O 000 00RO OO

WO 01/13256 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
22 February 2001 (22.02.2001)

AT OO O O

(10) International Publication Number

WO 01/13256 Al

(51) International Patent Classification’:

(21) International Application Number:

GO6F 15/00

PCT/US00/40633

(22) International Filing Date: 14 August 2000 (14.08.2000)

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
09/373,394

12 August 1999 (12.08.1999)

English

English

us

(63) Related by continuation (CON) or continuation-in-part

(CIP) to earlier application:
UsS
Filed on

09/373,394 (CON)
12 August 1999 (12.08.1999)

(71)
(72)

(74)

81

84

Applicant and
Inventor: MARGOLUS, Norman, H. [US/US]; 4 Alder-
sey Street, #24, Somerville, MA 02143 (US).

Agent: LEE, G., Roger; Fish & Richardson P.C., 225
Franklin Street, Boston, MA 02110-2804 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY,BZ, CA, CH,CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI. GB, GD, GE, GH, GM, HR,
HU, ID,IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO,NZ,PL, PT, RO, RU, SD, SE, SG, S, SK, SL, TJ, T™,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

[Continued on next page]

54) Title: A MECHANISM FOR EFFICIENT DATA ACCESS AND COMMUNICATION IN PARALLEL COMPUTATIONS

(
ON AN EMULATED SPATIAL LATTICE

(57) Abstract: A mechanism for
performing parallel computations on an
emulated spatial lattice by scheduling
memory and communication operations on
a static mesh-connected (14) array (10) of
synchronized processing nodes (12). The
lattice data are divided up among the array

(14) of processing nodes (12), each having

a memory and a plurality of processing

elements within each node (12). The

memory is assumed to have a hierarchical

granular structure that distinguishes
groups of bits that are most efficiently

accessed together, such as words or rows.

The lattice data is organized in memory

so that the sets of bits that interact during

processing are always accessed together.

Such an organization is based on mapping
the lattice data into the granular structure

of the memories in a manner that has

simple spatial translation properties in the

emulated space.

wo 01/13256 A1 OO0 NAN DA AR AT

IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, For two-letter codes and other abbreviations, refer to the "Guid-
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

Published:

— With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of

amendments.

10

15

20

25

30

35

WO 01/13256 PCT/US00/40633

A MECHANISM FOR EFFICIENT DATA ACCESS AND COMMUNICATION
IN PARALLEL COMPUTATIONS ON AN EMULATED SPATIAL LATTICE

BACKGROUND OF THE INVENTION

The preseﬁt invéntion relates to the field of
massively parallel, spatially organized computation.

The field of massively parallel, spatially
organized computation encompasses computations involving
large sets of data items that are naturally thought of as
distributed in physical space. Such computations often
exhibit some degree of spatial locality during each
computational step. That is, the processing to be
performed at each point in space depends upon only data
residing nearby. For example, lattice simulations of
physical systems using techniques such as finite-
difference calculations and lattice-gas molecular dynamics
have such spatial organization and locality. Other
interesting examples include lattice simulations of
physics-like dynamics, such as virtual-reality models and
volume rendering. Many other computations can be embedded
efficiently into a spatial-lattice format with local
interactions, including many kinds of image-processing and
logic emulation problems. A variety of spatial lattice
computations are discussed in a paper by Norman Margolus,
entitled "CAM-8: A Computer Architecture Based on Cellular
Automata," Fields Institute Communications, Vol. 6,
American Mathematical Society, 1996, p. 167.

A natural hardware organization for performing
such computations arranges processors in space to mimic
the array of discrete lattice sites being emulated, one
processor per lattice site. Each processor communicates
with neighboring processors using fixed or "static"

connections. This kind of architecture can be both fast

WO 01/13256 PCT/US00/40633

10

15

20

25

30

and massively parallel, since the wires between
neighboring processors remain short regardless of the
array size.

Even if connections are provided between adjacent
processors only

(mesh interconnect), communication between processors that
are

near to each other involves few computational steps, and
so

remains fast.

