A61F 13/15 (2006.01) A61L 15/22 (2006.01)

Maurizio, Enzo, Via Aleramo, 7, 1-65012 Cepagatti (pesca)

Procter & Gamble Plaza, Cincinnati, Ohio 45202 (US).


Title: LIQUID ABSORBING MATERIAL AND METHOD FOR MAKING THE SAME

Abstract: The present invention relates to an improved material for liquid absorption, comprising an absorbent material in particle form with a very low average particle size, dispersed into a selected inert hydrophilic organic carrier which is solid at room temperature. An improved process for manufacturing said material is also provided. Such liquid absorbing material can be utilized in the absorbent cores of disposable absorbent articles, such as sanitary napkins, panty liners, interlabial devices, tampons, disposable diapers, incontinence pads, wound dressings, nursing pads, and the like.
LIQUID ABSORBING MATERIAL AND METHOD FOR MAKING THE SAME

Field of the Invention

The present invention relates to a liquid absorbing material comprising a particulate absorbent material dispersed into a carrier. Such materials can be utilized in a number of end uses where liquid absorption is desired, for example liquid absorbing materials can be used in the absorbent core of disposable absorbent articles, such as sanitary napkins, panty liners, interlabial devices, tampons, disposable diapers, incontinence pads, wound dressings, nursing pads, and the like.

Background of the Invention

In general the absorption and retention of aqueous liquids, particularly body fluids such as urine, menses, etc., are accomplished by use of absorbent articles containing absorbent materials. Such articles include sanitary napkins, panty liners, interlabial devices, tampons, disposable diapers, incontinence pads, wound dressings, nursing pads, and the like. Generally, the most used absorbent materials are cellulose materials (preferably, defiberised wood pulp) and superabsorbent materials. In particular, when referring to disposable diapers or sanitary napkins and the like presently available in the market, the cellulose materials are in the form of bat or sheet, typically further containing particulate absorbent materials, usually referred to in the art as superabsorbents or hydrogelling materials, which allow to manufacture thin but very absorbent core structures. A primary need in incorporating superabsorbent material in particle form within an absorbent structure is its stabilization, in order to counteract the tendency of powdered material to bunch up or agglomerate, hence providing an uneven absorptive capacity in the absorbent structure, or also to dust off the structure itself. Known approaches are for example to adhesively fix the particles into a fibrous structure, or to disperse the powdered superabsorbent material in a fibrous matrix, e.g. cellulose pulp, and fix it in place mechanically e.g. by calendaring or embossing. An alternative approach is to blend a superabsorbent particulate material into a thermoplastic matrix, e.g.
a thermoplastic composition. The superabsorbent containing thermoplastic composition can be typically extruded or coated in any desired position and pattern onto a suitable substrate, to be then incorporated into an absorbent article, thus entirely providing the absorbent material in the article, or alternatively integrating a more traditional fibrous absorbent structure, with no risk of dust off of the particulate material, or displacement within the absorbent structure of the article. For example, EP 1013291 and WO 98/27559 describe a hot melt adhesive containing a superabsorbent polymer. WO 99/57201 illustrates compositions comprising a thermoplastic component and a superabsorbent polymer, said compositions in form of a film layer or applied to a disposable absorbent article with various hot melt adhesive application techniques. Our copending applications WO 03/049777 and WO 04/028427 respectively describe preferred thermoplastic compositions comprising a matrix of a thermoplastic polymeric composition and superabsorbent particles dispersed therein, which have a particularly effective fluid acquisition and handling capacity, and absorbent articles comprising superabsorbent containing thermoplastic compositions arranged in a pattern of unattached spaced apart zones.

The technology of composite thermoplastic materials comprising a matrix of a thermoplastic composition and particles of superabsorbent material dispersed therein has provided a solution to the problem of particulate or powdered superabsorbent material "instability" within absorbent structures in absorbent articles, preventing particle displacement as e.g. dust-off, agglomeration, or bunching up, and safeguarding the end users of absorbent articles virtually from any undesired contact with the superabsorbent particles upon normal use.

