WO 01/59561 A1l

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
16 August 2001 (16.08.2001)

(10) International Publication Number

WO 01/59561 Al

(51) International Patent Classification’: GO6F 9/00, 12/00

(21) International Application Number: PCT/US01/03801

(22) International Filing Date: 6 February 2001 (06.02.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/502,692 11 February 2000 (11.02.2000) US

(71) Applicant: GOTO.COM, INC. [US/US]; 140 W. Union
Street, Pasadena, CA 91103 (US).

(72) Inventors: CARRASCO, John, Joseph; 2841 St. George
Street, Los Angeles, CA 90027 (US). DOLIOY, Stephan;
45 Crestline Drive #4, San Francisco, CA 94131 (US).
EHRENFRIED, Frank, B.; 1150 Glenwood Drive, Mill-
brae, CA 94030 (US).

(74) Agent: GNOFFO, Vincent, J.; Brinks Hofer Gilson &
Lione, P.O. Box 10087, Chicago, IL. 60610 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR CONTROLLING THE FLOW OF DATA ON A NETWORK

(57) Abstract: A method for running tasks on a network, compris-

A MSER CRepTe s

AT (EAST ong
SUB~ GRoupP g~
PATA FRorm A

VMNIVELSE of DATA

y
THe 5M3fér€o_MP
& 10epTIFIED | Zo2

WITR A HeEADER

THE sug-ERou P
6f DATA i<
Sent To AN
AVA\LABLE

PRocESS IR

\!

THE AVALLABLE

PrRocessaR
Peerms TREXS
on THE SuB—
Crouwf of DATA

~ 204

— 204

ing: creating (200) at least one sub-group of data from a universe of
data; identifying (202) the sub-group of data with a header, the header
containing executable code; sending (204) the sub-group of data to an
available processor; and performing (206) tasks with the available pro-
cessor to obtain result data using the sub-group of data and instructions
contained in the executable code in the header.

wO 01/59561 A1 I HIID 00000

— before the expiration of the time limit for amending the For two-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations" appearing at the begin-
amendments ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 01/59561 PCT/US01/03801

SYSTEM AND METHOD FOR CONTROLLING THE FLOW OF DATA
ON A NETWORK

REFERENCE TO APPENDIX

Appendix A is included of a computer routine listing. The total number
of pages is forty.

BACKGROUND

Many commercial enterprises require that large volumes of data be
processed in as short a time frame as possible. In recent years, businesses
needing to process such large volumes of data have purchased very
expensive, specialized multi-processor hardware, often referred to as
mainframe computers, supercomputers or massively parallel computers. The
cost of such hardware is often in the millions of dollars, with additional costs
incurred by support contracts and the need to hire specialized personnel to
maintain these systems. Not only is such supercomputing power expensive,
but it does not afford the user much control over how any given task gets
distributed among the multiple processors. How any computing task gets
distributed becomes a function of the operating system of such a
supercomputer.

In the field of data processing, often very similar operations are
performed on different groups of data. For example, one may want to count
the unique instances of a class, e.g., a group of data, for several different
classes, know what the arithmetic mean of a given class is, or know what the
intersection of two classes may be. In a supercomputing environment, one
has to rely on the operating system to make sound decisions on how to
distribute the various parts of a task among many central processing units
(CPUs). Today’s operating systems, however, are not capable of this kind of
decision making in a data processing context.

Thus, there is a need for a system and method that overcomes these

deficiencies.

10

15

20

25

30

WO 01/59561 PCT/US01/03801

2

BRIEF SUMMARY OF THE PRESENTLY PREFERRED
EMBODIMENTS

According to the preferred embodiments, described is a system and
method for allowing multiple processors, for example, a computer’s central
processing unit(s) (CPU), on a network to perform varying number and type of
data processing tasks. Data processing tasks are provided to any of the
available CPU’s on a network equipped for the system and method. The
system and method choose the first available CPU for performance of the
data processing task. The system and method provide the task performing
CPU with the minimum amount of data needed to completé the task and the
necessary software instructions to complete the task.

More specifically, the preferred system and method allow for improved
efficiency, in terms of both cost and time, of data processing. The user of the
software considers a given data processing task, provides a set of definitions
for the type of data required for each task, and specifies the task for a given
group of data. The system and method then divide up the input file into the
sub-task data files and ships the given data and task specifications to any
available computer on the network. The CPU performs the task and returns
the completed result to the computer that requested the task.

Thus, large amounts of data to be processed quickly, by ordinary,
commodity personal computers, running conventional operating systems such
as Windows NT or Unix. A small cluster of, for example, twelve dual
processor computers or twenty-four single processor computers, running the
software of the preferred embodiments, can equal, if not exceed the
performance of a supercomputer with an equivalent number of CPUs.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an exemplary system for carrying out the present method
in accordance with the preferred embodiments.
FIG. 2 shows an overview of the present method, in accordance with

the preferred embodiments.

10

15

20

25

30

WO 01/59561 PCT/US01/03801

-3-

FIG. 3 shows a process flow for how the method constructs a work
gueue, in accordance with the preferred embodiments.

FIG. 4 shows a process of sending task data and task instructions to a
computer on the network, in accordance with the preferred embodiments.

FIG. 5 shows a process for reassembling file results once the worker
routines have completed their tasks, in accordance with the preferred

embodiments.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A preferred embodiment of the present system and method consists of
two major components — a plurality of processing units on a network to
perform data processing, and software to control the computers to each work
on one discreet task within a larger task, also known as a master task. A task
is a routine, such as a grabber routine, a worker routine and a reassembling
routine, all described in more detail below. Preferred embodiments for both
the network hardware and software are described herein. The present
system can be used with search engines. One suitable search engine is
described in co-pending application Serial No. 09/322,677, filed May 28, 1999
entitled “System and Method for Influencing a Position on a Search Result List
Generated by a Computer Network Search Engine,” which is incorporated by
reference herein.

Referring to the drawings, and particularly FIG. 1, as an overview, a
network, generally 100, of processors 102 are shown which perform the
routines used in the present system. Those skilled in the art will appreciate
that, in addition to a network, the processors 102 can be connected on a LAN,
over the Internet, or the like. The processors 102 can be CPUs of commaodity
computers, super computers, laptops or the like. At least one of the
processors 102 acts as a main processor 104. The main processor 104 can
be any of the processors 102.

