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ITERATIVE IMAGE RECONSTRUCTION WITH DYNAMIC SUPPRESSION OF
FORMATION OF NOISE-INDUCED ARTIFACTS

FIELD
The following relates generally to the radiological imaging arts, iterative

image reconstruction arts, medical imaging arts, and the like.

BACKGROUND

Radioemission medical imaging includes, for example, positron emission
tomography (PET) and single photon emission computed tomography (SPECT). In PET
imaging, a medical imaging subject is administered a radiopharmaceutical containing a
radioisotope that emits positrons during radioactive decay — the resulting electron-positron
annihilation events each produce two oppositely directed 511 keV gamma ray pairs. In
SPECT imaging, the radiopharmaceutical contains a radioisotope that decays to produce
radioactive emission product(s) that are directly detected by a gamma camera. In either case,
patient safety dictates that the concentration of administered radioisotope should be as low as
feasible to limit the radiation dose received by the medical imaging subject. Consequently,
the acquired imaging data are noisy and may be incomplete. Iterative reconstruction
techniques have demonstrated capability to generate high quality reconstructed images from
noisy and/or incomplete imaging data sets, and accordingly have become standard image
reconstruction technology for PET and SPECT imaging data reconstruction.

Transmission computed tomography (CT) imaging employs an external x-ray
tube that transmits an x-ray beam through the medical imaging subject, and an x-ray detector
array is arranged in opposition to detect the transmitted x-ray beam. Traditionally, the signal
level in CT is much higher than in PET and SPECT imaging. However, more recent trends
have been toward using reduced x-ray beam intensity or imposing other radiation exposure
reduction techniques such as intermittent shuttering the x-ray beam. These approaches
increase CT imaging data noise levels, and may also result in incomplete imaging data sets.
Consequently, iterative reconstruction techniques are increasingly finding application in CT.

Further tolerance of noise and incomplete data can be obtained by use of
regularization during the iterative reconstruction. In one approach, regularization is
introduced by way of an added noise-suppressing prior, such as a quadratic prior. To avoid
suppressing real physical features in the reconstructed image, an edge-preserving prior is

commonly used (such as a relative differences prior proposed by Nuyts et al., “A concave
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prior penalizing relative differences for maximum-a-posteriori reconstruction in emission
tomography”, IEEE Trans. on Nuclear Science vo. 49 no. 1 pp. 56-60 (2002)). The edge-
preserving prior is designed to suppress small amplitude variations likely to be due to noise,
but not larger amplitude variations likely to be attributable to real physical features. A trade-
off exists between stronger edge preservation on the one hand, and stronger noise suppression
on the other hand. In most edge-preserving priors, a threshold may be adjusted to achieve the
desired trade-off.

Iterative image reconstruction with an edge-preserving relative difference
prior is often effective in producing a reconstructed image that retains the real physical
features used for medical interpretation while effectively suppressing unwanted noise that
can obscure these features. However, in some instances the noise suppression is insufficient,
and can lead to an erroneous radiology finding. In other instances the noise suppression is too
strong and may suppress a real feature with low contrast, again potentially leading to an
erroncous radiology finding.

Accordingly, there remains an unfulfilled need for improved iterative image

reconstruction technologies that overcome the foregoing deficiencies and others.

SUMMARY

In one disclosed aspect, a non-transitory storage medium stores instructions
readable and executable by a computer to perform an image reconstruction method
comprising: performing iterative reconstruction of imaging data to generate a sequence of
update images terminating at a reconstructed image; and during the iterative reconstruction
and before the iterative reconstruction terminates at the reconstructed image, adjusting at
least one of an update image produced by the iterative reconstruction and a parameter of the
iterative reconstruction using an adjustment process separate from the iterative
reconstruction. In some embodiments the iterative reconstruction includes an edge-preserving
regularization prior having an edge preservation threshold, and the adjustment process
comprises adjusting the edge preservation threshold to reduce gradient steepness above
which edge preservation applies for later iterations of the iterative reconstruction compared
with earlier iterations of the iterative reconstruction. In some embodiments the adjustment
process comprises, for each pixel, voxel, or region of a current update image that precedes
the terminating reconstructed image in the iterative reconstruction, determining whether an
evolution of the value of a pixel, voxel, or region over update images prior to the current

update image satisfies an artifact feature criterion. A local noise suppression operation is then



10

15

20

25

30

WO 2018/060106 PCT/EP2017/074152
3

performed for any pixel, voxel, or region of the current update image whose evolution
satisfies the artifact feature criterion and is not performed for any pixel, voxel, or region of
the current update image whose evolution does not satisfy the artifact feature criterion.

In another disclosed aspect, an image reconstruction method is disclosed.
Imaging data are reconstructed by performing iterative reconstruction with an edge-
preserving regularization prior to generate a reconstructed image. During the iterative
reconstruction, an edge preservation threshold of the edge-preserving regularization prior is
adjusted as a function of the number of performed iterations of the iterative reconstruction.
The reconstructed image is displayed on a display. The reconstructing and the adjusting are
suitably performed using a computer.

In another disclosed aspect, an image reconstruction device is disclosed. A
computer is programmed to perform iterative reconstruction of imaging data to generate a
sequence of update images terminating at a reconstructed image. A display is operatively
connected with the computer to display the reconstructed image. The computer is further
programmed to adjust a current update image of the iterative reconstruction that precedes the
terminating reconstructed image in the iterative reconstruction by operations including: for
each pixel, voxel, or region of the current update image, determining whether an evolution of
the value of an pixel, voxel, or region over update images from iterations prior to the current
update image in the iterative reconstruction satisfies an artifact feature criterion; and
performing a local noise suppression operation for any pixel, voxel, or region of the current
update image whose evolution satisfies the artifact feature criterion and not performing the
local noise suppression operation for any pixel, voxel, or region of the current update image
whose evolution does not satisfy the artifact feature criterion.

One advantage resides in improved noise-induced artifact feature suppression
in iterative image reconstruction.

Another advantage resides in improved noise-induced artifact feature
suppression in iterative image reconstruction with reduced concomitant loss in edge
preservation for real features.

Another advantage resides in providing local detection and suppression of
noise-induced artifact features in iterative image reconstruction.

Another advantage resides in leveraging different process flow evolution
characteristics of noise-induced artifact features versus real features in providing preferential

suppression of the former while preferentially retaining the latter.
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A given embodiment may provide none, one, two, more, or all of the
foregoing advantages, and/or may provide other advantages as will become apparent to one

of ordinary skill in the art upon reading and understanding the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may take form in various components and arrangements of
components, and in various steps and arrangements of steps. The drawings are only for
purposes of illustrating the preferred embodiments and are not to be construed as limiting the
invention. Unless otherwise noted, the drawings are diagrammatic and are not to be construed
as being to scale or to illustrate relative dimensions of different components.