A significant simplification can be achieved
when all processors are identical and perform the same
operation at the same time, as noted in an article by S.
H. Unger, entitled "A Computer Oriented Toward Spatial
Problems," Proc. IRE, 1958, p. 1744. In such an
organization, a single copy of the control circuitry can
be shared among all of the processors. Omitting the
control circuitry from the individual processors reduces
the size as well as simplifies the design of the
processors. Shared control also allows communication
between processors to be perfectly coordinated. That is,
all processors transfer a bit in a given direction at the
same time. Spatial non-uniformities in the computation
are dealt with as differences in the data associated with
each processor rather than as differences in the program
that each processor follows. Such a shared-control
lockstep processing style has been characterized as Single
Instruction-stream Multiple Data-stream or SIMD. See an
article by Michael J. Flynn, entitled "Some Computer
Organizations and Their Effectiveness," IEEE Trans. on
Computers, 1972, p. 948. Each processor in a SIMD machine
may have several different functional units operating in a

pipelined fashion.

10

15

20

25

30

WO 01/13256 PCT/US00/40633

Since computer size is normally fixed while
problem size is variable, it is common for an array of
SIMD processors to be used to perform a calculation that
corresponds naturally to a larger spatial array of
processors, perhaps with more dimensions than the actual
physical array. This can be achieved by having each of
the processors simulate the behavior of some portion of
the space. Several physical simulations on the ILLIAC IV
computer were done in this manner, as described in R. M.
Hord's book, The ILLIAC IV: The First Supercomputer,
Computer Science Press (1982). Typically, the emulated
space is split into equal-sized chunks, one per processor.

In problems with only nearby-neighbor interactions in an
emulated spatial lattice, such a data
organization minimizes interprocessor communication. This
point
was discussed by Stewart F. Reddaway (in the context of
the SIMD mesh DAP computer) in his article entitled
"Signal Processing on a Processor Array," in the 1985 Les
Houches proceedings entitled Traitement Du Signal / Signal
Processing, Vol. 2, Lacoume et al. (eds.), Elsevier
Science 1987. If the chunks are large, then short range
communication in the physical processor array can
correspond to much longer range communication in the
emulated lattice.

A simple way to perform a calculation that maps
naturally onto a large array of processors is to have each
physical processor simulate several virtual processors.
This idea is discussed by Steven L. Tanimoto and Joseph J.
Pfeiffer, Jr., in an article entitled "An Image Processor
Based on an Array of Pipelines," IEEE Computer Society
Workshop on Computer Architecture for Pattern Analysis and

Image Database Management, 1981, p. 201. In the virtual

10

15

20

25

30

WO 01/13256 PCT/US00/40633

processor approach, the physical hardware emulates a
virtual machine of the size and type needed to directly
perform the calculation. Since virtual processors are
simulated both sequentially by each physical processor and
in parallel by all of them, hardware designed explicitly
for virtual processing can take advantage of both multiple
processors and multiple pipelined functional units within
each processor. In such hardware, memory and
communication latency (i.e., time delay) can be absorbed
into the processing pipeline. This approach was used, for
example, by Tommaso Toffoli and Norman Margolus in the
design of their CAM-6 virtual processor cellular automata
hardware, as is discussed in their book, Cellular Automata
Machines, MIT Press (1987), p. 243.

In these early cellular automata machines,
programmers could choose from among a restricted set of
communication patterns Qithin a fixed-size emulated
lattice (see Toffoli and Margolus, p. 55). The more
recent CAM-8 machine, described in U.S. Patent No.
5,159,690, in the name of Norman H. Margolus, uses a
simpler communication scheme, in which sheets of bits move
a given amount in a given direction in the emulated
lattice (which has a programmable size and shape). This
shifting bit-sheet scheme is implemented as a pipelined
version of traditional SIMD mesh data movement. Because
of the specialization to shifting entire sheets of bits,
however, only a few parameters controlling a restricted
set of repeated communication patterns (as opposed to
detailed clock-by-clock SIMD control information) are
broadcast to the processors.