Referring to FIG. 2, the above system can be used to perform the
present method. The present method takes a large universe of data and

breaks the data down to smaller groups of data that are task specific (block

10

15

20

25

30

WO 01/59561 PCT/US01/03801

4-

200). In other words, the smaller groups of data are tailored to include only
that data which is needed for a particular task. For example, a user can
prepare a task queue and a task data queue. The task queue defines which
tasks are to be executed and the order in which the tasks are to be executed.
The task data queue defines the data elements required for the completion of
data processing tasks and how the data for the data processing tasks are laid
out in a file so that the individual sub-tasks may readily be performed.
Thereatfter, the sub-group is identified with a header (block 202). The header
is described in more detail below. The sub-group of data is then sent to an
available processor (block 204). The available processor can then perform
the required task on the sub-group of data (block 206).

Referring to FIG. 3, a grabber routine, referred to as monkeyGrab,
located at the CPU which performs the grabbing task, receives instructions on
which data elements to grab from a task data file created previously (block
300). The task data file is defined by a combination of a file header and data
used by the routine. The grabber routine creates the file header that
describes output data so that the worker routine can act on elements in the
data file (block 302). The grabber routine insures that the only data elements
in the data file are those which are required by a subsequent worker task
(block 304). The grabber routine is described in more detail below.

Referring to FIG. 4, shown is the process for sending the tasks to the
remote host. Software, for example, scans a memory database of available
CPUs and the state of the available CPUs (block 400). Preferably, the first
CPU in an available state is sent the task instruction file (block 402) and the
task data file (block 404). The task instructions include a worker routine such
as monkeyCount, described in more detail below. The task data file could be
the resuits of a routine like monkeyDeJournal, described below. Preferably,
the controller routine creates a data file and memory entries to keep track of
which available host is performing with task (block 406). Upon completing the
task, the task routine makes the result data available to the controller routine
(block 408). The controller routine waits for the task routine to indicate
completion. Upon successful completion, the controller routine updates the

10

15

20

25

30

WO 01/59561 PCT/US01/03801

5.

memory data files of available hosts (block 410). Upon unsuccessful
completion, however, the controller routine updates the data file and memory
enfries and reassigns the task to another available CPU.

As shown in FIG. 5, the data file which results from completing the task
is sent back to the requesting computer, i.e., the main processor, to be
reassembled with resulting data files from other completed tasks (block 500).
The main processor constructs a reassembling command to specify the sub-
task data files that will be reassembled into one file. (block 502). For each
sub-task, reassembling code, e.g., monkeydJoin described below, reads and
evaluates the file header to identify data columns defining keys and data
(block 504). After having read the result file header for each sub-task, the
reassembling routine reads a data line from each of the files and outputs the
data values for the key in the data line if the keys match (block 506). If the
keys do not match, the reassembling routine reads the file header for how fo
represent and handle the missing data values. Preferably, all task result files
come from the same input data file, so there is no need to handle duplicate
keys. The task result data files will contain only one of any given key.
Likewise, it is preferred that the task routines are written to output the keys in
sorted order, so not further sorting is required. Thereafter, the data is
reassembled (block 508).

|. Hardware and Network.

Turning to a more specific example of the hardware, the preferred
embodiment of the hardware is a set of commodity personal computers. So
that a user works within a known environment, it is preferred that each
computer contains a current model CPU, the same amount of memory, and at
least one high-speed network interface card. Of course, other combinations
could be used. For explanatory purposes, a preferred embodiment consists
of twelve, dual CPU computers, with each CPU running at 500MHz clock
speed, 1Gigabyte of Random Access Memory, and two 100BaseT ethernet
network adapter cards. Each computer in the cluster runs the RedHat Linux
operating system. Those skilled in the art will appreciate that other operating
systems could be used, such as Microsoft Windows and Window NT, Sun

10

15

20

25

30

WO 01/59561 PCT/US01/03801

B-

Solaris, and Macintosh. The twelve computers are connected to each other
via a high-speed network switch. Each computer is also equipped with, for
example, a SCSI |l interface and a nine Gigabyte hard drive. Of course, many
more computers could be added to the group without impairing performance.

Il. Software

A preferred embodiment of the software consists of several separate
computer programs, implemented in a language that is interpreted at run time,
for example, the Perl programming language. Those skilled in the art will
appreciate that other programming languages that are interpreted at run time
could be used such as Java, PHP3, Python and Tcl/Tk.

As an overview, a first computer routine, referred to as the data
preprocessing routine, reads the input data file, reads the task data queue
control file, performs any number of arbitrary instructions which are specified
in the task data queue file, and creates a file header and data file. A second
computer routine extracts only the data fields required for a particular data
processing task from the data file created by the first routine. The grabber
routine creates a file that includes a file header segment and a data segment
that a worker routine utilizes. The file header segment of the output data file
includes executable or evaluable code. The third routine, the worker routine,
performs computations on the data file created by the grabber routine.
Preferably, the worker routine parses the file header created by the grabber
routine and then performs a requested operation on the data portion of the file
that follows the file header. Parsing includes reading the file header and
evaluating the programmed code to generate a hash table that defines the
structure of the data to follow. A hash table is a data structure that uses keys
that map to data values.

Since many of the tasks performed by the software are tasks related to
some kind of aggregation, e.g., counting the number of instances of a given
class, the preferred embodiment of this invention includes a fourth software
routine, which allows various task files to be merged. The task files are
merged, so that, for a given class, all the aggregate measures are in one data

10

15

20

25

30

WO 01/59561 PCT/US01/03801

7-

row, which makes loading databases an easy task. Each of the four software
routines is treated in more detail below.

A. Data Preprocessing routine.

The data preprocessing routine, referred to in the Appendix as
monkeyDeJournal, formats data selected by the user so that the data may
easily be rendered into discrete parts required for processing. A preferred
embodiment of the data preprocessing routine reads an input data file and a
control file, returns groupings of data specified in the control file and outputs a
new file which will be read by the other routines of this invention.