FIGURE 1 diagrammatically shows a radiological imaging system including
an imaging device and an image reconstruction device.

FIGURE 2 plots the maximum value of a real 10 mm diameter sphere feature
and an artificial noise-induced hot spot over the course of 20 iterations of an iterative image
reconstruction.

FIGURE 3 plots a program for linear reduction of an edge-preserving
threshold ¥y of an edge-preserving regularization prior over successive iterations of an
iterative reconstruction including the edge-preserving regularization prior.

FIGURES 4-8 present phantom experiment results as described herein.

DETAILED DESCRIPTION

Improved iterative image reconstruction technologies disclosed herein are
based in part based on certain insights disclosed herein.

One insight made herein is that while it is desirable to minimize noise
generally, the adverse impact of noise in medical imaging applications is greatest when the
noise produces an artifact feature that can be misinterpreted by medical personnel reading the
image as a real physical feature.

Further insights are made herein in the context of process flow evolution of the
iterative reconstruction, which proceeds by successive corrective updates to an image
estimate. Each successive update outputs a modified reconstructed image estimate, also
referred to herein as an update image. If the iterative reconstruction converges (which is
desired), then the successive update images should exhibit increasingly close fidelity to the
acquired imaging data as the iteration count of image updates increases. The change from one

update image to the next should generally decrease as the number of iterations increases, and
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the change from one update image to the next should become negligible as the iterative
reconstruction approaches convergence.

It is recognized herein that the process flow evolution of real image features
often differs materially from the process flow evolution of noise-produced artifact features.
Typically, a real physical image feature converges quickly, e.g. in the first few iterations in
many iterative reconstruction examples; thereafter, the update-to-update change in the real
feature is small as the reconstruction approaches convergence as just described. This is
because the real image feature emerges due to the iterative reconstruction modifying
successive update images to conform to real structure in the underlying imaging data, and
once fidelity with this real structure in the underlying imaging data is achieved the feature
does not further evolve in a significant way. By contrast, a noise-produced artifact feature
usually “emerge” later in the iterative reconstruction as compared with real features, and may
continue to evolve significantly even after the bulk of the image is approaching convergence.
This is because the artifact feature does not conform to actual structure in the underlying
imaging data, but instead is produced by over-fitting the noise.

A further insight made herein is that an artefact feature is often produced by a
type of positive feedback or amplification, in which over-fitting of the noise by later updates
of the iterative reconstruction amplifies a nucleus structure introduced by noise. The
amplified random structural nucleus thereby grows to produce the artefact feature.

Partly in view of such insights, improved image reconstruction technology is
disclosed herein which adjusts the iterative reconstruction from one image update to the next
in a way that suppresses the nucleation of artifact features.

Some embodiments disclosed herein employ an edge-preserving regularization
prior having an edge preservation threshold. In general, such an edge-preserving
regularization prior is designed to penalize image gradients but to preserve steep gradients
that are presumed to be real edges. In these embodiments, the edge preservation threshold is
adjusted during the iterative reconstruction to reduce edge preservation (i.e. increase the
gradient steepness above which the edge preservation applies) for later iterations of the
iterative reconstruction compared with earlier iterations of the iterative reconstruction. This
approach leverages the recognition herein that real features converge relatively quickly to
edges defined by steep gradients, so that the reduced edge preservation in later iterations is
not detrimental for these real features because they rapidly converge to steep gradients that
are thereafter preserved even as the edge preservation threshold is adjusted for later iterations

to increase the gradient steepness above which edge preservation applies. On the other hand,
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artefact features often nucleate later in the image reconstruction process flow, as the effects
of over-fitting of the noise lead to nucleation of “speckles” or “hot spots” that then grow into
artefact features. These features are unlikely to have converged to steep gradient edges by the
time the reduced edge preservation in later iterations comes into effect — consequently, the
reduced edge preservation with increasing iteration number enables the prior to suppress the
later-nucleated artefact features before the edges of the artefact features can amplify to a
steepness above which the edge preservation applies.

Some embodiments disclosed herein employ more active iterative
reconstruction update adjustments. In these embodiments, differences in the typical process
flow evolution of real features versus artefact features, as described previously, are leveraged
to identify nucleation of artefact features. The identified incipient artefact features are
suppressed, for example by locally replacing the values of pixels or voxels at the artefact
feature with pixel or voxel values of earlier image updates produced prior to the onset of
artefact feature nucleation. In a variant approach, the local replacement is by values of
neighboring pixels or voxels located outside of the identified artefact feature. By removing
the artefact feature nucleus at the time (along the process flow evolution) of its initial
formation, there is no longer a nucleus to be amplified by the later image updates into an
artefact feature.

With reference to FIGURE 1, an imaging device 10 acquires imaging data,
¢.g. of a medical patient in the case of medical imaging. The illustrative imaging device 10 is
a dual-modality imaging device including a transmission computed tomography (CT) gantry
12 and a positron emission tomography (PET) gantry 14. A common patient support couch
16 cnables a patient to be moved into either gantry 12, 14 for imaging. An imaging data
storage 18 stores CT and/or PET imaging data acquired by the imaging device 10. More
generally, the imaging data may be acquired by any imaging device generating imaging data
that is to be reconstructed by iterative reconstruction. As is known in the art, iterative image
reconstruction is commonly applied for reconstructing PET imaging data and is sometimes
applied for reconstructing CT imaging data, and is also commonly used for reconstructing
some other types of imaging data such as single photon emission computed tomography
(SPECT) imaging data acquired by a gamma camera. Note that if the multi-modality imaging
device 10 acquires both CT and PET imaging data of the same subject, they are usually
reconstructed separately, i.e. the CT imaging data are reconstructed using an iterative
reconstruction process to generate a reconstructed CT image, and separately the PET imaging

data are reconstructed using the same, or alternatively a different, iterative reconstruction
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process to generate a reconstructed PET image. If both CT and PET imaging data sets are
acquired using the multimodality imaging device 10 then placement of the patient or other
imaging subject on the common couch 16 advantageously facilitates spatial registration
between the reconstructed CT and PET images.

