R I T ET NV
US 20020184398A1
a9 United States

a2 Patent Application Publication (o) Pub. No.: US 2002/0184398 A1l

Orenshteyn (43) Pub. Date: Dec. 5, 2002
(54) SECURED SYSTEM FOR ACCESSING (57) ABSTRACT
APPLICATION SERVICES FROM A REMOTE
STATION

A secured system for accessing application services from at
least one application program where at least one client
station having low-level application independent logics
stored therein and at least one controller for controlling the
low-level application independent logics, the low-level
application logics including a user interface logic, a device
control logic for controlling devices, a file system logic, and
a communication interface logic, and wherein at least one
client station has means to restrict access to said application
independent logics, at least one application server having
high-level application logic stored in a server device for
running at least one application program, the server device
being coupled to said at least one application server and

(76) Inventor: Alexander S. Orenshteyn,
Westborough, MA (US)

Correspondence Address:
ALEXANDER S. ORENSHTEYN
55 ADAMS ST.

WESTBOROGH, MA 01581 (US)

(21) Appl. No.: 10/124,124 low-level interface between said at least one client station
(22) Filed: Apr. 17, 2002 and said at least one server for connecting said at least one
client station to said at least one application server, wherein

Related U.S. Application Data upon accessing by said at least one client station, said at least

one application server runs at least one application program
(60) Division of application No. 09/280,264, filed on Mar. which selectively controls said low-level application inde-

29, 1999, now Pat. No. 6,393,569, which is a con- pendent logics for controlling devices of said at least one
tinuation-in-part of application No. 08/769,493, filed client station and accessing data of said at least one client
on Dec. 18, 1996, now Pat. No. 5,889,942, station without permanently storing said at least one client
station data in said at least one server. There is also a
Publication Classification description of a secure operating system and method and a
secured system and method of construction of a computer
(51) Int. CL7 .o, GO6F 15/163; GOOF 9/54; system as well as description of system and method of how
GO6F 9/00 to preserve a running current state of an application program

(52) US. Cli vvcecreccretrevnenecenesenses 709/310 for security and relocation purpose.

A START
CLIENT INITIATE
P 30
NEW
HARDWARE YES CREATE NEW FILE
DETECTED? IN FILE SYSTEM

SELECT APPLICATION/
SERVER FROM
FILE SYSTEM

CREATE NEW ENTRY
IN CONFI6 FILE

DESTRED
APPLICATION
PRESENT?

50

CLIENT CONNECTS
T0 SELECTED SERVER
APPLICATION

!

S\ AUTHENTICATE SERVER
AGAINST TRUSTED
DATABASE

60

AUTHENTICATION
PASS?

ENCRYPT COMMUNICATIONS
VIA PUBLIC/PRIVATE KEYS

CONNECTION T0
SERVER NOT MADE

Patent Application Publication Dec. 5,2002 Sheet 1 of 8 US 2002/0184398 A1

FIG. 1

SERVER

Patent Application Publication Dec. 5,2002 Sheet 2 of 8 US 2002/0184398 A1

FIG. 2
12~
16
171
=

13~

Patent Application Publication

FIG. 3A

20

START
CLIENT INITIATE

Dec. 5,2002 Sheet 3 of 8

25 ?9
NEW
HARDHARE S YES CREATE NEW FILE

DETECTED?

IN FILE SYSTEM

SELECT APPLICATION/
SERVER FROM

FILE SYSTEM

40

IS

85
/

DESIRED
APPLICATION

PRESENT?

CREATE NEW ENTRY
IN CONFIG FILE

CLIENT CONNECTS

T0 SELECTED SERVER
APPLICATION

l

AUTHENTICATE SERVER
AGAINST TRUSTED
DATABASE

95\

60

AUTHENTICATION
PASS?

10 YES

ENCRYPT COMMUNICATIONS
VIA PUBLIC/PRIVATE KEYS

65

CONNECTION TO
SERVER NOT MADE

US 2002/0184398 A1

Patent Application Publication Dec. 5,2002 Sheet 4 of 8

FIG. 3B

75—~ RECEIVE ICON OR
CREATE GENERIC
FROM SERVER

'

110

/

SPAWN APPLICATION

10 FILE SYSTEM IN CLIENT

TRANSMIT PROCESSED
DATA FROM APPLICATION

85

DOES
APPLICATION REQUIRE

ACCESS T0 FILES
IN FILE SYSTEM?

DOES
SERVER HAVE
AUTHENTICATION TO
ACCESS?

105

ALLOW APPLICATION T0 |

! %
CONTINUE SERVICE ::::;
UNTIL DONE

DOES CLIENT
GRANT TEMPORARY
AUTHENTICATION?

READ/QVERWRITE/CREATE

DATA FILE IN FILE SERVER

US 2002/0184398 A1

Patent Application Publication Dec. 5,2002 Sheet 5 of 8 US 2002/0184398 A1

4
2" Rand
“\[Persistent anaom
) Access
stoge;%e, F——> Vemory
N—— /\
g
/
, VAN
T™\| _ User interface Bus /
monnitor, keyboard, K——> <———— CPU
mouse, etc...
/-
3 Comm-
S\ » Iu?ic’gtionts
DECH < Interface to
purpose I/0 | K——=> remote
gvices CPU’s

FIG. 4

Dec. 5,2002 Sheet 6 of 8 US 2002/0184398 A1

Patent Application Publication

H

S/1d0
ajouial

0] aoeLislf

SUGHBIIUN
-0

90
doneayoy
uoeINoLLIo)

L)v

WY =
HIN .

N/

$Ndo 7
0y ==

Ndd =

.0l

Aiowspy
$$900Y
uiopuey

Communications BUS

S O
YN $89/A3 J
jonuen k= ==i|0//8sodn
Y, /043100 Trads
4!
| <
3
Q
<h} o ‘
S 018 ‘asnous
@ k= ‘DieoqAay ‘foNuow
8 8oB/iajul iasf
M I
[<b]
g g
Auve
JI ‘abriojs
alsisiad(_
/\m\ 9
Xoojg/aoiraq
9/0SL03 19s

-

Patent Application Publication Dec. 5,2002 Sheet 7 of 8 US 2002/0184398 A1
/3 4
/ Daa /[/\{
ﬁ /2 8
S
kS 5
User console RS /
Kernel, control @
devices, user s Process Kernel, load's
Interface, S and manages
provide access to N —> rocesses and
0S services 5 arbitrates access o
for Process S user console Kernel.
Kernel. Restrict)
access lo >
services kS
e,
Q.
) Q
/ 1
(Stored data (
FIG. 6
/ Data]
2 al
Kernel, control
devices, user Same Kernel, loads
interface, and manages
provide access rocesses and
to OS services. arbitrates access to
Restrict access kernel services.
fo services \
1 /% Luonolitic kereios
(Stored data (

FiG. 7

Patent Application Publication

AN
______,/

Check-point
Storage

N~

Application part

—

S~—]

Check-point
Storage

N—

Dec. 5,2002 Sheet 8 of 8

'

FIG. 8

A

Application part

US 2002/0184398 A1

US 2002/0184398 Al

SECURED SYSTEM FOR ACCESSING
APPLICATION SERVICES FROM A REMOTE
STATION

[0001] The present application is a divisional application
of application Ser. No. 09/280,264 filed Mar. 29, 1999,
which is a continuation in part of application Ser. No.
08/769,493 filed Dec. 18, 1996.

FIELD OF THE INVENTION

[0002] The invention relates generally to a reciprocal
client-server network system and, more particularly, to a
secured system and method for obtaining application ser-
vices (i.e., embedded services/applications) from a server
and for delivering such services to the requesting client/
desktop device, where the service’s application logic (high-
level presentation, business and database logic) is indepen-
dent from the client’s low-level operating system and I/O
peripheral devices and where client device has means to
restrict access to its resources.

BACKGROUND OF THE INVENTION

[0003] As we are looking forward to year 2000 and
beyond, a question arises. How will computing look in the
future? The trends we have seen are obvious; more powerful
chips are being released every few months, while software
development struggles to keep up with the hardware but
never does. Of course, we now have a slightly new twist, i.e.
the new found popularity of Internet, the web, and JAVA®
code (developed by SUN®). For instance, with respect to the
web, typically a server downloads code (e.g. graphics, JAVA
applets) to a general purpose computer, and the computer’s
browser software interprets the codes for display. However,
interpreting and downloading the code takes significant
time.

[0004] Some have said that JAVA (being platform inde-
pendent) has finally brought a tool to the computer market
to break the major chip and operating system (OS) domi-
nance which have developed in the desktop industry, via
INTEL® and MICROSOFT®, respectively. However, dif-
ferent software vendors are creating their own JAVA exten-
sions, such that JAVA is losing its portability. For example,
MICROSOFT has developed its own JAVA dialect/inter-
preter, MS J++® with extensions specific to the
MICROSOFT web browser EXPLORER® and other related
MICROSOFT technology, such as ACTIVE-X®.

[0005] Further, we have seen neither INTEL nor
MICROSOFT despair about web development, i.e., they do
not see the currently available Internet technologies as able
to threaten their respective monopolies, as “Intel Inside” will
continue to power general purpose PCs and MICROSOFT’s
OSs will continue to manage them, while its MICROSOFT
web-browser EXPLORER® now supports JAVA code. Fur-
ther, MICROSOFT’s proprietary ACTIVE-X or Active
Server Pages (ASP) technology is a JAVA competitor which
may yet derail the industry’s effort to use open standards.
Accordingly, INTEL’s and MICROSOFT’s dominance
remains the same.

[0006] 1t has been predicted that computing, especially
network computing, will change so drastically in the near
future that no company/vendor would be able to dominate
any market but the current efforts by many software vendors

Dec. 5, 2002

to “extend” the JAVA standards is putting that prediction in
doubt. As JAVA applets get developed, incorporating non-
standard extensions will eventually cause the emergence of
another yet another dominant JAVA applet supplier. At this
point, there is little doubt it is going to be the current
software giant MICROSOFT. By modifying its proprietary
operating systems, like Windows 95/98/2000 and Windows
NT to more effectively process either JAVA applets with
proprietary extensions or ACTIVE-X objects, or even intro-
ducing a completely new Java-like language MICROSOFT
once again will dominate software application development
by divide and conquer approach.

[0007] General purpose computing on the desktop, i.e.,
desktops having a standard OS (such as Windows 98/95®)
and a microprocessor (such as the Pentium® chip), has to be
replaced by a system which is less expensive to own and
maintain but at the same time does not short-change the user
by taking away features which we all have come to expect
from our PCs, such as flexibility, extendibility, high-security,
ease-of-use, and reasonable cost of initial ownership to
enable the software and hardware industry to proceed for-
ward in new and creative ways.

[0008] Foresceable disadvantages of the standard general
purpose PC or Network Computers (NC), with respect to the
networks and JAVA, include the following. JAVA applica-
tions will increase in complexity, therefore requiring faster
processors and greater memory in the desktop unit to run
them (the same problem which PCs have always had) again
forcing the user into a never-ending spiral of hardware and
software upgrades. Currently, JAVA applets are four to five
times slower than compiled code, requiring more powerful
processors to get similar performance as compared to an
application that runs native binary code. Further, converting
applications from another high-level language to JAVA (or
even from C++) is a very expensive, labor-intensive effort,
so that it is no wonder that legacy COBOL applications are
still often used in business instead of being rewritten in
another language. If it is taking billions and billions of
dollars to fix a small Y2K problem it would take trillions of
dollars to rewrite the huge number of existing applications
in some Java-like language and even more to upgrade all the
hardware.

[0009] Tt is also a concern that the computer’s writable
resources, €.g. a hard drive, can be compromised or dam-
aged by rogue JAVA applets or your computer resources can
be used in many insecure and unauthorized ways. On the
other hand, if the computer has no writable resources, then
the user typically keeps his or her files in remote locations,
e.g. on a remote file server, thereby making the user’s data
files a security risk which no company can afford. An
example of a computer having no writable resources is the
proposed Network Computer “NC” (a joint effort by
APPLE®, NETSCAPE®, IBM®, ORACLE® and SUN®).
Although some effort has been made to add digital certifi-
cates to Java applets, the companies issuing those certifi-
cates are NOT willing to accept any legal responsibility for
fraud and do not have the resources to verify if they issue
certificates to the right person or company. Therefore the
potential for impersonation, fraud and loss of business data
to damage or copying is enormous with Java, Active-X or
other Java-like approaches.