Reading the input data file is handled via an abstraction mechanism--
the data preprocessing routine is pointed to an existing data file parsing
routine. The only two assumptions made about the data file parsing routine is
that it is capable of 1) identifying groupings of data and 2) returning such
groupings of data in a hash table data structure. For example, if the input
data file contains groups of data for user clicks on a web site (group:
userClick) and groups of data for searches performed by a search engine
(group: search), 'userClick' and 'search' would be keys in the hash table of all
known data groupings for the input data file. These two grouping keys, in
turn, each need to point to another hash table. The names of the keys in this
hash table would be the names of the data elements, and the values would be
the actual data value for that data element within a particular instance of a
group. The group, 'userClick', could for example, contain data elements
named 'timeStamp’, 'IPAddress’, 'rank’, and 'AccountlD’; the group named
'search’ could for example, contain data elements named 'query’, 'timeStamp',
and 'resultsFound'. As the data file is read groups and their individual
elements are returned based on the data in the control file which the data
preprocessing routine must read.

The reading of the control file, and acting upon its data, is handled by
the code of the data preprocessing routine. The control file is specified as a
hash table evaluable at run time. The keys in this hash table hash table are
arbitrary names, with each name representing a task queue. The values for
these keys are hash tables also. This nested hash table has three required

10

15

20

25

30

WO 01/59561 PCT/US01/03801

_8-

keys and any number of optional keys. The required keys are named 'event,
'columns', and 'delimiter’. The optional keys will be described later. The value
for the key named 'event' specifies a group of data from the input file that
contains the data elements of interest. The input data file parser identifies the
group name. For example, the value for the key named 'event' could be
'userClick'. The key named columns points to another hash table. The keys
of this nested hash table are the arbitrarily assigned column names that any
later data processing tasks may need. The values of the column name keys
are one innermost hash table, which allows the user to specify how to
construct the columns of interest for a data processing task. This is done via
two keys, one named 'source_args', the other named 'source_routine'. The
'source_args' key specifies the data elements from the data group which are
to be used in constructing the desired output field; the 'source_routine' is
specified as a valid Perl subroutine. Lastly, the key named 'delimiter’
specifies how the data columns of interest are to be separated in the data
segment of the output file. In the preferred embodiment, this control file
would, at a minimum, be presented as follows:

{

'AdvertiserQueue’ => {
'‘event’ => 'userClick’,
'columns' => {
'AdListingX' => {
'source_args' => ['AccountID','rank’,},
'source_routine' => 'sub {
my($ald)=shift @$_;
my($rank)=shift @$_;
my($x)="$ald###Srank";
return $x;
7,
h

'IP_address' => {

10

15

20

25

30

WO 01/59561 PCT/US01/03801

9-

'source_args' => ['clientlP'")],
'source_routine' => 'sub {
return shift@$_;

l}’

b
'delimiter' => \t!,
h
}

In this example, 'AdvertiserQueue’ is the arbitrary name assigned to the
task data queue. The data group of interest comes from the group 'userClick'.
Two output columns are desired: one referred to as’AdListingX’, the other as
'IP_Address'. The output column 'AdListingX' would consist of the data
elements 'AccountiD' and 'rank', which are part of the 'userClick' data group.
The final presentation of the 'AdListingX' data column would be in the form of
ABCH###3, supposing the advertiser ID was 'ABC' and the rank was '3'. The
output column 'IP_Address' would merely contain the data value that the data
element ‘clientIP' has from an instance of the data group 'userClick'. Those
skilled in the art will recognize that any valid Perl syntax can be used in the
'source_routine' value to create derivations and modifications to input data
fields of interest. The key named 'delimiter' having the value '\t' indicates that
the output fields should be seperated by a tab character.

In the present instance of this invention, the control file may include
three additional, optional keys. These optional keys have the following
names: 'deltaT’, 'restriction_args', and 'restriction'. The 'deltaT' provides
information to the data preprocessing routine about the earliest minute within
an hour for which the output of the data preprocessing file should contain
data. Legal values for this key are numbers between 0 and 59 inclusive;
single digit numbers are preceded with a zero (i.e. if 1 is the value, spell out
'01"). The 'restriction_args' key works just like the 'source_args' key
previously mentioned. This value for this key provides input arguments to a

10

15

20

25

30

WO 01/59561 PCT/US01/03801

-10-

user defined function. The elements of the list must be names of data
elements within the data group of interest. The 'restriction’ key vaiue is a valid
Perl subroutine. For example,

{

'deltaT' => '09,

'restriction_args' => ['bid',],

'restriction’ => "sub {
my($x)=shift @$_;
return ($x > 0);

¥

specifies that the first data groups of interested to be included in the output file
should occur no sooner than nine minutes after the first hour of data seen by
the file parsing routine. The only data group instances to be returned are
those whose 'bid' element has a value greater than zero. The 'bid' element is
passed to the user defined function specified via the 'restriction’ key.

Once the data preprocessing routine has read the control file and
evaluated the contents, it creates an output file that begins with a file header
segment. The file header segment is written in the form of a Perl evaluable
hash table. This file header segment has four required keys and three
optional keys that are discussed in the next section (B. Grabber Routine).
After having output the fileheader, the data preprocessing routine enters a
token named "EndOfHeader" on the next output line. At this point, any
instances of data groupings which meet any restriction criteria are assembled
according the rules specified in the control file and then written out to the data
portion of the output file, with the columns being delimited by the delimiting
character specified in the control file.

B. Grabber routine.

10

15

20

25

30

WO 01/59561 . PCT/US01/03801

-11-

According to a preferred embodiment of the grabber routine, referred to
as monkeyGrab, the preprocessor routine utilizes the data for which the user
wishes computations to be performed on and places these data in a file.
Thereafter, other routines that can read the file header with executable code,
and execute the code, can read the data to be acted upon. Thus, a
requirement of the grabber routine is to be able to read the file header created
by the preprocessing routine so it can extract the appropriate data elements.
Since the grabber routine also writes the minimum amount of data needed for
a given task to a task file, the grabber routine can write out a file header which
is bound by similar rules as the preprocessing routine’s file headers.