To reconstruct the imaging data, an iterative image reconstruction process
performs successive passes of an iterative reconstruction update process 20. Each pass of the
iterative reconstruction update 20 outputs an update image 22 (also known as next image
estimate). For ease of notation, the n™ pass of the iterative reconstruction update 20 is
denoted as outputting an update image enumerated as update image n. In general, the (n+1)®
pass of the iterative reconstruction update 20 receives as input the immediately preceding
update image numbered n, and employs the chosen iterative reconstruction update process 20
to modify the update image numbered n to produce successive update image numbered n+1
which (when forward projected or otherwise converted to projection space or other imaging
data space) has improved fidelity to the acquired imaging data stored in the storage 18. The
iterative reconstruction process terminates when the update image has sufficiently close
fidelity to the imaging data as measured by a suitable stopping criterion, such as
iteration-to-iteration change in the image being less than some threshold, and/or a
quantitative difference between the forward projected update image and the acquired imaging
data being below some threshold. In this way, iterative reconstruction of the imaging data is
performed to generate a sequence of update images 22 terminating at a reconstructed image.
To initiate the iterative image reconstruction process, the first (e.g. n=0) pass of the iterative
reconstruction update process 20 receives as input some initial image 24, which commonly is
a uniform intensity image, although if a priori information is available it can optionally be
used to generate the initial image 24.

During the iterative reconstruction disclosed herein, and before the iterative
reconstruction terminates at the reconstructed image, at least one of an update image and a
parameter of the iterative reconstruction is adjusted using an adjustment process separate
from the iterative reconstruction. By “separate from the iterative reconstruction” it is meant
that the adjustment process is not the iterative reconstruction update process 20 of the
iterative reconstruction. In the illustrative embodiment of FIGURE 1, two such adjustment
processes are diagrammatically shown.

A first iterative adjustment operates in the context of the iterative
reconstruction update process 20 employing an edge-preserving regularization prior 26. In

some examples herein, the iterative reconstruction process employs a one step late (OSL)
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MAP algorithm framework in which the update image 22 numbered (nt+1) is iteratively

improved as:

f(n) .
f-(n+1) — i * Z TOF 9j )
L . tj
i % U(fi(n)) JE€fi Ziegj H]?£0F * fi(n) + Corr;

where fi(nH) denotes voxel i of the output update image numbered n+1, fi(n) denotes voxel {
of the input update image numbered n, and H iTjOF is the forward- and backprojection operator
incorporating all voxels that belong to a given line-of-response (LOR) g;. The illustrative
operator HiTjOF assumes PET imaging data that includes time-of-flight (TOF) localization for
each 511 keV gamma ray pair, as indicated by the superscript -"°F notation. For SPECT
imaging data or PET imaging data without TOF localization (or reconstructed without
utilizing TOF localization even if available), the standard non-TOF-localized forward- and
backprojection operator H;; would instead be used. Further, in Equation (1) Corr; is an
optional data correction factor for projection j, and s; is a sensitivity coefficient for the voxel
indexed i. In the embodiment of Equation (1), the edge-preserving regularization prior 26 is
denoted U( fi(n)). While any edge-preserving regularization prior may in general be used, in
the illustrative examples the edge-preserving regularization prior 26 is a relative differences
prior (RDP), given by (see Nuyts et al., “A concave prior penalizing relative differences for

maximum-a-posteriori reconstruction in emission tomography”, IEEE Trans. on Nuclear

Science vo. 49 no. 1 pp. 56-60 (2002)):

(n) (M2

U(fi(n)) - TP Tm (]En) — (n)) ™) @)
£+ £ 4yl - £

where f is an overall weight of the edge-preserving regularization prior, and y controls edge
preservation threshold, which is the parameter of the edge-preserving regularization prior 26
that controls the feature (or edge) preservation. In general, the edge preservation threshold y
scales the gradient steepness above which edge preservation applies. In the specific case of
the RDP regularization prior of Equation (2), for image gradients (which represent edges of
features in the image) that are greater than the scale set by the edge preservation threshold v,

the term y|f;" — f;"| in the denominator limits the regularization impact of U(f;"); whereas,
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for image gradients that are below the scale set by y the quadratic numerator (f* — fjn)2
dominates to provide regularization. Again, the RDP of Equation (2) is merely an illustrative
example of the edge-preserving regularization prior 26, and more generally other
regularization priors may be used that include an edge preservation threshold whose value
provides for suppression of the regularization for edges defined by image gradients whose
steepness exceeds the scale set by the edge preservation threshold (and thereby “preserves”
those edges and the corresponding features from being degraded by the regularization).

In general, selection of the regularization parameters (e.g., f and y in
illustrative RDP of Equation (2)) can significantly improve the resulting image quality by
suppressing noise. On the other hand, suboptimal setting of these parameters can materially
deteriorate the diagnostic potential by suppressing edges defining real features.
Conventionally, the value of the edge preservation threshold y has been chosen to best
balance between these two opposing effects. However, when y is chosen to avoid
suppressing diagnostically significant edges of real features, it also passes a certain amount of
noise artifact features, commonly referred to as “speckle” or “hot spots”. It is recognized
herein that these speckle artifact features arise in the following way. The value of y is set
high enough to preserve real edges. In doing so, however, this value of y is low enough to
allow certain noise fluctuations to reach above the edge preservation threshold y. These noise
fluctuations are then preserved by the edge-preservation provided by the edge-preserving
regularization prior 26, and thereafter can be amplified by the resolution recovery modelling
and finally appear as artifact features (speckles) that can potentially be misinterpreted as
lesions. Conventionally, therefore, y is selected to balance between the contradictory goals of
being high enough to protect smaller image gradients in order to preserve real edges while at
the same time being low enough to ensure that noise fluctuations are removed by the
regularization. This balance generally cannot be fully achieved, thus leading to suppression
of real features and resultant missing or impairing quantitation of a real lesion in the
diagnosis, and/or leading to preservation and amplification of artifact features (speckles)
which can lead to false detection of lesions.

With brief reference to FIGURE 2, some insights made herein are leveraged to
improve upon this unsatisfactory state in which y is unable to achieve the desired
combination of preservation of real features and suppression of artifact speckles. FIGURE 2
plots data for iterative reconstruction of a phantom having a 10 mm diameter sphere (which
is therefore a real feature). More particularly, FIGURE 2 plots, as a function of image update

iteration number n ranging from n=1 to n=30, the maximum value of the reconstructed image



10

15

20

25

30

WO 2018/060106 PCT/EP2017/074152
10

intensity value within region of interest (ROI) encircling the real 10 mm sphere, and the
maximum value of image intensity inside ROI encircling an artificial hot spot generated by
amplification of noise. It is seen in FIGURE 2 that the maximum value of the 10 mm sphere
(true feature) converged (that is, became roughly constant) after about 20 iterations. The
change in the maximum value as a function of iteration number thus slowed down for the true
feature after a few iterations. This can be viewed as reflecting that the real image feature
representing the 10 mm sphere corresponds to the reconstructed image gaining fidelity with
actual structure in the imaging data caused by imaging the real 10 mm sphere. In general, it is
recognized herein that real features are likely to converge relatively quickly during an
iterative image reconstruction.