[0010] A typical network system having server-client
architecture, which can be utilized in the present invention,

US 2002/0184398 Al

would include a network having at least one server con-
nected to at least one client over a shared transmission
medium. The network is applicable to supporting the trans-
mission of data on a local area network (LAN) or on a wide
area network (WAN).

[0011] A typical server, which can be utilized in the
present invention, may vary substantially in its architecture.
It may be a uni- or multi-processor machine, a PC or a
mainframe, a workstation from a major manufacturer or a
proprietary technology based computer, etc. It may even be
a special function device without any OS or software. The
server should be able, however, to function in a predefined
way or to run whatever software that the company which
owns the server needs to run on it. It should also be able to
comply with standard transport protocol, such as tcp/ip usd
by the Internet or other transport protocols used on wireless
or wired LANSs.

[0012] The server used in the present invention may have
its own file system for storing service-related files and data
or server may strictly be a computational server whose
software is loaded from the file system of another server, i.c.,
a file server or file system of super-client (neither shown),
which is preferable for security reasons. If the server loads
its software from a super-client or a file server then the
server needs to run a program/application loader which can
accept application code from some pre-determined port and
load it into memory for execution. A security protocol and
loading protocol would need to be established between a
super-client and the server to insure that the super-client is
authorized to load software applications into the server. If
the computational server runs the booted programs solely
from RAM, then it would not have access to its local file
system after the software is loaded into its main memory
(RAM).

[0013] There are three basic conventional computing
architectures. A two-tier architecture can be either a set of
terminals attached to a central computer or a set of compu-
tational clients attached to a central file server. In addition to
the described two-tier computing configurations, a three- or
N-tier computing configuration may also be utilized.

[0014] Conventionally, in a first major configuration, the
client stations are essentially “dumb” terminals connected to
a central server via a transmission medium. The central
server contains the client users’ data and the application/
program code. Further, the central server executes all the
programs for its clients.

[0015] Substantially all of the application logic (i.e., pre-
sentation logic, business logic, and database logic) is resi-
dent within the central server. Such application logic (pre-
sentation, business, database) includes any program logic
concerned with delivering and/or executing the application
service. Note, however, that each client may harbor some
low-level graphical interface logic such as X11 protocol.
These clients are diskless and perform no general compu-
tational tasks and do not usually have any devices other than
the display which are accessible to applications. Further, the
database (file system) logic on the server is shared among
the clients. An example of such a system is a set of
X-terminals attached to a central computer/server.

[0016] In a second major configuration, the central server
contains both the program code and the file system which the

Dec. 5, 2002

clients use, as with the first configuration, but does not
execute any applications. Instead, the applications are down-
loaded into each requesting client through the network and
run on each client. The client, however, continues using the
central server as the client database/file system source. The
clients in this configuration are usually diskless but do
contain powerful CPUs, such as by SPARC®, MIPS® and
ALPHA®. Although all of the presentation, business and
database logic (while running) reside on the client, the file
system is located on the central server and is shared among
the clients. An example of the second configuration include
a LAN with a central database such as ORACLE, Informix
or Sybase running on an IBM AS/100 file server and set of
diskless desktop machines like SUN or RS6000 worksta-
tions using a central file server to get their program code and
data.

[0017] Further, the proposed NC (Network Computer) is
similar to the second conventional configuration, except that
instead of loading native machine code onto a client, JAVA
code is sent to be either interpreted or compiled on-the-fly
into native code at the client station. That is, the JAVA code
is either interpreted by the browser software on the client or
the browser first compiles the JAVA code, then runs it. The
obvious problems with this solution are that interpreted code
and compilation is slow, and as the complexity of JAVA code
increases, the CPU/memory combination of the NC or
general purpose PC/browser combination would also have to
increase in computational power and memory size to accom-
modate the growth. Further, JAVA code would arrive to the
desktop in source form making it very difficult to determine
whether malfunctions or bugs are associated with the JAVA
applet or the browser software itself.

[0018] In addition, since the JAVA code is supplied to run
on the client, an application foreign to the client is accepted
which may potentially damage the PC’s writable resources
by malice or mistake (e.g., by utilizing security holes in the
browsers) or utilize resources on the client which the client
user may not want to be accessible. Further, the NC fails to
protect the user’s private data from other clients since it
lacks local storage and all client data has to reside in a
central location. JAVA also makes copyright enforcement an
extremely difficult task for the software vendors. Since
JAVA applets have absolutely no protection from being
copied by the client/user machine, as they are delivered in
source form or easily decompilable byte code.

[0019] In a third conventional configuration, a three- or
N-tier computing network is employed. Such a configuration
is currently being utilized by Forte Technologies. They offer
programming tools to decompose client-server application
into presentation logic which runs on each client, business
logic which runs on the central server and database logic
which runs on a file server (not shown). However, the
business and database logic may run on the same physical
server. As with the first and second configurations, the
client’s database/file system logic is stored remotely from
the client, as it is shared among the clients, and thus poses
a security risk. Since the presentation logic runs on the
client, this system is also faces with the problem of constant
upgrades and high maintenance costs of the client stations.
Another great problem in this model is that application
codes have to be written specifically to one software ven-

US 2002/0184398 Al

dor’s implementation of the N-tier network and a user is
typically forced to license and distribute parts of the system
to run his own applications.

SUMMARY OF THE INVENTION

[0020] Tt is therefore an object of the present invention to
overcome the disadvantages of the prior art.

[0021] There is provided a system and method of access-
ing application services from selected application programs,
stored and run on a remote compute-server, while the
application program utilizes the clients’ operating-system-
level services such as storage devices for its permanent
storage requirements and other devices for other services.

[0022] At least one remote server uses the client as a
peripheral device for the purpose of I/O interfacing to the
client’s keyboard, mouse, monitor, file system or any other
client-attached peripheral device and for controlling those
attached devices.

[0023] In particular, the system includes at least one client
station, each having user interface (e.g., a graphical user
interface (GUT)) and file I/O logic stored therein and at least
one controller circuit (e.g., a digital signal processor (DSP))
for controlling the client’s I/O peripheral devices. The file
I/0 logic is capable of storing and retrieving data corre-
sponding to the application programs and otherwise perform
low-level file control operations on the file system and
specifically on the device files. Further, the controller oper-
ates the user interface, device control, communication inter-
face and file I/O logics.

[0024] In addition, the system includes at least one spe-
cialized remote application server. Each server includes
high-level application logic stored therein for running the
corresponding application program or stored in a corre-
sponding file server. Alow-level interface (e.g., an operating
system service interface (OSSI)) establishes a common
protocol for connecting each client to each server. OSSI
protocol insulates high-level application logic from direct
access to the underlying operating system, thus allowing a
high-level application to obtain OSSI services from different
operating systems or from special console devices which
understand OSSI protocol. OSSI makes it possible for a
high-level application to use OS-level services on a remote
client station separated by a network.

[0025] In operation, upon initiation by a client, a selected
server spawns a selected application running thereon and
selectively accesses logics of the client station to control the
file system, devices, user interface and communication inter-
face and to access the corresponding data of the requesting
client. The client station should include some means to
refuse access by the selected application running on a server
to any specific logic or a group of logics based on the
application and any other data available to the client station.
Thus, the client acts as a peripheral device (a “window on
the world”) for the selected service application running
remotely on the server. In turn, the remote server processes
the corresponding data from the client (and on behalf of the
client) through the spawned service application without
permanently storing the data within the server. In other
words, the client serves file systems, screens, keyboards,
mouse, other attached devices to a server, while the server
serves to the client application logic and compute-power.

Dec. 5, 2002

[0026] In addition, a “directory” service application may
be used which resides on the server such that the client may
launch the selected application via the directory service.
“Directory” service applications may perform small services
directly (e.g., display some textual or graphical informa-
tion), refer to another service application on the same server,
or reference an application service on another server. In this
manner, multiple directory services may be chained together
so that the client user can reference multiple applications by
different vendors, residing on different servers. By chaining
“directory” service applications in the above manner, a
network of various application services can be readily
available to the client. A user can “roam” the network of
“directory” services until he/she finds the appropriate appli-
cation for this task. In addition, search engines could also be
employed. Once found, an application Internet address and
port can be recorded for future use in the client configuration
database/file.

[0027] The applications on the remote servers are not
dependent on, and thus preferably not written for, any
specific client OS. Thus, the application logic is separated
from the client’s low-level “quasi” OS logic. In other words,
the application does not link directly with the client’s
kernel-level services (of the OS) to perform the desired
functions. Instead, the application prepares a desired “com-
mand packet” (representing the desired function and neces-
sary data) by calling an appropriate command function from
the server’s function library. The command function from
the server’s library encodes the command packet according
to OSSI protocol. The command packet is then dispatched to
the client’s quasi-OS via the common transport protocol
(such as tep/ip). The client’s quasi-OS can recognize the
received, OSSI encoded, packets for performing the desired
I/O or control operations.

[0028] Further, the quasi-OS has the flexibility to tailor its
action in response to a specific “command packet” according
to its own abilities or to the abilities of the devices to which
it has access. Therefore, specific logical commands from an
application may be executed differently depending on in
what environment the quasi-OS exists. If X11 is used for the
GUI, then the application will look and feel like an “X”
application. Similarly, if another GUI is used (e.g., Windows
95), then the application will look and feel like a Windows
95 application.

[0029] This invention differs from all three conventional
models, discussed above, in the following major ways. The
invention enables selected, restricted access from the appli-
cation on the remote server to the client’s permanent storage
facilities, such as the hard drives, CD-ROM drives, tape
drives, floppy drives, and any other I/O or other device
which may be attached to the client. In other words, the
remote servers perform operations on the client’s local data
and devices. Thus, the server can process the data from the
client; however, the data does not reside permanently on the
server. At the same time the client station is able to limit
access to its various logics by the server depending on the
server, application, and any other data available to the client
station.

[0030] Tocal data is simply read from or written to various
client station devices or the client file system as required by
the application logic.

[0031] Al of the above conventional models employ a
centralized file system on the server, so that the file system

US 2002/0184398 Al

is shared between the clients. Accordingly, a rogue client can
gain unauthorized access to another client’s data through the
shared file system. The present invention, however, does not
share a file system among different clients but stores client’s
data in the attached storage devices such that they are
inaccessible (without explicit authorization from the user) to
other clients or servers.

[0032] Further, in the present invention, if more than one
client uses the same application during the same time period,
then each client can make certain files and devices acces-
sible by the application on the server at the same time which,
if the application permits, may enable distributed coopera-
tive projects between consenting clients, i.e. the consenting
clients may share devices, files and data.

[0033] TIllustratively, the invention prohibits running sub-
stantially any application logic on the client. While the first
conventional configuration with “dumb terminals” does not
run any application logic on the terminal it is also unable to
provide storage or any devices other than display and
keyboard and it is unable to provide any operating system
services to an application. The second conventional con-
figuration executes all application logic on the client side,
while the third conventional configuration executes high-
level presentation and business logic on the client. Further,
the application depends on a high-level interface between
the client and server parts of the application, and predeter-
mined platform compatibility.

[0034] Since the present invention removes all application
logic from the client station while the client station still
providing operating system services, there is no longer any
need to execute any general purpose code (application) on
the client station. The remote servers are wholly dependent
on the connected clients to serve the client’s I/O peripheral
devices, therefore the servers do not need any hardware
devices of their own to get the I/O services which the client
stations can provide. Therefore, expensive general purpose
processing CPUs are preferably replaced with inexpensive
but powerful controllers, such as DSP chips. Despite the fact
that the present invention does not have any application
logic on the client station, it feels in its use like a general
purpose PC that runs the application program directly on the
PC. The inventive client station can connect to many dif-
ferent servers at the same time with each server performing
some specialized application. A single client station can
share many different applications/servers (software or hard-
ware) with other client stations and many applications/
servers can share the client station’s operating system level
services. The inventive client station allows the client user to
keep his or her private data on their own disk, and it can have
all the common I/O devices attached to it, such as CD-ROM
and floppy drives, as well as other peripherals such as
printers, plotters and the like.

