发明名称
鹿胎盘生理活性多肽的制备方法

摘要
本发明涉及一种鹿胎盘生理活性多肽的制备方法。其特点为：鹿胎盘绞碎加丙酮充分搅拌，干燥后制成胎盘粉，加水制成胎盘浆；加胰酶水解，加盐酸调 pH 至 5.5 终止消化，过滤，滤液加入硫酸氢搅拌使其溶解，在 4℃条件下静置过夜，离心；调 pH 至 10，在 4℃条件下静置过夜，离心；取离心上清液，调 pH 至 7.0，搅拌吸附 20 分钟，至无硫酸氢为止；滤过树脂，脱盐液，超滤，低温干燥得成品。本发明降低胆固醇对人体的危害，确保了生理性物质不因温度过高而遭到破坏。工艺简单，生产成本低，本发明生产的多肽分子量小，具有镇静作用的有效成分，具有抗衰老和美容保健作用，且耐胃蛋白酶和胰蛋白酶分解，适于口服和外用化妆品的制备。
1、鹿胎盘生理活性多肽的制备方法，其特征在于采用以下步骤：

(1) 将鹿胎盘绞碎，每 100kg 加入丙酮 100~150 升，充分搅拌 3~6 小时，过滤，滤饼真空干燥，粉碎制成脱脂鹿胎盘粉；

(2) 每千克鹿胎盘粉中加水 3~6kg，缓慢搅拌，加热至 40℃~60℃搅拌 2~5 小时，制成鹿胎盘浆；

(3) 待鹿胎盘浆冷却到 40~48℃，加入胰酶，加入 NaOH 溶液调 pH 至 8.5，在 40~48℃条件下水解 8 小时，并不断搅拌；

(4) 水解完毕之后，加盐酸调 pH 至 5.5 终止消化，过滤；

(5) 滤液中按 600 克/L 加入硫酸铵搅拌使其溶解，在 4℃条件下静置过夜，离心；

(6) 取上清液调 pH 至 10，在 4℃条件下静置过夜，离心；

(7) 取离心上清液，调 pH 至 7.0，用 201X7 树脂和 001X7 树脂，按 201X7 树脂和 001X7 树脂=3:1 的比例，搅拌吸附 15~30 分钟，至无硫酸铵为止；

(8) 滤过树脂，脱盐液，超滤，低温干燥制得成品。

2、根据权利要求 1 所述的鹿胎盘生理活性多肽的制备方法，其特征在于：
采用如下方法制备胰酶，新鲜动物胰脏绞碎，加入 25%乙醇搅拌后静置 12 小时，然后再加 3 倍量的水，搅拌，静置 12 小时，即可。

3、根据权利要求 1 或 2 所述的鹿胎盘生理活性多肽的制备方法，其特征在于：胰酶的最适 pH 值为 8~9；最适温度为 43℃。

4、根据权利要求 3 所述的鹿胎盘生理活性多肽的制备方法，其特征在于：所含胰酶的量为每 10 个胎盘加 1 个新鲜动物胰脏所含的胰酶量。
说明书

鹿胎盘生理活性多肽的制备方法

一、技术领域

本发明涉及一种鹿胎盘生理活性多肽的制备方法，属于医疗、保健领域。

二、背景技术

胎盘（Placenta），中医称为“紫河车”、“人胞”或“胞衣”，其应用可追溯到远古时代。胎盘被有理有据的正式纳入医药治疗领域还是在进入本世纪后。胎盘对胎儿具有很强的保护和滋养等作用，具备利于胎儿发育的最佳环境。现代医学通过生物监测得出结论，胎盘中不仅含有多种治疗疾病的激素、酶，还有防病健身及美容的多肽、细胞生长因子等物质，因此现代胎盘制剂研究的成果不仅用于治疗疾病，还被广泛应用到美容领域。