However, composite thermoplastic materials comprising particles of superabsorbent materials are relatively complex to formulate, and moreover usually imply rather high temperatures when they are applied onto a substrate in the molten state, since typically the thermoplastic matrix is a hot melt adhesive. Care must be taken since some substrates can be heat sensitive. Also relatively high temperatures of the thermoplastic matrix in the molten state could negatively affect the particulate material itself, hence already in the
manufacturing process of the composite thermoplastic material, as well as upon subsequent application onto a substrate.

According to an alternative approach as disclosed in EP 157960, the superabsorbent particles are dispersed into a liquid carrier, for example an oil carrier, and applied onto a substrate as a liquid dispersion. However, a liquid dispersion is not preferred for application onto substrates since it is not stable. It can in fact spread or move onto e.g. film substrates, particularly on substrates which are not wetted by the liquid carrier, or alternatively be absorbed into porous, typically fibrous, substrates, such as for example nonwoven or cellulose layers, migrating within the substrate and impregnating it, thus likely modifying the characteristics of the substrate itself. Moreover, particularly after application onto a substrate the particles of superabsorbent material dispersed into the carrier can still move and provide a non-homogeneous distribution within the carrier, and also interfere during the application process, for example clogging the extrusion die or nozzle.

An improvement can be the use of a particulate material having low average particle size, which is advantageous not only in terms of better e.g. liquid handling and absorption capacity of a liquid absorbing material comprising said particles dispersed into a carrier, due to the increased surface/volume ratio provided by smaller particles, but also in an easier processability of the liquid absorbing material, which may have lower viscosities when prepared and/or applied to a substrate. Moreover, smaller average particle sizes allow preparation of a more homogeneous dispersion in the carrier.

However, powdered materials, for example typically superabsorbent materials, also pose health risks to those involved in the manufacturing process, particularly when they are manufactured in very small average particle sizes as mentioned above. The finely powdered superabsorbent material can become airborne and can be inhaled by workers. Once inhaled, the superabsorbent material absorbs liquid within the respiratory passages swelling to many time its original size. This can result in blocked air passages and potentially traumatic health complications.
Hence there is the need for an optimized material for liquid absorption which is simpler to produce and to apply, provides an improved stability after application onto a selected substrate, and has compatibility towards most substrates, also heat sensitive substrates, as well as towards the various particulate absorbent materials. There is also the need for a simpler process for making such a material which eliminates the health and environmental problems related to the handling of particulate absorbent material in very low average particle size.

It is therefore an object of the present invention to provide an improved liquid absorbing material comprising a particulate absorbent material dispersed into a carrier, which has better absorption characteristics, and an increased stability and compatibility with virtually any substrate.

It is a further object of the present invention to provide an improved process for making said material.

**Summary of the Invention**

The present invention provides a liquid absorbing material comprising a particulate absorbent material and an inert hydrophilic organic carrier, where the particulate absorbent material is dispersed into the inert hydrophilic organic carrier. The particulate absorbent material has an average particle size of less than 40 µ, and the inert hydrophilic organic carrier is solid at room temperature.

The present invention also provides a process for making the improved liquid absorbing material which comprises the following steps:

1. providing the particulate absorbent material,
2. providing the inert hydrophilic organic carrier in liquid state by melting it or by dissolving it in a suitable solvent,
homogeneously dispersing the particulate absorbent material in the inert hydrophilic organic carrier forming a mixture,

grinding the particulate absorbent material into the mixture to the selected average particle size,

providing the liquid absorbing material in solid form by cooling or by separating the solvent.

Detailed Description of the Invention

By "liquid" as herein used is meant water based fluids or liquids such as urine, menses, serum, blood, sweat, mucous as well as other aqueous solutions generally defined as body fluids, but it is not intended to exclude other water based fluids.

By "room temperature" as herein used is conventionally meant a temperature of 25°C, as known in the art.