[0035] Another major weakness of the above three con-
ventional configurations is the centralized database/file sys-
tems. Giving access to a server’s central file system may be
a workable solution in the corporate Intranet environment,
where every user is known and verified (although it is also
known that many security breaches are orchestrated by
insiders) and can be tracked, but fails completely in the
anonymous environment of the Internet. The present inven-
tion does not suffer from the same drawback. Since the
server application always utilizes the file system on the

Dec. 5, 2002

client, the client has no access to the server’s file system at
all and therefore, can do no damage either through malice or
mistake. The client merely connects to a port on the server
and can typically only view whether the server is accepting
its requests for services (via an application). In addition, the
server (a compute-server) may not have a file system at all
to be damaged but instead, may boot the appropriate appli-
cation from another server (e.g., a corresponding file server
or super-client). In such a case, the file server may discon-
nect from the compute-server, while the application runs
within the compute-server’s memory (RAM). Special pur-
pose hardware chips such as ASICs or FPGAs can also be
utilized as specialized servers.

[0036] Another advantage of having the file I/O logic
locally on the client is that every client can insure the
integrity of its data with backups and the like. This elimi-
nates a lot of problems for service providers who would
otherwise be responsible for keeping the client’s program
data safe from corruption or intrusion by third parties. One
can easily see that in the Internet arena, it is simply impos-
sible to accommodate unlimited numbers of users because of
simple limitations like disk space in the server. In the present
invention, however, only the computational resources are
shared, so many more users can be accommodated. Further,
by having a compute-server access local file systems of its
clients, the performance of the server is also improved since
typically the file I/O in centralized file systems is the
“bottle-neck” for (i.e., reduces) computational performance.
Since in this invention the server sees multiple file systems
on different client stations, there is no competition for the
limited storage resources or bandwidth by different client
stations or applications.

[0037] Further, the application service can be delivered to
a new user instantly, instead of having to set up either
security groups or user IDs. (The present invention offers
structural security.) In other words, such conventional secu-
rity is not necessary (unless for billing purposes) since the
client’s data can not be accessed without authorization and
the server’s applications and data can not be copied or
damaged as it is never sent to the requesting clients. Further,
each client can receive services anonymously since the
application data, specific to the client, resides on the client’s
file system or available from the client station’s devices and
the client stations do no ever gain privileges to access the
server file system. The possibility of receiving services
anonymously is very valuable because of privacy concerns
with respect to using the internet.

[0038] In addition, although the client serves its file sys-
tem and devices, it is the client station which establishes the
connection to the servers. There is no mechanism for the
servers to obtain a connection to a client station unless the
client station is actively seeking to connect. Therefore, a
potential intruder has no way to gain entry into the client’s
file system. So although the client serves its files, devices
(i.e. data), it serves them only to servers to which the client
itself connected.

[0039] Preferably, the firmware which runs on the client
(stored in ROM) in the present invention is not user-
modifiable since no general purpose computing will be done
locally on the client. Accordingly, expensive, power and
memory hungry general purpose operating systems (OS) are
unnecessary since user programs/processes need not be

US 2002/0184398 Al

loaded or managed. Only a small quasi-OS is required to be
stored in the firmware, such that the authorized server can
control all of the client I/O and file system. The operating
environment is called quasi-OS because it does not load or
run user processes as a conventional operating system (OS)
does. Of course any part of the client station can be
implemented in hardware as specialized circuits. For
example, the graphical user interface, controlled by the
quasi-OS, may be based on the X11 protocol, which is in the
public domain.

[0040] Since neither conventional general purpose CPUs
nor OSs are required in the present invention, a client
becomes a long term investment for the consumer since such
client stations could operate adequately for ten years or
longer. On the other hand, since the second and third
conventional configurations have either all or part of the
business/application logic residing on the client, the user is
invariably forced to upgrade the system to run more com-
plex and fatter applications. And the central server with
“dumb” terminals conventional configuration requires
upgrading the servers a lot more often.

[0041] In addition, with respect to the server, the present
invention preferably curtails common services like telnet,
ftp, rsh, rlogin. The server is therefore left with specialized
application services which do not allow access to command
shells. This creates a very secure system that is substantially
impervious to outside attack, yet flexible enough to offer
services to the anonymous masses of the Internet. Since
applications running on the servers are controlled by the
server owner and operating system services are obtained
from the client stations, the server software/hardware is
structurally secure from any client station. The server appli-
cations enable the client stations to obtain application ser-
vices without compromising security of the server.

[0042] TLastly, in the present invention, an application
program need be developed only once. After the most
appropriate hardware is chosen for the server (it could be
designed specifically for the application), the application is
developed and, instead of selling the software to run on
different platforms, the application need only be set up as a
service having a common Internet transport protocol, such
as tep (or udp)/ip, and attached to a network. Since the client
contains no application specific logic, any application could
use the client for accessing device, display and file services.
The client’s quasi-OS has the flexibility to interpret the
command packets received from the connected server
according to its local capabilities, so that if the client has a
text-only display, then the quasi-OS will display information
in a text mode. If X11 is used, then X functionality would
be employed. However, if Windows is the underlying OS,
then Windows facilities would be utilized. The look, feel and
capabilities of any application will be adapting to the look,
feel and capabilities of quasi-OS. At the same time, the
general behavior of quasi-OS would be controlled by the
service applications.

[0043] The client’s quasi-OS and the application would be
in a symbiotic relationship—the application tells the quasi-
OS what to do, and the quasi-OS determines how it should
be done. While the quasi-OS does not have any useful
function or behavior of its own without the applications, the
applications are unable to get anything done without the
quasi-OS I/O and control services. All the hardware/OS

Dec. 5, 2002

dependent functionality is encapsulated in the “front-end” of
the quasi-OS and all the logic/behavior of an application is
encapsulated in the application code. The two cooperate
with each other through an OSSI communications protocol
(which itself uses an underlying transport protocol). Thus,
the application never executes any low-level code, instead it
“asks” the quasi-OS to perform that operation on its behalf.
In other words, the quasi-OS does not perform any opera-
tions which have not been requested by a remote application
(exception is file maintenance operations when requested by
the client user).

[0044] Existing applications which already have been
written for specific platforms, such as UNIX/X and Win-
dows 95/NT, can be easily converted by using libraries
which utilize the OSSI for generating command packets,
while maintaining conventional UNIX/X or Windows APIs
(application programming interface).

[0045] In addition, disk space on the client no longer has
to be wasted with hundreds of megabytes of OS files and
application code, since only data is stored therein. At the
same time, the server does not have to store any user data or
make backups. Also, the user no longer has to worry about
upgrading his or her application software, since this main-
tenance problem completely passes to the software vendors.
Further, upgrading is easy for the software vendors since
they need to upgrade only one application per server which
they can phase in slowly. With respect to companies wishing
to purchase application programs, such companies can pur-
chase the inventive servers having preinstalled service appli-
cations which can immediately service hundreds to thou-
sands of clients. Hardware requirements for the servers can
now be drastically simplified, since either a CPU (general
purpose or specialized) or a special processing chip having
the appropriate memory in conjunction with the network
interface (hardware and software) create a usable server.

[0046] The present invention of reciprocal client-server
operation can also be extended further even into operations
of more conventional operating systems and computers to
improve security, reduce obsolescence of hardware compo-
nents, to improve abilities of mobile computing.

[0047] When the concept of private property was moved
from the physical world to the world of information there
was not much thought given to actual enforcement. Theft or
destruction of information are not as easily proven and
damages from such actions are difficult to value. Theft of
service (where even copying is not done) where absolutely
no tangible assets are damages or copied is almost impos-
sible to prosecute. Since the actual wealth associated with
information or ways to process information is entirely
dependent on how many times the owner can actually
convince someone to either copy the information or use the
process, it becomes obvious that the idea of private property
in relation to information or processes is not well-defined.
And the conventional networks, computer systems and
operating systems are not able to grant access to various
resources in a refined fashion.

[0048] This inventive system and method based on recip-
rocal client-server operation aim to remedy the shortcom-
ings of the conventional computer technology. The owner-
ship of a resource can be understood only in the context of
its utilization by others. The better one can control access to
a resource the more of an owner one is. The more precisely

US 2002/0184398 Al

one can determine what can be done with a particular
resource, the more ownership value can be extracted from a
resource. Ownership of a resource, access to which cannot
be easily controlled, has no value. An owner’s choice with
conventional technology is to either grant nearly full access
to enable use or no access at all to maximize security; neither
of those possibilities enhances the value of a resource.

[0049] The ownership is best determined not by who
produced the resource but who can enforce how a resource
is accessed and used. Therefore one needs to have a tech-
nical “guard dog” which allows a resource to be used in a
certain way but restricts its use otherwise, i.e. a running
application should be permitted to use certain logics and
forbidden to use others.

[0050] In conventional computer systems/OSs (operating
systems) security or access to resources is controlled by
maintaining user and group identity. Particular users or
groups of users can own resources which they and only they
can access. For example, a file can be owned by a user “alex”
and alex then has full control over that resource, alex can
modify or use or look at this resource as well as grant
permissions to other groups to use this resource. However,
the permission system is very crude and does not allow for
any fine-tuning. Alex can, for example, allow himself the
permission to write, read and execute (if it is a program file)
but prevent members of his group (group “staff” for
example) from writing into this file and all others who are
not members of his group are not granted access.

[0051] The problems with this type of access control are
numerous. Various systems based on user/group access are
normally built around user passwords, i.e. a particular user
has to demonstrate knowledge of some key word or a phrase
to gain access. Password and key management are well
known and serious problems in computer security, easily
remembered passwords can be easily guessed and random or
difficult to remember and data could be lost. If someone else
learns of any user password then that someone gains full
access to all the resources which are owned by user alex, i.e.
the resource can be copied (copyright violations, business
information can be compromised, etc.), the resource can be
damaged (loss of business, recovery costs, etc.), or used
without an appropriate payment (theft of service). A lot of
time and money is spent managing group and individual
security to tailor access to system resources with respect to
conventional operating systems and computers. In the
present invention access to applications can be anonymous
since any resource coupled to the server is secured from
damage or unauthorized copying by the client stations and
all access is managed by the selected application. At the
same time any resources coupled to the client station can
accessed and used by applications are used only for the
benefit and on behalf of the client station user and access to
such resources can be tightly controlled by the client station.
The client station user can use various security profiles for
different applications to tell the client station software
exactly which operations, at what time, with what data could
be used with what application and server.

[0052] In order to enable maximum access by a maximum
number of people for maximum efficiency but at the same
time to maintain maximum security of the resource, access
has to be granted on the basis of which application is being
used to access the resource, how much this application is

Dec. 5, 2002

trusted, and which specific operations the resource owner is
willing to permit on the specific resource (as an owner of a
resource I may be willing to allow liberal append access but
completely unwilling to allow anyone to read/write existing
data).

[0053] If applications are stored somewhere on a network
one can not automatically assume that they are trustworthy,
therefore there is a need to design security profiles for each
application. Whether an application is used remotely or
actually downloaded into the client station the security risk
for the client is the same, therefore all the operating system
services provided for an application either via a network or
directly by an operating system have to be appropriately
restricted. A security profile determines which primitive
operations (to access OS or devices for data and to control)
any particular application can use and which specific param-
eters are allowed for each specific primitive operation.

[0054] For example, lets say an application wants to open
a file. We can either forbid this operation to this application
outright or we can restrict the file name space to something
with which we the users feel comfortable, i.e. open(“/home/
alexo/somewhattrusted/application/* .txt”,“a”). So the only
files this primitive is allowed to open is files within that
specific directory and that specific extension and only for an
“append” operation.