On the other hand, the behavior was quite different for the hot spot. As seen in
FIGURE 2, the maximum value of the noise-induced hot spot does not appear immediately,
but rather grows slowly and continuously with successive iteration number n from iteration 1
to 30. This reflects the fact that this hot spot edge does not reflect any real structure in the
imaging data, but rather is generated by amplification of relatively small initial noise
fluctuations by the iterative image reconstruction process that included resolution recovery.

With returning reference now to FIGURE 1 and with further reference to
FIGURE 3, the foregoing insights lead to a disclosed approach in which, during the iterative
reconstruction, the edge preservation threshold 26 is adjusted to reduce the gradient steepness
above which edge preservation applies for later iterations of the iterative reconstruction
compared with earlier iterations of the iterative reconstruction. In the illustrative embodiment
this is accomplished by way of a linearly decreasing program 30 for the edge preservation
threshold y of the illustrative RDP regularization prior. The illustrative linear program 30 is
shown in greater detail in FIGURE 3, with selective annotation explaining the rationale for
the illustrative design. During the ecarly iterations, y has its highest value. This means that
smaller image gradients are preserved by the edge preservation. This does lead to weaker
noise filtering, but as seen in FIGURE 2 the initial level of noise at ecarly iterations is
relatively low. This initial phase of high y value thus ensures that the edge preservation is
strong (due to the smaller gradient steepness scale requirement for being preserved) so that
real edges defining real features are preserved by the edge preservation and allowed to grow.
This growth is large in the initial iterations (see the curve for the 10 mm sphere feature in
FIGURE 2). With reference back to FIGURE 3, as the iterative reconstruction proceeds the
update number n increases and y decreases in accord with the program 30. For higher

iteration numbers, this results in the edge preservation protecting only edges at larger
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gradient steepness levels. Since the real edges have crystallized in the early iterations (see the
curve for the 10 mm sphere feature in FIGURE 2) it follows that these strong real edges are
still preserved in the later iterations in spite of the decreasing y and consequent more
stringent limit on edge preservation. By contrast, the artifact features nucleate later as noise
due to the “slower” noise amplification process (see the curve for the hot spot artifact feature
in FIGURE 2) and so these noise features are more likely to be suppressed by the
regularization as the edge preservation becomes weaker with decreasing y value. This can be
represented in the illustrative RDP prior by replacing y by the iteration number-dependent

value y;

() = o
AP O] W _ ¢

£+ £y @ — )
By way of one more specific non-limiting illustrative embodiment, y is designed to decrease

linearly over a designated n,,,, iterations according to:

n
y(n) — y(start) + (y(end) _ y(start)) . (4)

nmax

with y™ =y for iterations (if any) numbered higher than n,,,,. In one even more
specific non-limiting embodiments, the linear program of Equation (3) is used as the program
30 with Y& =15 and y©D = 0.5 and n,,4, = 20. These are merely illustrative
examples, and other programs for adjusting the edge preservation threshold of the edge-
preserving regularization prior 26 are contemplated depending upon the form of the prior and
empirical analysis of the process flow evolution of real edges versus artificial edges during
the iterative reconstruction of specific imaging data. For example, if it takes longer than in
the illustrative embodiments for the real edges to stabilize then the program may include an
initial constant period where Y™ =yt before initiating the decrease in y™ with
increasing iteration number n. Additionally or alternatively, a longer stabilization period for
real edges might be accommodated by employing an initial sub-linear decrease in y™ with
the initial iterations.

With reference now to FIGURE 4, an example of the image quality

improvement attainable using the disclosed programmed adjustment 30 of the edge
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preservation threshold 26 is presented. Phantom experiments were conducted to compare
reconstruction using a linearly decreasing ¥ in accord with FIGURE 3 with two different
fixed iteration-independent values including a fixed y = 1.0 and a fixed y = 0.5. More
particularly, FIGURE 4 top row left to right shows: fixed y=1, dynamically changing
v=1.5—0.5 in accord with the linear program 30 of FIGURE 3, and fixed low y=0.5, with
corresponding reconstructed image intensity profiles shown in the rightmost plot illustrating
the reduction of speckle with the second and third images. FIGURE 4 bottom row left to right
shows the same as the top row however showing the slice with useful features that are
preserved in first two images (y = 1.0 and y=1.5—0.5). As seen in FIGURE 4, only the
dynamically changing y=1.5—0.5 was able to both reduce the speckle and preserve the
contrast. All reconstructions shown in FIGURE 4 were for the same three-dimensional
dataset, using as the iterative reconstruction OSEM-MAP (ordered subsets expectation
maximization- maximum a posteriori) with 20 iterations and 17 subsets. Note that in the each
of the rightmost plots the highest curve is for y = 1.0, the lowest curve is for y = 0.5, and
the middle curve is for y=1.5—0.5.

As seen in FIGURE 4, the phantom experiment with fixed y = 1.0 had good
overall contrast and noise control, but had speckle artifacts nucleating and growing in later
iterations. This reflects the strong edge preservation having the detrimental effect of also
preserving noise-induced image gradients that grow sufficiently large. The phantom
experiment with fixed y = 0.5 showed absence of speckles but also strongly reduced contrast
in the useful features (10 mm sphere contrast has dropped by >70%). This reflects the weaker
edge preservation failing to protect some real features. As observed in FIGURE 4, the
dynamically changing edge preservation threshold disclosed herein was able to achieve an
advantageous trade-off: speckle has been suppressed while at the same time the useful
contrast in the 10 mm sphere was reduced by only 20%.

The illustrative embodiments employ the illustrative (modified) RDP
regularization prior of Equation (3) with the illustrative iterative reconstruction of Equation
(1). More generally, the disclosed approach of a programmed adjustment of the edge
preservation threshold as a function of iteration may be employed with any type of edge-
preserving regularization prior that has an edge-preservation threshold. For example, the
edge-preserving regularization prior may more generally be a relative difference prior

proportional to:
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fi— 1)’
fi+ £+ vlfi = £

©)

where y is the edge preservation threshold and f; and f; are image pixels or voxels. Even
more generally, the disclosed approach may be used in conjunction with other edge-
preserving regularization priors having a parameter that controls the extent of edge
preservation (i.e. that has an edge-preservation threshold).

The selection of dynamic y starting and ending values (e.g., the values y St
and y©" in Equation (4)) can be chosen empirically, and verified over a representative
collection of imaging datasets spanning a credible range of imaging subjects (e.g. patients or
other medical subjects in the case of medical imaging). Moreover, while in the example of
Equation (3) only the edge preservation threshold y is programmed to vary with iteration
number n, it is also contemplated to vary other parameters of the regularization prior, such as
the overall prior weight £ of Equation (3), as a function of iteration number n in accordance
with a program chosen to optimally balance preservation of real edges versus suppression of
noise-induced artifact features.