The grabber routine grabs data columns based on column names that
are provided through input arguments delivered to the grabber routine. For
example, a data file may contain a column containing a price value, such as a
search result bid column, and a column containing a class descriptor, a key
field that may consist of one or many fields. In such a case, the grabber
routine could be invoked as follows: “grab —g price —g myKeyField”. The data
file from which the grabber routine works has in its file header entries for the
columns named “price” and “myKeyField”. The file header from the
preprocessed routine should contain the appropriate header entries, i.e., the
key names for the hash table which describes the data columns. The grabber
routine reads the header information from the data file to obtain information
about the location within the data file of the column locations, the character(s)
which delimit the data columns, and any special handling rules, such as how
to treat or value an empty column location. Once the grabber has ascertained
the column locations and what processing rules are required for a given
column, the grabber routine loads those columns of interest and places them
in an output file.

The output file, written by the grabber routine, has header information
pertinent to the extracted columns. For explanatory purposes, the header is
in the form of a Perl hash table with four keys in it. The four keys correspond
to four of the seven keys included with the output of the preprocessor routine.
These four keys are for the data columns, which of the data columns, or group

10

15

20

25

30

WO 01/59561 PCT/US01/03801

12-

of columns, make a given data row unique, the data column labels, and the
output data field delimiter. The key for the data columns points to a second
hash table. The second hash table has as its keys column names, and as its
values a hash table with two keys. The first key of the innermost hash table
describes the data column’s location in the data portion of the file, where the
innermost hash table is the most embedded hash table in a series of hash
tables. The second key of the innermost hash table describes how to
represent null data values.

The key for the column which uniquely describes any given data row
must have the name of the column that describes the data row. This name is
a key in the hash table of columns. The key for the data column labels has
the value of the Perl list. Lastly, the key describing the column delimiter has a
value corresponding to the column delimiter. If this column delimiter includes
any characters which are escape sequences in Perl, then these escape
characters are preceded by a backslash --“\" — character. The preferred
embodiment places a token at the end of the file header, so that the software
knows when it is done reading header information and when it can begin
reading data.

C. Worker routine.

A preferred embodiment of the worker routine(s), referred to as
monkeyCount, much like the preferred embodiment of the preprocessor and
the grabber routines, reads the data file headers and also output such file
headers. Like the grabber routine, the worker routine reads the file header to
determine which columns it is reading and in what order those columns
appear in the data segment of the input file, and which of the input data
columns constitute the class, or key, definition. Upon reading this information,
the worker routine performs the operation desired on the input data. If the
worker routine is a counting routine, it will output, for each class, a count of
the number of rows which belong to this class, along with a descriptor of a
class. For example, if the input data consists of seven rows and two columns,
a key and an item to be counted for that key, is as follows:

Key Search Term

10

15

20

25

30

WO 01/59561 PCT/US01/03801

-13-
Adv01 dog

Adv03 cat

Adv05 house

Adv03 mouse

Adv01 travel

Adv05 music

Adv01 sound

the output data file contains the following data rows:

Key # searches
Adv01 3
Adv03 2
Adv05 2

Likewise, if the worker routine were an adding program, it would sum
up the data values in the column of interest for each key of interest.

The worker routines minimize any given task in terms of file
input/output and complexity, for example, if a count is requested, the worker
routine only receives a key and the data element to be counted columns. This
allows many worker assignments to occur on any arbitrary number of
machines. One worker routine might count the total searches for each
advertiser; another might count the number of unique IP addresses that
clicked on any given advertisers listing within a specific time period. When
the worker routine finishes its assignment, it writes out a file with the same
header format as the input file, however, the values in the hash table
describing the columns will be the key descriptor from the input file and name
of the worked upon data. For example, if the input data file had a key of
“Advertiser ID” and a column of “Search Term” and the worker routine was set
up to count the number of searches which returned a given advertiser, the
output file would have a key of “Advertiser ID” and a column of “Count of
Searches”.

D. Data Reconstruction routine.

10

15

20

25

30

WO 01/59561 PCT/US01/03801

-14-

According to a preferred embodiment of the data reconstruction
routine, referred to as monkeyJoin, all fields are reconstructed into one file,
organized by key. The reconstruction occurs after the data to be worked on
has been preprocessed, i.e., broken up into smaller work units, and the small
work units are sent to machines on the network for processing. The data
reconstruction facilitates convenient database loading. To accomplish data
reconstruction, the data reconstruction routine is given input as to which data
files need to be merged into one data file. Each of the data files that will
become part of the database load file is supplied as an argument to the data
reconstruction routine, in list format. For example, the data reconstruction
routine, e.g., monkeydJoin, is called as follows:

reconstruct file1 file2 file3 ... fileN

For each of the files supplied as an input argument, the reconstruction
routine reads the file header information and stores the header information -
and data in a hash table. Once all of the headers and data have been read,
each of the key values are cycled through. For every input file that had a
matching key, the corresponding output columns are written. If one of the
input files did not have a key entry or a value, the handling of missing or
undefined values is invoked and the reconstruction routine supplies an
appropriate value, per the notation in the input file header hash table. This file
is written out, as the other files, with header information in the format of a Perl
hash table. The hash table contains the same four keys as the hash table
headers supplied by the grabber and worker routines. The values for the keys
of this hash table include the same basic four keys required by this
application: the columns hash table, the key hash table, the column delimiter
specification and the hash table of column labels.

E. Dispatching routine.

According to a preferred embodiment of the workload distributing
routine, referred to as monkeyDispatcher, the CPU and computer memory
intensive work occurs in the worker routines which perform the operations of
interest, for example, counting unique instances within a class. This CPU and

10

15

20

25

30

WO 01/59561 PCT/US01/03801

-15-

memory intensive work ideally is distributed to a number of computers.
Preferably, the present system and method dispatches work to available
computers on a network based on the distributing software’s known usage
load of the computers on the network. The dispatch routine allows one
worker or grabber routine to run for each CPU of a computer attached to the
network. For example, if there are twenty four counting operations to be
performed, and there are twelve computers each equipped with two CPUs,
two worker operations can be farmed off to each of the twelve computers for
simultaneous processing to ensure the most rapid possible completion of the
counting tasks. Likewise, the dispatcher routine needs information regarding
which tasks or task components can be done simultaneously and which ones
first require the completion of some other task component.