[0055] Ifitis not dangerous if a resource is read then there
is no need to restrict any primitive operations which may
read this resource. If it is not dangerous to allows one to
write to a resource (writing to the screen for example) then
the user may decide not to restrict those primitives which
write to that resource.

[0056] If a user wants to use an application program on
resource which he owns, the danger is that not knowing
exactly what this application does internally can lead the
user to damaging his own resource or inadvertently allow
others either to damage his resources or obtain access
beyond what was intended. So a user has to be able to restrict
access not only by general access depending on the user or
group but restrict access by individual application, by indi-
vidual atomic (indivisible) operation, by time, by date, by
file type, by name, by range of data which atomic operations
may use, i.e. various parameters may be utilized to restrict
execution of any individual primitive (atomic operations)
logic. Also if a user is unable to restrict what actions a
particular application can do then an application can be
modified (or Trojaned) to violate security of user’s
resources. Since security of the conventional systems is
based on ownership of a resource by a used or a group, there
is no protection if a user himself or a member of his group
runs a corrupted application.

[0057] Since every application has very specific needs,
every application’s profile can be tailored to reflect the
application’s needs and the level of trust a user has in the
application. A clock application may be allowed to access
primitive operations which are needed to display the clock
face but would not be allowed to read the keyboard or access
any storage devices or anything else which is not directly
required. Therefore, if the clock application either inadvert-
ently or on purpose is changed to do something else then the
user would be alerted the moment one of the restricted logics
is accessed and the security of the resource would then not
be compromised.

US 2002/0184398 Al

[0058] Lets say that an application is a communications
application, one of the primitive operations this application
has to do is to reserve a port, the user then can restrict this
application to a range of ports or a specific set of ports so that
all other ports are always available for the user.

[0059] Client station includes application independent
well defined set of logics which can be implemented as
software, firmware/hardware or hardware only. The appli-
cation independent logics such as file system logic, device
control logic, user interface logic, communication logic
consist of a finite number of further indivisible logics.

[0060] Each indivisible logic can be selectively accessed
and individually controlled by an application running on a
server computer.

[0061] For each application to which said at least one
client station connects, said client station maintains infor-
mation about which finite subset of the entire set of said
further indivisible logics said client would process for said
at least one application and which finite subset of said
further indivisible logics would not be processed. Further for
each indivisible logic, information about which parameters
are allowed for a particular application and which are not
permitted is maintained. Depending on how much trust one
has for a particular application, i.e. if the application is
completely untrustworthy then the client station may only
allow this application to use those logics which display
information on the screen and have no ability to either read
or store data.

[0062] In case a particular indivisible logic is not pro-
cessed then the client station notifies the client station user
that said application program running on a server attempted
to access and control said indivisible logic, and then said
user can either allow said processing or refuse to allow said
processing. If the processing is allowed, then the user can
choose if such processing is allowed only this time or a
permanent permission is granted.

[0063] Therefore, each application which can be accessed
by said client station would have a profile of privileges
stored on each client, said profile defining exactly which
indivisible logics said application is able to use.

[0064] Therefore, if an application attempts to control/
access logics which it is not allowed to access then said
application is prevented to access and control said logics
unless the station user explicitly overrides such a restriction.

[0065] The client station is also able to prevent access to
a finite subset of said indivisible logics based on logical
function of said logics, e.g. file system logic can be disabled
in its entirety without regard to any particular application.

[0066] In addition, for each indivisible logic, the client
station can maintain description of permissible range of
values for the data which is used by the said logic. For
example, if the particular logic is a file opening logic then
the client station can insure that all the file names start with
some prefix and end with some particular extension. For
numeric parameters the client station can specify a range of
values or a set of values.

[0067] The total set of the indivisible logics (or primitives)
is subdivided into subsets by the security threat level (how
much damage this primitive can do) as well as by function.
For example, some primitives may permanently modify the

Dec. 5, 2002

state of the client station; these are the most dangerous.
Some primitives can simply access information from
devices or storage which is less dangerous because no
physical damage can be done by the system, but is very
dangerous from the point of view of business information
getting into the wrong hands. The last category is use or
abuse of resources without paying for it or being a nuisance.

[0068] All the primitives can be further categorized into
set (or groups) by their function, for example primitives
which use printers, or primitives which display on a screen,
or primitives which access storage devices. An individual
primitive logic can belong to multiple categories.

[0069] A user would be able to turn on or off any particular
group or set of primitives for use with any particular
application. Depending on the priority of one or the other
group overlapping primitives will behave as the group of the
highest priority. A user can also turn on or off individual
primitives as needed as well as determine valid ranges and
values for data used by the primitive logics.

[0070] Therefore, said at least one user station includes the
means for the user to create execution profiles for each
application used or generic profiles for applications of a
certain category. The profiles should include information
about which primitive logics and with what data can be
processed on behalf of said application.

[0071] The technique of controlling access to every indi-
vidual logic can also be utilized even if one running an
application directly on the general purpose client station by
running an application inside a middle-ware software pro-
gram which traps accesses to operating system services and
checks for the security profiles.

[0072] Reciprocal client-server architecture can also ben-
efit construction of operating systems by improve OS port-
ability and computer security. Operating system software is
a main program which runs on a computer with special
privileges (it has full control over all the aspects of the
computer hardware) and its function is to control computer
hardware as well as arbitrate access to different resources
between multiple applications (which could be either OS
applications or user applications) and between users (if it is
a multiple user operating system like UNIX, VMS, or NT).
Of course arbitration between users is really arbitration
between applications which the users run.

[0073] Since the conventional construction of this type of
software makes this operating system software monolithic,
it is very difficult to implement security measures as far as
access to various parts of the operating system program
(kernel) code and memory space. The monolithic construc-
tion of OS kernel makes the software vulnerable to computer
viruses and access by unauthorized parties.

[0074] At the same time, monolithic OS kernel software is
very difficult to port to new CPUs since every new type of
hardware requires substantial human effort.

[0075] In a further aspect of the invention, it is proposed
to modify the way operating system software is designed
and operated as follows.

[0076] OS software should be designed preferably as two
(2) separate and distinct (kernels) programs (although it is
possible to go further and subdivide an OS into more pieces,
it does not achieve any additional benefits and may com-

US 2002/0184398 Al

plicate design rather than simplify). One part of the operat-
ing system would deal with user interface, input/output,
storage and other device dependent tasks and the other part
would deal with loading and managing user processes
(applications), providing access to the first part’s interface
by user processes (applications) as well as arbitrating this
access, managing user process’s memory, responding to
events arriving from the other part of the OS and passing the
appropriate messages/events to various user processes.

[0077] An interface designed for two parts to communi-
cate with each other is a finite set of primitive, indivisible
logics is implemented as part of device control of the user
console by application processes. This set of primitive logics
is called operating system services interface (OSSI) and is a
protocol which utilizes some standard transport protocol to
affect the actual communication of data packets. Within an
operating system designed as two distinct logical programs,
the user interface can restrict access to the primitive logics
by the other part of the operating system depending on what
application is requesting service.

[0078] So to summarize, this new addition is a separation
of OS software (kernel) into two distinct parts. One part is
responsible for controlling devices on a computer and the
other part is responsible for running various user processes.
The two parts communicate to each other through the OSSI
protocol. Since the part which loads and runs user processes
is peripheral device independent, it can be easily ported to
any CPU or specialized processing chip with RAM. By
running the two parts separately on two different computers
(or more specialized devices), connected by a network, it is
possible to run user applications in one place and have their
effects manifest themselves on another machine.

[0079] 1t is also possible for multiple CPUs of same or
different architectures to share operating system services of
the device controlling OS kernel via utilizing OSSI protocol.

[0080] Although there are a lot of different hardware
architectures basically all conventional hardware architec-
tures have several things in common. A processor with some
memory (memory is usually attached through memory man-
agement unit or MMU), a bus and peripheral devices con-
nected to said processor via said bus. This type of conven-
tional architecture uses the main CPU to perform
computation as well as control said devices attached via said
bus. The entire memory is accessible to the processor and
every attached device can be controlled by the processor. In
addition, the CPU, the memory and all the other devices are
usually housed within the same chassis or enclosures. If a
CPU or memory need to be upgraded, it is common that the
whole computer is discarded although most of the peripheral
devices could perform their task for many years to come. It
is also very wasteful that there is not a kind of inexpensive
user console hardware which can either connect to a network
and use computational resources of the network as well as
being able to connect to local computational resources
securely.

[0081] By running an application on such a conventional
hardware machine, the application is essentially given full
control over all the hardware resources, i.e. there is no easy
way to determine which resources can be accessed and
which should be off limits. It is very common for computer
users to run applications about which said users do not have
complete knowledge, therefore enabling viruses and trojan
horse programs to be run on the computer.

Dec. 5, 2002

[0082] Reciprocal client-server computing architecture is
also applicable to designing new type of computer system as
follows.

[0083] To reduce obsolescence of peripheral devices and
chassis and other hardware components and to maintain high
levels of security of all the IO devices and storage devices,
a conventional computing device (conventional computer)
should be substituted by a computing device consisting of
two separate enclosures (units). The two separate units then
interact with each other according to the reciprocal client-
server architecture model as discussed earlier in this appli-
cation.

[0084] The two units do not share either program code
memory or data memory, the interaction between the two
units is conducted through the operating system services
interface protocol. This protocol defines a finite number of
commands which the user console unit can understand and
act upon. The user console unit can also restrict processing
of commands depending on many various data available to
it.

[0085] One enclosure containing all the peripherals like
storage, I/0, data acquisition, user interface devices and the
second unit containing the CPU, RAM, devices needed for
execution of applications. The two units would be physically
connected by some network or wire or a bus (like SCSI for
example or a wireless connection) to exchange information
via using OS services protocol. By separating a computer
into two distinct units one can substantially reduce obsoles-
cence of either of them. Since biological abilities to see,
hear, feel, smell, etc. do not evolve quickly, the front-end
unit designed to interface with the user can be used for a very
long time, while the computational unit can be upgraded as
needed. It also would be possible to change the CPU unit or
even have multiple (with different architectures) CPU units
attached at the same time and running applications at the
same time. The distinction between a local application
running on your “desktop” and an application running
remotely elsewhere then disappears as in both cases the
same operating system services protocol would be utilized to
enable an application to use the front-end user console
operating system services.

[0086] By using a common transport protocol (like TCP/
IP) to connect various devices within a single computer (or
physically local set of devices) one can extend the life-time
of computer equipment and make these equipment more
general, i.e. easy and inexpensive processor upgrades, the
same front-end unit can talk to CPUs on the internet,
intranet, extranet, or the CPU on your desk.

[0087] Networks are not 100% reliable. In fact, commu-
nications between computers fail on a regular basis. If the
application being run over a network does not take a long
time to execute, then one can always rerun the application.
If, however, failure of a network would cause a loss of time
and money for rerunning the application, then there is a need
to preserve the current state of an application at regular
intervals of time and when some other special events occur.
If one of the machines(or devices) running a part of an
application needs to be powered down for maintenance, we
want to be able to relocate that part of the application to
another machine or at least preserve its state so that it can be
restarted later. Most companies and individuals do not have
access to fault tolerant technology for either their computers

US 2002/0184398 Al

or the network; and if the internet is used then reliability of
your connections depends on third parties and is out of your
control.

[0088] Therefore to overcome the problems with network
failures and the need to move parts of distributed applica-
tions/programs from one physical machine to another, the
following inventive system and method are proposed. It is
proposed that various parts of a network application collect
various data about their internal state. These data collection
can be triggered on a regular basis by a timer and/or by some
event like receiving a communication or signal from another
part of a network application or operating system. Upon
receiving some communication instructing a particular part
of a network application to preserve its state, the application
proceeds to create a data object with complete information
about its internal state. The application for example could
preserve its stack space, program pointer and all other data
which corresponds to its current state, it then may possibly
compress this data, it may possibly encrypt this data, and
then sends this data to an agreed location. The file with the
data representing the state of the application is a check-point
file. The application then may continue, or may be sus-
pended, or it may be terminated so that it can be restarted at
a later time.

