988)中所述的那样。

为了形成具有亚烷基连接基，更优选亚甲基连接基的式(I)化合物，可以将 Ar-(Y)ₐ反应混合物中剩余的碱与酸中和，优选使用过量酸(例如，磷酸)，并且与醚、优选甲醛反应，且优选地在残留酸的存在下，由此提供亚烷基、优选亚甲基接接的式(I)化合物。式(I)化合物的聚合度范围为2~约101(对应于m的数值为1~约100)，优选约2~约50，最优选约2~约25。

为了提供式(I)的优选化合物，可以将丙烯基乙醇和2-甲氧基苯与甲醛

在酸催化剂的存在下反应，优选地选自油溶性硫酸和固体酸催化剂。优选地，该丙烯基乙醇为羟基基化合物在碱催化剂的存在下的反应的产物。优选地，在引入甲醛之前用过量酸将剩余的碱中和。

适用作为烟灰分散剂的本发明的化合物，可以通过将式(I)的化合物与酰化剂、烷基化试剂和芳基化试剂的至少一种反应来形成，且由下式所示:

\[
\begin{align*}
(Y)_{a} & \\
\text{Ar} & \text{L}\cdots\text{Ar}_{m}
\end{align*}
\]

其中，每个Ar独立地表示芳族部分，具有0~3个选自烷基、烷氧基、烷

氧基烷基、羟基、羟基烷基、酰氧基、酰氧基烷基、酰氧基烷氧基、芳氧基、芳氧基烷基、芳氧基烷氧基、卤素及其组合的取代基；每个L独立地为含碳-碳单键或连接基的连接部分；每个Y独立地为式Z'O-或

Z(O(CR₂)ₙ)ₓX-的部分，其中X选自(CR₂)ₓO和S；R和R'各自独立地选自H、C₁-C₆烷基和芳基；z为1~10；n在X'为(CR₂)ₓ时为0~10，且在

X为O或S时为2~10；y为1~30；Z为H、酰基、多酰基、内酯酸酯、酸酯基、烷基或芳基；Z'选自C₁-C₁₀₀烷基和芳基；每个a独立地为0~3，前提至少一个Ar部分带有至少一个基团Z(O(CR₂)ₙ)ₓX'，其中Z不为H；和m为1~100。

适宜酰化试剂包括烃基碳酸、烃基碳酸卤化物、烃基磷酸和烃基磺酸

卤化物、烃基磷酸和烃基磷酸卤化物、烃基氯酸酯和烃基硅烷酰化试剂。

优选的酰化试剂包括提供双酯、酯酸和/或酯内酯取代基的多酰化试剂。优
选的酰化试剂为 C₈和更高烃基异氰酸酯, 如十二烷基异氰酸酯和十六烷基异氰酸酯和 C₈或更高烃基酰化试剂, 更优选聚丁烯基琥珀酰化试剂如聚丁烯基、或聚异丁烯基琥珀酸酐(PIBSA)。优选地该烃基琥珀酰化试剂由数均分子量(Mn)将为约 100~5000, 优选为约 200~约 3000, 更优选为约 450~约 2500 的聚烯烃提供。优选地该烃基琥珀酰化试剂由数均分子量(Mn)将为约 100~5000, 优选为约 200~约 3000, 更优选为约 200~约 2000 的聚烯烃提供。酰化试剂可以通过本领域技术人员公知的常规方法来制备，如氯-辅助的、热和自由基接枝方法。该酰化试剂可以是单-或多官能的。优选地，该酰化剂可以具有小于 1.3 的官能度，其中官能度(F)依据下式来确定：

\[F = \frac{\text{SAP} \times \text{Mn}}{112200 \times \text{A.I.}} - \text{SAP} \times \text{MW} \]

其中，SAP 为皂化值(即，在完全中和 1g 含酰基的反应产物中的酰基基团中所消耗的 KOH 的 mg 数，依据 ASTM D94 测量); Mn 为初始聚烯烃的数均分子量; A.I. 为含酰基的反应产物的活性成分百分比(剩余部分为未反应的聚烯烃、酰化试剂和稀释剂); 且 MW 为酰基的分子量(例如，对于琥珀酸酐为 98)。酰化试剂用于制备分散剂，且形成酰化试剂的更详细说明描述于适宜分散剂的说明中，在下文中给出。

适宜酰化试剂包括 C₈~C₃₀烷醇，优选 C₈~C₁₈烷醇。适宜酰化试剂包括 C₈~C₃₀，优选 C₈~C₁₈烷烃-取代的芳基单-或多氢氧化物。

可以调节式(I)化合物与酰化、烷基化、和/或芳基化试剂的摩尔量，使得全部、或者仅一部分如 25%或更多的、50%或更多的或者 75%或更多、的基团 Y 被转化为基团 Y’。当式(I)化合物具有羟基和/或烷基羟基取代基，且该化合物与酰化基团反应的情形时，能够将全部或一部分该羟基和/或烷基羟基取代基转化为酰氧基或酰氨基烷基。当式(I)化合物具有羟基和/或烷基羟基取代基，且该化合物与芳基化基团反应的情形时，能够将全部或一部分该羟基和/或烷基羟基取代基转化为芳氧基或芳氨基烷基。由此，认为由酰氧基、酰氨基烷基、芳氧基和/或芳氨基烷基取代的式(II)化合物在本发明的范围之内。式(II)化合物的盐形式，其中 Z 为酰基化基团，其盐由与
碱中和而获得（例如，由于与添加剂如或配制的润滑剂中的金属清洁剂相互作用而可能发生），也被认为是在本发明的范围之内。

一类优选的式（II）化合物包括式（III）的化合物：

\[
\begin{align*}
\text{(Y)}_a & \text{ (Y)}_a \\
\text{Ar} & \text{(L-Ar)}_m \\
\text{Z} & \text{ (Y)}_a \\
\text{Ar} & \text{(L-Ar)}_m \\
\text{Z} & \text{ (Y)}_a \\
\text{Ar} & \text{(L-Ar)}_m \\
\end{align*}
\]

（III）

其中，一个或多个 Y’为基团 Z(O(CR_2)_n)X_-, 其中 Z 衍生自式 IV 的内酯酯、式 V 的酸酯、或其组合；

(IV)

(V)

其中，R^1、R^2、R^3、R^4、R^5、R^6 和 R^7 独立地选自 H、烷基和聚烷基和聚链烯基，含有最多 200 个 C；且 Z’为式 VI 的双酰基；

(VI)

其中，R^8 和 R^9 独立地选自 H、烷基和聚烷基和聚链烯基，含有最多 300 个 C；m 为 0~100；且 p 和 s 各种独立地为约 0~约 25，前提是 p < m；s < m；且 p+s > 1。

优选的式（III）化合物为这样的化合物，其中约 2%~约 98% 的 Y’单元为 Z(O(CR_2)_n)O_-, 其中 Z 为酰基且 y 为 1~6，且约 98%~约 2% 的 Y’单元为-OR’，如式（III）的化合物，其中 Ar 为基；约 2%~约 98% 的 Y’单元为 ZOC_2H_4CH_2O_-, 约 98%~约 2% 的 Y’单元为-OC_3H_5；且 L’为 CH_2。特别优
选式 (III) 的化合物，其中 Ar 为萘；约 40%~约 60% 的 Y’ 单元为 ZOCH₂CH₂O⁻，约 60%~约 40% 的 Y’ 单元为 OCH₃；m 为约 2~约 25；p 为 1~约 10；且 s 为约 1~约 10。优选地，式 (III) 的基团 Z 衍生自聚烷基或聚链烯基琥珀酰化试剂，其衍生自 Mn 为约 100~约 5000 的聚链烯，或者烃基异氮酸酯。

式 (II) 的化合物可以衍生自式 (I) 的前体，通过将式 (I) 的前体与酰化试剂反应，优选地在液体酸催化剂如磷酸例如十二烷基苯磷酸、对甲苯磺酸或聚磷酸，或者固体酸催化剂如 Amberlyst-15、Amberlyst-36、沸石、无机酸粘土或聚磷酸钨的存在下；在约 0~约 300°C、优选约 50~约 250°C 的温度下。在上述条件下，优选的聚丁烯基琥珀酰化试剂可以与式 (I) 化合物形成二酯、酸酯或内酯酯。

式 (II) 的化合物可以衍生自式 (I) 的前体，通过将式 (I) 的前体与烷基化试剂或芳基化试剂反应，优选地在三苯基膦和偶氮二羧酸二乙酯 (DEAD)，液体酸催化剂如磷酸例如十二烷基苯磷酸、对甲苯磺酸或聚磷酸，或者固体酸催化剂如 Amberlyst-15、Amberlyst-36、沸石、无机酸粘土或聚磷酸钨的存在下；在约 0~约 300°C、优选约 50~约 250°C 的温度下。