在日本，胎盘制剂可分为两种：一种用于临床治疗，属于这一类的胎盘制剂来源几乎均为人的胎盘；另一种胎盘制剂用于美容或保健品，这种胎盘制剂的原料多为动物胎盘，如牛、猪胎盘等。通过对人、动物胎盘中有效成分的对比研究表明，同属于哺乳动物的这两种胎盘无论在治疗上还是在美容、保健食品上的效果均无明显的差异。在我国，鹿胎盘有着悠久的药用和保健制品历史，鹿胎盘可用于妇女内分泌紊乱类妇科疾病治疗，在保健品方面可用于抗衰老延年益寿、化妆品等领域。中医临床经验表明鹿胎盘不同于其他动物胎盘和人胎盘，鹿胎盘有着它特有的临床疗效，是其他动物胎盘不能替代的，而人胎盘由于来源和性病等因素受到很大的限制。艾滋病病毒等人源性病可通过制品传染。对于牛胎盘来说，由于欧洲疯牛病的原因也逐渐加大了法制管制。因此，开发鹿胎盘制品受到了医疗和保健业界的普遍重视。

胎盘制剂抗衰老、美容机制在于胎盘中的生理活性蛋白、细胞生长因子、
多种酶和活性多肽等有效成分的抗细胞脂质过氧化作用，促进皮肤新陈代谢作用、细胞分裂促进作用、内分泌调节作用、抗炎作用、抗过敏作用、安眠作用以及保湿作用等。胎盘含有各种氨基酸，矿物质及维生素等成分，尤其含有与细胞生长有关的各种生长因子，如上皮细胞生长因子（EGF）、内皮细胞生长因子（ECGF）、成纤维细胞生长因子（FGF）、神经细胞营养因子等，因此胎盘制品对于抗衰老和皮肤具有明显的功效。

鹿胎盘的最佳应用并不是简单的磨成粉掺入产品中，而是应当通过严格的生化处理过程“去其糟粕，取其精华”，去掉其中没有用的、对人体有害的成分，保留有益成分。胎盘提取物（Placental Extracts）包括胎盘水解液、胎盘球蛋白、胎盘酶、短肽和胎盘脂质等。有研究表明胎盘提取液中的有效成分，可加速细胞的有丝分裂，促进细胞代谢，加强血液循环等作用，它还可用于各类护肤制品，防止皮肤粗糙、小皱纹、黑色素、雀斑，能增加皮肤营养。因此，研究和开发鹿胎盘保健制品等工作是当前中药现代化研发的一个重要课题。目前，一些国外公司对于动物组织、脏器的药用制品研发经验告诉我们：动物组织、脏器水解物，如心水解物、脑水解物、肝脏水解物、胎盘水解物等制品的药用效果远比这些组织、脏器的简单处理制品好的多，已受到制药业的高度重视。动物组织、脏器水解物的生产主要以酸解和酶解为主。采用酶法生产是当前研究的热点，因其安全性极高、价廉、易于推广而引起人们的极大兴趣。

生理活性肽是指具有生物活性的多肽，这些多肽小到只有 2 个氨基酸的双肽，也可以大到复杂的长链或环状多肽，而且常经过糖苷化、磷酸化或酰化衍生，在细胞生理及代谢功能的调节上具有重要的作用。特别是短肽的发现已经成为多肽类药物和功能性食品添加剂的开发热点。以数个氨基酸结合生成的低肽比氨基酸有更好的消化吸收性能，且营养和生理效果更为优越。不仅如此，
其中许多肽还具有原蛋白质或其组成氨基酸所没有的新功能。这些生物活性肽
都以非活性状态存在于蛋白质的长链之中，当用适当的蛋白酶水解时，它们的
活性就被释放出来。

三、发明内容

本发明解决的技术问题是：去除鹿胎盘中的胆固醇物质，降低了胆固醇对
人体的危害；并且分离掉胎盘中分子量较大的蛋白质和等电点为酸性和碱性的
杂肽类物质，多肽分子量小，在低温条件下操作，确保了生理活性物质不因温
度过高而遭到破坏，整个工艺过程无有害物质混入，工艺简单，生产成本低的
一种鹿胎盘生理活性多肽的制备方法。

本发明技术解决方案：

本发明采用以下步骤：

(1) 将鹿胎盘绞碎，每 100kg 加入丙酮 100-150 升，充分搅拌 3-6 小时，
过滤，滤饼真空干燥，粉碎制成脱脂鹿胎盘粉；

(2) 每千克鹿胎盘粉中加水 3-6kg, 缓慢搅拌，加热至 40℃-60℃搅拌 2-5
小时，制成鹿胎盘浆；

(3) 待鹿胎盘浆冷却到 40-48℃，加入胰酶，加入 NaOH 溶液调 pH 至 8.5，
在 40-48℃条件下水解 8 小时，并不断搅拌；

(4) 水解完毕之后，加盐酸调 pH 至 5.5 终止消化，过滤；

(5) 滤液中按 600 克/L 加入硫酸氨搅拌使其溶解，在 4℃条件下静置过夜，
离心；

(6) 取上清液调 pH 至 10，在 4℃条件下静置过夜，离心；

(7) 取离心上清液，调 pH 至 7.0，用 201X7 树脂和 001X7 树脂，按 201X7
树脂和 001X7 树脂=3: 1 的比例，搅拌吸附 15-30 分钟，至无硫酸氨为止；
（8）滤过树脂，脱盐液，超滤，低温干燥制得成品。