For purposes of the present invention, particle size is defined as the dimension of a particle which is determined by means of any suitable method known in the art for particle sizes comprised in the range according to the present invention. Particularly indicated are laser light scattering analysis or laser diffraction analysis. Reference is preferably made to the preferred method and apparatus for laser diffraction analysis described in the attached example. The average particle size of a given sample is defined as the particle size corresponding to a cumulative distribution of 50% of the particles of the sample. In other words, the average particle size of a given sample of absorbent material particles is defined as the particle size which divides the sample in half on a mass basis, i.e., half of the sample by weight will have a particle size greater than the average particle size and half of the sample by weight will have a particle size less than the particle size.
The liquid absorbing material of the present invention comprises an absorbent material in particulate form having a selected, low average particle size, which can be typically a water-insoluble, water-swellable absorbent material, or also a liquid gelling material, and an inert hydrophilic organic carrier which is solid at room temperature, wherein said particulate absorbent material is dispersed, typically homogeneously, into the inert hydrophilic organic carrier. In the context of the present invention, "inert", as referred to the hydrophilic organic carrier, is meant to indicate a hydrophilic organic carrier material which is substantially non reactive with the absorbent material in particle form dispersed therein. According to a preferred embodiment of the present invention, the inert hydrophilic organic carrier is preferably selected among polyethylene glycol, polypropylene glycol, and derivatives thereof, which are solid at room temperature. The particulate absorbent material has an average particle size of less than 40 µ, preferably of less than 30 µ, more preferably between 1 µ and 20 µ, even more preferably between 10 µ and 20 µ, most preferably between 10 µ and 15 µ.

Particulate absorbent materials can be selected among known particulate water-insoluble, water-swellable absorbent materials or also particulate liquid gelling materials, in order to provide a liquid absorbing material according to the present invention.

Particulate water-insoluble water-swellable absorbent materials comprise known, typically crosslinked, absorbent materials which are usually referred to as "hydrogels", "super absorbents", "absorbent gelling materials" (AGM). Such materials, upon contact with aqueous fluids, especially aqueous body fluids, imbibe such fluids and thus form hydrogels by swelling of their own three-dimensional network provided by crosslinking. These absorbent materials are typically capable of absorbing large quantities of aqueous body fluids, and are further capable of retaining such absorbed fluids under moderate pressures. These absorbent materials are typically in the form of discrete, non fibrous particles, even if super absorbents in fibre form are known.

Any commercially available super absorbent material in particle form is suitable for the liquid absorbing material of the present invention. Suitable super absorbent materials
for use herein will most often comprise a substantially water-insoluble, slightly
crosslinked, partially or fully neutralized, polymeric gelling material. This material forms
a hydrogel upon contact with water. Such polymer materials can be prepared from
polymerizable, unsaturated, acid-containing monomers. Preferred materials are
polyacrylate based superabsorbent polymers in particle form.

Particulate absorbent materials to be included in the liquid absorbing material of the
present invention can also comprise particulate liquid gelling materials, which are
materials, typically not crosslinked, which upon contact with liquid form a gel creating a
three-dimensional network by interacting with the molecules present in the liquid, such as
typically proteins, lipids, and so on in body fluids. Liquid gelling materials can be
selected for example among polysaccharides, starches, modified cellulose. Preferred
liquid gelling materials according to the present invention are cationic polysaccharides,
among which particularly preferred are chitosan and its derivatives, where the creation of
a three-dimensional network upon contact with liquid, and hence gelification, is achieved
by formation of electrostatic bonds between the positively charged cationic groups of the
cationic polysaccharide and the negatively charged electrolytes contained in the fluid.

Suitable chitosan materials to be used herein include substantially water-soluble
chitosan. Suitable chitosan materials for use herein may generally have a wide range of
average molecular weights, typically ranging from 1,000 to 10,000,000, preferably from
2,000 to 1,000,000. Particularly suitable chitosan materials for use herein are chitosan
salts, particularly water-soluble chitosan salts. A variety of acids can be used for forming
chitosan salts, namely inorganic and organic acids. Chitosan salts formed by the reaction
of chitosan with an amino acid are also suitable for use herein.