[0089] In case of a reciprocal client-server architecture as
described in the parent application entitled “Secured System
for Accessing Application Services from a Remote Station”
the application running on an application server collects data
about its internal state and then saves this data by transfer-
ring it to the client station attached to it for future use. Each
client station receives a state of an application specific to the
client station’s data and state of the application at the time
of check-point creation.

[0090] Elaboration on encrypted check-point files.

[0091] To preserve the state of the application from time
to time preferably on a regular basis (based either on timers
or other events like user’s input) information about the state
of an application can be collected and transferred to the
client (desktop) machine for preservation. If an application
server crashes or the network is down then the work per-
formed so far by the application can be preserved. When the
client machine later is able to reconnect to the application,
the existence of a check-point file can be detected and the
application can be restarted from the last check-point. A user
can potentially force creation of a check-point file in order
to transfer his desktop to another physical location and
restarting the application from the same point. Note that
under our model, there is no need for the application to
continue to run on the server wasting memory and compu-
tational resources (while the desktop is disconnected).
Therefore a user can run his application to a certain point,
force the application to preserve its state, fly 3,000 miles and
then reconnect to the same application and restart it from the
same place. If the application is idle for a long time (the
appropriate period of time can be determined by the server’s
administrator) the application can be directed to collect its
state information, to send the state information (check-point
data) somewhere else for preservation and then terminated
in order to preserve the server’s resources for active appli-
cations. Of course in the reciprocal client-server architecture
network the state information would be sent to the client
station for preservation either in its memory or some storage
device.

Dec. 5, 2002

[0092] Check-point files have to be encrypted by the
application server to prevent tampering by a rogue user. The
server encrypts the application state information(file) with a
symmetric key and never reveals to another party (especially
the client) what that key is. Therefore, only the same server
(possibly only the same application) is able to decrypt the
information to restore the original application process to the
identical state.

BRIEF DESCRIPTION OF THE DRAWINGS

[0093] The following detailed description, given by way
of example and not intended to limit the present invention
solely thereto, will best be understood in conjunction with
the accompanying drawings in which:

[0094] FIG. 1 schematically illustrates a two-tier network
having a server, transmission medium and a plurality of
clients;

[0095] FIG. 2 schematically illustrates a reciprocal client-
server network having a plurality of compute-servers, a file
server, containing application program code, attached to one
of the compute-servers, transmission medium and a plurality
of clients in accordance with the present invention;

[0096] FIGS. 3A and 3B are flow charts showing the
general steps for accessing and using an application on a
server from a remote client;

[0097] FIG. 4 schematically illustrates a conventional
computing device (computer) with a single bus for commu-
nications between peripheral devices and CPU and memory.
Random Access Memory is shared by all the devices and
CPU to perform their tasks;

[0098] FIG. 5 schematically illustrates a computing
device constructed from two distinct functional blocks, user
console device block and computation/application block.
User console device block has a separate controller for
performing its tasks and its own private memory, while
CPU/application block has its own processor(s) and its own
private memory to run applications and processes in accor-
dance with the present invention;

[0099] FIG. 6 shows separation of an operating system
into two parts, user console part (2) and process kernel (5)
connected via operating system services interface (4);

[0100] FIG. 7 shows a conventional monolithic operating
system in which an application could potentially gain full
access to all the resources controlled by the OS kernel; and

[0101] FIG. 8 is a schematic diagram illustrating a system
for preserving state of an application program by storing
check-point data.

DETAILED DESCRIPTION OF THE
INVENTION

[0102] Referring to FIG. 2, the inventive system 11 com-
prises a plurality of specialized application servers 12, 13,
17 connected to a plurality of clients 15 over shared trans-
mission medium 18. File server 16 contains application
program code for application server 17. As with network 10
of FIG. 1, the system 11 is applicable to supporting the
transmission of data on a LAN or WAN system. In general,
each client serves its monitor, keyboard, mouse, file system,
and other I/O and desktop attached peripheral devices. The

US 2002/0184398 Al

servers serve their corresponding compute-power, applica-
tion logic and control the I/O and other devices of the clients.

[0103] Each server is typically supported by an indepen-
dent vendor to run their software application programs, as
desired. For example, server 12 may be supported by vendor
A for running word processing applications, while server 13
may be supported by vendor B for running engineering type
applications. Further, one server may support service appli-
cations from different companies but which run similar
applications. That is, server 12, e.g., may be supported by a
service provider which will host multiple software vendors’
applications relating to spreadsheets. Of course, service
applications running on the same server need not be similar
at all.

[0104] Server 16 is shown connected exclusively to server
17 and acts as a file server. File server 16 stores and boots
the selected application program, as instructed by compu-
tational server 17. For example, file server 16 may be
considered a so-called super-client that injects the selected
application to compute-server 17 and then disconnects from
server 17. This setup is preferable, as it adds a level of
security from a client that connects to server 17 with the
intention of corrupting the applications.

[0105] Each client 15 is preferably not a general purpose
PC but an inexpensive and highly robust data-acquisition
device. Thus, a client does not require a conventional CPU,
such as a Pentium, PowerPC or Alpha chip. Nor does a client
require a conventional OS, such as MS-DOS® or Windows
95. Instead of a conventional general purpose CPU, inex-
pensive but powerful controller circuits will be utilized for
controlling the storage devices and other I/O hardware. An
example of a possible controller is a TI TMS320C4x or C3x
DSP chip. The controller or a plurality of controllers will
control the client file system (file I/O logic) and low-level
graphical user interface logic (e.g., GUI). For example, each
client may have a separate controller chip for the file
system/disk controller block, the communication block and
the display/human interface block of the client, or one DSP
control may control all three blocks.

[0106] Since the functions of the file I/O and graphical
interface logic are well-defined and understood and do not
have to be changed for different applications, they can be
highly optimized in machine language for the highest speed,
and will be provided as firmware in the client station’s
ROM, rather than software as is conventional (since con-
ventional OSs are programmable). In fact, most of the
functions could be cast in hardware like ASICs. It should be
understood that general purpose computers will also work
with the present invention (with little or no modifications),
such that existing owners of PCs can access any specialized
server to spawn a selected application, as desired. In such a
case, the quasi-OS is replaced with the front-end “compute-
browser” which has to be ported to the general purpose
computer’s OS (Windows 95/NT, UNIX, OS2, and the like)
like any other program and runs as a user process under the
regular operating systems mentioned above. This “compute-
browser” would then utilize the host OS resources to control
local devices on behalf of the remote service applications.
Further, non-specialized servers having conventional appli-
cation programs stored thereon may be utilized via the use
of a “directory” service application, while the directory
service application would provide the service to the client

Dec. 5, 2002

but may use one or more conventional programs to perform
its tasks. Conventional applications can also be easily modi-
fied into service applications by recompiling and linking
them with new startup code and new I/O and OS libraries.

[0107] Referring back to the specialized clients, instead of
a conventional OS, a low-level “quasi”-OS, such as one
whose graphical user interface is based on the X11 protocol
(X11 is in the public domain), modified for data compres-
sion and encryption, will be stored in the ROM of each
client. The quasi-OS essentially acts as a driver to perform
tasks specific to the client hardware, as well as being the
basis for the windowing structure. Note that the quasi-OS
executes no application logic and can not load or run any
client user processes.

[0108] Since these specialized clients require no conven-
tional CPU or OS, they are inexpensive to produce and sell,
and are far more robust than conventional general purpose
PCs. Since these clients offer a longer useful life than
general purpose PCs, or other desktop workstations, the cost
of the client may be amortized over longer periods of time,
further decreasing the overall cost of the client. Faster CPUs
and extra memory are not required in the specialized clients
since even when service applications become more com-
plex, the applications are still run remotely on the corre-
sponding server, instead of being loaded and processed on
the client.

[0109] Further, since the client station does not need to
contain specific conventional OS platform, the applications
running on the servers only need to be concerned with using
a standard Internet protocol, such as tep/ip and OSSI higher-
level protocol for the command packets. Thus, the only
compatibility required between each client and the server
application is file format compatibility. As will be described
hereinlater, since the data in the client file system will
typically be created by the application itself, compatibility is
not a concern.

[0110] Now, instead of a software vendor selling different
versions of their application programs to run on the different
available platforms, only one version is typically resident on
a server. Since the applications are compatible with the
client file system (in fact, the applications do not need to
know the internal structure of the file system since the
quasi-OS will handle the interface) and the quasi-OS, any
specialized application will operate with the client, such that
an unlimited number of different applications could be
accessed by from each client connected to a server or to
multiple servers. The client can serve its peripheral devices
to any number of service applications (according to their
commands), and to any number of specialized servers.

[0111] Such inventive servers can have different hardware
architectures without concern for what OS the clients are
running or what devices they use. Therefore, software ven-
dors have complete freedom to design machines and soft-
ware for maximum speed and flexibility. In fact, servers may
not run any OS at all but run directly bootable service
applications. The software vendors also will not have to deal
with compatibility concerns, save tcp (or udp)/ip and X11
protocols. By using OSSI compatible libraries, the software
is automatically compatible without any source code modi-
fications.

[0112] Each client need only comprise one or more storage
devices, such as a hard, floppy, or CD-ROM drive. As stated,

US 2002/0184398 Al

each client preferably also comprises a file system. The
client storage system may also be separate from the client
(not shown) by use, e.g., of an attached file server. If the
client does not have any storage device attached, then the
only applications which can be used are those which
required no storage facilities, such as html browsers. The
files in the file system include a configuration file or database
which tells the client quasi-OS where on the network (LAN
or WAN/Internet) to connect and to which port to obtain a
connection to a specific service application. Further, the file
system includes data files storing data corresponding to each
previously spawned application, as well as check-point files
representing the state of the program when the connection is
terminated for each application. Check-point data can gen-
erated on a regular basis based on time, by events occurring
on a client station, if the application idles for too long, etc.
. . The check-point files allow recovery in case of network
failure, server failure, however, the check-point files need to
be encrypted by the server to prevent any tampering by the
clients. Check-point data can also be used to relocate a client
station and then to restore an application which was being
used to the same state it was before such relocation took
place. In addition, the file system temporarily stores any
work-space files that the service application may require.

[0113] Accordingly, all of the client user’s data, corre-
sponding to each spawned application, is stored locally to
the client station, such that when the client station is
disconnected from the network, the user’s data is incorrupt-
ible by anything else on the network. Compare this to
systems wherein the data is stored in a central server file
system. In those systems, the data is subject to corruption by
malice or mistake.

[0114] Further, each client also includes low-level graphi-
cal interface logic(or at least some user interface) so that the
client user can select which server applications to launch.
This non-general purpose client performs no high-level logic
functions. Preferably, the only functions permitted would
include directing the peripheral devices to attach to request-
ing service applications, making data backups, displaying,
and opening, renaming and deleting data files, but would not
include any processing of such files. File maintenance
operations should be embedded within the quasi-OS and
perform only pre-determined well defmed tasks. File main-
tenance operations, built into the quasi-OS, can not be
initiated by any remote service application but rather may
only be invoked directly from the quasi-OS by the client
user. File maintenance may, however, be performed by the
servers to the extent permitted by the quasi-OS without
involving its internal maintenance functions.

[0115] Each client station may optionally contain plug-in
I/0 modules such as a frame grabber, an audio/video inter-
face, a digital-to-analog and analog-to-digital converter, a
microphone, a camera, a compression board, a temperature
probe, a humidity probe, an encryption chip, or any other
device, as desired. The server then, via the application
program, controls the clients’s I/O devices (as well as the
client’s file system, etc.) by sending appropriate command
packets to the client quasi-OS. The client station is able
however, to choose which command packets would be
processed and which ones rejected. Further, as stated, each
server may include any specialized hardware for running its
applications or services without compatibility concerns with
the client.