采用如下方法制备胰酶，新鲜动物胰脏绞碎，加入25%乙醇搅拌后静置12小时，然后再加3倍量的水，搅拌，静置12小时，即可。

胰酶的最适pH值为8-9；最适温度为43℃。

所含胰酶的量为每10个胎盘加1个新鲜动物胰脏所含的胰酶量。

本发明的优点：

（1）、本工艺使用丙酮脱脂可除去鹿胎盘中的胆固醇物质，由此降低了胆固醇对人体的危害。

（2）、与以往的工艺相比，在低温条件下操作，取消了煮沸过程，确保了生理活性物质不因温度过高而遭到破坏。

（3）、由于采用低温方法用动物胰酶作为胎盘水解的酶制剂，没有有害物质的混入，对人体的健康没有任何不良影响，属于健康绿色生产工艺。

（4）、我们用高浓度硫酸氨在酸性和碱性条件下分步沉淀，去除了分子量较大的蛋白质和等电点为酸性和碱性的杂肽类物质，工艺简单，生产成本低，此工艺也是我们的独创。

（5）、更重要的是本工艺制备的多肽为具有镇静作用的有效成分，还具有抗衰老和美容保健作用，属国内外首创，生产的多肽分子量很小，而且耐胃蛋白酶和胰蛋白酶分解，适合于口服和外用化妆品的制备。

（6）、本工艺生产的多肽产品是医药、保健品和化妆品等领域的重要原材料，使用此原料可制备一系列贵重商品，能为国家创造巨大的经济财富和带来不可估量的社会性效益。

本发明对鹿胎盘生理活性多肽的检测

1.1 分子量检测
1.1.1 分子量检测方法

(1) SDS-PAGE 凝胶电泳

① 小分子量的多肽 SDS-PAGE 凝胶配制：如下配制分离胶（T=15%，C=5%，8.0M 尿素，0.025%SDS，0.2M Tris—SO4，pH7.8）5mL：尿素：2.3 克，试剂 A（1M Tris，0.2%SDS 用浓硫酸调 pH 至 7.8）：0.96mL，试剂 C（分离胶聚丙烯酰胺贮存液（T=36%，C=5%））：2.16mL，加水到 5.0mL，试剂 E（2.4%过硫酸铵溶液）：0.1mL，TEMED：3μL。如下配制浓缩胶（T=3.125%，C=20%，0.025% SDS，0.2M Tris—SO4，pH7.8）5mL：试剂 A：1.0mL，试剂 D（浓缩胶聚丙烯酰胺贮存液（T=6.25%，C=20%））：2.5mL，水 1.4mL，试剂 E：0.1mL，TEMED：5μL。

② SDS—PAGE 条件：条件同常规的 SDS—PAGE，样品缓冲液：用 0.139mol/L Tris，0.5%SDS，20%蔗糖，0.01%溴酚兰，用冰醋酸调 pH 至 7.8。下槽用 A 液（1mol/L Tris，0.2%SDS 用浓硫酸调 pH 至 7.8）用 1：5 稀释，上槽用 B 液（0.074mol/L Tris，0.1%SDS 用 HCl 调 pH 至 7.8）。

③ 凝胶染色：用常规电泳的考马司亮兰染色多肽。

(2) 质谱分析（MALDI-TOF MS）：为了确定我们制备的混合多肽分子大小，使用德国 Bruker 公司的 ReflexIII 进行了分析。

1.1.2 分子量检测结果

我们希望获得分子量较小的多肽，通过 SDS-PAGE 凝胶电泳分析和质谱分析，确定了这些多肽大小在 3KD 以下，即小于 30 个氨基酸。为了获得有效的单肽成分，我们用 HPLC 方法分离含量较大的多肽，即 0.8、1.0、1.5、2.2 和 2.4KD 的 5 个成分。