Examples of chitosan salts formed with an inorganic acid include, but are not
limited to, chitosan hydrochloride, chitosan hydrobromide, chitosan phosphate, chitosan
sulphonate, chitosan chlorosulphonate, chitosan chloroacetate and mixtures thereof.
Examples of chitosan salts formed with an organic acid include, but are not limited to,
chitosan formate, chitosan acetate, chitosan lactate, chitosan glycolate, chitosan malonate,
chitosan epoxysuccinate, chitosan benzoate, chitosan adipate, chitosan citrate, chitosan
salicylate, chitosan propionate, chitosan nitrilotriacetate, chitosan itaconate, chitosan hydroxyacetate, chitosan butyrate, chitosan isobutyrate, chitosan acrylate and mixtures thereof. It is also suitable to form a chitosan salt using a mixture of acids including, for example, both inorganic and organic acids. A particularly preferred chitosan salt for use herein is chitosan lactate.

The inert hydrophilic organic carrier according to the present invention can be preferably selected among polyethylene glycols, polypropylene glycols, and derivatives thereof, such as for example polyoxymethylene glycols. Such hydrophilic organic carrier and the particulate absorbent material are selected such that the hydrophilic organic carrier is inert towards the particulate absorbent materials, i.e. does not substantially react with it, hence providing a true dispersion of the particulate absorbent material into said carrier. Polyethylene glycols, polypropylene glycols, and derivatives thereof are moreover highly hydrophilic, and hence have a good affinity with water and water based liquids, which is clearly advantageous for the final liquid absorbing material. The hydrophilic organic carrier upon contact with liquid promptly acquires and diffuses it and rapidly brings it in contact with the particulate absorbent material dispersed therein, which in turn can perform its liquid absorbing action with enhanced effectiveness.

According to the present invention, the inert hydrophilic organic carrier is solid at room temperature, hence has a melting point above the room temperature of 25°C, where, as it is known for polymers, the melting point is the DSC (Differential Scanning Calorimetry) melting point, which is the temperature identified as that corresponding to the DSC peak, or corresponding to the highest DSC peak in case of a mixture of polymers showing more than one peak. Preferably, the inert hydrophilic organic carrier has a melting point of at least 40°C and not more of 110°C, more preferably between 40°C and 90°C, even more preferably between 50°C and 70°C.

When the inert hydrophilic organic carrier for the liquid absorbing material of the present invention is preferably selected among polyethylene glycols, preferably the molecular weight is at least 1200, more preferably between 1200 and 8000, even more preferably between 1500 and 4000, most preferably between 1500 and 2000.
The liquid absorbing material of the present invention comprising the inert hydrophilic organic carrier with the particulate absorbent material homogeneously dispersed therein can be prepared by simply heating the inert hydrophilic organic carrier to a temperature above its melting point, and by subsequently adding the particulate absorbent material, compounding and mixing in order to obtain a homogeneous dispersion of the particulate absorbent material into the carrier. The resulting material can be cooled and stored in solid state for further use, or directly applied to the selected substrate.

Application onto a substrate is performed with the material in liquid form, typically in the molten state by suitably heating the material to a temperature above the melting point of the organic carrier, and applying it onto the substrate in the desired pattern with known techniques, such as for example low temperature melt extrusion or melt coating. The selection of the preferred organic carrier according to the present invention allows the use of low and very low application temperatures for the liquid absorbing material, usually below 110°C, down to preferably 50-70°C, which makes the liquid absorbing material compatible with virtually any substrates, such as for example woven and nonwoven layers, thermoplastic film layers, tissue, paper, and so on, such as those commonly used in the manufacture of absorbent articles like sanitary napkins, pantyliners, interlabial devices, tampons, disposable diapers, incontinence pads, wound dressings, nursing pads, and the like.

The low and very low melting points of the selected hydrophilic organic carriers are also compatible with almost any particulate absorbent material according to the present invention, which are typically not affected by such low temperatures of the carrier in the molten state both in the compounding and manufacturing process of the liquid absorbing material, and in the application of said material onto a substrate.

Moreover, the low and very low melting points of the selected hydrophilic organic carriers make both the manufacture and the application processes of the liquid absorbent or liquid gelling materials of the present invention simpler and less demanding in terms of energy and machinery. At the same time said materials, owing to the melting point of the
selected organic carrier which is low yet above the room temperature, are solid after application onto the substrate and subsequent cooling, and in general during the life of the product, i.e. storage and use, and hence provide a greatly increased stability to the material itself into the product, since the material cannot impregnate or diffuse into the substrate, and more in general into the product after cooling and solidification.