一种优选的实施方式中，式 (II) 的化合物为亚甲基-桥接的苯氧基乙醇和 2-甲氧基苯化合物的混合物，与选自聚烷基琥珀酰化试剂和聚链烯基琥珀酰化试剂的反应产物，优选地衍生自 Mn 为约 300~约 5000 的聚丁烯，优选地在酸催化剂 (优选油溶性酸催化剂或固体酸催化剂) 的存在下。优选地，琥珀酰化试剂的总摩尔数与基基部分的总摩尔数的比例为约 1.10~约 0.5。优选地，该亚甲基-桥接的苯氧基乙醇和 2-甲氧基苯化合物为这样的方法的产物，其中 (i) 将羟基苯化合物和碳酸亚乙酯在碱催化剂的存在下反应以形成苯氧基乙醇；(ii) 用过量酸中和该碱以提供中间体；和 (iii) 将该中间体与 2-甲氧基苯和甲醛在残留酸的存在下反应。

本发明的润滑油组合物包括主要量的润滑油粘度油和次要量的式 (II) 的烟灰分散剂。优选地，本发明的润滑油组合物将含有约 0.005~15 质量%、
优选约 0.1~约 5 质量%、更优选约 0.5~约 2 质量%的式 (II)的化合物。

适用于本发明内容中的润滑粘度油可以选自于天然润滑油、合成润滑油和其混合物。润滑粘度油可以是粘度从轻质馏出矿物油到重质润滑油范围的润滑油，如汽油发动机油、矿物润滑油和重柴油机油。100℃下测定油的粘度范围一般从约 2 厘秒到约 40 厘秒，特别是从约 4 厘秒到约 20 厘秒。

天然油包括动物油和植物油(如蓖麻油、猪油);液体石油和加氢精制、溶剂处理或热处理的链烷属、环烷属和链烷-环烷属混合型矿物油。由煤或页岩得到的润滑粘度油也可用作基础油。

合成润滑油包括烃油和卤代烃油，例如聚合和互聚烯烃(如聚丁烯、聚丙烯、丙烯-聚醛烯共聚物、氯化聚丁烯、聚 1-己烯、聚 1-辛烯、聚 1-癸烯); 烷基苯(如十二烷基苯、十四烷基苯、二甲基苯等); 聚苯(如联苯、苯环烷烃化聚苯胺);和烷基化二苯醚及烷基化二苯硫醚;以及它们的衍生物、类似物和同系物。也可以使用的是由 Fischer-Tropsch 合成烃从气至液(gas to liquid)过程中获得的合成油，该合成烃通常被称为气至液或“GTL”基础油。

环氧化聚合物和互聚物及其末端羟基经酯化、醚化等反应改性的衍生物，构成另一类公知的合成润滑剂。它们例如是经环氧化乙烷或环氧化丙烷聚合反应制成的聚氧化烷基聚合物; 聚氧化烷基聚合物的烷基化和芳基化(如分子量 1000 的甲基-聚异丙二醇醚或分子量 1000-1500 的聚乙二醇的二苯基醚); 和它们的一元与多元羧酸酯，例如四乙二醇的乙酸酯、C₃~C₈ 混合脂肪酸酯和 C₁₃ 含氧酸二酯。

另一类适用的合成润滑剂包括二羧酸(例如邻苯二甲酸、琥珀酸、烷基琥珀酸和链烯基琥珀酸、马来酸、壬二酸、辛二酸、癸二酸、富马酸、己二酸、亚油酸等;聚丁烯、聚丙烯二酸、烷基丙二酸、链烯基丙二酸)与各种醇(例如丁醇、己醇、癸醇、2-乙基己醇、乙二醇、二乙二醇单醚、丙二醇)的酯。这种酯的具体例子包括乙二酸二丁酯、癸二酸二(2-乙基己醇)酯、富马酸二
正己酯、癸二酸二辛酯、壬二酸二异辛酯、壬二酸二癸酯、邻苯二甲酸二辛酯、邻苯二酸二癸酯、癸二酸二(二十烷醇)酯、亚油酸二聚物的 2-乙基己酯、和一摩尔癸二酸与二摩尔四乙二醇和二摩尔 2-乙基己酸反应生成的混合酯。

适合用作合成油的酯还包括那些由 C₅~C₁₂ 一羧酸与多元醇和多元醇酯例如新戊二醇、三羟甲基丙烷、季戊四醇、二季戊四醇和三季戊四醇制得的酯。

诸如聚烷基、聚芳基、聚烷氧基或聚芳氧基硅氧烷油和硅酸酯油的硅基油属于另一类适用的合成润滑剂，这类油包括硅酸四乙酯、硅酸四异丙酯、硅酸四(2-乙基己)酯、硅酸四-(4-甲基-2-乙基己)酯、硅酸四-(对叔丁基苯)酯、六-(4-甲基-2-乙基己)二硅氧烷、聚(甲基)硅氧烷和聚(甲基苯基)硅氧烷。其它合成润滑油包括含磷酯的液体酯(如磷酸三甲基酯、磷酸三辛酯、癸基磷酸酯的二乙酯)和聚合的四氢呋喃。

润滑粘度油可以包括 I 类、II 类或 III 类基料或上述基料的调合基础油。优选地，润滑粘度油是 II 类或 III 类基料、或其混合物、或者是 I 类基料与一或多种 II 类和 III 类基料的混合物。优选地，主要量的润滑粘度油是 II 类、III 类、IV 类或 V 类基料、或其混合物。优选地，基料或调合基料的饱和烃含量至少为 65%、更优选至少为 75% 如至少 85%。最优选地，基料或调合基料的饱和烃含量大于 90%。优选油或调合油的硫含量小于 1%、优选小于 0.6%、最优选小于 0.4%(以重量计)。

油或调合油的挥发性(按 Noack 挥发性试验(ASTM D5880)测定)优选小于或等于 30%、优选小于或等于 25%、更优选小于或等于 20%、最优选小于或等于 16%。油或调合油的粘度指数(VI)优选至少为 85、优选至少 100、最优选从约 105 到 140。

本发明的基料和基础油的定义与美国石油学会(API)出版物“发动机油许可和认证系统(Engine Oil Licensing and Certification System)”，工业服务部分(Industry Services Department)，第十四版，1996 年 12 月，附录 1,
1998年12月中所述的定义相同。所述公开文献将基础油分类如下：
(a) 用下表1所规定的试验方法测得，I类基料含有小于90％饱和物和/或大于0.03％硫，其粘度指数大于或等于80且小于120。
(b) 用下表1所规定的试验方法测得，II类基料含有大于或等于90％饱和物和小于或等于0.03％硫，其粘度指数大于或等于80且小于120。
(c) 用下表1所规定的试验方法测得，III类基料含有大于或等于90％饱和物和小于或等于0.03％硫，其粘度指数大于或等于120。
(d) IV类基料为聚α烯烃(PAO)。
(e) V类基料包括所有未在I、II、III或IV类基料之内的其它基料。

<table>
<thead>
<tr>
<th>性能</th>
<th>试验方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>饱和烃</td>
<td>ASTM D 2007</td>
</tr>
<tr>
<td>粘度指数</td>
<td>ASTM D 2270</td>
</tr>
<tr>
<td>硫</td>
<td>ASTM D 2622</td>
</tr>
<tr>
<td></td>
<td>ASTM D 4294</td>
</tr>
<tr>
<td></td>
<td>ASTM D 4927</td>
</tr>
<tr>
<td></td>
<td>ASTM D 3120</td>
</tr>
</tbody>
</table>

本发明的润滑油组合物可以进一步含有一种或多种无灰分散剂，将其加到润滑油中时，有效地降低了使用时汽油和柴油发动机中沉积物的形成。适用于本发明的组合物的无灰分散剂包括具有能够与待分散的颗粒结合的官能团的油溶性聚合物烃主链。典型地，这种分散剂包括连接于聚合物主链的胺、醇、酰胺或酯极性部分，经常通过桥接基团。该无灰分散剂可以，例如，选自于长链烃取代的单-和多羧酸或其酸酐的油溶性盐、酯、氨基酸、酰胺、酰亚胺和取代唑；长链烃的硫代羧酸酯衍生物；具有直接连接于其上的多胺部分的长链脂肪族烃；和通过将长链取代基与甲醛和聚亚烷基聚胺缩合而形成的Mannich缩合产物。

优选地，该无灰分散剂为“高分子量”分散剂，其数均分子量(M_n)大于
或等于 4000，如 4000~20000 之间。精确的分子量范围将取决于用于形成该分散剂的聚合物的类型、存在的可溶性数和采用的极性官能团的类型。例如，对于聚异丁烯衍生的分散剂，高分子量分散剂为采用数均分子量为约 1680~约 5600 的聚合物主链形成的分散剂。典型的可商用获得的聚异丁烯基分散剂含有数均分子量范围为约 900~约 2300 的聚异丁烯聚合物，通过马来酸酐(MW=98)官能化，且采用分子量为约 100~约 350 的聚酰衍生化。较低分子量的聚合物也可以用于形成高分子量分散剂，通过将多个聚合物链引入分散剂中，这点可以采用本领域中已知的方法来完成。