In a virtual processor architecture such as CAM-
8, in which the state of the emulated spatial lattice is

held in memory devices, the speed of processing is limited

15

20

25

30

WO 01/13256 PCT/US00/40633

primarily by the memory bandwidth. Recent developments in
semiconductor technology allow processing logic and DRAM
memory to be placed together on a single semiconductor
chip, thus making enormous memory bandwidth potentially
available to virtual processor lattice computations. 1In
this context, performance and flexibility of a mesh array
of chip-scale processors may become limited by
communications bandwidth between chips, and by the
bandwidth of the control stream coming into the chips. A
uniform SIMD communication architecture (like that of CAM-
8) is not appropriate in this context, since a uniform
array of SIMD processing nodes on each chip would make
very uneven and inefficient use of inter-chip
communication resources: nodes along an edge of the array
on one chip would either all need to communicate off-chip
simultaneously, or all need no communication
simultaneously. Furthermore, a fixed virtual machine
model architecture (like that of CAM-8) gives up much of
the flexibility of a more general SIMD architecture. For
flexible fine-grained control, a high control bandwidth is
needed.

To achieve maximum memory bandwidth, on-chip
DRAM must be used in a constrained fashion. For example,
in a given block of DRAM, once any bit in a given DRAM row
is accessed, bandwidth may be wasted if all of the bits of
that row are not used before moving on to another row.
Similarly, if memory rows are accessed as a sequence of
memory words, then all of the bits in entire words may
also need to be used together. These kinds of memory
granularity constraints must be efficiently dealt with.
Temporarily storing data that are read before they are
needed, or that can't be written back to the right block

of memory yet, wastes the bandwidth of the temporary

10

15

20

25

30

WO 01/13256 PCT/US00/40633

storage memories, and wastes the space taken up by these
extra memories. Not having data available at the moment
they are needed wastes processing and communications

resources.

SUMMARY OF THE INVENTION

The present invention features a mechanism for
optimizing the use of both memory bandwidth and inter-chip
communications bandwidth in a simple and flexible lattice-
emulation architecture. Provided are a processor and
corresponding method for performing operations associated
with a process occurring in at least one emulated lattice
having at least one sector having lattice sites therein.
The operations are performed by at least one processing
node associated with the at least one sector. The
processing node includes a memory for storing lattice site
data associated with the lattice sites and the lattice
sites each are associated with data in a data structure.
Sets of homologous bits, one from each associated data
structure at each lattice site, form bit-fields.

According to one aspect of the invention, a
shift-invariant partition of the at least one sector into
pluralities of lattice sites forms pluralities of site-
aggregates, each site-aggregate being unsymmetric about
every parallel to at least one edge of the at least one
sector. A portion of each bit-field associated with each
site-aggregate forms a bit-aggregate, which 1is stored in
the memory as an addressable unit. The processing node
shifts data for at least one of the bit-fields within the
at least one sector of the emulated lattice by addressing
each bit-aggregate in which each portion of the at least

one of the bit-fields is stored.

10

15

20

25

30

WO 01/13256 PCT/US00/40633

According to another aspect of the invention,
the at least one sector is partitioned in a shift-
invariant manner into pluralities of lattice sites forming
first site-aggregates, which are grouped to partition the
lattice sites of the at least one sector in a shift-
invariant manner to form a plurality of second site-
aggregates, whereby a portion of each bit-field associated
with each first site-aggregate forms a first bit-
aggregate. Pluralities of the first bit-aggregates are
grouped together to form second bit-aggregates of data
associated with corresponding second site-aggregates, each
of which is stored in the memory as an addressable unit
composed of separately addressable first bit-aggregates.
The processing node shifts data for at least one of the
bit-fields within the at least one sector by addressing
each second bit-aggregate in which each portion of the at
least one of the bit-fields is stored, and addressing each
of the constituent first bit-aggregates in the addressed
second bit-aggregate.