In an alternative, although less preferred way, the liquid absorbing material of the present invention can be prepared and/or applied onto a substrate in liquid state substantially at room temperature, by dissolving the hydrophilic organic carrier into a suitable solvent, which however should not interfere with the particulate absorbent material, such as for example a suitable organic solvent, and then adding and mixing the particulate absorbent material. Application onto a substrate can also be performed in solution, wherein solidification is subsequently achieved by withdrawal of the solvent with known means.

The liquid absorbing material of the present invention allows the incorporation in the final product, such as a liquid absorbent product, of the respective particulate absorbent materials having an extremely low average particle size, without the environmental and health problems implied by the handling of materials in form of fine and very fine particles, particularly the environmental and health problems related to the handling of particles of water-insoluble water-swellable absorbent material.

According to the present invention, the liquid absorbing material comprises a particulate absorbent material having an average particle size of less than 40 µ, preferably of less than 30 µ, more preferably between 1 µ and 20 µ, even more preferably between 10 µ and 20 µ, most preferably between 10 µ and 15 µ, wherein the average particle size is measured as described herein.

The use of particulate absorbent material having a very low average particle size is generally advantageous in that it allows an easier processability of the liquid absorbing material comprising the particulate absorbent material. As it is known, addition of solid particles into a matrix of a liquid, namely molten, material increases the overall viscosity
of the material in the liquid/molten state at given conditions, when compared with the
viscosity of the same material without particles, at the same conditions. Selection of
particles having a preferred low or very low average size reduces this effect, providing a
less viscous material in the liquid/molten state at the same conditions, hence facilitating
the handling and processing of the material, for example when applying it onto a substrate
by means of known extrusion or melt coating techniques. Particles having a very low
average particle size are also less likely to clog the extrusion nozzle or die. Smaller
particles also provide an increased surface to volume ratio compared to larger particles,
hence generally enhancing their functionality, i.e. their liquid absorption capability.

Particularly, preferred water-insoluble water-swellable absorbent material in particle form
provides enhanced absorption capacity and absorption rate when in very small average
particle size, owing to the increased surface to volume ratio.

Also, very low average particle size results in a much more homogeneous
dispersion of the particulate absorbent material into the inert organic carrier to form the
liquid absorbing material of the present invention.

The liquid absorbing material of the present invention in essence allows a safe and
easy handling and use of particulate absorbent materials with low and preferably
extremely low average particle sizes, in form of dispersions in selected inert hydrophilic
organic carriers which are moreover solid at room temperature, hence taking advantage of
the benefits related to such small average particle sizes, without the related drawbacks.

The liquid absorbing material according to the present invention can comprise
different percentages of its selected components, namely the particulate absorbent
material and the inert hydrophilic organic carrier, depending on its final use. Preferably,
the liquid absorbent material comprises at least 30% by weight of the inert hydrophilic
organic carrier, more preferably between 40% and 75% by weight, even more preferably
between 50% and 65%. While the above percentages are suitable in general, more
particularly they may be preferred for liquid absorbing materials of the present invention
wherein the particulate absorbent material is a water-insoluble, water-swellable absorbent
material. Slightly higher carrier percentages may be preferred for liquid absorbing
materials of the present invention where the particulate absorbent material is a liquid gelling material, e.g. preferably chitosan or a derivative thereof, where the carrier may be present in a percentage up to 70%, 80%, or 90% by weight, preferably between 60% and 80% by weight.

According to alternative embodiments, the particulate absorbent material can comprise a mixture of different particulate absorbent materials, and/or the inert hydrophilic organic carrier can comprise a mixture of different inert hydrophilic organic carriers, said particulate absorbent materials and said organic carriers each selected as described herein. Typically, and preferably, the liquid absorbing material of the present invention essentially consists of the particulate absorbent material, or mixture of different particulate absorbent materials having the selected preferred low average particle size described above, and of the inert hydrophilic organic carrier, or mixture of different inert hydrophilic organic carriers, being solid at room temperature. By "essentially consists" is meant that the particulate absorbent material or materials and the inert hydrophilic organic carrier or carriers constitute at least 90% by weight of the liquid absorbing material of the present invention, preferably at least 95%, more preferably substantially 100%.