Dec. 5, 2002

[0116] For example, a movie editing server may include
all of the expensive hardware editors connected to the server.
A movie studio may then have a client station, having a
video camera I/O device. The film on the camera can then be
edited via the editing hardware on the server without having
to purchase their own expensive editing hardware. Thus, the
application would control the data feed from the camera, edit
the transmitted date on the resident editors, and transmit
back the edited data to the client for storage on the client’s
disk for immediate display on the client’s monitor, or for
printing on the client’s printer or for output to a CD-ROM,
a DVD disk or a video tape.

[0117] The operation of the inventive system will be
described below with reference to the flow chart of FIGS.
3A and 3B. However as a precursor, note that the client acts
as a window on the world for the selected applications, while
the client user selected application runs on the correspond-
ing server. In other words, the client is a “human-machine-
interface” (HMI) for the servers. Upon authorization, the
application accesses the client’s file system to retrieve the
user data for processing. Note that the application controls
all of the operations and controls all of the peripheral devices
on the client, via the quasi-OS.

[0118] For example, all of the I/O modules (such as a
floppy drive) are controlled remotely by the server applica-
tion. Once the application is complete or during the run of
the application (as data needs to be read or written), the
processed data is transmitted to the client file system for
local storage on the client. Since the application’s program
code does not get transmitted to the client (like in JAVA or
ACTIVE-X objects), the user can not copy the code.
Accordingly, software vendors can easily go into China,
Hong Kong, Korea, Eastern Europe and other markets where
software piracy is wide-spread (as high as 98%) and offer
these compute services without piracy concerns.

[0119] As stated, the inventive system differentiates
between data and program code, i.c., the client file system is
intended to store only data for the remote server, never their
application program code. The program code is loaded into
the servers from their own private file system (inaccessible
to clients) or from a corresponding file server (whose
function is limited to carrying the program boot code but can
not run the application) for added security. The only excep-
tion to this separation is when executable files are them-
selves program data as in a situation where the application
is a compiler (or linker), but the compiler-server would be
cross-compiling for a different architecture. The resulting
programs can not run on the client and should not be run on
the compile-server (for security). Rather, the resulting pro-
gram should be run on a separate execute-server which has
the appropriate CPU and software to remotely load and run
the program. In general, note that the server that runs the
application should be different from the server which created
it. An execute-server should be able to accept program code
over a network connection and load this program code in its
memory for execution.

[0120] FIGS. 3A and 3B show a flow diagram providing
the steps for accessing and spawning a server application
from a remote client. At step 20, a client station is powered
on which initializes the network, the user interface, and the
file system modules from ROM. The network module ini-
tializes the communication interfaces, such as for an

US 2002/0184398 Al

attached modem, ethernet, ATM, cable or fiber optic con-
nection. Further, a multiple network interface may be avail-
able to the client, i.e., the client may use an ethernet system
for the intranet but a cable modem for the Internet. Servers
may be accessible simultaneously through all available
interfaces. If one of the interfaces is a regular modem, then
a telephone connection is made with the ISP to establish a
connection. PPP, SLIP or other point-to-point transport
protocols can be used. The user interface modules initialize
the display, keyboard and the like. The file system module
initializes the file system comprising the service application
information (previously spawned applications, networks,
servers and ports) and related program data stored on the
client storage device.

[0121] At step 25, the client detects whether any new
hardware is present. Such hardware includes any added
peripheral devices discussed above. If any new hardware is
detected, a corresponding device file is created in the file
system for controlling the device at step 30. If no new
hardware device is detected, the process precedes to step 35
where the client makes connections to all the servers and
applications which have been stored in its resource configu-
ration file/database.

[0122] At step 40, if the application location (i.e., server IP
address and port) which the user wants to spawn was not
previously stored in the configuration file, then the client
user creates a new entry in the “config” file, at step 45, to
include the server and application address (port). However,
if the desired application entry is present in the resource
configuration file, the client connects to the appropriate
address to connect to the selected server, at step 50. If the
configuration file is not present, then the client user has to
enter the appropriate IP address and port by hand. Once
entered, this information can be saved for future use in the
configuration file.

[0123] At step 55, the server is authenticated against a
trusted database. Simply put, the server may be authenti-
cated by transmitting a predetermined data string. At step 60,
if the authentication of the server fails, then the connection
to the server will not be made, at step 65, and the process
returns to step 35, where the client quasi-OS will try to
connect to other servers/ports in the config file or the client
user may select a different server application by hand after
all the entries in the config file are exhausted.

[0124] At step 70, the client receives a public key from the
server for encrypting the client’s own private key and
transmits the encrypted private key to the server. The server
then decrypts the received encrypted private key with its
own private key.

[0125] Thereafter, all communications between the client
and server are secured by using the client’s private key. The
client may generate a new key every time the client connects
to a server or generate several new keys during a single
connection for extra security. Special encryption hardware
such as diodes could be used to generate random bit patterns
to be used as the client’s private keys.

[0126] At step 75, the server or a linked directory service
application transmits graphical icons to the client represent-
ing the server’s available applications. The client then
dynamically builds a window containing each application
icon. If, however, no icon is transmitted from the server (one

Dec. 5, 2002

is not available), then the client will generate a generic icon
for selection purposes. At step 80, the client user will “click”
the desired icon to spawn the corresponding application
program. An application can also be started by “dragging” a
data file and “dropping” onto the application icon. The client
user may also directly access an application by typing in a
unique service name at the command prompt, which is then
looked up in the client’s resource configuration file/database
and the client then requests the directory service on the
corresponding server that the respective application program
is spawned.

[0127] At step 85, it is ascertained whether the server
application requires access to any data client files in the
client file system. For example, if the client connected to
(spawned) a word processing application for editing, then
the application would require the text data stored locally in
the clients file system. If the application does not required
any access to the client files, then the service continues, at
step 90, until the user is done. During the service, the
application may also control the client’s peripheral devices
via the quasi-OS, as previously discussed. The application
normally receives the file names it needs to use from the
client user as parameters or it is entered interactively by the
client user after the application was spawned.

[0128] If the application does require access to the client
files, it is ascertained whether the server application has the
authorization to access such files (even if the client user
entered the file name by hand, the authorization step is still
required to prevent the server from changing the file name),
at step 95. Such authorization can be set up previously by the
client user as a “rule” based permission system to grant
authorization to a specific server every time (or until the
client changes the authorization) or to grant authorization
per single use. A rule based restriction may be based on the
data file type, the application, the server, the access
requested and the date. In addition, access by a specific
application may be restricted to only a specific set of files by
name or directory. Thus, every time the client accesses the
server application, the client user would have to re-authorize
such access. Even if authorization is granted to a server,
there are different authorizations which may be given to each
server. For example, anyone or all of the following autho-
rizations may be given: “read”, “write”, “append”, and
“create”, etc. . . .

[0129] If the server does not have authorization to access
the files in the resource configuration file, then the process
proceeds to step 100 where the client user, as stated above,
chooses whether or not to grant a single use authorization.
If the client user does not grant authorization, then the
process proceeds to step 90 where the service will continue
until done or the server application may decide to terminate.
If the client does grant temporary authorization or the
server/application had a predetermined authorization, then
the process proceeds to step 105 where the server applica-
tion is permitted to read, write, append, rename, move, or
create the corresponding file in the file system, as authorized
by the client user. The client also has an ability to substitute
one file for another. If the file requested by the application
contains information which the client user does not want
accessed, the user may substitute another file for it and the
application will not know anything about the switch. This
will allow the client to “remap” file names which have been
hard-coded into applications.

US 2002/0184398 Al

[0130] During the service, the quasi-OS may react in three
different ways to application’s request to perform a particu-
lar operation: 1) it may perform the operation and notify the
application of success, 2) it may not perform the operation
and notify the application of failure, 3) it may not perform
the operation but still notify the application of success. The
third option would be useful to allow the remote application
whose “commands” are either inappropriate or violate secu-
rity to proceed without immediate failure.

[0131] From step 105, the process proceeds to step 90
where the spawned application will continue running until
the client user is done. Lastly, at step 110, the processed data
from the server application will be transmitted, if necessary,
to an appropriate file in the client’s file system. If the
application was updating the data file as it ran, then the file
would simply close.

[0132] Referring to FIG. 5, the inventive system com-
prises of two functionally distinct blocks: user console
device/block 1 and computation/application CPU block 2'.
The two functional blocks are connected by a communica-
tion interface 13' which can be a bridge, bus, LAN, WAN,
wired or wireless network.

[0133] The functional unit 1' comprises of a controller 14',
random access memory 5, user interface devices 3', storage
devices 4', special purpose and 10 devices 7. All the com-
ponents of this first functional block 1' are connected by a
bus 6'.

[0134] The functional unit 2' comprises of at least one
processor 8' with some memory 10' connected either by a
local bus 12' or MMU. Other processor/memory combina-
tions 9' are also part of the computational block 2'.

[0135] The functional unit 1' also has a connection through
the communications bus 13' to communications interface 11'
to remote processors.

[0136] Each CPU 8 or 9' may have to be of differing
processor architectures and may simultaneously run differ-
ent applications. Applications executing on the computa-
tional block 2' on any of the processors 8' and 9' utilize,
through communications bus (interface) 13' storage 14,
special purpose devices 7', user interface 3' by controlling
controller 14'. Controller 14' utilizes memory §' for its
operations but memory 5' is not directly accessible by
applications running on computation block 2', nor is it
directly accessible by application running remotely through
interface 11'.

[0137] Communications bus 13' is able to accept a finite
number of indivisible primitive commands, each command
performing a specific function to control some part of the
user console block 1', to retrieve data and store data from
and to storage and special purpose devices. User console
block 1' is able to restrict which primitive commands are
performed on behalf of any application/processor depending
on data provided to the primitive commands and depending
on which application is requesting access as well as any
other parameters which may be set by a user.

[0138] Applications running on remote CPUs and attached
to user console 1' via communications interface 11' and
applications running on CPUs 8', 9' use identical primitive
commands to access operating system services of user
console 1'.

Dec. 5, 2002

[0139] CPUs 8', 9" may load operating system software,
needed to run and manage application processes, from
storage devices 4' of the user console block 1'. CPUs §', 9'
may also load application program code from user console
block 1' storage device 4'. In other words, user console block
may inject both operating system code and application code
into local CPUs 8, 9'.

[0140] User console block 1' and CPU block form a
reciprocal client-server architecture as described above.

[0141] Referring to FIG. 6, User console kernel (2') has
access to and controls stored data (1') as well as is able to
read or write data (3) from or to devices accessible from the
controller where user console kernel (2') is running. Process
kernel (5" is able to communicate with user console (2')
through the operating systems services interface (4'). Oper-
ating system services interface (4') includes a finite set of
commands which it understands. Process kernel (5') loads
and manages processes (applications) as well as arbitrates
access to user console part (2") between various processes it
runs. User console kernel may restrict processing of various
logics which are part of said user console kernel depending
on any data which a user may choose, i.e. date, file type,
security requirements, application, network, network
address, etc. User console kernel (2') and process kernel (5')
do not share each other’s memory and can not access each
other’s memory except through the primitive operations of
operating system services interface (4'). Process kernel (5')
does not have access to either stored data (1') or to device
data (3") except through operating system services interface
(4). Process kernel (5') may also be able to access stored
data (1") to retrieve stored application code to run said
application code under process kernel (5') and access data
(3" and stored data (1') of user console kernel (2') by using
primitive operations of operating system services interface

).

[0142] FIG. 8 shows communications means (1), check-
point storage device (2') or (3"), parts of network application
program (5') and (4'). (4') represents one or more distinct
parts. From time to time, with the period determined by a
user or by an application itself, various parts of a network
application (5') and (4') examine their own state. After the
current state of each part of a network application has been
examined, a check-point data structure or file is prepared and
stored either in some location connected directly to the
network file (2") or one part of a network application (5') can
collect all the check-point data from other parts of a network
application and store all the check-point data in storage
location (3" to which only this particular application part (5')
has access. An application part (5") uses communications
media (1) to obtain all the check-point data from other parts
of the application (4'). Before check-point data can be
collected, various parts of an application (5') and (4') have to
be synchronized to be in a well-defined communications
state, i.e. when the application is restarted from check-point
files some applications parts should not be ahead of other
applications parts. Besides being triggered by timers, check-
point data collection can also be triggered by other events
like user input (if a user wants to force check-point data
collection) or it can be triggered by failure of communica-
tions or other events. Collection and management of check-
point data can also be managed by a specialized program/

US 2002/0184398 Al

server dedicated to management of checkpoint data. For
example, (5") can be that specialized server instead of an
application part.