Embodiments of the invention may include one or
more of the following features.

The bit-field data for each of the lattice sites
to be updated may be processed to transform the value of
the associated data structure. The processing can
comprise performing a symbolic operation. Alternatively,
the processing can comprise performing a numerical
operation.

The processing may include reading from the
memory the bit-field data for each lattice site to be
updated, updating the read bit-field data and writing the
updated bit-field data to the memory. The updating can
occur after the shifting and the bit-field data read from

the memory are shifted bit-field data.

10

15

20

25

30

WO 01/13256 PCT/US00/40633

The updating can occur before the shifting and the bit-
field data written to the memory are shifted bit-field
data.

The at least one sector may comprise a plurality
of sectors and the operations may be performed by an array
of processing nodes, each associated with a different one
of the sectors in the plurality of sectors and
communicating with others of the processing nodes
associated with neighboring ones of the sectors in the
plurality of sectors.

The bit-field data may be shifted periodically
within each sector of each associated processing node,
such that the data that shifts past an edge of the sector
wraps to the beginning of an opposite edge of the sector.

The periodic shifting may be performed by memory
addressing and by re-ordering bits within addressed ones
of the bit-aggregates.

The periodically shifted bit-field data can be
read by the processing nodes. Each of the processing
nodes can access data for one of the site-aggregates to be
processed and communicate the wrapped data to a nearby one
of the processing nodes, the communicated wrapped data
being substituted for the wrapped data within the nearby
one of the processing nodes to which it is communicated.

The processing can include using a table lookup.

Each of the processing nodes can include a plurality of
processing elements for processing a parallel stream of
the bit-field data and the table lookup can be shared by
all of the processing elements in each processing node.

The bit-field data can be loaded into the shared
lookup table so that data from all of the lattice sites in
a given one of the sectors can be used to randomly access

data belonging to a fixed set of the lattice sites.

10

15

20

25

30

WO 01/13256 PCT/US00/40633

The plurality of lattice sites aggregated within
each of the site-aggregates may have a uniform spacing
relative to each edge of the at least one sector, the
difference for any two of the site-aggregates in the
respective numbers of lattice sites lying within a give
distance of an edge being at most one.

The second bit-aggregate may aggregate first
bit-aggregates which are all associated with a single
sector, and which in their pattern of grouping of data
associated with lattice sites, are all periodic
translations of each other along a single line in a single
sector. The aggregated first bit-aggregates can then be
ordered along this line, with this ordering reflected in
the memory addresses where they are stored. Shifting of
the at least one bit-field then involves only a cyclic
permutation in the order of each set of constituent first
bit-aggregates within the corresponding second bit-
aggregate.

The at least one emulated lattice can include at
least two emulated lattices having unequal numbers of the
bit-fields. The shifted bit-field data from the at least
two emulated lattices may be processed together.

The memory can include at least two memory
blocks, and more than one of the at least two memory
blocks can be coupled to each processing element.

The plurality of processing elements can share a
lookup table.

Each processing element can include bit-serial
arithmetic hardware.

The memory can include at least one memory block
and portions of the at least one memory block can be
selected to store control information used during a period

in which a row of memory words is processed.

10

15

20

25

30

WO 01/13256 PCT/US00/40633

Each of the processing nodes can be connected by
mesh I/0 links to neighboring processing nodes to form a
mesh array, each of the processing nodes being associated
with an equal-sized sector of the emulated lattice and the
performance of the operations can be divided among the
processing nodes.

The operations can be performed under the
control of a host to which the processor is connected.

The processing node can be coupled to a
nonvolatile memory device for storing a program. A copy
of the program is loaded into the processing node at boot
time.

The processing node can include reprogrammable
logic blocks of the sort used in FPGA devices, along with
reprogrammable I/0 pins, for interfacing with other
electronic devices.

The processing node can control an external
memory device used for storing bit-field data and for
storing control information.