In general, higher percentages of the inert hydrophilic organic carrier lead to a liquid absorbing material which, in the molten state, has a lower viscosity and is therefore simpler to apply onto a substrate with known low temperature melt coating or melt extrusion techniques. Viscosity in the molten state of the liquid absorbing material of the present invention can be tailored to a desired value more suitable for e.g. the selected application process and the selected substrate by acting on the choice of the inert hydrophilic organic carrier, and/or of the process temperature, and/or of the carrier percentage, and/or of the average particle size of the particulate material, as can be readily determined by the man skilled in the art.

According to the present invention, particulate absorbent materials comprised in the liquid absorbing material can be synthesized according to known processes such as they have the desired low average particle size. Examples are superabsorbent materials having
substantially a spherical shape commercially available from Sumitomo Seika in different 
average particle sizes under the trade name Aquakeep® 10SH-NF. However, it is 
prefferred that the desired low average particle size is achieved by suitably grinding a 
coarser material. Ground particulate absorbent materials, for example ground 
superabsorbent materials, are definitely cheaper compared to materials directly prepared 
in the selected average particle size, and are commonly used in absorbent articles. 
Manufacturing, such as for example by grinding, and generally handling particulate 
materials in low and very low average particle sizes, particularly superabsorbent 
materials, pose as already explained health and environmental risks, especially when said 
materials are manufactured in the low and extremely low average particle sizes preferred 
for the liquid absorbing material of the present invention. According to the present 
invention, a preferred process for making the liquid absorbing material described so far 
consists in providing the selected particulate material, typically in a relatively large 
average particle size which is easily available in the market and also processed/handled 
without special care, providing the inert hydrophilic organic carrier which is solid at room 
temperature, providing the selected inert hydrophilic organic carrier in liquid form by 
suitably heating it, homogeneously dispersing the selected particulate absorbent material 
into the selected inert hydrophilic organic carrier in liquid form, thus forming a mixture, 
and grinding the particulate absorbent material with known means directly within the 
mixture to the selected average particle size, thus providing the liquid absorbing material 
of the present invention. Subsequently, the material can be directly applied to a selected 
substrate and then cooled to regain the solid state, or brought back to solid form by 
cooling it for further uses, such as storing or shipping. In an alternative, although less 
preferred, embodiment of the process above, the inert hydrophilic organic carrier solid at 
room temperature can be provided in liquid form by dissolution into a suitable solvent, 
which should preferably be inert towards the particulate material, and thereafter 
solidification of the final liquid absorbing material can be obtained by removal of the 
solvent, e.g. by evaporation. 

According to the above process, the particulate absorbent material in low and 
extremely low average particle size is never present as such, i.e. as a free, dry powder, in
any manufacturing step, thus completely avoiding the health and environmental issues related to the handling of particulate absorbent material in very fine average particle size.

**Example according to the invention**

A liquid absorbing material according to the present invention has the following composition:

- 55% PEG 1500, mp 45°C
- 45% Superabsorbent material with average particle size of 15 µ

A particulate superabsorbent material with average particle size of 15 µ is prepared by suitably grinding the material available from Nippon Shokubai Co. Ltd. under the trade name Aqualic CA Type L74 to the desired average particle size e.g. in a Fluid Bed Counter Mill AFG from Hosokawa Alpine. The particles of superabsorbent material are added and uniformly dispersed into a hydrophilic organic carrier which is a polyethylene glycol (M.W. 1500) available from Clariant GmbH under the trade name Polyglykol 1500S provided in liquid state by heating at 70°C.

The average particle size of the superabsorbent material is measured by means of a laser diffraction analysis apparatus model Helos, with dry feeding and dispensing system Rodos, both available from Sympatec GmbH. The average particle size is measured by dry analysis on the particles in dry dispersion. The test is conducted at controlled conditions of 23°C and 50% relative humidity on the material which has been kept in such conditions for at least 2 hours before the test. Alternatively, the average particle size can be also measured in the final liquid absorbing material by preparing a liquid suspension for example dissolving at room temperature the solid organic carrier into a suitable solvent which does not interact with the particulate absorbent material. In the case of the material of the example, a liquid suspension can be suitably prepared by dissolving the PEG 1500 containing the particulate absorbent material into a lower molecular weight liquid PEG, e.g. PEG 30, and analyzing the liquid suspension with the...
Helos analyzer provided with a suitable wet dispersing system also available from Sympatec GmbH.
What is claimed is:

1. A liquid absorbing material comprising a particulate absorbent material and an inert hydrophilic organic carrier, said particulate absorbent material being dispersed into said inert hydrophilic organic carrier,
said particulate absorbent material having an average particle size of less than 40 µ,
said inert hydrophilic organic carrier being solid at room temperature.