With reference back to FIGURE 1, as previously noted, during the iterative
reconstruction disclosed herein, and before the iterative reconstruction terminates at the
reconstructed image, at least one of an update image and a parameter of the iterative
reconstruction is adjusted using an adjustment process operating separate from the iterative
reconstruction. One illustrative adjustment process is the just-described programmed
adjustment 30 of the edge preservation threshold of an edge-preserving regularization prior
26 optionally used in the iterative reconstruction.

A second such adjustment process diagrammatically shown in FIGURE 1 as
an illustrative example performs local detection of noise-induced artifact features and local
suppression of such detected artifact features. In this approach, each successive update image
22 is stored in a storage 34 (or, alternatively, a sub-set of these may be stored, e.g. every
fourth update image may be stored to reduce storage space requirements). The storage 34
may optionally be constructed as a first-in, first-out (FIFO) buffer that stores the “N” most
recent update images. Based on these update images, a per-region evolution 36 over past
iterations is computed for each region of the image. A “region” in this context may be a
single pixel or voxel, or may be a larger region defined arbitrarily (e.g. each region may be an

nxn square block of pixels or an nxnxn cubic block of voxels) or based on some chosen
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image analysis (e.g. a feature detector that detects image features based on analysis of edges
defined in a gradient image). For a larger region, the “value” of the region may be quantified,
for example, as the maximum pixel value in that region, as is done in FIGURE 2. For each
region of the current update image it is determined in an operation 38 whether the evolution
of the value of the region over update images prior to the current update image satisfies an
artifact feature criterion. For the example of FIGURE 2, the evolution of a real feature is
rapid during the initial iterations and then levels off whereas the evolution of an artifact
feature is more gradual and continues changing in later iterations — these different
characteristics between real features versus artifact features enables defining a criterion for
detecting an artifact feature.

Various algorithms may be used to quantify the evolution of the value of the

region over successive iterations. In one approach, a difference ratio is computed:

Af )
Af D

(6)

where Af(®Dis a difference or absolute difference of the value of the corresponding pixel,
voxel, or region in update images at iterations k and [ and Af ™™ is a difference or absolute
difference of the value of the corresponding pixel, voxel, or region in update images at

iterations m and n. As illustration, for the example of FIGURE 2, in the case of the indicated

mn

) ) .. . A )
iteration numbers k, [, m, n it is seen that for a real feature the ratio will be much less

f
AfF&D

mn

(mn) .
than one, whereas for the hot spot (artifact feature) the ratio 2 will be fairly close to

i
AfkD
one.

The foregoing approach may be performed over the image as a whole, by:
computing a first difference image comprising a per-voxel or per-pixel difference or absolute
difference between update images at iterations k and [ of the iterative reconstruction;
computing a second difference image comprising a per-voxel or per-pixel difference or
absolute difference between update images at iterations m and n of the iterative
reconstruction; and computing a ratio image comprising a per-voxel or per-pixel ratio of the
first difference image and the second difference image. The resulting ratio image is then
analyzed to detect regions with values close to one which are likely to be artifact features.

In an operation 40, local noise suppression is performed at any detected

artifact feature. For example, in one approach the local noise suppression may entail
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replacing the value of the pixel, voxel, or region of the current update image whose evolution
satisfies the artifact feature criterion with the value in an earlier update image. This approach
is premised on the observation made herein that noise-induced artifact features tend to evolve
later in the iterative reconstruction, so that the earlier update image will likely have reduced
or absent noise-induced features. In another approach, the local noise suppression operation
40 replaces the value of the pixel, voxel, or region of the current update image whose
evolution satisfies the artifact feature criterion with an aggregate value of neighboring pixels
or voxels of the current update image. The local noise suppression is local, and is not
performed for pixels, voxels, or regions of the current update image whose evolution does not
satisfy the artifact feature criterion. Certain combination of the above can also be considered.
The output of the operation 40 is then the update image with the local modifications 42, and
this then serves as input to the next iterative reconstruction update 20.

The various image reconstruction computational components and data storage
components may be implemented on an illustrative computer S0 or other electronic data
processing device. The illustrative computer 50 includes a display 52 for displaying the
reconstructed image, and includes one or more user input devices (e.g. a keyboard 54 and
mouse 56) for receiving user input to select images or image slices or to otherwise enable a
user to interact with the image reconstruction and/or the reconstructed image.

With reference now to FIGURES 5-8, some illustrative phantom experiments
demonstrating effectiveness of the approach of locally detecting and suppressing noise-
induced artifact features are described. The illustrative approaches employ a ratio image
constructed as follows, where, referencing Equation (6), the indices /, m, and n are related to
the index £ as follows: /=m=k+x and n=k+2x. At iteration n=k+2x, cach voxel of the image
is compared to the same voxel of the image at iteration m=Fk+x, the difference is calculated as
Af+%E+2%) Then for the same voxel, calculate the difference at iteration /=k+x and & to
obtain Af %k+%) Said another way, £ is the starting iteration for the hot spot control, and x
and 2x are the iteration intervals used to calculate the differences. Since true features are

expected to evolve faster in earlier iterations compared with artifact features (see FIGURE 2),

Af (k+x,k+2x)

for real features the ratio is expected to be less than 1. In contrast, noise blobs and

Af(k,k+x)

artificial hot spots are expected to evolve slowly but the evolution keeps going, so that the

Af(k+x,k+2x)

ratio Aok is expected to be greater than 1. By calculating the ratio

Af(k+x,k+2x)

W fOI‘ each

voxel a ratio image is formed, and one can determine whether a voxel belongs to artificial hot

spots (due to noise) or belong to a normal structure of the image. The ratio image can be used
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to determine the probability that a voxel belongs to an artificial hot spot and the probability

that a voxel belongs to a normal structure. Formally, this can be written as:

Af(k,k+x) - f(k+x) _ f(k)
Af(k+x,k+2x) — f(k+2x) _ f(k+x)

)
B Af(k+x,k+2x)

R = Af(k,k+x)

In the case of cold structures in the images or features such as Gibbs artifacts, one can make
use of the signs of the differences Af%k+%) and Af(Kk+*k+2%) to agsist the process. For
example, for a cold region, the value usually goes down after a certain number of iterations;
for Gibbs artifacts at hot regions, voxel values can go up first then go down, so the Af k+%)
can be positive but Af KF*k+2%) can be negative.