The mechanism for efficient data access and
communication in spatial lattice computations of the
present invention offers several advantages, particularly
for large 2D and 3D spatial lattice computations. The
data access and communication mechanism relies on an
arrangement of data in memory and a scheduling of memory
accesseé and communication events to optimize the use of
both memory bandwidth and communications bandwidth. For
computations (including symbolic and arithmetic) on
emulated spatial lattices, all bits that are read from
memory are exactly those needed next by the processing and
communication hardware. Thus, the mechanism deals with a
hierarchy of memory granularity constraints by matching

data organization in memory to the most efficient memory

10

WO 01/13256 PCT/US00/40633

10

15

20

25

30

access patterns, without having to buffer data. Moreover,
the mechanism takes advantage of memory layout and access
order to produce an even demand on communication
resources. A direct virtual processor emulation of a SIMD
array on each processing node would not have this
property. Additionally, slow external memory can also be
dealt with efficiently by simply treating internal memory
as an additional level in the granularity hierarchy. The
method for dealing with memory granularity and for
allowing spatial shifting of lattice data by addressing is
also directly applicable to lattice calculations on
conventional computers.

The mechanism further supports a virtual machine
model for performing SIMD operations on selected subsets
of virtual
processors. For example, sublattices of the emulated
space can be identified and processed in turn. Virtual
processors that are not active in a given computational
step are not emulated during that step. Both the spatial
structure of the emulated lattice and the structure of the
data associated with the lattice sites can change with
time. The mechanism efficiently supports a variety of
simple high-level spatial machine models, including a
simple mesh machine, a reconfiguring crystal lattice
machine and a pyramid machine.

Each processing node can have its own copy of
various programs. A host computer may be used to
initialize and modify this program information, and to
initiate synchronized execution of programs. In a system
that includes a host computer, the node-resident programs
can be viewed as a kind of micro-code. If all nodes are
programmed identically, then the hardware acts as a SIMD

machine. Providing micro-coded control programs resident

11

10

15

20

25

30

WO 01/13256 PCT/US00/40633

within each node takes advantage of high on-chip memory
bandwidth

to allow full generality of operations. There is no need
to embed a restricted virtual machine model into each node
as was done, for example, in CAM-8. Such freedom also
resolves conflicts between virtualization and the use of
fast hardware registers. Lattice sites may be updated in
a "depth first" manner, with a sequence of operations
applied to each row-sized site-aggregate before moving on
to the next, and with each of the sequence of
row-operations bringing together a different combination
of bit-fields. Registers and temporary memory storage may
be used to hold intermediate results during each such
sequence, and then freed and reused for processing the

next site-aggregate.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a representation of a spatial lattice
computer as a mesh array of processing nodes, each
processing node corresponding to an equal-sized sector of
the spatial lattice.

FIG. 2 is a block diagram of the processing node
shown in FIG. 1.

FIG. 3 is a depiction of a two-dimensional (2D)
example of a uniform lattice data movement (bit-plane
shifting).

FIG. 4 is a depiction of a partition of a one
dimensional (1D) sector into groups of sites that are
updated simultaneously.

FIG. 5 is a depiction of a 1D partition that is
not shift invariant.

FIG. 6 is a depiction of a data movement process

12

10

15

20

25

30

WO 01/13256 PCT/US00/40633

in which periodic shifts within sectors are composed into
a uniform shift along a lattice.

FIG. 7 is a depiction of a balanced partition of
a 2D sector.

FIG. 8 is a depiction of a partition of a 2D
sector of unequal dimensions.

FIG. 9 is a block diagram of the functional
units that make up the DRAM module shown in FIG. 2.

FIG. 10 shows a sample set of DRAM rows that are
processed together during a single row-period.

FIG. 11 is a block diagram of the processing
element shown in FIG. 2, illustrating hardware optimized
for SIMD table-lookup processing.

FIG. 12 is a block diagram of the shared lookup
table shown in FIG. 11.