聚合物的聚合度 D_p 为：

$$D_p = \sum \frac{M_n \times \text{mol.} \% \text{单体 } i}{100 \times \text{分子量 单体 } i}$$

且由此对于两种单体的共聚物 D_p，可以如下来计算：

$$D_p = \frac{M_n \times \text{mol.} \% \text{单体 } 1}{100 \times \text{分子量 单体 } 1} + \frac{M_n \times \text{mol.} \% \text{单体 } 2}{100 \times \text{分子量 单体 } 2}$$

优选地，用于本发明的聚合物主链的聚合度为至少 30，典型为 30~165，更优选为 35~100。

本发明中采用的优选的烃或聚合物包括均聚物、互聚物或较低分子量
烃。一类有用的聚合物包括乙烯和/或至少一种式 H₂C=CHR¹的 C₃~C₂₈ α-烯烃的聚合物，其中 R¹为包括 1~26 个碳原子的直链或支化烷基且其中该聚合物链含有碳-碳双键且其中该聚合物链含有碳-碳饱和度，优选地高度末端亚乙烯基不饱和。用于本发明的一个优选类型的该聚合物包括乙烯和至少一种上式 α-烯烃的共聚物，其中 R¹为 1~18 个碳原子的烷基，且更优选为 1~8 个碳原子的烷基，且更优选为 1~2 个碳原子的。由此，适用的 α-烯烃单体和共聚单体包括，例如，丙烯、丁烯-1、己烯-1、辛烯-1、4-甲基戊烯-1、癸烯-1、十二碳烯-1、十三碳烯-1、十四碳烯-1、十五碳烯-1、十六碳烯-1、十七碳烯-1、十八碳烯-1、十九碳烯-1 及其混合物(例如，丙烯和丁烯-1 的混合物等)。这种聚合物的实例为丙烯均聚物，丁烯-1 均聚物，丙烯-丁烯共聚物，乙烯-丙烯共聚物，乙烯-丁烯-1 共聚物等，其中该聚合物含有至少一些末端和/或内部的不饱和度。优选的聚合物为乙烯和丙烯、乙烯和丁烯-1 的不饱和共聚物。本发明的共聚物可以含有少量，例如 0.5~5 mol% 的 C₄~C₁₈ 共聚烯烃共聚单体。但是，优选地，本发明的聚合物仅包括 α-烯烃均聚物，α-烯烃共聚单体的互聚物和乙烯与 α-烯烃共聚单体的互聚物。本发明中采用的聚合物的乙烯摩尔含量优选范围为 20~80%，且更优选为 30~70%。当采用丙烯和/丁烯-1 作为与乙烯的共聚单体时，该共聚物的乙烯含量最优选为 45~65%，尽管也可以存在更高或更低的乙烯含量。

这些聚合物可以通过在包括至少一种金属茂(例如，环戊二烯-过渡金属化合物)和铝氧烷(alumoxane)化合物的催化剂系统的存在下，使 α-烯烃单体、或者 α-烯烃单体的混合物、或者包括乙烯和至少一种 C₃~C₂₈ α-烯烃单体的混合物聚合来制备。采用这种方法，可以获得其中 95% 或更多的聚合物链具有末端亚乙烯基-型不饱和度的聚合物。可以通过 FTIR 光谱分析、滴定、或者 C¹³ NMR 测量显示末端亚乙烯基不饱和度的聚合物链的百分比。后一种类型的互聚物可以通过式 POLY-C(R¹)=CH₂ 来表示，其中 R¹为 C₁~C₂₆ 烷基、优选为 C₁~C₁₈ 烷基、更优选为 C₁~C₈ 烷基、且最优选为 C₁~C₂ 烷基(例如甲基或乙基)，且其中 POLY 表示聚合物链。R¹烷基的链
长将依据选择用于该聚合的共聚单体而变化。少量的聚合物前可以含有末端乙烯基，即乙烯基不饱和度，即 POLY-CH=CH₂，且一部分聚合物前可以含有中间的单不饱和度，例如 POLY-CH=CH(R¹)，其中 R¹ 如上所定义。这些末端不饱和的聚合物可以通过已知的金属茂化学来制备，且也可以通过 US 5,498,809、5,663,130、5,705,577、5,814,715、6,022,929 和 6,030,930 中所述的方法来制备。

另一有用类型的聚合物为通过异丁烯、苯乙烯等的阳离子聚合而制得的聚合物。这类中常见聚合物包括通过在 Lewis 酸催化剂如三氯化铝或三氯化硼的存在下具有约 35%~75% 重量的丁烯含量、和约 30%~60% 重量的异丁烯含量的 C₄ 精炼流的聚合而获得的聚异丁烯。用于制备聚正丁烯的单体的优选来源为石油进料流如 Raffinate II。现有技术如 US 4,952,739 中公开了这些原料。聚异丁烯为本发明的最优选的主链，因为其容易通过丁烯流的阳离子聚合而获得(例如，采用 AlCl₃ 或 BF₃ 催化剂)。这种聚异丁烯通常含有残余量的不饱和度，含量为每个聚合物链约 1 个乙烯基双键，位于该链之上。

如上所示，采用的聚异丁烯聚合物通常是基于约 900~2300 的烃链。制备聚丁烯的方法是已知。可以通过卤化(例如氯化)、热“烯(ene)”反应、或者通过采用催化剂(例如过氧化物)的自由基接枝将聚异丁烯官能化，如下所述。

在采用利用催化剂（例如过氧化物）的自接枝方法时，沿着聚合物链无规地实行官能化。通过将氯或溴在60~250°C、优选110~160°C、例如120~140°C的温度下从聚合物中通过约0.5~10、优选1~7小时，使不饱和
α-烯烃聚合物卤化例如氯化或溴化达到约1~8重量％、优选3~7重量％氯、
或溴（基于聚合物或烃的重量），可以实现选择性官能化。可以随后将卤化
聚合物或烃（下文中称作主链）与足够的能够将官能部分加成到主链上的单
不饱和反应物例如单不饱和羧酸反应物，在100~250°C、通常为约
180°C~235°C下反应约0.5~10例如3~8小时，使获得的产物将含有期望摩
尔数的单不饱和羧酸反应物/每摩尔的卤化主链。另外，可以将主链和单不
饱和羧酸反应物混合和加热，同时将氯加到热的材料中。

可以将该烃或聚合物主链，例如，采用产生羧酸的部分（优选酸或酸酐
部分）选择地在聚合物或烃链的碳-碳不饱和度的位置上，或者采用上述三
种方法沿着链无规地，或者其组合，以任意顺序，官能化。

用于将主链官能化的选择的单不饱和反应物包括单-和二羧酸材料，即
酸、酸酐、或酸酯材料，包括(i)单不饱和 C_4~C_10 二羧酸，其中(a)羧基为相
邻的（即，位于相邻的碳原子上）且(b)所述相邻碳原子的至少一个，优选两
个为所述单不饱和度的一部分；(ii) (i)的衍生物，如(i)的酸酐或者 C_1~C_5
醇衍生的单-或二酯；(iii)单不饱和 C_3~C_10 单羧酸，其中碳-碳双键与羧基共
轭，即为结构-C=C-CO_2-；和(iv) (iii)的衍生物，如(iii)的 C_1~C_5 醇衍生的单
-或二酯。也可以使用单不饱和羧酸材料(i)~(iv)的混合物。在与主链反应时，
该单不饱和羧酸反应物的单不饱和度变为饱和的。由此，例如，马来酸酐
变为主链取代的琥珀酸酐，且丙烯酸变为主链取代的丙酸。这种单不饱和
羧酸反应物的实例为富马酸、衣康酸、马来酸、马来酸酐、氯马来酸、氯
马来酸酐、丙烯酸、甲基丙烯酸、巴豆酸、肉桂酸、和前述的较低烷基（例
如 C_1~C_4 烷基）酯，例如马来酸甲酯、富马酸乙酯、和富马酸甲酯。该单不
饱和羧酸反应物、优选马来酸酐，用量范围典型地为约0.01~约20重量％、
优选0.5~10重量％，基于该聚合物或烃的重量。
虽然氯化通常有助于增加起始烯烃聚合物与单不饱和官能化反应物的反应性，但是对于预期用于本发明的聚合物或烃来说并不必须的，特别是那些优选的、具有高末端键含量和反应性的聚合物或烃。由此，优选地，将主链和单不饱和官能反应物例如羧酸反应物在升高的温度下接触，由此使初始的热“烯”反应发生。烯反应是已知的。