Thus, the dispatching routine needs data about the machines which
are capable of receiving the work orders, and how many work orders they
may receive at once. For example, a four CPU machine could receive four
orders at a time, a one CPU machine only one. The routine also stores data
about 1) which machine is currently performing how many tasks at any given
point in time and 2) which task(s) any of these machines is performing at any
given point in time. Lastly, the dispatch routine can initiate the launching of
code for processing the data on a remote machine.

The preferred embodiment begins with a data file, written as a Perl
hash table, which specifies the names of the available machines on the
network and the total number of CPUs on the given machine. Also specified
is the last known “busy/idle” state of each of the CPUs on a given machine,
the last known start time. For example, in integer format, an integer indicates
that a task was started on a CPU and a blank value indicates that no job is
currently running on a given machine’s CPU(s). Each machine on the
network has one key in the hash table. Each key in this hash table points to a
second hash table, the second hash table having key entries for the number
of CPUs known for the given machine and the number of CPUs currently
occupied doing work for that machine. On the first construction of the hash
table, the value for CPUs currently occupied doing work is zero.

10

15

20

25

30

WO 01/59561 PCT/US01/03801

-16-

Also in the data file the task queues are specified. The outermost key
in this set of tasks hash table poinis to one or more hash tables which specify
the components of a task, and whether or not these sub-tasks can be
performed simultaneously. The keys of this outermost task hash table are
simply integers, beginning with the number one, and incrementing by one for
each task-set. Each of these numbered tasks points to yet another hash
table, which contains keys to represent aspects of the task (such as data
preprocessing, data grabbing/counting, data joining etc.). A preferred
embodiment wraps these individual task keys inside a hash table whose
single present key is named, for example, ‘parms’. The ‘parms’ key points to
a hash table with four key entries: ‘key’, ‘name’, ‘tasks’ and ‘masterTaskFile’.
These keys have the corresponding values, a descriptor of the column which
constitutes the class level key, e.g., Advertiser ID, a tokenized, that is, a
predefined representation of the data preprocessing task (for example,
dejournal.lineads to represent the task list pertaining to the reduction of
advertiser listings in an internet search engine), the list of paired “grabbing”
and “counting” tasks which can be performed simultaneously, and the name
of the output file of the data preprocessing routine.

According to a preferred embodiment, the dispatch routine reads in the
control file to identify available machines on the network and the machine’s
availability. As a task is dispatched to a machine, the dispatching software
updates its memory copy of the machine availability hash table. Thus, if a
machine has two CPUs and the dispatching routine sent a task to the
machine with two CPUs, the dispatching software would increment the
number of busy CPUs from 0 to 1, to indicate that one job has been sent to
the machine on a network. When the machine performing the worker routine
task finishes the task, the dispatcher decrements the busy CPU value by one
for the machine that performed the task.

With this mechanism in place, prior to assigning tasks to machines on
the network, the dispatching software sorts the available machines by current
tasks assigned to a machine. If machine X on the network has 0 busy CPUs
and machine Y has 1 busy CPU, and both machines X and Y have a total of

10

15

20

25

30

WO 01/59561 PCT/US01/03801

A7-

two CPUs, then the dispatching software will preferably first assign a task to
machine X. This occurs because machine X has no busy CPUs as far as the
dispatching software can determine. Machine X could be running some CPU
intensive software without the dispatching routines knowledge. It is preferred
that the computers having the CPUs only have the necessary operating
system software running, to prevent the problem of work being sent to a
computer whose processor is tied up with a non germane task, such as a
word processing task. In the preferred embodiment, the computers only
include an operating system, a program interpreter, such as a Perl interpreter,
and a secure copying program, if necessary. If all machines on the network
are equally busy, the dispatching software sorts the stack of available
machines by machine name and assigns tasks in that way. If a machine is
fully occupied, the dispatching software removes this machine from the
available machine stack until the busy machine reports that it has finished at
least one of its assigned tasks.

If all machines are busy, the dispatching software waits for a first time
period, for example, a few minutes, to retry task dispatching. If the dispatcher
software has tasks queued but cannot find an available machine after a
second time period, for example, fifteen minutes, the dispatcher software
creates a warning message. This condition MIght indicate a larger system
failure that would require resetting the software system and the tasks. The
preferred embodiment of this invention supplies enough hardware on a
network so that all pieces of hardware on this network are not likely to be
completely busy for any given fifteen minutes.

Once the dispatching software identifies the machine assigned a given
task, the dispatching software begins assembling a set of commands to be
executed on a remote computer. The command set the software assembles
is specific to a task, guided by the information provided in the dispatching
software’s control file. The construction of these commands is specified as
follows. The machine creates a name that will uniquely identify a task and the
machine on which the task is to be run. This name then gets used as the
directory entry mark which the software uses as an indication that a task is

10

15

20

25

30

WO 01/59561 PCT/US01/03801

-18-

either running or completed. After constructing the unique name, the
dispatching software uses the syntax of the freely available secure shell utility
(also known as ssh) to create the command which will launch a program on a
remote computer. Those skilled in the art will recognize that other existing
utilities, such as remote shell execution (also known as rsh) could as readily
be used.

In its present form, the preferred embodiments have the computers on
the network access shared disk space, so that the remote computer
references the shared disk space for program code and data. Again, those
skilled in the art will recognize that using existing network and remote
execution tools, both program code and data could be copied o a remote
computer’s private disk. Thereafter, a remote execution utility could point the
worker computer to the new location of the program code and data. Lastly,
the dispatching sofiware adds the syntax of the commands to remove the file
and mark it created upon completion of the remotely executed task. Once this
syntax is constructed, the dispatcher routine creates a copy of itself (known as
forking) and overwrites this copy with a call to the constructed commands
(known as a fork-exec combination). Pseudo-code is used to illustrate this
process:
$task = “NumUniqueUsers”;
$machineToUse = “machine07”;
$programTolLaunch = “monkeyGrab”;
$dataFileToUse = “AdvertiserReport”
$programArguments = “-g AdvertiserlD —g $task”;
$programLocation = “/shared/disk/space/code”;
$datal.ocation = “/shared/disk/space/data”;
$dirEntryFileMark = “$task . $machineToUse. system(\"date\")";
$remoteExecutionTool = “ssh”;
$remoteExToolArgs = “-secret /secrets/myKeyFile”;
$commandSet = "touch $dirEntryMark; x="$remoteExecutionTool
$remoteExToolArgs $machineToUse ‘$programTolLaunch
$programArguments $dataFileToUse"; if [$x eq 0]; then rm $dirEntryMark; fi”;

10

15

20

25

30

WO 01/59561 PCT/US01/03801

-10-

fork()
exec(“$commandSet”); ‘

if the dispatcher routine’s control file indicates that a particular process
or process pair can be executed simultaneously, it loops over the steps just
described to launch as many processes as are required by the control file and
that can be handled by the existing network. If the control file indicates that a
process must finish before one or more other processes must begin, the
dispatcher routine waits for such a serial task to finish before launching more
serial or parallel tasks within a task queue.