FIG. 13 is a block diagram of the LUT data unit
shown in FIG. 12.

FIGS. 14A and 14B are illustrations of a single-
bit-field row data format and a single-site-group row data

format, respectively.

DETAILED DESCRIPTION

Referring to FIG. 1, a parallel computation
occurring in a physical space 10 is emulated by a mesh
array of processing nodes 12. The emulated space 10
includes an n-dimensional spatial arrangement of lattice
sites each associated with a data element (or structure),
which may vary from site to site. Both the structure of
the lattice and the structure of the data may change with
time. Each processing node 12 in the mesh array
corresponds to an equal-sized sector of the emulated space

(or spatial lattice) 10. Together, the processing nodes

13

10

15

20

25

30

WO 01/13256 PCT/US00/40633

12 perform parallel computations, each acting on the
lattice data associated with its own sector of the
emulated space 10.

As shown in FIG. 1, each processing node 12 is
connected to and communicates with its neighboring
processing nodes in the mesh array by a mesh I/0 interface
14. The mesh I/0 interface 14 provides forty-eight |
single-bit differential-signal links that can be
apportioned among up to six directions.

Referring to FIG. 2, each processing node 12
includes a memory 16 connected to a plurality of
processing elements (PEs) 18. The memory 16 includes a
plurality of DRAM modules 20. Data belonging to a given
sector may be stored in the memory 16 of the corresponding
processing node 12 or in an external memory associated
with that processing node, as will be described. Each
processing node 12 simultaneously processes data
associated with a plurality of lattice sites using the
processing elements 18. All of the processing nodes
operate and communicate in a synchronized and
predetermined fashion in order to implement a spatially-
regular lattice computation. Preferably, for performance
reasons, the processing node 12 is implemented as a
semiconductor chip. However, it could be implemented as a
discrete design as well.

Also included in the processing node 12 are the
following: a master memory interface 22 allowing the chip
to access an external slave memory via a first memory I/0
bus 24; a slave memory interface 26 allowing the
processing node or chip 12 to be accessed as a memory by
an external device via a second memory I/0 bus 28; and a
controller 30. The controller 30 receives control

information and data from external devices via memory

14

10

15

20

25

30

WO 01/13256 PCT/US00/40633

interfaces 26 and 22 on memory interface I/O lines 32 and
33, respectively, and over a serial I/0 bus 34. During
processing, the controller 30 also receives control
information at high bandwidth from the memory 16 through
the PEs 18 over input control lines 36 and distributes
control information to the memory 16 and PEs 18 over a
control bus 37. Memory 16 is also read and written
through the PEs 18 over bidirectional data lines 38 and
memory bus lines 39. The PEs 18 communicate with each
other over a shared LUT bus 40, as will be described.
Details of the control bus signal interconnections, as
well as other control and clocking signals, have been

omitted for simplification.

Memory Granularity

The structure of the memory 16 imposes certain
constraints on efficient computation. Perhaps the most
prominent are certain granularity constraints that
determine which groups of memory bits should be used
together. 1In the illustrated embodiment, the memory
(DRAM) bits on each processing node 12 are logically
organized as 2D arrays of storage elements which are read
or written on a row-at-a-time basis. For each block of
DRAM, it takes about the same amount of time to read or
write all of the bits from a sequence of rows as it does
to access just a few bits from each row. For this reason,
computations performed by the processing node 12 are
organized in such a way as to use all of the data from
each row as that row is accessed. Similarly, rows are
divided up into smaller words, which correspond to data
units that are communicated to and from the memory modules

20. Computations are organized to also use all of the

15

10

15

20

25

30

WO 01/13256 PCT/US00/40633

bits of each word as that word is read. Thus, the
processing nodes 12 handle memory granularity constraints
by organizing the memory and processing hardware so that
lattice data that are needed at the same time can always
be stored together as a bit-aggregate in the memory (i.e.,
a word, a row, etc.) that is efficiently accessed as a
unit. It will be appreciated that the techniques
described herein are quite general and apply to other
types of lattice computation architectures having a

hierarchy of memory granularity constraints.
Data Movement

Points in the emulated space that have data
associated with them are called lattice sites. The
structure of the data item associated with each lattice
site may vary from site to site and may change with time.