可以通过各种方法将官能部分沿聚合物链连接而使该烃或聚合物主链官能化。例如，可以采用如上所述的单不饱和羧酸反应物，在自由基引发剂的存在下，将溶液或固体形式的聚合物接枝。在溶液中进行时，接枝在约 100~260°C、优选 120~240°C 的升高的温度下进行。优选地，在含有例如 1~50 重量％、优选 5~30 重量％的聚合物（基于初始的总油溶液）的矿物润滑油溶液中实施自由基引发的接枝。

可以使用的自由基引发剂为过氧化物、氢过氧化物、和偶氮化合物，优选沸点高于约 100°C 且在接枝温度范围内热分解以提供自由基的那些。这些自由基引发剂的示例为偶氮丁腈、双叔丁基过氧化物和二枯烯过氧化物。引发剂的用量，在使用时，典型地为 0.005%~1% 重量，基于反应混合物溶液的重量。典型地，前述单不饱和羧酸反应物和自由基引发剂的重量比例范围为约 1.0:1~30:1，优选 3:1~6:1。优选地在惰性气氛下，如在氮气覆盖下，进行接枝。获得的接枝聚合物的特征在于，具有沿聚合物链无规连接的羧酸（或酯或酸酐）部分；当然，应理解一些聚合物仍保持未接枝。上述自由基接枝可用于本发明的其它聚合物和烃。

随后可以用亲核反应物，如胺、胺-醇、醇、金属化合物、或其混合物，将官能化的油溶性聚合物烃主链进一步衍生活化，由此形成相应的衍生物。用于衍生官能化聚合物的适用的胺化合物包括至少一种胺且可以包括一种或多种其它胺或其它反应性或极性基团。这些胺可以是烃基胺或者可以主要是烃基胺，其中该烃基包括其它基团，例如羟基、烷氧基、酰胺基、腈、咪唑啉基等。特别适用的胺化合物包括单-和多胺，例如，总共约 2~60、如 2~40（例如，3~20）个碳原子的聚亚烷基和聚氧化烷基多胺，每个分子具
有 1~12, 如 3~12, 且优选 3~9 个氮原子。可以有益地使用胺化合物的混合物，如通过烷基二卤化物与胺的反应而制得的那些。优选的胺为脂肪酸饱和胺，包括，例如，1,2-二氨基乙烷, 1,3-二氨基丙烷, 1,4-二氨基丁烷, 1,6-二氨基己烷; 聚亚乙基胺如二亚乙基三胺、三亚乙基四胺、四亚乙基五胺; 和聚亚丙基胺如 1,2-亚丙基二胺、和二-(1,2-亚丙基) 三胺。

也可以采用羟基化合物如单羟基和多羟基醇，或者采用芳族化合物如苯酚和菲酚，将该官能化的、油溶性聚合物烃主链衍生化。优选的多羟基醇包括亚烷基二醇，其中亚烷基含有 2~8 个碳原子。其它适用的多羟基醇包括甘油、甘油的单双酸酯、甘油的单硬脂酸酯、甘油的单甲基醚、季戊四醇、二季戊四醇、和其混合物。酯分散剂也可以衍生自不饱和醇，如烯丙醇、肉桂醇、炔丙醇、1-环己烯-3-醇、烯油醇。仍另一类能够制得无余分散剂的醇包括醚-醇，包括氧化亚烷基和氧化亚苯基。这类醚醇的实例为具有最多 150 个氧化亚烷基的醚醇，其中亚烷基含有 1~8 个碳原子。该酯分散剂可以是琥珀酸的二酯或酸酯，即，部分酯化的琥珀酸，以及部分酯化的多羟基醇或醇，即，具有自由的醇或酚羟基的酯。可以通过各种已知方法中的任一种来制备酯分散剂，例如，如 US 3,381,022 中所描述的那样。

优选类型的分散剂包括多胺衍生成的聚 a-烯烃分散剂，特别是乙烯/丁烯 a-烯烃和聚异丁烯基的分散剂。特别优选的是衍生自聚异丁烯的分散剂，其用琥珀酸酯基团取代，并与聚亚乙基胺例如聚亚乙基二胺、四亚乙基五

25
胺，或者聚氯亚烷基多胺例如聚氯亚丙基二胺、三羟甲基氨基甲烷，羟基化合物例如季戊四醇，和其组合反应。一种特别优选的分散剂组合为这样的组合，即(A)由琥珀酸酯基团取代的聚异丁烯，并与(B)羟基化合物例如季戊四醇反应，(C)聚氧化亚烷基多胺例如聚氯亚丙基二胺，或者(D)聚亚烷基二胺例如聚亚乙基二胺和四亚乙基五胺的组合，每摩尔(A)使用约0.3至约2摩尔的(B)、(C)和/or(D)。另一优选的分散剂组合包括(A)聚异丁烯基琥珀酸酯与(B)聚氧化亚烷基多胺例如四亚乙基五胺，和(C)多羟基或聚羟基取代的脂肪族伯胺例如季戊四醇或三羟甲基氨基甲烷的组合，如US 3,632,511中所述的那些。

另一类无灰分分散剂包括Mannich碱缩合产物。这些产物通常是通过将约1mol烷基取代的单或多羟基苯与约1-2.5mol酰基化合物(如甲酸和多聚甲醛)和约0.5-2mol聚亚烷基多胺进行缩合反应制成的，例如参见US 3,442,808的公开内容。这类曼尼期碱缩合产物可包括金属茂催催化聚合反应的聚合物产物作为苯基上的取代基，或可以类似US 3,442,808中描述的方式与含有琥珀酸酯上取代的聚合物的化合物反应。使用金属茂催化剂体系合成的官能化和/or衍生烯烴聚合物的实例描述于上述同一公开文献中。

进一步，可以通过各种传统后处理方法如硅酸化对分散剂进行后处理，如US 3,087,936和3,254,025中通常所教导的那样。通过用数量足以对每摩尔的酰基氯基反应物提供约0.1至约20原子比例的硼的硼化合物如氧化硼、卤化硼、硼酸(boron acid)和硼酸酯处理酰基氯化物反应，易于实现分散剂的硼酸化。适用的分散剂含有约0.05至约2.0质量％，例如约0.05至约0.7质量％的硼。在所述产物中呈脱水硼酸聚合物(主要为(HBO₂)₃)的硼酸盐附着于分散剂的酰亚胺和二酰亚胺上，作为例如诸如二酰亚胺的偏硼酸盐的胺盐。硼酸化可如下进行：通常以浆状物形式，向酰基氯化合物中添加约0.5至4质量％，例如约1至约3质量％(基于酰基氯化合物的质量)的硼化合物，优选硼酸，并在搅拌条件下在约135℃至约190℃，如140℃至170℃下加热约1至约5小时，随后进行氮气提。或者，可通过
向二羧酸物质和胺的酸反应混合物中添加硼酸，同时除去水来进行所述硼处理。在本领域中公知的其它后反应方法也可应用。

分散剂可以进一步通过与所谓的“封端剂”反应来进行后处理。通常，含氮分散剂已经被“封端”，以减少这种分散剂对于氨弹性体发动机密封材料的不利影响。各种封端剂和方法是公知的。在这些公知的“封端剂”中，最合适的是那些能将碱性分散剂氨基基团转化为非碱性部分(如酰氨基、亚酰氨基)的试剂。含氮分散剂与乙酰乙酸烷基酯(如乙酰乙酸乙酯(EAA))的反应例如描述于 US 4,839,071、4,839,072 和 4,579,675。含氮分散剂与甲酸的反应例如描述于 US 3,185,704。含氮分散剂与其它合适的封端剂的反应产物描述于 US 4,663,064(羟基乙酸)、4,612,132、5,334,321、5,356,552、5,716,912、5,849,676、5,861,363(烷基和羧酸烷基酯，如碳酸亚乙酯)、5,328,622(单环氧化物)、5,026,495、5,085,788、5,259,906、5,407,591(聚(如二)环氧化物)和 4,686,054(马来酸酐或琥珀酸酐)。前面所列的这些并不完全，含氮分散剂封端的其它方法对于本领域技术人员来说也是公知的。

为了充分的火花塞沉积物控制，含氮分散剂添加量可以提供给润滑油脂组合物约 0.03 质量%~约 0.15 质量%、优选为约 0.07 质量%~约 0.12 质量%的氨。

也可以在本发明的组合物中引入其它添加剂，以使它们能够满足特定要求。该润滑油脂组合物中可以包括的添加剂的实例为清洁剂、金属防锈剂、粘度指数改性剂、腐蚀抑制剂、氧化抑制剂、摩擦改性剂、其它分散剂、消泡剂、抗磨剂和倾点抑制剂。下面进一步详细地讨论一些。