F. Special Cases and general extensibility

A preferred embodiment includes a special case of a worker routine,
referred to as monkeyLoad. Like all the other worker routines that can be
created in the framework of the present system and method, monkeyLoad has
the capability of parsing file headers which are in the form of Perl evaluable
code. This monkeyLoad routine takes the file header information and creates
a set of SQL (structured query language) statements to insert the data which
follows the file header into a database. Through a set of standardized and
freely available database interfaces for the Perl language, this routine can
read the data lines in the output file and insert these as rows into a database.
Those skilled in the art will recognize that the worker routine could also read
and evaluate the file header, for example, to produce a control file for another
routine, which might have more efficient interactions with a database routine,
such as Oracle’s SQL loader routine (sqlldr). The special requirement of this
routine is that the database columns match the column labels provided in the
file header. This detail is attended to at the beginning of the process, in the
initial control file which a user creates and where the user can specify
arbitrary data column labels. Any given worker routine functions by reading in
the file header information, evaluating it, and upon output, creating another file
header which has a minimum number of keys, e.g., four which any of the
worker routines needs to function.

The one special instance of a worker routine demonstrates that the
present system and method can be generalized. Since the worker routines

10

15

WO 01/59561 PCT/US01/03801

-20-

can parse the file header information, worker routines can accomplish many
useful things. One can readily recognize that instead of being instructed to
count unique instances, a worker routine could be written to add, subtract,
divide, multiply, compute standard deviation and so forth. The unique
functionality any such routine requires is the ability to evaluate the header
information in a data file as executable code that translates into a hash table
with a minimum number of keys.

Although the invention has been described and illustrated with
reference to specific illustrative embodiments thereof, it is not intended that
the invention be limited to those illustrative embodiments. Those skilled in the
art will recognize that variations and modifications can be made without
departing from the frue scope and spirit of the invention as defined by the
claims that follow. It is therefore intended to include within the invention all
such variations and modifications as fall within the scope of the appended

claims and equivalents thereof.

10

15

20

25

WO 01/59561 PCT/US01/03801

-21-

WHAT IS CLAIMED IS:

1. A method for running tasks on a network, comprising:
creating at least one sub-group of data from a universe of data;
identifying the sub-group of data with a header, the header
containing executable code;
sending the sub-group of data to an available processor; and
performing tasks with the available processor to obtain result
data using the sub-group of data and instructions contained in the executable

code in the header.

2. The method according to claim 1, further including returning the
result data files for each data sub-group to a main processor for possible
further processing.

3. The method according to claim 2, wherein returned result data is
reconstructed to form a single result data file which consists of many
individual result data files.

4. A method for preprocessing data, comprising:
reading an input data file;
placing the input data into a data structure;
selecting data elements from the data structure;
outputting a file header that describes the selected data
elements into a file; and
outputting the selected data elements into the file.

5. The method according to claim 4, wherein the data structure is a
hash table.
6. The method according to claim 4, wherein the data elements

selected are chosen by evaluating a block of program code such as a hash
data at run time.

10

15

20

25

WO 01/59561 PCT/US01/03801

-22-

7. The method according to claim 4, wherein the file header is a
hash table that can be evaluated at run time.

8. A method for extracting data, comprising:
reading a file header containing executable code;
executing the code to determine data to extract from a universe
of data; and

obtaining the data to be extracted from a data structure.

9. The method according to claim 8, further including loading the
extracted data to an output file.

10. The method according to claim 8, wherein the data structure is a
hash table.

11. A method for processing data, comprising:
reading a file header that contains executable code;
executing the executable code;
determining a desired operation from the executed code; and
performing the desired operation on data.

12. The method according to claim 11, further including outputting
result data after performing the desired operation.

13. The method according to claim 11, wherein the desired
operation is written in a language that is executed at run time.

14. The method according to claim 13, wherein the desired
operation is any one selected from the group of addition, subtraction,
multiplication, division, counting total number of instances in a class,
enumerating the unique instances of a class, computing descriptive statistics
such as the standard deviation, standard error of the mean, median,
arithmetic mean, variance, covariance, correlation coefficient, and odds ratio.

10

15

20

25

WO 01/59561 PCT/US01/03801

-23-

15. A method for dispatching a task and data to a central processing
unit located on a network, comprising:
executing code placed in a file header;
determining if at least one, if any, central processing unit is
available on the network; and
dispatching the task to the central processing unit based on
availability.

16. The method according to claim 15, wherein the availability of the

central processing unit is determined by reading a control file.

17. The method according to claim 16, wherein the control file is
formatted for evaluation as a hash table at run time.

18. The method according to claim 16, further including updating the
control file by re-writing a new control file which indicates the status of the

central processing units.

19. The method according to claim 16, further including:
assembling at least one command to be executed by the central
processing unit; and
sending the at least one command to the central processing unit
for execution.

20. The method according to claim 19, wherein the at least one
command includes creating a name to identify the task.

21. The method according to claim 15, further including marking a

state of the task.

22. The method according to claim 21, wherein the state of the task
is either running or completed.

10

15

20

25

WO 01/59561 PCT/US01/03801

-24-

23. The method according to claim 15, further including retrying,
after a time period has elapsed, to determine if the availability of the at least
one central processing unit if all central processing units were busy.

24. The method according to claim 23, wherein the time period can

be specified by a user.

25. The method according to claim 24, wherein the time period is
fifteen minutes.

26. A method for loading data, comprising:
reading a file header containing executable code;
executing the code to obtain file header information; and
creating a structured query language statement based on the file

header informaﬁon.