As shown in FIGURE 1, for iterative reconstruction an initial image 24 is
usually used to start the iterative reconstruction. If the average value of the initial image is
too different from the true value, a large scaling effect exists, and it will take a few
updates/iterations for the iterative reconstruction to offset such a scaling effect. Therefore, in
general, n is preferably set to a number large enough so that image initialization scale is no
longer significant. For the iteration interval x, one can use 1 or anything above 1. For
Maximum Likelihood Expectation Maximization (MLEM) where there is only one subset for
cach iteration, £ and x are in general larger than for OSEM for which there are multiple
subsets in each iterations.

With reference to FIGURE 5, a first illustrative phantom reconstruction
example is presented. FIGURE 5 illustrates the effect of the processing 36, 38, 40 on noise
control in OSEM reconstruction in a 2D simulation study with 400,000 events (TOF
resolution 320 ps, TOF reconstruction). Noise blobs in the lungs were significantly reduced
with the hot spot control with OSEM using the processing 36, 38, 40 (FIGURE 5 right
image) as compared to both the conventional OSEM image (FIGURE 5 left image) and the
OSEM image with post-filtering (FIGURE 5 middle image). For hot spot control in the
example of FIGURE 5, right image, £ was first set to 1, and x was set to 1. The adjustment
was as follows: if for a voxel the value R was greater than 0.85, then the voxel would stop
evolution. Then k£ was sect to 2, and x stayed at 1, the R was recalculated for each voxel and
the noise/hot spot suppression process was repeated. As a result of this process, different

voxels might be identified as being due to hot spots at different iterations, and were stopped
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for evolution at the iteration n that they were identified. Effectively, this approach performed
both hot spot identification and suppression. As seen in FIGURE 5, the images show that the
hot spot control using the processing 36, 38, 40 (FIGURE 5 right image) was significantly
better than without the control, and was also significantly better than using a low-pass
Gaussian filter for post reconstruction filtering (FIGURE 5 middle image).

With reference to FIGURE 6, a second illustrative phantom reconstruction
example is presented. FIGURE 6 illustrates the effect of the processing 36, 38, 40 on noise
and hot spot control in an MAP-OSEM reconstruction of the same 2D simulation study in
FIGURE 5. Noise blobs in the lungs and artificial hot spots in the images were significantly
reduced with the hot spot control of processing 36, 38, 40 (FIGURE 6, right images) as
compared to without such processing (FIGURE 6, left images). The top row of FIGURE 6 is
for OSEM-MAP using RDP prior (f = 20, y = 0.1). The bottom row is for OSEM-MAP
using an ADF prior (see Zhu et al, Med Bio. Eng. Comput, 44:983-997 (2006)) with § =
0.05 and y = 0.1. Both the RDP and ADF priors showed artificial hot spots in the
reconstructed images without hot spot control using the processing 36, 38, 40 but significant
suppression of the artificial hot spots using the processing 36, 38, 40.

With reference to FIGURE 7, a second illustrative phantom reconstruction
example is presented. FIGURE 7 illustrates the effect of using the processing 36, 38, 40 with
OSEM-MAP reconstruction of a NEMA 1Q body phantom study acquired on a Philips
Vereos digital PET system (available from Koninklijke Philips N.V., Eindhoven, the
Netherlands). The leftmost image of FIGURE 7 shows reconstruction using the OSEM
algorithm with 9 subsets and 30 iterations. The image appeared noisy because of the large
number of iterations. The second image from the left shows the effect of applying post-
reconstruction filtering in the form of a median filter with window radius of 2 voxels to the
leftmost image for noise reduction. Noise was significantly reduced but still the texture of the
image was blobby. The third image from left was produced using OSEM-MAP with ADF
prior, same number of iterations. Overall noise was significantly reduced as compared to the
leftmost image, however, there were some hot spots in the uniform region of the phantom.
The rightmost image of FIGURE 7 was produced using the noise/hot spot control processing
36, 38, 40 in the OSEM-MAP reconstruction. The artificial hot spots were all removed, the
image shows superior quality as compared with the left three images. The quantitation of the
true features, i.c., the spheres in the phantom, was only changed slightly. For example, the
average of the smallest hot sphere (the 10 mm sphere) was 334.3 in the left image, 341 in the

third image, and 344.9 in the rightmost image, the difference was less than 1%. The mean



10

15

20

25

30

WO 2018/060106 PCT/EP2017/074152
18

value of the 17 mm hot sphere was 537.0, 532.7, and 547.1 for the first, third, and rightmost
images. The difference between the left and right images was less than 2%. The largest
quantitative difference was shown in the 13 mm sphere: the maximum values were 626.4,
626.3, and 557.8 for the first, third, and the rightmost image, respectively. The difference was
about 11%.

With reference to FIGURE 8, in another embodiment the images are first
reconstructed using an iterative reconstruction. Some or all of the intermediate update images
(i.e. update images prior to the terminating reconstructed image) are saved in the storage 34.
For example, the intermediate update image at iterations, £+x, and £+2x may be saved in the
storage 34, while the other intermediate update images are discarded. For each voxel of the
image, the mechanism previously described is used to determine if it belongs to a hot spot or
a normal structure. FIGURE 8 shows results of this approach, where the update images at the
k+2x=30th, k+x=20th, and £=10th iteration are saved out for the noise/hot spot control, and
the artificial hot spot in the 30th iteration image is successfully removed. True features
showed no difference both visually and quantitatively (difference less than 0.1%). The
images shown in FIGURE § are as follows. The four columns depict four different slices.
Top row: 30th iteration image that showed an artificial hot spot at the 9 o’clock position near
the 37 mm cold sphere. Middle row: image with the hot spot control. Bottom row: difference
image between the top and middle images. The difference was only at/near the hot spot
region. No difference was shown in the true features: all the spheres, hot or cold.

It will be appreciated that the disclosed adjustment process embodiments
diagrammatically shown in FIGURE 1 (i.e. the programmed adjustment 30 of the edge
preservation threshold of an edge-preserving regularization prior and the local
detection/suppression of artifact features) may be used alone or in combination. Using the
two adjustment processes in combination can provide synergistic benefit: for example, if at a
later iteration the suppression operation 40 replaces a noise-induced artifact feature with an
carlier version of the region for which the noise amplification is lower, then at this later
iteration the lower value of the edge preservation threshold y is likely to more effectively
suppress the noise as compared with the earlier iterations having larger y.

The invention has been described with reference to the preferred
embodiments. Modifications and alterations may occur to others upon reading and
understanding the preceding detailed description. It is intended that the invention be
construed as including all such modifications and alterations insofar as they come within the

scope of the appended claims or the equivalents thereof.
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CLAIMS:

1. A non-transitory storage medium storing instructions readable and executable by a
computer (50) to perform an image reconstruction method comprising:

performing iterative reconstruction (20) of imaging data to generate a sequence of
update images (22) terminating at a reconstructed image; and

during the iterative reconstruction and before the iterative reconstruction terminates at
the reconstructed image, adjusting at least one of an update image produced by the iterative
reconstruction and a parameter of the iterative reconstruction using an adjustment process

(30, 36, 38, 40) separate from the iterative reconstruction.