含金属或形成灰分的清洁剂起减少火焰或除去沉积物的清洁剂作用和酸中和剂或防锈剂的作用，从而减少磨损和腐蚀并延长发动机寿命。清洁剂通常包含极性头部并具有长的憎水性尾部，极性头部包含酸性有机化合物的金属盐。该盐可含有基本上为化学计算量的金属，在该情况下它们通常被称为中性盐或中性盐，并通常具有 0 至 80 的总碱数或 TBN(可通过 ASTM D2896 测量)。通过过量金属化合物(如氧化物或氢氧化物)与酸性气
体(如二氧化碳)进行反应可引入大量的金属碱。所得到的高碱性清洁剂包含作为金属碱(如碳酸盐)胶束外层的中和清洁剂。这种高碱性清洁剂可具有 150 或更高的 TBN，且通常具有 250 至 450 或更高的 TBN。

可使用的清洁剂包括金属，尤其是碱金属或碱土金属如钠，钾，锂，钙和镁的油溶性中性和高碱性磺酸盐，酚盐，硫化镍盐，硫代膦酸盐，水杨酸盐和环烷酸盐及其它油溶性磷酸盐。最通用的金属是钙和镁(其在润滑剂中使用的清洁剂中可同时存在)和钙和/或镁与钠的混合物。特别方便的金属清洁剂是 TBN 为 20 至 450 的中性和高碱性磺酸钙，和 TBN 为 50 至 450 的中性和高碱性钙的酚盐和硫化镍盐。可使用清洁剂的组合，无论高碱性的或是中性的或两者。

磺酸盐可由磺酸来制备，磺酸通常由例如由石油分馏或通过芳烃烷基化得到的烷基取代的芳烃进行磺化获得。实例包括通过对苯，甲苯，二甲苯，萘，联苯或它们的卤代衍生物如氯苯，氯代甲苯和氯代苯进行烷基化得到的那些。可在催化剂存在下用具有约 3 至多于 70 个碳原子的烷基化剂来进行该烷基化。芳基磺酸盐中，每个烷基取代的芳基部分通常含有约 9 至约 80 或更多的碳原子，优选约 16 至约 60 个碳原子。

油溶性磺酸盐或烷基芳基磺酸可用金属的氧化物，氢氧化物，醇盐，碳酸盐，羧酸盐，硫化物，硫氢化物，硝酸盐，硼酸盐和醚进行中和。金属化合物的用量根据最终产物所需的 TBN 来进行选择，但通常范围为所需化学计量的约 100 至 220 质量%(优选至少 125 质量%)。

酚和硫化酚的金属盐通过与适当金属化合物如氧化物或氢氧化物进行反应来制备，且可通过本领域中公知的方法获得中性或高碱性产物。可通过酚与硫或含硫化合物如硫化氢，单卤化硫或二卤化硫进行反应，以形成通常为其中 2 个或更多个酚由含硫桥键桥接的化合物的混合物的产物，来制备硫化酚。

二烷基二硫代磷酸金属盐常用作抗磨和抗氧剂。该金属可以是碱金属或碱土金属，或铝，铅，锡，铜，锰，镍或铜。在润滑油中最通常使用锌
盐，用量为润滑油组合物总重量的 0.1 至 10、优选 0.2 至 2 wt.%。它们可按照公知技术来制备，其中首先形成二烃基二硫代磷酸（DDPA），通常通过一或多种醇或酚与 \(\text{P}_2\text{S}_5 \) 进行反应，然后与锌化合物中和形成的 DDPA。例如，二硫代磷酸可通过伯和仲醇的混合物进行反应来制备。或者，可制备多种二硫代磷酸，其中在一种二硫代磷酸上的烃基全部是仲基团，而在其它二硫代磷酸上的烃基全部是伯基团。可使用任何碱性或中性的锌化合物来制备锌盐，但通常使用的是氧化物、氢氧化物和碳酸盐。由于在中和反应时使用过量的碱性锌化合物，所以市售添加剂时常含有过量的锌。优选的二烃基二硫代磷酸锌是二烃基二硫代磷酸的油溶性盐，可由如下通式来表示:

\[
\begin{array}{c}
\text{RO} \\
\text{P-S-Zn} \\
\text{R'O}
\end{array}
\]

其中 R 和 R' 可以是相同或不同的含 1-18，优选 2-12 个碳原子的烃基，包括诸如烷基、链烯基、芳基、芳环基、烷基芳基和环脂族基的烃基。特别优选作为 R 和 R' 的烃基是 2-8 个碳原子的烷基。由此，这些烃基可以是，例如，乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、戊基、正乙基、异乙基、正辛基、癸基、十二烷基、十八烷基、2-乙基己基、苯基、丁苯基、环己基、甲基环戊基、丙烯基、丁烯基。为获得油溶性，二硫代磷酸盐中的总碳原子数（即 R 和 R'）通常为约 5 或更高。因此，二烃基二硫代磷酸锌可包括二烷基二硫代磷酸锌。当使用与基于组合物总重量的含磷量从约 0.02 到约 0.12 质量%，例如从约 0.03 到约 0.10 质量%，或从约 0.05 到约 0.08 质量%的润滑油组合物时，本发明特别适用。在一种优选的实施方案中，本发明的润滑油组合物含有主要（如大于 50 mol%，如大于 60 mol%）由仲醇获得的二烷基二硫代磷酸锌。

氧化抑制剂或抗氧剂能减少矿物油在使用中变质的倾向。氧化变质可用润滑油中的淤泥、在金属表面产生漆状沉积物以及用粘度增加来证实。
这类抗氧剂包括受阻酚类，优选具有C_{5}-C_{12}烷基侧键的烷基酚硫衍生物的碱土金属盐，硫化硅基酚钙，油溶性酚盐和硫化酚盐，硫磺化或硫化烃，磷酯，硫代氨基甲酸金属盐，US 4,867,890 中所述的油溶性铜化合物，和含钼化合物。

典型的具有至少两个芳基直接连接在一个胺氮上的油溶性芳胺含 6-16 个碳原子。胺可含多于两个的芳基。总芳基数至少 3 个，其中两个通过共价键或通过原子或基团（如氧或硫原子，或 -CO-、 -SO_{2}- 或亚胺基）键合且两个直接连到一个胺氮上的化合物也看成是具有至少两个芳基直接连接在氮上的芳胺。芳环一般可被一个或多个选自烷基、环烷基、烷氧基、芳氧基、酰基、酰胺基、羟基和硝基的取代基所取代。

通常组合使用多种抗氧剂。在一种优选的实施方式中，本发明的润滑油组合物含有约 0.1~约 1.2 质量%的胺抗氧剂和约 0.1~约 3 质量%的酚抗氧剂。在另一种优选的实施方式中，本发明的润滑油组合物含有约 0.1~约 1.2 质量%的胺抗氧剂，约 0.1~约 3 质量%的酚抗氧剂，和用量使得润滑油组合物提供约 10~约 1000ppm 钨的钼化合物。

适宜粘度改进剂的代表性例子为聚异丁烯、乙烯和丙烯的共聚物、聚甲基丙烯酸酯、甲基丙烯酸酯共聚物、不饱和二羧酸和乙烯基化合物的共聚物、苯乙烯和丙烯酸酯的互聚物、和部分加氢的苯乙烯/异戊二烯、苯乙烯/丁二烯和异戊二烯/丁二烯的共聚物、以及部分加氢的丁二烯和异戊二烯的均聚物。

也可以包括能与成品油的其它成分相容的摩擦改进剂和燃料经济性助剂。这类材料的实例包括高级脂肪酸的甘油单酯如甘油单油酸酯，长链多元羧酸与二元醇的酯如二聚不饱和脂肪酸的丁二醇酯，吡唑啉化合物，和烷氧基化的烷基取代单胺、二胺和烷基醚胺，例如乙氧基化牛脂胺和乙氧基化牛脂醚胺。

其它公知的摩擦改进剂包括油溶性有机钼化合物。这些有机钼摩擦改进剂也能给润滑油组合物提供抗氧和抗腐作用。这类油溶性有机钼化合物
的实例包括二硫代氨基甲酸盐、二硫代磷酸盐、二硫代亚膦酸盐、黄原酸盐、硫代黄原酸盐、硫化物等，以及它们的混合物。特别优选的是二硫代氨基甲酸铵、二烷基二硫代磷酸铵、烷基黄原酸铵和烷基硫代黄原酸铵。

另外，钼化合物可以是酸性钼化合物。这些化合物将与按 ASTM 试验 D-664 或 D-2896 滴定法测定的碱性含氮化合物反应，且一般为六价。包括钼酸、钼酸铵、钼酸钠、钼酸钾和其它碱金属钼酸盐和其它钼酸盐如钼酸氢钠、MoOCl₄、MoO₂Br₂、Mo₂O₃Cl₆、三氧化钼或类似的酸性钼化合物。