27. A method for running tasks on a network, comprising:

creating at least one sub-group of data from a universe of data;

identifying the sub-group of data with a header, the header
containing executable code;

sending the sub-group of data to an available processor;

performing tasks with the available processor to obtain result
data using the sub-group of data and instructions contained in the executable
code in the header; and

returning the result data to a main processor, wherein returned
result data is reconstructed to form a result.

28. A method for running tasks on a network, comprising:
reading an input data file;
placing the input data into a data structure;
selecting data elements from the data structure;
outputting a file header that describes the selected data
elements into a file;

outputting the selected data elements into the file;

10

15

20

25

WO 01/59561 PCT/US01/03801
-25-

reading the file header containing executable code; and
executing the code to determine data to extract from a universe
of data.

29. The method according to claim 28, further including loading the

extracted data to an output file.

30. The method according to claim 28, wherein the data structure is
a hash table.

31. A method for running tasks on a network, compriéing:
reading a file header that contains executable code;
executing the executable code;
determining a desired operation from the executed code;
performing the desired operation on data;
outputting result data after performing the operation.

32. The method according to claim 31, wherein the desired
operation is written in a language that is executed at run time.

33. The method according to claim 32, wherein the desired
operation is any one selected from the group of addition, subtraction,
multiplication, division, counting total number of instances in a class,
enumerating the unique instances of a class, computing descriptive statistics
such as the standard deviation, standard error of the mean, median,
arithmetic mean, variance, covariance, correlation coefficient, and odds ratio.

34. A method for dispatching a task and data to a central processing
unit located on a network, comprising:
executing code placed in a file header;
determining if at least one, if any, central processing unit is
available on the network;

10

15

20

25

WO 01/59561 PCT/US01/03801

-26-

retrying, after a time period has elapsed, to determine if the
availability of the at least one central processing unit if all central processing
units were busy;

dispatching the task to the central processing unit based on
availability; and

assembling at least one command to be executed by the central
processing unit, wherein the at least one command includes creating a name
to identify the task.

35. The method according to claim 34, wherein the availability of the

central processing unit is determined by reading a control file.

36. The method according to claim 35, further including the step of
updating the control file.

37. The method according to claim 34, further including marking a
state of the task.

38. The method according to claim 37, wherein the state of the task
is either running or completed.

39. The method according to claim 34, wherein the time period can
be determined by a user.

40. The method according to claim 39, wherein the time period is
fifteen minutes.

41. A system for running tasks on a network, comprising:
a data preprdcessing routine to create at least one sub-group of
data from a universe of data;
a data header containing executable code that identifies the
sub-group of data; and
a dispatch routine to send the sub-group of data to an available
processor, wherein the available processor performs to obtain result data

10

15

20

25

WO 01/59561 PCT/US01/03801

-27-

using the sub-group of data and instructions contained in the executable code
in the header.

42. The system according to claim 41, further including a main

processor to collect the result data files for each data sub-group.

43. The system according to claim 42, further including a data
reconstructing routine to reconstruct the result data to form a result.

44. A system for preprocessing data, comprising:
a processor to read an input data file; and
a preprocessing routine to place the input data into a data
structure, select data elements from the data structure, output a file header
that describes the selected data elements into a file, and output the selected
data elements into the file.

45, The system according to claim 44, wherein the data structure is
a hash table.

46. The system according to claim 45, wherein the data elements
selected are chosen by evaluating a block of program code such as a hash
table.

47. The system according to claim 41, wherein the file header is a
hash table that can be evaluated at run time.

48. A system for extracting data, comprising:
a processor to read a file header containing executable code,
wherein the processor executes the code to determine data to extract from a
universe of data; and
a data grabber routine to obtain the data to be extracted from a

data structure.

49. The system according to claim 48, further including a dispatch
routine to load the extracted data to an output file.

10

15

20

25

WO 01/59561 PCT/US01/03801

-28-

50. The system according to claim 48, wherein the data structure is
a hash table.

51. A system for processing data, comprising:
a processor to read a file header that contains executable code;
and
an operating system supporting an interpreted language to
execute the executable code, wherein the processor determines a desired

operation from the executed code and performs a desired operation on data.

52. The system according to claim 51, wherein the processor
outputs result data after performing the desired operation.

53. The system according to claim 51, wherein the desired
operation is written in a language that is executed at run time.

54. The system according to claim 53, wherein the desired
operation is any one selected from the group of addition, subtraction,
multiplication, division, counting total number of instances in a class,
enumerating the unique instances of a class, computing descriptive statistics
such as the standard deviation, standard error of the mean, median,
arithmetic mean, variance, covariance, correlation coefficient, and odds ratio.

55. A system for dispatching a task and data to a central processing
unit located on a network, comprising:
an operating system supporting an interpreted language to
execute code placed in a file header; and
a dispatching routine to determine at least one, if any, central
processing unit available on the network, and to dispatch the task to the
central processing unit based on availability.

56. The system according to claim 55, wherein the availability of the
central processing unit is determined by reading a control file.

10

15

20

25

WO 01/59561 PCT/US01/03801

-20-

57. The system according to claim 56, wherein the control file is
formatted for evaluation as a hash table at run time.

58. The system according to claim 56, wherein the dispatching
routine updates the control file by re-writing a new control file which indicates

the status of the central processing units.

59. The system according to claim 55, wherein the dispatching
routine assembles at least one command to be executed by the central
processing unit, and sends the at least one command to the central
processing unit for execution. |

60. The system according to claim 59, wherein the command
includes creating a name to identify the task.

61. The system according to claim 55, wherein the dispatching
routine marks a state of the task.

62. The system according to claim 61, wherein the state of the task
is either running or completed.

63. The system according to claim 55, wherein the dispatching
routine retries, after a time period has elapsed, to determine the availability of
the at least one central processing if all central processing units were busy.

84. The system according to claim 63, wherein the time period can
be determined by a user.

65. The system according to claim 64, wherein the time period is

fifteen minutes.

66. A system for loading data, comprising:
a processor to read a file header containing executable code
and executing the code to obtain file header information; and
a preprocessing routine to create a structured query language
based on the file header information.