1.2 氨基酸的检测
1.1.2 氨基酸的检测方法

称取 25mg 样品于水解管底部，加入 6 mol/L 盐酸 20 mL，加入 1 滴正辛醇（去泡剂）；将水解管放入干冰-丙酮液或液氮中，冷冻 2min 后将水解管和真空泵相连，抽至基本无气泡时，一边继续抽气，一边用喷灯将管口封死；然后置烘箱内于 110℃水解 22-24 小时。取出冷却后，切开水解管，将水解液定量地过滤至 50 mL 容量瓶中，然后用水定容至刻度；取滤液 10 mL 至烧瓶中，在减压蒸干装置上蒸干；残留物用 10 mL 无离子水解并再次蒸干。如此反复加水蒸干 2-3 次，最后一次蒸干后放 4℃冰箱中保存待分析用。分析前，准确加 0.02 mol/L 盐酸 1-5 mL，使每毫升含 0.15mg 左右粗蛋白，即得到样品液。然后用日立 L-8800 全自动氨基酸分析仪进行分析。

1.2.2 氨基酸的检测结果

共检测出 18 种常见氨基酸，它们是 Asp、Thr、Ser、Glu、Gly、Ala、Cys、Val、Met、Ile、Leu、Tyr、Phe、Lys、His、Arg、Pro 和 NH₄，其中有 8 中人体必需氨基酸，它们是 Thr、Val、Met、Ile、Leu、Lys、His、Arg 和 Pro。

1.3 活性检测

1.3.1 活性检测方法

(1) 小鼠灌肠实验：选择 8 周龄的大小、外形、营养程度一致的 BARB/c 小白鼠，分成 5 只一组，除对照组，用制备的多肽混合物水溶剂 200 微克/只灌肠，并在饮水中加入 50 毫克/L 多肽混合物，观察一个月。

(2) 大白鼠神经原细胞的培养：

①神经原细胞的制备：取出生后 1-3 天内的大鼠脑组织后，先仔细剥除脑膜和血管等纤维成分，置入 Hanks 液中漂洗 1～2 次后，置于 30～50 倍的 Hanks 液中，脑组织比较柔软，反复吹打即可制成细胞悬液。为排除脂肪成分和其它
碎块，把悬液注入离心管中，在室温直立5～10分钟后，细胞或细胞团块自然下沉，脂肪等杂物易漂浮于悬液表层，吸除上清，如此反复二三次可获得较多的细胞成分。向末次沉淀物中加入适量营养液，通过纱网或纱布滤过，计数细胞并调整好细胞密度，接种入培养瓶或皿中，置5%CO₂恒温箱中培养。细胞生长汇合后，可用0.25%胰蛋白酶消化法做传代处理，加消化液的量以能覆盖细胞层即可，待细胞开始从瓶壁脱离（平均5～10分钟），加入含有血清培养液，吹打制成细胞悬液。

② 培养：用含10%胎牛血清的DMEM培养液培养细胞，向细胞培养液中加入1微克/毫升的鹿胎盘多肽混合物，对照组不加，培养观察一周。

(3)人皮肤细胞的培养：全层正常背部皮肤，来自外科整形术患者，局部未经任何处理（经患者知情同意）。

① 人皮肤汗腺组织的分离：获取离体10 min内手术区全层皮肤，0.5 cm x 2.0 cm，无菌操作下除去皮下脂肪，置于含双抗的Dulbecco磷酸盐缓冲液（PBS）中反复漂洗。转移培养皿中，用眼科剪将皮肤剪成小于1 mm x 1 mm的组织块，加入适量含胶原酶Ⅱ型（2 g/L）的Hank平衡盐溶液（HBSS），在孵箱内静置过夜。次日晨在倒置显微镜下观察皮肤消化情况。在细胞超净台中操作。用微量移液器吸取游离汗腺组织，移入另一盛有DMEM/F 12液（1：1，内含体积分数为5%胎牛血清）的培养皿中，37 ℃，体积分数5% CO₂、饱和湿度为95%条件下静置孵育30 min，重复该步骤2次。