[0143] In a reciprocal client-server architecture setting
check-point data is collected by the client station program
(let us say (5"). An application program (4') running on an
application server can collect check-point data of its internal
state at regular intervals of time and any time some special
event takes place like user station sending a signal to cause
check-point data collection. Then said application (4') com-
municates with the user station program (5 to preserve the
check-point data within said user station. User station (5')
can also preserve check-point data in storage not directly
coupled to it, i.e. user station can store the check-point data
in storage (2'). An application (4') can also be forced to
collect its internal state data by the server OS/manager if the
application is idle and the server needs to conserve memory
and CPU resources for other users. In case the application is
suspended because it is idle it could then be suspended or
removed from memory. Later the application (4') could be
restarted from the check-point data in exactly the same state
as when it was removed. Once the idle application is
removed from the server computer it no longer is able to use
the server computer resources until the application is
restarted again.

[0144] While several embodiments have been chosen to
illustrate the invention, it will be understood by those skilled
in the art that various changes and modifications can be
made therein without departing from the scope of the
invention as defined in the appended claims.

I claim:
1. Asecure system for accessing application services from
at least one application program, comprising:

at least one client station having application independent
logics stored therein and at least one controller for
controlling said application independent logics, said
application independent logics including at least one of
a user interface logic, a device control logic for con-
trolling devices, a file system logic, and a communi-
cation interface logic;

at least one application server having application logic
stored in a server device for running said at least one
application program, said server device being coupled
to said at least one application server; and

an interface between said at least one client station and
said at least one application server for connecting said
at least one client station to said at least one application
server;

wherein upon accessing by said at least one client station,
said at least one application server runs said at least one
application program which selectively controls said
application independent logics for controlling devices
of said at least one client station and for accessing data
of said at least one client station, and wherein said at
least one application server is able to process said
corresponding data of said at least one client station on

said at least one application program.
2. The system of claim 1, wherein said application inde-
pendent logics consist of a finite set of further indivisible
(primitive) application independent logics, wherein each

Dec. 5, 2002

said indivisible application independent logic can be indi-
vidually accessed and controlled by said at least one appli-
cation program.

3. The system of claim 2, wherein said at least one client
station is able to restrict access to said application indepen-
dent logics by selectively refusing processing of said primi-
tive logics for said at least one application program running
on said at least one application server.

4. The system of claim 2, wherein said at least one client
station includes a means to associate a finite subset of said
further indivisible application independent logics with said
at least one application program running on said at least one
application server, wherein said at least one application
program is able to access and control said finite subset of
said indivisible application logics and is unable to access
and control other indivisible application independent logics.

5. The system of claim 2, wherein said at least one client
station is able to restrict access to said application indepen-
dent logics by restricting what data can be used in processing
of said primitive logics for said at least one application
program running on said at least one application server.

6. The system of claim 4, wherein said client station user
controls which specific indivisible application independent
logics are part of said subset which can be controlled by said
at least one application program running on said at least one
application server.

7. The system of claim 1, wherein said at least one client
station has means to store the state of said at least one
application program to enable said at least one client station
to restart said at least one application program at a later time
at the same point in the said at least one application program.

8. The system of claim 7, wherein said at least one
application server encrypts said state of said at least one
application program to protect said at least one application
program state and to protect said at least one application
server from corruption by said at least one client station by
corrupting said state of said at least one application program.

9. A computing machine comprising:

at least one user interface and input/output device (user
console) having application independent logics stored
therein and at least one controller for controlling said
application independent logics, said application inde-
pendent logics including at least one of a user interface
logic, a device control logic for controlling devices, a
file system logic, and a communication interface logic,
and wherein said at least one user interface and input/
output device has means to restrict access to said
application independent logics;

at least one computational device having means to store
application logic in said at least one computational
device for running said at least one application pro-
gram; and

an interface between said at least one user console and
said at least one computational device for connecting
said at least one user console to said at least one
computational device,

wherein upon accessing by said at least one user console,
said at least one computational device runs said at least
one application program which selectively controls
said application independent logics for controlling
devices of said at least one user console and for
accessing data of said at least one user console, and

US 2002/0184398 Al

wherein said at least one computational device pro-
cesses said corresponding data from said at least one
user console on said at least one application program
without having to permanently store said data in said at
least one computational device.

10. The system of claim 9, wherein said file system logic
includes a file system capable of storing data corresponding
to said at least one application program.

11. The system of claim 9, wherein said application
program is an operating system program to control said at
least one computational device.

12. The system of claim 10, wherein said operating
system program code is retrieved by said at least one
computational device from said at least one user console.

13. The system of claim 9, wherein said operating system
program is able to control said interface between said at least
one user console and said at least one computational device.

14. The system of claim 9, wherein said interface includes
a common communication transport protocol.

15. The system of claim 9, wherein said at least one
computational device may select one of a plurality of
operating system programs.

16. A secure Operating System comprising:

at least one user interface and input/output software
module (user console kernel) having application inde-
pendent logics and at least one means for controlling
said application independent logics, said application
independent logics including at least one of a user
interface logic, a device control logic for controlling
devices, a file system logic, and a communication
interface logic, and wherein said at least one user
interface and input/output software module has means
to restrict access to said application independent logics;

at least one computational software module (process
kernel) having means to run application logic for
running said at least one application program; and

an interface (operating system interface/OSSI) between
said at least one user console kernel and said at least
one computational kernel for connecting said at least
one user console kernel to said at least one computa-
tional kernel,

wherein upon accessing by said at least one user console
kernel, said at least one computational kernel runs said
at least one application program which selectively
controls said application independent logics for con-
trolling application independent logics of said at least
one user console kernel and for accessing data of said
at least one user console kernel, and wherein said at
least one computational kernel processes said corre-
sponding data from said at least one user console kernel
on said at least one application program.

17. The system of claim 16, wherein said at least one user
console kernel and said at least one process kernel run on
separate physical devices.

18. The system of claim 16, wherein said at least one user
console kernel program and said at least one process kernel
program have private program and data memory and
wherein each of them is unable to access said program and
data memory of the other.

19. The system of claim 14, wherein said common com-
munication transport protocol is TCP/IP.

Dec. 5, 2002

20. The system of claim 1, wherein said file system logic
includes a file system capable of storing data corresponding
to said at least one application program.

21. A method of securely accessing application services
from at least one application program, comprising the steps
of:

accessing at least one application server by at least one
client station to connect to said at least one application
program running on said at least one application server;

wherein said at least one client station has application
independent logics stored therein and at least one
controller for controlling said application independent
logics, said application independent logics including at
least one of a user interface logic, a device control logic
for controlling devices, a file system logic, and a
communications interface logic; and

wherein said at least one application server has applica-
tion logic stored in a server device coupled to said at
least one application server, for running said at least
one application program;

having said at least one application server selectively
interact with said application independent logics to
retrieve data corresponding to said at least one appli-
cation program from said at least one client station
upon optional authorization from said at least one client
station;

processing said corresponding data on said at least one
application program; and

without having to permanently store said data within said
at least one application server when said application
services are complete.

22. The method of claim 21, wherein said file system logic
includes a file system capable of storing data corresponding
to said at least one application program.

23. A secure system for managing devices and/or file
systems of at least one client station, comprising:

at least one application server having application logic
stored within a server device coupled to said at least
one application server for running at least one man-
agement application program, and said at least one
application server being capable of accessing multiple
devices and file systems, each coupled to at least one
respective client station, when each client station inter-
faces with said at least one application server to access
said at least one application program;

wherein each interfaced server selectively accesses said
devices, said file systems or both to form a centralized
device and file management system for controlling and
accessing devices, file systems, states, or configurations
of said at least one client station;

wherein upon accessing by said client stations, said at
least one application server runs at least one application
program and selectively controls application indepen-
dent logics of said at least one client station for con-
trolling devices of said at least one client station and for
accessing data of said at least one client station; and

wherein said at least one application server is able to
process said corresponding data of said at least one
client station on said at least one application program

US 2002/0184398 Al

without having to permanently store said data in a
server device coupled to said at least one application
server or within said application server.
24. A secure system for accessing application services
from at least one service application, comprising:

at least one client station having at least a special purpose
operating system stored therein for supporting said at
least one client station connections to at least one
application server and application independent logics
stored therein, said special purpose operating system
comprising application independent logics including at
least one of a user interface logic, a device control logic
for controlling devices, a file system logic, and a
communication interface logic, wherein said at least
one application server runs said at least one service
application which controls said application indepen-
dent logics stored within said at least one client station
for controlling said special purpose operating system
and devices of said at least one client station; wherein
said at least one service application is at least one of
software service application or hardwired service appli-
cations.

25. A method of converting a conventional application
program which has application programming interface spe-
cific to a particular operating system to a network applica-
tion program which communicates with a client station via
an operating system service interface communications pro-
tocol, comprising the steps of:

substituting operating system function calls of said con-
ventional application program with code for generating
command packets using said operating system service
interface communications protocol, without modifying
application code of said conventional application pro-
gram, to convert said conventional application program
to said network application program so that an appli-
cation server is able to transport the command packets
to said client station for controlling specific operating
system or device operations of said client station;

wherein said code which generates command packets has
identical application programming interface to said
operating system functions of said particular operating
system; and

wherein said network application program runs within an
application server, accesses data of said client station,
and is able to control specific operating system and
device operations of said client station, when said client
station connects to said network application program,
as required by said network application program.

26. An application service provider system, comprising:

at least one processing element containing application
service logics therein;

at least one communication interface through which said
system can be accessed; and

wherein said application service provider provides a ser-
vice to an user system, said user being a client of said
application service provider, by giving an user device
access to said processing element via said communi-
cation interface for processing data corresponding to
said user system on said application service logics
without having to permanently co-locate said data with
said application service provider system.

Dec. 5, 2002

27. A managed application service provider system, com-
prising:

at least one processing element containing application
service logics therein;

at least one communication interface through which said
system can be accessed;

at least one means to manage, update, maintain, or moni-
tor said application service logics; and

wherein said application service provider system provides
a service to an user, said user being a client of said
application service provider, by giving an user device
access to said processing element via said communi-
cation interface for processing data corresponding to
said user on said application service.

28. A collaborative application service system for sharing

of data and devices, comprising:

at least one processing element containing application
logics therein;

at least one communication interface through which said
system can be accessed;

wherein said at least one processing element is accessed
by at least two client devices via said at least one
communication interface and said processing element
performs said application service for said at least two
client devices by processing and mediating exchange of
data, according to said application logics, for said at
least two client devices; and

wherein said at least one processing element retrieves said
data corresponding to at least one of said at least two
client devices, processes said data, and makes said
processed data available to at least one of said at least
two client devices.
29. An application service system for managing of client
devices, comprising:

at least one processing element containing managing
application logics therein;

at least one communication interface through which said
system can be accessed; and

wherein said at least one processing element is accessed
by at least one client device via said at least one
communication interface and said processing element
performs said managing application service for said at
least one client device by at least one of monitoring said
client device state to insure correct operation, by modi-
fying said client device state to an up to date state, by
updating data of said client device, by interacting with
said client device logics in order to control, access and
manage other devices which may be coupled to said
client device.

30. A system to provide application services, comprising:

at least one processing element containing application
logics therein;

at least one communication interface through which said
system can be accessed; and

wherein said at least one processing element is accessed
via said at least one communication interface by a
client device and said processing element performs said

US 2002/0184398 Al

application services for said at least one accessing
client device by exchanging data, said data correspond-
ing to said at least one client device, with said at least
one client device and processing said data according to
said application logics.