钼化合物中，适用于本发明组合物的是下式所示的有机钼化合物：

\[\text{Mo(ROCS)}_2 \text{₄} \]

\[\text{Mo(RSCS)}_2 \text{₄} \]

其中 R 是选自通常为 1-30 个碳原子，且优选 2-12 个碳原子的烷基、芳基、亚烷基和烷氧烷基的有机基团，且优选是 2-12 个碳原子的烷基。特别优选的是二烷基二硫代氨基甲酸铵。

适用于本发明润滑组合物的另一类有机钼化合物是三核钼化合物，特别是分子式为 Mo₅S₅L₉Q₉ 的钼化合物和它们的混合物，其中 L 独立选自有机基团的配体，有机基团具有足以使化合物溶于或分散于油中的碳原子数，n 为 1-4，k 在 4-7 之间变化，Q 选自中性给电子化合物，例如水、胺类、醇类、膦类和醚类，且 z 的范围为 0-5 并包括非化学计量值。在所有配体有机基团中，应有总计至少 21 个碳原子，例如至少 25 个、至少 30 个或至少 35 个碳原子。

分散剂-粘度指数改进分散剂同时起粘度指数改进剂和分散剂的作用。分散剂-粘度指数改进分散剂的实例包括胺如多胺与羟基取代的一元或二元羧酸的反应产物，其中羟基取代基包括长度足以赋予化合物粘度改进性能的链。通常，粘度指数改进分散剂可以是，例如，乙烯基醇的 C₄~C₂₄ 不饱和酯或 C₃~C₁₀ 不饱和一元羧酸或 C₄~C₁₀ 二元羧酸与具有 4~20 个碳原子的不饱和含氮单体的聚合物，C₂~C₂₀ 烷烃与用胺、烃胺或醇中和的 C₃~C₁₀ 不饱和一元或二元羧酸的聚合物，或乙烯与 C₃~C₂₀ 烷烃聚合并进一步
步接枝上 C₄~C₂₀ 不饱和含氮单体或将不饱和酸接枝到聚合物主链上然后
接枝酸的羧基与胺、羟胺或醇反应所得到聚合物。

倾点抑制剂又称润滑油流动改进剂(LOFI)，能使流体可流动或倾倒的
最低温度降低。这类添加剂是众所周知的。能改进口流体低温流动性的添加剂
典型代表是富马酸 C₈~C₁₈ 二烷醇酯/乙酸乙烯酯共聚物，和聚甲基丙烯
酸酯。利用聚硅氧烷类消泡剂例如硅油或聚二甲基硅氧烷可以进行泡沫控
制。

一些上述添加剂可以提供多种效果；由此例如，单一的添加剂即可以
作为分散剂-氧化抑制剂。这种方法是众所周知的，并且不需要在这里进一
步阐述。

一种优选的实施方式中，本发明的润滑油组合物进一步包括，与式(II)
的化合物组合，高分子量聚合物，其包括(i)氢化聚(单乙烯基芳烃)和聚(共
轭二烯)的共聚物，其中氢化聚(单乙烯基芳烃)片段占该共聚物的至少约 20
重量%；(ii)含烷基或芳基胺、或者酰胺基团、含氮的杂环基团或者酯连接
基的烯烃共聚物，和/或(iii)具有分散基团的丙烯酸酯或烷基丙烯酸酯共聚
物衍生物。

氢化聚(单乙烯基芳烃)和聚(共轭二烯)的共聚物，其中氢化聚(单乙烯
基芳烃)片段占该共聚物的至少约 20 重量%(下文中称作“聚合物(i)”)，为公
知的粘度改性剂且可商购获得，例如，SV151(Infineum USA L.P)。用于形
成这种材料的优选的单乙烯基芳烃单体包括苯乙烯、烷基取代的苯乙烯、
烷氧基取代的苯乙烯、乙烯基苯和烷基取代的乙烯基苯。烷基和烷氧基取
代基可以典型地包括 1~6 个碳原子，优选 1~4 个碳原子。每个分子的烷基
或烷氧基取代基的数目，如果存在时，范围可以为 1~3，且优选为 1。

适用于形成这种材料的优选的共轭二烯单体包括含有 4~24 个碳原子
的那些共轭二烯，如 1,3-丁二烯、异戊二烯、戊间二烯、甲基戊二烯、2-
苯基-1,3-丁二烯、3,4-二甲基-1,3-己二烯和 4,5-二甲基-1,3-辛二烯。

优选的是包括至少一个聚(单乙烯基芳烃)链段和至少一个聚(共轭二烯)
链段的嵌段共聚物。优选的嵌段共聚物选自于式 AB 的那些，其中 A 表示主要为聚(单乙烯基芳烃)的嵌段聚合物，B 表示主要为聚(共轭二烯)的链段。

优选地，聚(共轭二烯)链段为部分或者完全氢化的。更优选地，该单乙烯基芳烃为苯乙烯和/或烷基取代的苯乙烯，特别是苯乙烯。优选的共轭二烯为含有 4~12 个碳原子、更优选 4~6 个碳原子的那些。异戊二烯和丁二烯为最优选的共轭二烯单体。优选地，聚(异戊二烯)是氢化的。

嵌段共聚物和选择性氢化的嵌段共聚物是本领域中已知的且可商购获得。这种嵌段共聚物可以通过使用碱金属引发剂如仲丁基锂的阴离子聚合来制得，例如，如 US 4,764,572、3,231,635、3,700,633 和 5,194,530 中所述的那样。

可以将该嵌段共聚物的聚(共轭二烯)链段选择性氢化，典型地达到使得链段的残留乙烯基不饱和度降低到至多 20%、更优选至多 5%、更优选至多 2%的氢化前的不饱和度水平的程度。这些共聚物的氢化可以采用各种沿用已久的方法来进行，包括诸如钯内镍、贵金属如铂等、可溶性过渡金属催化剂和铱催化剂的催化剂的存在下的氢化，如 US 5,299,464 中所述的那样。

序列聚合或者采用二价偶联剂的反应可以用于形成直链聚合物。也公知的是，可以通过具有两个分别可聚合的乙烯基的单体如二乙烯基苯的聚合原位形成偶联剂，由此提供具有约 6~约 50 个臂的星型聚合物。含有 2~8 个官能团的二-和多价偶联剂，和形成星型聚合物的方法，是众所周知的且这种材料可商购获得。

第二类高分子量聚合物为含有分散基团如烷基或芳基胺、或酰胺基团、含氮的杂环基团或酯连接基的烯烃共聚物 (OCP) (下文中称作“聚合物 (ii)”)。这些聚合物通常已用作润滑油组合物中的多官能分散剂粘度改性剂。该烯烃共聚物可以包括烯烃单体的任意组合，但是最通常地为乙烯和至少一种其它 α-烯烃。该至少一种 α-烯烃单体通常为具有 3~18 个碳原子
的\(\alpha\)-烯烃，且最优选为丙烯。众所周知，乙烯和高级\(\alpha\)-烯烃如丙烯的共聚物，经常包括其它可共聚的单体。典型的这些其它单体为非共轭二烯，如下列非限定性实例。

a. 直链二烯，如 1,4-己二烯和 1,6-辛二烯；
b. 支化脂肪族二烯如 5-甲基-1,4-己二烯；3,7-二甲基-1,6-辛二烯；3,7-二甲基-1,7-辛二烯和二氢-香叶烯 (dihydro-mycene) 与二氢罗勒烯 (dihydroocinene) 的混合异构体；
c. 单环脂环族二烯如 1,4-环己二烯；1,5-环辛二烯；和 1,5-环十二碳二烯；
d. 多环脂环族稠合和桥接的环二烯，如四氢茚；甲基四氢茚；二环戊二烯；二环(2,2,1)-庚-2,5-二烯；链烯基、亚烷基、环链烯基和环亚烷基降冰片烯，如 5-亚甲基-2-降冰片烯 (MNB)、5-亚乙基-2-降冰片烯 (ENB)、5-亚丙基-2-降冰片烯、5-亚异丙基-2-降冰片烯、5-(4-环戊烯基)-2-降冰片烯、5-环亚乙基-2-降冰片烯。

作为通常使用的非共轭二烯，优选在有张力的环 (strained ring) 中含有至少一个双键的二烯。最优选的二烯为 5-亚乙基-2-降冰片烯 (ENB)。共聚物中二烯的含量 (基于重量) 可以为 0%~约 20%，优选为 0%~约 15%，且最优选为 0%~约 10%。如前所述，最优选的烯烃共聚物为乙烯-丙烯。共聚物的乙烯平均含量可以低至 20%，以重量为基础。优选的最小乙烯含量为约 25%。更优选的最小值为 30%。最大乙烯含量可以高达 90%，以重量为基础，优选地，最大乙烯含量为 85%，最优选为约 80%。优选地，烯烃共聚物含有约 35~75 重量%的乙烯，更优选为约 50~约 70 重量%的乙烯。