② 培养：用5%的胎牛血清的Dulbecco改良Eagle培养基，向细胞培养液中加入1微克/毫升的鹿胎盘多肽混合物，对照组不加，培养观察一周。

1.3.2 活性检测结果

(1)小鼠灌肠实验结果：
小鼠灌肠实验表明：这种短肽的确具备镇静作用，显示灌肠小鼠比对照组明显安静，一段时间的观察还发现实验组的小鼠的毛色比对照组光亮，运动也比对照组活泼。为了确定这种具有镇静作用的物质是肽类物质而不是其它具有镇静作用的有机化合物成分，我们用黄曲霉蛋白酶进行了消化处理，使多肽彻底降解成氨基酸，用这种酶处理的液体再给小鼠灌肠检测，发现灌肠小鼠与对照组没有明显区别，表明这种具镇静作用的物质是由氨基酸组成的肽类物质，由此排除了化学镇静物质的作用。

为了更进一步确定这种具镇静作用的小肽物质成分，我们用分离的其中5个含量较大的成分也同样进行实验测试。令我们失望的是：它们都不具备明显的静眠作用。有意思的是：如果除去了这几个含量较大成分的其它物质其静眠作用也不明显，表明具有这种具镇静作用的多肽是一种混合肽，只有这些多肽相互协调作用才能明显地发挥它们的生理活性，这也说明以前其他的研究一直不能分离出这种作用的多肽的一个重要理由，也说明发挥同种作用的物质需要协同作用，这种现象在中药药效更为明显，往往一种有效的中成药需要很多药物配伍。

(2)大白鼠神经原细胞的培养及人皮肤细胞的培养的结果：

这种胚胎盘生理活性多肽很可能同时具备其它的生理活性，为此我们使用大白鼠神经原细胞和人皮肤细胞培养液中加入胚胎盘生理活性多肽进行培养，发现它能促进神经细胞和皮肤细胞的生长，表明这种多肽在抗衰老和美容方面具有重要的应用前景。

1.4 稳定性检测

因为我们计划使用这种生理活性多肽制成口服保健品，口服后许多蛋白和多肽会被胃蛋白酶和胰蛋白酶分解，为此我们进行了这两个酶的消化实验，发
现鹿胎盘生理活性多肽对胃蛋白酶和胰蛋白酶也非常稳定。

四、附图说明

图 1 为本发明的工艺流程图；
图 2 为本发明 SDS-PAGE 凝胶电泳分析图；
图 3 为本发明 SDS-PAGE 质谱分析图；
图 4 为本发明大白鼠神经原细胞未加制备的多肽培养情况图；
图 5 为本发明大白鼠神经原细胞加制备的多肽培养情况图
图 6 本发明人皮肤细胞未加制备的多肽培养情况图；
图 7 本发明人皮肤细胞加制备的多肽培养情况图；

五、具体实施方式

取鹿胎盘 100kg 绞碎，加丙酮 120 升，充分搅拌 4.5 小时，过滤，滤饼真空干燥，粉碎制成脱脂鹿胎盘粉。加丙酮的目的在于脱去鹿胎盘中的脂肪，使其不含胆固醇。
取鹿胎盘粉 28kg，加水 150kg，缓慢搅拌，加热至 60°C 搅拌 3 小时，制成鹿胎盘浆。
待鹿胎浆冷却到 42-45°C，加入胰酶；胰酶的制备：将新鲜猪胰绞碎，加入 25%乙醇 搅拌后静置 12 小时，然后再加 3 倍量的水，搅拌，静置 12 小时，即可。每 10 个胎盘 加 1 个新鲜猪胰脏所含的胰酶量。加 NaOH 溶液，调 pH 至 8.5，在 42-45°C 条件下水解 8 小时，并不断搅拌。水解完毕之后加盐酸调 pH 至 5.5 终止消化，过滤。滤液按 600 克/L 加硫酸氨搅拌使其溶解，在 4°C 条件下静置过夜，离心。取上清调 pH 至 10，在 4°C 条件下静置过夜，离心。取离心上清液，调 pH 至 7.0，用 201X7 树脂和 001X7 树脂（按 201X7 树脂和 001X7 树脂 3:1 的比例）搅拌吸附 20 分钟，至无硫酸氨为止。滤过树脂，脱盐液，超滤，低温干燥制得成品。

注意：胰酶的最适 pH 值为 8-9；最适温度为 43°C，过高会导致酶失活，过低会影响酶的消化效率，因此应严格把握消化条件。本发明的胰酶还可采用牛、羊胰脏替代。
图 2