31. The system of claim 26, wherein said application
logics are loaded into said processing element from another
device coupled to said system.

32. The system of claim 26, wherein said user or client
device cannot access code or instructions of said application
service logics.

33. The system of claim 26, wherein access to said
application logics is limited to exploiting of functioning of
said application logics for processing of data and precludes
copying or examining of said application logics.

34. The system of claim 26, further comprising of at least
one means to access data corresponding to said at least one
client device from sources other than said at least one client
device.

35. The system of claim 34, wherein said client device is
able to restrict which said data, from sources other than said
client device, may be accessed by said at least one means.

36. The system of claim 26 wherein said at least one
processing element containing said application logics can be
shared by a plurality of unrelated users and client devices
without having to share data sources.

37. The system of claim 26, further comprising at least
one means to convert conventional application program
operating system software calls to communication command
packets for interacting with said at least one accessing client
device; and

wherein said application logics are defined by said con-
ventional application program and said at least one
means enables said conventional application program
to be accessed as said application services.

38. The system of claim 26, wherein said exchange of data
occurs according to a preagreed communication protocol
known to said system for provisioning application services
and known to said at least one client device.

39. The system of claim 26, wherein access to said
application services may be partially or entirely restricted
for said at least one client device according to authorization
of said at least one client device.

40. The system of claim 26, wherein access to said
application services may be partially or entirely restricted
for said at least one client device according to criteria
independent of said at least one client device.

41. The system of claim 40, wherein said criteria may
include at least one of time of day, date, geographical
location, and other parameters.

42. The system of claim 26 which in addition comprises
an interface to a persistent storage device, said device being
able to store data not being processed by said processing
element.

43. The system of claim 26, in addition comprising the
means to do at least one of managing, monitoring, main-
taining, or updating said application logics and of managing,
maintaining, or monitoring said processing element.

44. The system of claim 43, wherein said means can be
controlled via at least one communication interface.

45. The system of claim 44, wherein said one means to
manage, update, maintain, or monitor said application ser-
vice logics is controlled through said at least one commu-

Dec. 5, 2002

nication interface by an application service provider to
manage, update, maintain, or monitor said application ser-
vice logics.

46. The system of claim 44, wherein said one means to
manage, update, maintain, or monitor said application ser-
vice logics is controlled through said at least one commu-
nication interface by an authorized user in a self-service
application service provider system.

47. The system of claim 26, in addition comprising at least
one means to account for usage of said system for the
purpose of selling said application services.

48. The system of claim 26, in addition comprising at least
one storage device containing code of said application logics
and containing data needed by said application logics for
providing said application services.

49. The system of claim 48, wherein said system either
partially or entirely restricts access to said at least one
storage device by client devices to prevent copying or
corruption of said code.

50. The system of claim 26, wherein said system is unable
to initiate a connection to a client device without said client
device first initiating a connection to said system.

51. The system of claim 30, wherein said application
services are directory application services which provide
client devices with information about other application
services and/or where on a network to locate said other
application services and/or how to connect to said other
application services.

52. The system of claim 26, wherein an application
service provider provides physical space, electric power,
physical security, hardware maintenance, and communica-
tion interfaces for said system.

53. The system of claim 28, wherein said processing of
said data by at least one processing element is limited to
forwarding of said data from at least one client device of said
at least two client devices to another one of said at least two
client devices.

54. The system of claim 28, wherein said at least two
client devices are unable to communicate with each other
directly but are able to communicate with said system for
exchanging of said data by using said application logics.

55. The system of claim 26, said application service
system further includes operating system software wherein
a subset of operating system function calls made by said
application logics, said application logics being executed
within said operating system software, is converted to com-
munication command packets and dispatched to client
devices, therefore protecting said operating system software
and said application services system from being improperly
accessed or corrupted by said application logics.

56. A client system for accessing application services,
comprising:

at least one communication interface through which to
access said application services;

at least one processing element containing application
independent logics therein; and

wherein upon connecting to a server providing application
services, said server is able to control functioning of
said client system by controlling said application inde-
pendent logics through said at least one communication
interface in order to provide said application services.

US 2002/0184398 Al

57. The system of claim 56, wherein said application
independent logics are limited to application independent
logics which are incapable of permanently changing the
state of said client system.

58. The system of claim 57, wherein said application
independent logics are limited to user interface application
independent logics.

59. The system of claim 56, wherein said processing
element is a special purpose device for processing said
application independent logics and said device is unable to
process application logics in order to protect said client
system from internal state corruption by mobile application
logics code and to decrease cost of said client system.

60. The system of claim 56, further comprising at least
one means for accessing and controlling other devices
coupled to said client system;

wherein said application independent logics contained in
said at least one processing element in addition include
application independent logics for accessing and con-
trolling said other devices, said other devices coupled
to said client system, by utilizing said at least one
means; and

wherein said server providing application services is able
to control said other devices, said other devices coupled
to said client system, by controlling said application
independent logics contained therein said at least one
processing element.

61. The system of claim 60, wherein said other devices,
coupled to said system, may include at least one storage
device for storing data corresponding to said application
services.

62. The system of claim 56, wherein said system further
comprises of at least one storage device for storing data
corresponding to said application services.

63. The system of claim 61, wherein said one storage
device may include a file system therein.

64. The system of claim 60, wherein said at least one
means for accessing and controlling said other coupled
devices is a communication interface.

65. The system of claim 60, wherein said other coupled
devices may include at least one of user interface device or
communication device or data acquisition device.

66. The system of claim 56, wherein said communication
interface data transmission is carried over at least one of
wireless network, local area network, wide area network

67. The system of claim 66, wherein said wide area
network is the Internet.

68. The system of claim 56, wherein said client system
loads said application independent logics from another
device, said device being coupled to said system, before said
system is able to access said application services.

69. The system of claim 68, wherein said loading of said
application independent logics is done by using at least one
communication interface.

70. The system of claim 63, wherein said data correspond-
ing to said application services is stored in at least one file
of said file system.

71. The system of claim 70, wherein said system/device
for accessing application services is able to selectively
restrict access by at least one system providing application
services, said at least one file corresponding to said appli-
cation services, to said at least one file in order to protect
said client system/device for accessing application services

Dec. 5, 2002

from internal state corruption and to prevent unauthorized
access of said file by said at least one system for providing
application services.

72. The system of claim 56, wherein said client system/
device, further comprises of means to restrict access of said
application independent logics to a limited subset of the
entire set of said application independent logics.

73. The system of claim 72, wherein said subset is chosen
for said application services based on at least one of security
profile of said application services, and said application
server and security profile of said client system/device.

74. The system of claim 73, wherein said security profiles
may be based on how secure said application server is
believed to be, and what type of damage or loss may be
caused by said application server by processing any one
particular application independent logic.

75. The system of claim 74, wherein said damage or loss
may include corruption and loss of data, unauthorized copy-
ing of data, unauthorized use of said client system resources.

76. The system of claim 72, wherein said limited subset
is a different subset for different combinations of said client
system and said application services.

77. The system of claim 56, wherein said at least one
processing element is able to decline to process a particular
application independent logic based on data supplied with
and for processing said particular application independent
logic.

78. The system of claim 34, wherein said client device
provides to said processing element location of said other
data sources and information necessary to access said other
data sources before said application services commence.

79. The system of claim 34, wherein said processing
element determines location and information necessary to
access said other data sources by determining identity of
said client device.

80. The system of claim 34, wherein said client device
inputs data from or outputs data to said other devices and
exchanges said data with said at least one processing ele-
ment as needed by said application logics.

81. The system of claim 55, wherein said client system
further comprises of special purpose operating system, said
special purpose operating system implementing all functions
of said client system by controlling said at least one pro-
cessing element and said at least one communication inter-
face.

82. The system of claim 26, further comprising of means
to determine the current state of said application services
being provided to said at least one client device, wherein
said current state may be preserved in a storage device and
said application services suspended in order to save said
system memory and computational resources.

83. The system of claim 82, wherein said suspension of
said application services is caused by at least one of client
device request, idleness of said client device, failure of said
communication interface.

84. The system of claim 82, wherein said application
services can be restarted at the same point by using said
preserved current state upon said client device reconnection.

85. The system of claim 26, wherein said communication
interface includes a set of application independent functions
for encoding command data packets with required parameter
data and dispatching said command data packets to said
client device in order to control application independent
logics within said client device.

US 2002/0184398 Al

86. The system of claim 85, wherein said dispatching of
command data packets is done over at least one of available
transport protocols and is done over at least one of wired and
wireless physical medium.

87. A method for at least two client devices to share data
and devices coupled to said at least two client devices,
comprising the steps of:

said at least two client devices wanting to share data or
accessing one or more other devices, said other devices
coupled to said at least two client devices, connecting
to an application service server, said application server
containing sharing application logics therein;

said at least two client devices interacting with said
sharing application logics to access data and other
devices coupled to another one of said at least two
client devices; and

wherein said sharing application logics control said two

client devices as needed to provide said sharing service.

88. The method of claim 87, wherein said sharing appli-
cation service server may use different communication pro-
tocols to interact with different ones of said at least two
devices.

89. The method of claim 87, said at least two client
devices and said sharing application service server perform
a step of mutual authentication to insure that said at least two
client devices are authorized to use said sharing application
service and that said application service logics are autho-
rized to access data and other devices coupled to each of said
at least two client devices, so that one of said at least two
client devices can access data and other coupled devices of
another one of said at least two client devices, with this step
being performed before said sharing application services can
proceed.

90. The method of claim 87, in addition performing at
least one step of accounting or metering usage of said
application services to establish said application service
value.

91. A method for providing know-how for specialized
data processing services without disclosing said know-how,
comprising the steps of:

encoding said know-how for performing said specialized
data processing in a software application and integrat-
ing said software application with a processing element
or hardwiring said know-how within said processing
element;

providing a communication protocol within said process-
ing element to accept data for processing and for
outputting processed data;

attaching said processing element, containing said know-
how, to an interface, said interface being accessible to
at least one client device;

accepting connections from said at least one client device
needing said know-how to process data corresponding
to said at least one client device;

retrieving data corresponding to said at least one client
device, as needed by said software application or said
hard-wired know-how logics;

making processed data available to said at least one client
device; and

Dec. 5, 2002

never disclosing said know-how to said at least one client

device.

92. The method of claim 91, wherein in said retrieving
data step said corresponding data is internal state data of said
at least one client device.

93. The method of claim 91, wherein in said making
processed data available step said processed data is control
data in order to control operations of said at least one client
device.

94. A system to provide access to know-how for a
business or industrial data processing task and to means for
performing said business or industrial task according to said
know-how, comprising:

at least one processing element containing said know-how
logics as a software application code or hardwired
logics;

at least one interface through which a client device
needing said know-how could access said means; and

wherein said system can interact with said client device,
when said client device connects with said system,
and/or with other data sources, said other data sources
corresponding to said client device, to perform said
business or industrial task according to said know-how
without having to transfer said know-how logics to said
client device.

95. A system enabling an individual or a company to
provide access to his/its computerized know-how of a useful
data processing process combined with means for perform-
ing said useful data processing process according to said
know-how, comprising:

at least one processing element containing said know-how
logics as a software application code or hardwired
logics;

at least one interface through which a client device
needing said know-how could access said means; and

wherein upon connecting of said client device, said sys-
tem can interact with said client device and can perform
said useful process according to said know-how with-
out having to transfer said know-how logics to said
client device.

96. The system of claim 95, wherein said system in
addition can interact with at least one, other than said client
device, data source, said at least one data source needed for
performing said useful process.

97. The system of claim 95, wherein said useful process
iS a business process, an industrial process, an educational
process, or an entertainment process.

98. The system of claim 95, wherein said at least one
interface is connected over any physical medium known to
transmit information.

99. System of claim 1 wherein said at least one applica-
tion server is able to process said corresponding data without
having the necessity to permanently store said data in said at
least one application server or in a server device coupled to
said at least one application server.

100. System of claim 1 wherein said at least one client
station is able to restrict access to said application indepen-
dent logics.