2. The non-transitory storage medium of claim 1 wherein:

the iterative reconstruction (20) includes an edge-preserving regularization prior (26)
having an edge preservation threshold;

the adjustment process (30) comprises adjusting the edge preservation threshold to
reduce gradient steepness above which edge preservation applies for later iterations of the

iterative reconstruction compared with earlier iterations of the iterative reconstruction.

3. The non-transitory storage medium of claim 2 wherein:

the edge-preserving regularization prior (26) comprises a relative difference prior
having an edge preservation threshold y for which edge preservation increases with
increasing y; and

the adjustment process (30) comprises decreasing the edge preservation threshold y

with increasing number of iterations of the iterative reconstruction (20).

4. The non-transitory storage medium of claim 2 wherein:
the edge-preserving regularization prior (26) comprises a relative difference prior
proportional to:
2
(i %)
for g7

where y is the edge preservation threshold and f; and f; are image pixels or voxels; and
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the adjustment process (30) comprises decreasing the edge preservation threshold y

with increasing number of iterations of the iterative reconstruction (20).

5. The non-transitory storage medium of claim 1 wherein the adjustment process (36,
38, 40) comprises:

for each pixel, voxel, or region of a current update image that precedes the
terminating reconstructed image in the iterative reconstruction, determining (36, 38) whether
an evolution of the value of an pixel, voxel, or region over update images prior to the current
update image (22) satisfies an artifact feature criterion; and

performing a local noise suppression operation (40) for any pixel, voxel, or region of
the current update image whose evolution satisfies the artifact feature criterion and not
performing the local noise suppression operation for any pixel, voxel, or region of the current

update image whose evolution does not satisfy the artifact feature criterion.

6. The non-transitory storage medium of claim 5 wherein the determining (36, 38)
comprises:

computing a first difference image comprising a per-voxel or per-pixel difference or
absolute difference between update images at iterations k and [ of the iterative
reconstruction;

computing a second difference image comprising a per-voxel or per-pixel difference
or absolute difference between update images at iterations m and n of the iterative
reconstruction;

computing a ratio image comprising a per-voxel or per-pixel ratio of the first
difference image and the second difference image; and

determining whether the evolution of each pixel, voxel, or region of the current
update image (22) satisfies the artifact feature criterion by determining whether the

corresponding pixel, voxel, or region of the ratio image satisfies the artifact feature criterion.

7. The non-transitory storage medium of claim 5 wherein the determining (36, 38)
comprises:

for each pixel, voxel, or region of the current update image, computing a difference
ratio:

A f(m,n)
Af kD
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where Af % is a difference or absolute difference of the value of the corresponding pixel,
voxel, or region in update images at iterations k and [ and Af ™™ is a difference or absolute
difference of the value of the corresponding pixel, voxel, or region in update images at
iterations m and n; and

determining whether the evolution of each pixel, voxel, or region of the current
update image (22) satisfies the artifact feature criterion by determining whether the

corresponding difference ratio satisfies the artifact feature criterion.

8. The non-transitory storage medium of any one of claims 5-7 wherein the local
noise suppression operation (40) comprises replacing the value of the pixel, voxel, or region
of the current update image (22) whose evolution satisfies the artifact feature criterion with

the value of the corresponding pixel, voxel, or region in an earlier update image.

9. The non-transitory storage medium of any one of claims 5-7 wherein the local
noise suppression operation (40) comprises replacing the value of the pixel, voxel, or region
of the current update image (22) whose evolution satisfies the artifact feature criterion with

an aggregate value of neighboring pixels or voxels of the current update image.

10. The non-transitory storage medium of any one of claims 1-9 wherein the imaging
data comprise one of positron emission tomography (PET) imaging data, single photon
emission computed tomography (SPECT) imaging data, and transmission computed

tomography (CT) imaging data.

11. An image reconstruction device comprising:
a non-transitory storage medium as set forth in any one of claims 1-10; and
a computer (50) connected to read and execute the instructions stored on the

non-transitory storage medium to perform the image reconstruction method.

12. An image reconstruction method comprising:

reconstructing imaging data by performing iterative reconstruction (20) with an edge-
preserving regularization prior (26) to generate a reconstructed image;

during the iterative reconstruction, adjusting (30) an edge preservation threshold of
the edge-preserving regularization prior as a function of the number of performed iterations

of the iterative reconstruction; and
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displaying the reconstructed image on a display (52);

wherein the reconstructing and the adjusting are performed using a computer (50).

13. The image reconstruction method of claim 12 wherein the adjusting (30)
comprises adjusting the edge preservation threshold to reduce edge preservation as the

number of performed iterations of the iterative reconstruction increases.

14. The image reconstruction method of claim 12 wherein:

the edge-preserving regularization prior (26) has an edge preservation threshold y for
which edge preservation increases with increasing y; and

the adjusting comprises decreasing the edge preservation threshold y as the number of

performed iterations of the iterative reconstruction (20) increases.

15. The image reconstruction method of claim 12 wherein:
the edge-preserving regularization prior (26) is proportional to:
2
(i=1)
for g7

where y is the edge preservation threshold and f; and f; are image pixels or voxels; and

the adjusting (30) comprises decreasing the edge preservation threshold y with

increasing number of iterations of the iterative reconstruction (20).

16. The image reconstruction method of any one of claims 12-15 further comprising:
acquiring the imaging data as one of:

positron emission tomography (PET) imaging data acquired using a
PET imaging device (14),

single photon emission computed tomography (SPECT) imaging data
acquired using a gamma camera, and

transmission computed tomography (CT) imaging data acquired using

a CT imaging device (12).

17. An image reconstruction device comprising:
a computer (50) programmed to perform iterative reconstruction (20) of imaging data

to generate a sequence of update images (22) terminating at a reconstructed image; and
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a display (52) operatively connected with the computer to display the reconstructed
image;
wherein the computer is further programmed to adjust a current update image of the
iterative reconstruction that precedes the terminating reconstructed image in the iterative
reconstruction by operations including:
for each pixel, voxel, or region of the current update image,
determining (36, 38) whether an evolution of the value of an pixel, voxel, or
region over update images prior to the current update image in the iterative
reconstruction satisfies an artifact feature criterion; and
performing a local noise suppression operation (40) for any pixel,
voxel, or region of the current update image whose evolution satisfies the
artifact feature criterion and not performing the local noise suppression
operation for any pixel, voxel, or region of the current update image whose

evolution does not satisfy the artifact feature criterion.