2. A liquid absorbing material according to claim 1, wherein said inert hydrophilic organic carrier has a melting point of at least 40°C and not more than 110°C, preferably between 40°C and 90°C, more preferably between 50°C and 70°C.

3. A liquid absorbing material according to any preceding claim, wherein said inert hydrophilic organic carrier is selected among polyethylene glycol, polypropylene glycol and derivatives thereof.

4. A liquid absorbing material according to any preceding claim, wherein said particulate material has an average particle size of less than 40 µ, preferably of less than 30 µ, more preferably between 1 µ and 20 µ, even more preferably between 10 µ and 20 µ, most preferably between 10 µ and 15 µ.

5. A liquid absorbing material according to any preceding claim, wherein said particulate absorbent material is a ground material.

6. A liquid absorbing material according to any preceding claim, wherein said material comprises at least 30% by weight, preferably between 40% and 75% by weight, more preferably between 50% and 65% by weight of said inert hydrophilic organic carrier.
7. A liquid absorbing material according to any preceding claim, wherein said inert hydrophilic organic carrier is a polyethylene glycol having a molecular weight of at least 1.200, preferably between 1.200 and 8.000, more preferably between 1.500 and 4.000, most preferably between 1.500 and 2.000.

8. A liquid absorbing material according to any preceding claim, wherein said particulate absorbent material is a water-insoluble, water-swellable absorbent material, preferably a polyacrylate based superabsorbent material.

9. A liquid absorbing material according to any claims 1 to 7, wherein said particulate absorbent material is a liquid gelling material, preferably chitosan or a derivative thereof.

10. Process for making a liquid absorbing material according to any preceding claim, said process comprising the following steps:

    providing said particulate absorbent material,

    providing said inert hydrophilic organic carrier in liquid state by melting it or by dissolving it in a suitable solvent,

    homogeneously dispersing said particulate absorbent material in said inert hydrophilic organic carrier forming a mixture,

    grinding said particulate absorbent material into said mixture to the selected average particle size,

    providing said liquid absorbing material in solid form by cooling or by separating said solvent.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61F13/15 A61L15/60 A61L15/22

A.1. According to International Patent Classification (IPC) or both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61F A61L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal , WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex

Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is considered to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" document member of the same patent family

Date of the actual completion of the international search: 11 December 2006

Date of mailing of the international search report: 21/12/2006

Name and mailing address of the ISA: European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HN Rijswijk, Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer: Settele, Ulrika
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 99/57201 A (H.B. FULLER LICENSING &amp; FINANCING, INC; AHMED, SHARF, U; EMIRU, ANDUAL) 11 November 1999 (1999-11-11) cited in the application page 6, line 10 - line 28 page 13, line 16 - line 22 page 19, line 5 - page 20, line 3</td>
<td>1-10</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2003109628</td>
<td>12-06-2003</td>
<td>NONE</td>
</tr>
<tr>
<td>EP 1402905</td>
<td>31-03-2004</td>
<td>AU 2003275211 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0314755 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2498606 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1684719 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006500215 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA05002777 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004028575 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 20040581 59 A</td>
</tr>
<tr>
<td>WO 2004028427</td>
<td>08-04-2004</td>
<td>AU 200327521 0 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1402862 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004059018 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0214827 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2466626 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1602209 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 131941 4 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005512622 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA04005663 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9910261 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1308654 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1094194 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002526560 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6534572 BI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6458877 BI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6441799 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9907422 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2292834 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1261090 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69925698 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69925698 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OP 2000204333 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9907774 A</td>
</tr>
</tbody>
</table>