The structure of the lattice itself may also change with
time. The processing nodes 12 of the lattice processor
array 10 use a spatial communication scheme to move data
within the emulated space. The spatial communication
scheme involves a uniform shifting of subsets of lattice
data. A set of homologous bits, one from each of a
regularly spaced subset of lattice sites, forms a bit-
fiéld. Each processing node 12 performs a data movement
operation separately on each bit-field to shift the bit-
field uniformly in space. Every bit in each bit-field
that is operated upon is shifted to a new position. Each
shifted bit is displaced by the same distance in the same
direction.

The above-described bit-field shifting concept
may be more clearly understood with reference to FIGS. 3A-

B. Referring to FIGS. 3A-B, an exemplary 2-D square

16

10

15

20

25

30

WO 01/13256 PCT/US00/40633

lattice 41 having two bit-fields 42a, 42b of bits 44 is
depicted. FIG. 3A shows the bits before a shift is
performed and FIG. 3B illustrates the same bits after a
shift has been performed. One top bit-field bit 44a and a
bottom bit-field bit 44b are shaded to highlight the
effect of the shifting operation on bits in the bit-fields
42a, 42b. As can be seen in FIG. 3B, only the top bit-
field 42a shifts in this example. The shift of the top
bit-field 42a brings together the two shaded bits 44a and
44b, both of which belonged to different lattice sites
before the shift. It will be noted that every similar
pair of bits that were initially separated by the same
displacement as the two marked bits are also brought
together by this shift.

If the square lattice 41 in FIGS. 3A-B
represents an entire lattice, then the shifted data that
moves beyond the edge or boundary of the lattice space
wraps around to the opposite side of the space. If,
instead, the square lattice 41 represents only the sector
of space associated with a single processing node 12, then
the shifted data that crosses the edge of that sector is
communicated to adjacent processing nodes (i.e.,
processing nodes associated with adjacent sectors), each
of which is performing an identical shift. In this
manner, a seamless uniform shift across the entire lattice
can be achieved.

Lattice Partitioning

After each movement of data, the processing
nodes 12 separately process the data that land at each
lattice site. Since each site is processed independently
of every other site, processing of lattice sites can

potentially be done in any order and be divided up among

17

10

15

20

25

30

WO 01/13256 PCT/US00/40633

many or few processors. In the embodiment described
herein, each processing node 12 has sixty-four (64)
processing eleﬁents 18, and so updates 64 lattice sites at
a time. A set of lattice sites that are updated
simultaneously within a node is referred to as a site-
group. All lattice sites in a site-group are processed
identically.

Referring to FIG. 4, a one-dimensional (1D)
sector 50 is partitioned into a plurality of site-groups
52a-52d as shown. For clarity, the figure depicts only 4
lattice sites to be updated at a time. FIG. 5 illustrates
an alternative site-group partitioning 54 of the same 1-D
sector 50 (FIG. 4).

In the preferred embodiment, a site-group has
the same number of elements as a memory word. Therefore,
the partition of a lattice into site-groups induces a
corresponding partition of bit-fields into memory words:
all of the bits of a bit-field that belong to the same
site-group are stored together in the same memory word.