18. The image reconstruction device of claim 17 wherein the determining (36, 38)
comprises:

computing a first difference image comprising a per-voxel or per-pixel difference or
absolute difference between update images at iterations k and [ of the iterative
reconstruction;

computing a second difference image comprising a per-voxel or per-pixel difference
or absolute difference between update images at iterations m and n of the iterative
reconstruction;

computing a ratio image comprising a per-voxel or per-pixel ratio of the first
difference image and the second difference image; and

determining whether the evolution of each pixel, voxel, or region of the current
update image (22) satisfies the artifact feature criterion by determining whether the

corresponding pixel, voxel, or region of the ratio image satisfies the artifact feature criterion.

19. The image reconstruction device of claim 17 wherein the determining (36, 38)
comprises:

for each pixel, voxel, or region of the current update image, computing a difference

Af(mn)

ratio ﬁ where Af®D is a difference or absolute difference of the value of the
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corresponding pixel, voxel, or region in update images at iterations k and [ and Af ™™ is a
difference or absolute difference of the value of the corresponding pixel, voxel, or region in
update images at iterations m and n; and
determining whether the evolution of each pixel, voxel, or region of the current
update image (22) satisfies the artifact feature criterion by determining whether the

corresponding difference ratio satisfies the artifact feature criterion.

20. The image reconstruction device of any one of claims 17-19 wherein the local
noise suppression operation (40) comprises replacing the value of the pixel, voxel, or region
of the current update image (22) whose evolution satisfies the artifact feature criterion with

the value of the corresponding pixel, voxel, or region in an earlier update image.

21. The image reconstruction device of any one of claims 17-19 wherein the local
noise suppression operation (40) comprises replacing the value of the pixel, voxel, or region
of the current update image (22) whose evolution satisfies the artifact feature criterion with

an aggregate value of neighboring pixels or voxels of the current update image.



PCT/EP2017/074152

WO 2018/060106

UOLIBJIIO 8siou Joeje Bunssw suoibal
uo uoissaiddns ssiou |BI0] W03

*

UOLIB}IO BInjes) Joejie
Bunssw suoibal sulwieie(

sabew ajepdn

i

1sed o} sbel)g
v/

suoneJsyl 1sed JBAC
uonnjoAs uoibal-1ad

i

(u) Junod
uoness)l

(u) sbew: sjepdn

—

ac

i

Joud uonezienbal

:/ (uyh

pPloyssiuy
uoieasasald abp3

om\

Buinsesaid abp3

.

9¢ ssa00.d ajepdn

UOI}ONJ}SU0D8I BANEISY

44

(u) sbew: sjepdn
pajipow Ajjea0T

e

i

\ abew ey
174

abe.o}s ejep buibew

R oo e o w e o




PCT/EP2017/074152

WO 2018/060106

2/8

ag

0¢
_

(u) uoneJsy|

14

0¢

¢ DI

Gl 0l

(8injesy joejipe)
10dS J0H

(ainesy |eal)
alsyds ww g}

uoijelay SA xew uoibay

o, OGS GG WSS G GBN GND M DSR NSO RSN UM GGG RN G

— 00¢

— 00V

— 009

— 008

— 0001

— 0021

— 00v1

— 0091

Xew uoibay



PCT/EP2017/074152

WO 2018/060106

3/8

¢ DI

Buusyij asiou Jebuons <—
uonenasald abps Aq psjosiold
sjusipe.b sbeuw ebiej Ajuo - A Jomo

sjusipelb sbewi asiou
Jgjlews Aq Ajjeniul ‘ieie)
8)esjonu Sainjes) 19ey
suoijesa)l Ajes ul
sjusipe.t abewr Buons
<~ Wioj sainjes) [esy

3!

Buiieyl asiou Joyeam -—
uonealssa.id abps Aq psjosiold
Jusipe.l6 sbew Jajjews - A JaybiH




PCT/EP2017/074152

WO 2018/060106

4/8

apjoads sy ybnoayy s9jio.d

panjesald
I13s sI a1ayds ww Q|

G0<Gl=4 0’} -4

1
.

Go

auob si gppoedg

Go=4 G0<Gl =4 0’} -A
MO paxe|oy



PCT/EP2017/074152

WO 2018/060106

5/8

uonongsuodsl buunp
Juswisnipe yim
W3SO

S DI

Buueyjiy-isod yyim
uoIonsuoaal

W34S0

UoIoNJISU00al
W3SO



PCT/EP2017/074152

WO 2018/060106

9 'DI4

-
Joud 4av

6/8

A
Joud 4@y

uononJIsuosas Buunp
Jusugsnipe yym
W3SO-dVI

UONONIISU008)
NASO-dVIN



PCT/EP2017/074152

WO 2018/060106

/7/8

uononIsuCIsl Buunp
juswjsnipe ypm
suonessyt 0g
$198qnSs 6
W3SO

Joud Qv yim
suoness)l 0g
s1asqns g
W3so

A=

Buuieyy-psod yym
suoness}l 0g
s}esgns g
W3so

suofess)l 0g
S19sqNS §
WSO



PCT/EP2017/074152

WO 2018/060106

8/8

e
abew
aouaJsayig

———
|0JJU0D
10ds J04

Uum sbew|

R —
abeuwi

uonessy yoe

8 DI

10dS J0H

10ds J0H

10ds J0H



INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2017/074152

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6T11/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6T

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, COMPENDEX, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X CHUNG CHAN ET AL:

tomography",

vol. 54, no. 24,

7379-7400, XP020167052,
ISSN: 0031-9155
A the whole document

"Regularized image
reconstruction with an anatomically
adaptive prior for positron emission

PHYSICS IN MEDICINE AND BIOLOGY, INSTITUTE
OF PHYSICS PUBLISHING, BRISTOL GB,

21 December 2009 (2009-12-21), pages

1-3,5,
10-14,
16,17

4,6-9,
15,18-21

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

3 November 2017

Date of mailing of the international search report

15/11/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Werling, Alexander

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2




INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2017/074152

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A NUYTS J ET AL: "Performance of the
Relative Difference Prior for Hot Lesion
Detection in Whole-Body PET/CT: an
Evaluation with Numerical and Real
Observers",

NUCLEAR SCIENCE SYMPOSIUM CONFERENCE
RECORD, 2005 IEEE WYNDHAM EL CONQUISTADOR
RESORT, PUERTO RICO OCTOBER 23 - 29, 2005,
PISCATAWAY, NJ, USA,IEEE,

vol. 4, 23 October 2005 (2005-10-23),
pages 2155-2159, XP010896022,

DOI: 10.1109/NSSMIC.2005.1596761

ISBN: 978-0-7803-9221-2

page 2155, right-hand column - page 2156,
left-hand column

1-21

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report