10

15

20

25

WO 01/59561 PCT/US01/03801

-30-

67. A system for running tasks on a network, comprising:

a preprocessing routine to create at least one sub-group of data
from a universe of data;

a data header containing executable code that identifies the
sub-group of data; and

a dispatch routine to send the sub-group of data to an available
processor, wherein the available processor performs to obtain result data
using the sub-group of data and instructions contained in the executable code
in the header; and

a main processor to collect returned result data, wherein
returned result data is reconstructed to form a result.

68. A system for running tasks on a network, comprising:

a processor to read an input data file;

a preprocessing routine to place the input data into a data
structure, select data elements from the data structure, output a file header
that describes the selected data elements into a file, and output the selected
data elements into the file, and the processor reads the file header containing
executable code, wherein the processor executes the code to determine data
to extract from a universe of data; and

a data grabber routine to obtain the data to be extracted from a
table.

69. The system according to claim 68, further including a dispatch
routine to load the extracted data to an output file.

70. The system according to claim 68, wherein the data structure is
a hash table.

71. A system for running tasks on a network, comprising:
a processor to read a file header that contains executable code;

and

10

15

20

25

WO 01/59561 PCT/US01/03801

-31-

an operating system supporting an interpreted language to -
execute the executable code, wherein the processor determines a desired
operation from the executed code and performs the desired operation on
data, wherein the processor outputs result data after performing the operation.

72. The system according to claim 71, wherein the desired

operation is written in a language that is executed at run time.

73. The system according to claim 72, wherein the desired
operation is any one selected from the group of addition, subtraction,
multiplication, division, counting total number of instances in a class,
enumerating the unique instances of a class, computing descriptive statistics
such as the standard deviation, standard error of the mean, median,
arithmetic mean, variance, covariance, correlation coefficient, and odds ratio.

74. A system for dispatching a task and data to a central processing

unit located on a network, comprising:

an operating system supporting an interpreted language to
execute code placed in a file header; and

a dispatching routine to determine at least one, if any, central
processing unit available on the network, and to dispatch the task to the
céntral processing unit based on availability, wherein the dispatching routine
retries, after a time period has elapsed, to determine the availability of the at

least one central processing if all central processing units were busy.

75. The system according to claim 74, wherein the availability of the
central processing unit is determined by reading a control file.

76. The system according to claim 75, wherein the dispatching
routine updates the control file.

77. The system according to claim 74, wherein the dispatching
routine marks a state of the task.

WO 01/59561 PCT/US01/03801

-32-

78. The system according to claim 77, wherein the state of the task

is either running or completed.

79. The system according to claim 74, wherein the time period can

be determined by a user.

80. The system according to claim 79, wherein the time period is
fifteen minutes.

WO 01/59561 PCT/US01/03801
1/5

o4

\
2
(W
N
2
S
N
S
-
o
S
\- ma—
b
S L
AN

162

WO 01/59561 PCT/US01/03801
2/5

A wser (ReaTtes

AT (EAST oNE
SUB~ GRoupP o~ [T 200
" PATA FRom A

DNIWVELSE of DATA
L_,__\ \

THE SUg-GRouP
14 1pENTI FIED —~ 202
WiTh A HéRER

L

THE sug-Grou P
6F DATA 1S
Lent TO AN b ‘204.
AVAILABLE

PRocESSIR

i

THE AVALLAGLE

fRocesso R 20
Peeforms TRSKS 6
ond THE SuB— |
Growf of DATA

WO 01/59561 PCT/US01/03801
3/5

G RABBER
300 | feasranr
ReceWes -
INSTEMCTION S

|

(REATE

A _ | Fig péanef
307' Fop A wWoRKER
Rout |NE

TNG (L RE

DATA

1 Ent
;04" gﬁi%%xégmd

fol WORKER

WO 01/59561

PCT/US01/03801
4/5

Contloil CE
PﬂOGﬂﬁrﬁm
Finps AN ~—

AVALLAB LE 400
RosT

l

TRSIK COPE,

(e'ﬂ ' Mﬂkéyéﬁflﬁ)

rrorkey CamT) 4oz
\s <EnT 1o AN

PV RILABLE HosT

ThSK DATA File
16 Senr 7o THe [T 4&4.
AR ABLE HOST

. Ry —
Contollea
PRoGp-Ar 4ol
TRACKS
TRgKS

P

TA3K RouTINE
makes pesulT |~ 408
PVRSLRELE 1D

THE CconTRallER

4

-

THe Cownqroller
PRoGRAM uPOHTES \— A 16

THE memoky
T DATA Flles oF
AVEAL ABLE HOSTS

G. 4

WO 01/59561 PCT/US01/03801
5/5

ResucT parh S
madn FRocesseF

i PRocES5DR

CoNSTRUCTS A ™~&502
REASSEMBLN & ‘
s Cammnbk M

/

ReEpsSembl! ME
RounTINE REALS .
e HervER I~ 5 4
For encl SUA”
thsK Flié&

f

Réassenm 8L i

RouTing RERDS — L
+He pDATA Falk 5706
"cacn Firie

!

DATA 1S L
ReassemBLeE p | 508

Fr G.<

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/03801

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GO6F 9/00, 12/00
USCL 709/100, 104; 711/149

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 709/100, 104; 711/149

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Category *
Y

the Invention.

US 3,913,070 A (MALCOLM et al.) 14 October 1975 (14.10.1975), col.10-col.25. 1-80
Y US 5,995,996 A (VENABLE) 30 November 1999 (30.11.1999), see Summary of the 1-80
Invention.
Y US 4,972,314 A (GETZINGER et al.) 20 November 1990 (20.11.1990), see Summary of 1-80

D Further documents are listed in the continvation of Box C.

L]

See patent family annex.

of particular rele\;)ance
“E" earlier application or patent published on or after the international filing date
“L” document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“O” document referring to an oral disclosure, use, exhibition or other means

“P" document published prior to the international filing date but later than the
priority date claimed

* Special categories of cited documents: “T later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” dd defining the g | state of the art which is not considered to be principle or theory underlying the invention

“Xr document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

11 May 2001 (11.05.2001)

Date of mailing of th@n't?mjﬁxﬁs%aﬁbr_iport

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. 703 305-3230

Authorized officer .
ALVIN OBERLEY {),ﬂww.za.,. R Nettizio

Telephone No. 703 305-3665

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