烯烃共聚物的分子量 (数均) 可以低至 2000，但是优选的最小值为 10,000。更优选的最小值为 15,000，最优选的最小数均分子量为 20,000。认为最大数均分子量可以高达 12,000,000。优选的最大值为约 1,000,000，且最优选的最大值为约 750,000。对于本发明的烯烃共聚物来说，特别优选的数均分子量范围为约 50,000~约 500,000。

通过将含氨的极性部分 (例如，胺、胺-醇或者酰胺) 连接于聚合物主链
上，可以赋予烯烃共聚物官能性。含氮的部分通常为 \(R-N-R' \) ，其中
\(R \) 、 \(R' \) 和 \(R'' \) 独立地为烷基、芳基或 \(H \)。也适宜的是式 \(R-R'-\text{NH-R''-R} \) 的芳
族胺，其中
\(R' \) 和 \(R'' \) 为芳基且每一个为烷基。用于形成多官能 OCP 粘度改
性剂的最常用方法包括将含氮的极性部分自由基加成到聚合物主链上。可
以利用聚合物内的双键（即，EPDM 聚合物的二烯部分的双键，或者通过
将聚合物与提供含双键的桥接基团的化合物（例如，马来酸酐，例如，如
US 3,316,177, 3,326,804 中所述的那样；和羧酸和酮类，例如，如 US
4,068,056 中所述的那样）反应，并随后用含氮的极性部分将官能化的聚合
物衍生化，由此可以将含氮的极性部分连接到聚合物上。可以与官能化
OCP 反应的含氮化合物的更完整清单在下文中在分散剂的讨论中描述。多
官能化的 OCP 和形成该材料的方法是本领域中已知的且可商购获得 (例
如，可从 Afton Corporation 获得的 HITEC 5777 和 PA 1160, Dutch Staaten
Minen 的产品)。

优选的是含有约 50 重量％的乙烯且数均分子量为 10,000~20,000 的、
用马来酸酐接枝且用氨基苯基亚胺和其它分散剂胺胺化的低乙烯烯烃共
聚物。

第三类适用于本发明的实施的聚合物为具有分散基团的丙烯酸酯或
烷基丙烯酸酯共聚物衍生物（下文中称作“聚合物(iii)”)。这些聚合物已用作
润滑油组合物中的多官能分散剂粘度改性剂，且较低分子量的这类聚合物
已用作多官能分散剂/LOFI。这类聚合物可商购获得，例如，ACRYL OI
954(RohMax USA Inc. 的产品)。适用于形成聚合物(iii)的丙烯酸酯或甲基丙
烯酸酯单体和丙烯酸或甲基丙烯酸烷基酯单体，可以由相应的丙烯酸或甲
基丙烯酸或它们衍生物来制备。可以采用众所周知的且常规的技术将这些
酸衍生化。例如，可以通过酸水解和乙烯羟醛的脱水或者通过 \(\beta- \) 丙内酯的
聚合和聚合物的分解蒸馏以形成丙烯酸，由此制得丙烯酸。甲基丙烯酸可
以通过，例如，用金属次氯酸盐将甲基 \(\alpha- \) 烷基乙烯基酮氧化；用五氧化二
磷将羟基异丁酸脱水；或者将丙酮羟氯水解来制备。
通过将期望的伯醇与丙烯酸或甲基丙烯酸以酸、优选对甲苯磺酸催化的传统酯化且通过 MEHQ 或氢醌抑制聚合，可以制得丙烯酸或甲基丙烯酸烷基酯单体。适宜的丙烯酸或甲基丙烯酸烷基酯在烷基碳链中含有约 1~约 30 个碳原子。初始醇的典型实例包括甲醇、乙醇、乙醇、丁醇、辛醇、异辛醇、异癸醇、十一烷醇、十二烷醇、十三烷醇、辛醇、月桂醇、肉豆蔻醇、十五烷醇、棕榈醇和硬脂醇。可以将初始醇分别与丙烯酸或甲基丙烯酸反应以形成期望的丙烯酸酯和甲基丙烯酸酯。这些丙烯酸酯聚合物的数均分子量(Mn)范围可以为 10,000~1,000,000，且优选地分子量范围为约 200,000~600,000。

为了提供具有分散基团的丙烯酸酯或甲基丙烯酸酯，将丙烯酸酯或甲基丙烯酸酯与含胺的单体共聚，或者提供丙烯酸酯或甲基丙烯酸酯主链聚合物，使其含有适于接枝的地方，并随后通过聚合含胺的单体将含胺的支链接枝到主链之上。

含胺的单体的实例包括碱性氨基取代的烯烃如 p-(2-二乙基氨基乙基)苯乙烯；具有可聚合的烯属不饱和取代基的碱性含氮杂环如乙烯基吡啶或乙烯基吡咯烷酮；氨基醇与不饱和羧酸的酯如甲基丙烯酸二甲基氨基乙酯，和可共聚的不饱和碱性胺如烯丙胺。

优选的聚合物(iii)材料包括由醇混合物制成的聚甲基丙烯酸酯共聚物，其中酯的平均碳原子数为 8~12，含有 0.1~0.4 重量%的氮。

最优选的是由醇混合物制成的聚甲基丙烯酸酯共聚物，其中酯的平均碳原子数为 9~10，含有 0.2~0.25 重量%的氮，以 N-N 二甲基氨基烷基-甲基丙烯酸酯的形式提供。

适用于本发明的实施的润滑油组合物含有聚合物(i)、(ii)、(iii)、或其混合物，用量为约 0.10~约 2 重量%，基于聚合物重量；更优选为约 0.2~约 1 重量%，最优选为约 0.3~约 0.8 重量%。另外在考虑多官能组分时；具体地聚合物(ii)和(iii)；所述组分的存在提供该润滑油组合物的氮含量为约 0.0001~约 0.02 重量%，优选为约 0.0002~约 0.01 重量%，最优选为约
0.0003~约 0.008 重量%的氮。聚合物(i)、(ii)、(iii)及其聚合物，不必须包括润滑组合物中唯一的 VM 和/或 LOFI，和其它 VM，如非官能化的烯烃共聚物 VM 和，例如，烷基甲酸酯/乙酸乙酯共聚物 LOFI，可以与其组合使用。例如，可以将本发明的重载柴油发动机用润滑组合物润滑，其中高分子量聚合物为包括约 10~约 90 重量%的氢化苯乙烯-异戊二烯嵌段共聚物、和约 10~约 90 重量%的非官能化 OCP 的混合物。

在本发明中，可能需要包括保持共混物的粘度的稳定性的添加剂。由此，虽然含极性基团的添加剂在预共混阶段实现了适宜低的粘度，但是在储存长时间时已观察到一些组合物的粘度增加。有效控制这种粘度增加的添加剂包括通过与用于如前所述的无灰分散剂的制备的单或二羧酸或酸酐的反应而官能化的长链烃。

当润滑组合物含有一种或多种上述添加剂时，典型地将各种添加剂以能使该添加剂提供其期望的功能的用量共混到基础油中。

当润滑组合物含有一种或多种上述添加剂时，典型地将各种添加剂以能使该添加剂提供其期望的功能的用量共混到基础油中。这些添加剂在用于曲轴箱润滑剂时的代表性有效量如下所示。所列的全别数值是以质量百分比活性组分给出的。
表 II

<table>
<thead>
<tr>
<th>添加剂</th>
<th>质量%（宽范围）</th>
<th>质量%（优选范围）</th>
</tr>
</thead>
<tbody>
<tr>
<td>金属清洁剂</td>
<td>0.1~15</td>
<td>0.2~9</td>
</tr>
<tr>
<td>腐蚀抑制剂</td>
<td>0~5</td>
<td>0~1.5</td>
</tr>
<tr>
<td>二烃基二硫代磷酸金属盐</td>
<td>0.1~6</td>
<td>0.1~4</td>
</tr>
<tr>
<td>抗氧剂</td>
<td>0~5</td>
<td>0.01~3</td>
</tr>
<tr>
<td>预点抑制剂</td>
<td>0.01~5</td>
<td>0.01~1.5</td>
</tr>
<tr>
<td>消泡剂</td>
<td>0~5</td>
<td>0.001~0.15</td>
</tr>
<tr>
<td>补充抗磨剂</td>
<td>0~1.0</td>
<td>0~0.5</td>
</tr>
<tr>
<td>摩擦改性剂相容剂</td>
<td>0~5</td>
<td>0~1.5</td>
</tr>
<tr>
<td>粘度改性剂</td>
<td>0.01~10</td>
<td>0.25~3</td>
</tr>
<tr>
<td>基料</td>
<td>余量</td>
<td>余量</td>
</tr>
</tbody>
</table>

本发明的全配方的润滑组合物的硫含量优选为小于约 0.4 质量%，更小于约 0.35 质量%，更优选地小于约 0.03 质量%，如小于约 0.15 质量%。优选地，全配方的润滑组合物(润滑粘度油+所有添加剂)的 Noack 挥发性将不大于 13，如不大于 12，优选不大于 10。本发明的全配方的润滑组合物优选地具有不大于 1200ppm 的磷，如不大于 1000ppm 的磷，或者不大于 800ppm 的磷。本发明的全配方的润滑组合物优选地具有约 1.0 质量%或更小的硫酸化灰分(SASH)含量。

可能期望，但并非必须的是，制备包含添加剂的一个或多个添加剂浓缩物(有时将浓缩物称作添加剂包)，由此可以同时将几种添加剂加到油中以形成润滑组合物。用于制备本发明的润滑组合物的浓缩物可以，例如，含有约 0.15~约 20 质量%的耐(II)化合物；约 10~约 40 质量%的含氮分散剂；约 2~约 20 质量%的胺类抗氧剂、酚类抗氧剂、钼化合物、或其混合物；约 5~40 质量%的清洁剂；和约 2~约 20 质量%的金属二烃基二硫代磷酸盐。

最终组合物可以采用 5~25 质量%、优选为 5~18 质量%、典型地 10~15 质量%的浓缩物，剩余部分为润滑粘度油和粘度改性剂。
本文中给出的所有重量(和质量)百分比(除非相反地指出)是基于添加剂的活性成分(A.I.)含量，和/或任意添加剂包、或者配方的总重，其为每种添加剂的 A.I. 重量+全部油或稀释剂的重量。

通过参考下列实施例，将进一步理解本发明，其中所有份数为重量份数，除非相反地指出。

实施例

合成实施例 1
通过采用碳酸亚乙酯将 2-萘酚乙氧基化而制备 2-(2-萘氧基)乙醇

在装备有机械搅拌器、冷凝器/Dean-Stark 分水器、和氮气入口的 2L 树脂釜中，注入 2-萘酚 (600g, 4.16mol)、碳酸亚乙酯 (372g, 4.22mol)，并将混合物在氮气下加热到 90°C。加入氢氧化钠水溶液 (50 重量 %, 3.0g) 并将反应混合物缓慢加热到 165°C。将反应混合物保持在 165°C 下 2 小时。随着反应进行放出 CO₂，CO₂ 的逸出停止使反应接近完成。收集产物并使其凝固，同时冷却到室温。通过 GC、FT-IR 和 HPLC 确认反应的完成。通过 1H 和 13C-NMR 与质谱(FDMS)确认产物的结构。

合成实施例 2
通过 2-甲氧基苯和 2-(2-萘氧基)乙醇与甲醛的聚合制备聚(2-甲氧基苯-共聚 2-(2-萘氧基)乙醇-交替共聚-甲醛)

在装备有机械搅拌器、冷凝器/Dean-Stark 分水器、和氮气入口的 2L 树脂釜中，注入实施例 1 的 2-(2-萘氧基)乙醇 (131.6g), 2-甲氧基苯 (47.4g), 甲苯 (50g), 和磷酸 (6.0g), 并将混合物在氮气下加热到 70°C。将多聚甲醛 (31.57g) 在 70~80°C 下在 15 分钟内加入，且加热到 90°C 并将反应混合物保持在该温度下 30 分钟~1 小时。在 2~3 个小时内将温度逐渐升高到 110°C~120°C，且通过共沸蒸馏除去水 (75~83mL)。收集聚合物并使其凝固,
同时冷却到室温。通过 GPC 测量 Mn，使用聚苯乙烯标准物，采用作为内标物的 2-(2-萘氧基)乙醇的洗脱体积进行校正。使用 THF 作为洗脱液。Mn 为 1000 道尔顿。1H 和 13C NMR 确认了结构。FMDS 和 MALDI-TOF 表明，产物含有从二聚体到二十四聚体的低聚物与聚(2-甲氧基苯-交替共聚-甲醛)和聚(2-(2-萘氧基)乙醇-交替共聚-甲醛)的一些副反应产物的混合物。

合成实施例 3
PIB-琥珀酸酐与合成实施例 2 的产物的反应产物

在装备有机械搅拌器、冷凝器/Dean-Stark 分水器、氮气入口、和加料漏斗的 5L 树脂釜中，注入合成实施例 2 的产物混合物、甲苯(50~100g)并将其混合物在氮气下加热到 120℃。将 PIB-琥珀酸酐(Mn: 450(PIB), 408g)分部分加入(以 30 分钟间隔~25g)，并将温度保持在 120℃下 2 小时，随后在氮气吹扫下加热到 140℃再保持 2 小时，由此除去所有溶剂直到恒重。加入基础油(AMEXOM 100N, 332g)，并在室温下收集产物。GPC 和 FT-IR 确认了期望的结构。

上述合成的反应式如下所示:
如下显示了采用传统重载柴油机(PC-10 或 API CI-4)添加剂包(含有分散剂、清洁剂、ZDDP 抗磨剂、无灰抗氧剂和 PIBSA); 粘度改性剂(VM)、
流动改性剂（LOFI）；和基础油，以及使用和不使用合成实施例 3 的本发明化合物配制的润滑剂试样：

表 III

<table>
<thead>
<tr>
<th></th>
<th>实施例 1 (对比) (质量 %)</th>
<th>实施例 2 (发明) (质量 %)</th>
<th>实施例 2 (发明) (质量 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>增剂包</td>
<td>17.60</td>
<td>17.60</td>
<td>17.60</td>
</tr>
<tr>
<td>IT 类基油</td>
<td>74.82</td>
<td>74.82</td>
<td>73.34</td>
</tr>
<tr>
<td>VM</td>
<td>5.90</td>
<td>5.90</td>
<td>5.90</td>
</tr>
<tr>
<td>LOFI</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>合成实施例 3 化合物</td>
<td>1.48</td>
<td>2.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

在碳黑台架试验（CBBT）中评价实施例 1～3 的烟灰分散性能。在碳黑台架试验中，评价成品油分散碳黑的能力。将成品油与期望量的碳黑混合，在 90°C 下搅拌过夜，并采用旋转粘度计评价粘度和指数。将旋转粘度计的剪切速率改变高达 300sec⁻¹，且获得剪切相对于 log 粘度的曲线。如果粘度为牛顿型的，曲线的斜率（指数）接近一致（unity）表示烟灰被良好分散。如果指数变得明显小于一致，存在表明差的烟灰分散性的剪切变稀。除了指数之外，低剪切下油的粘度随着润滑剂分散烟灰的能力增加而变得更稠。表 IV 显示了指数方面的对比结果，同时表 V 显示了在粘度方面的对比结果。
表 IV - 指数

<table>
<thead>
<tr>
<th>% 发黑</th>
<th>实施例 1 (对比)</th>
<th>实施例 2 (发明)</th>
<th>实施例 3 (发明)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.994</td>
<td>0.999</td>
<td>0.999</td>
</tr>
<tr>
<td>6</td>
<td>0.816</td>
<td>0.982</td>
<td>0.986</td>
</tr>
<tr>
<td>8</td>
<td>0.282</td>
<td>0.979</td>
<td>0.983</td>
</tr>
<tr>
<td>12</td>
<td>TVTM*</td>
<td>0.670</td>
<td>0.968</td>
</tr>
</tbody>
</table>

*过度粘稠以至于无法测量

表 V - 粘度(cP)

<table>
<thead>
<tr>
<th>% 发黑</th>
<th>实施例 1 (对比)</th>
<th>实施例 2 (发明)</th>
<th>实施例 3 (发明)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12.33</td>
<td>12.93</td>
<td>13.20</td>
</tr>
<tr>
<td>6</td>
<td>36.64</td>
<td>28.79</td>
<td>27.28</td>
</tr>
<tr>
<td>8</td>
<td>167.49</td>
<td>32.70</td>
<td>34.41</td>
</tr>
<tr>
<td>12</td>
<td>TVTM</td>
<td>138.43</td>
<td>71.10</td>
</tr>
</tbody>
</table>

如上所述，该烟灰分散化合物的存在提供了在较高水平的碳黑下改进的指数和粘度，相对于不采用该化合物配制的润滑剂。

本文中描述的所有专利、文章和其它材料的公开内容在此将其全部引入该说明书中作为参考。描述组合物包括多个具体组分、由其组成、或者基本上由其组成，如本文中和所附权利要求中所示，应由构成也包含将所述多个具体组分混合而得的组合物。前述说明书中已描述了本发明的原理、优选实施方式和操作模式。但是，申请人所要指出的是，本发明并非构成为限定于所公开的特定实施方式，因为所公开的实施方式应被看作示例性的而非限定性的。本领域技术人员可以进行改变，而不背离本发明的精神。