It can be appreciated that, to process a site-group during
an operation without data bit-shifting, a desired set of
bit-fields may be brought together for processing by

simply addressing the appropriate set of memory words.
Periodic Shifts

For an entire space emulated by a single
processing node only, bit field shifts are periodic within
a single sector. That is, shifted data wraps around
within the bit-field sector. The partition of the lattice
into site-groups remains fixed as the bit-fields are
shifted. If the partition of FIG. 4 is used to divide the
lattice up into site-groups, and a bit field is shifted by

18

10

15

20

25

30

WO 01/13256 PCT/US00/40633

some amount, one observes a very useful property: each set
of bit-field bits grouped together into a single
site-group before the shift are still grouped into a
single site-group after the shift. Since these groups of
bit-field bits are stored together in memory words
associated with site-groups, shifts of data simply move
the contents of one memory word into another. A partition
of lattice sites such as that of FIG. 4 that is invariant
in its grouping of bits under all periodic bit-field
shifts within a sector may be described as a "shift
invariant" lattice partition. Equivalently, a
shift-invariant partition can be characterized as a
pattern of grouping of lattice sites which isn't changed
if the pattern is shifted periodically. The partition of
FIG. 5 is an example of a lattice partition that is not
shift invariant.

For a shift invariant partition, spatial
shifting of bit-field data can be accomplished by memory
addressing. To process a site-group, the processing node
brings together associated portions of a designated set of
shifted bit-fields by simply addressing the corresponding
set of memory words. For each bit-field, and for any
shift, all of the shifted data needed for the site-group
are accessed together in a single memory word, and all of
the data in that memory word belong to the same
site-group.

Although the grouping of bits into memory words
is invariant under bit-field shifts, the order of bits
within words is not. Bits that shift past one edge of the
sector wrap around to the opposite edge. Assuming that
bits within words follow the order of lattice sites in
corresponding site-groups in FIG. 4, wraparound only

results in a rotation of the bit-order within each memory

19

10

15

20

25

30

WO 01/13256 PCT/US00/40633

word as it is accessed.

This bit-field shifting technique can be
extended to additional levels of memory granularity. For
example, in this embodiment memory words are grouped into
memory rows, and entire rows must be processed together
for the sake of efficiency. Preferably, therefore,
site-groups of lattice sites are further grouped together
or aggregated into a set of larger site-aggregates that
also form a shift-invariant partition of the lattice. As
an example of site-group aggregation, and referring once
again to FIG. 4, if the first and third site-groups (52a
and 52c, respectively) are combined to form a larger
site-aggregate, and the second and fourth site-groups (52b
and 52d, respectively) combined to form another larger
site-aggregate, then the resulting set of larger
site-aggregates also forms a shift-invariant partition of
the lattice. Consequently, the same sets of bits from
each bit-field are grouped together by the larger
site-aggregates both before and after any bit-field
shifts. If the larger site-aggregate is the size of a
DRAM row, then all of the words of a bit-field that belong
to the constituent site-groups can be stored together in
the same DRAM row. With this data organization, to bring
together shifted data from some set of bit-fields for a
row-sized
site-aggregate, the processing node 12 simply addresses
the set of rows that contain the shifted data. As it
processes each
constituent site-group in turn, the processing node
addresses only words within this set of rows. This
technique can be applied to further levels of memory
granularity.

Note that above, in defining a shift-invariant

20

10

15

20

25

30

WO 01/13256 PCT/US00/40633

partition of the lattice, it has been assumed that the
spatial structure of the lattice is uniform and
unchanging. A spatial translation of a bit-field that
moves one of the bit-field bits from one lattice site to
another is assumed to move all of the bit-field bits to
new lattice sites. More general schemes can be
constructed by superimposing and coupling several
spatially-uniform emulated lattices, as is discussed in
the section, "Virtual Machine Models". Here, it will be

assumed that the lattice is uniform and unchanging.

Composite Shifts

Consider now a 1D lattice divided amongst a 1D
array of processing nodes. The shifting of bit-fields
uniformly along the lattice is accomplished by a
combination of periodic shifts within each lattice sector
and communication between processing nodes.

Referring to FIG. 6, three adjacent lattice
sectors 60, 62, and 64, each having two bit-fields 60a-
60b, 62a-b and 64a-b,
respectively, are shown. The sectors 60, 62, 64 are
illustrated
as having the top bit-field 60a, 62a, 64a, respectively,
shifted
to the right. The portion of the top bit field that
spills past
the edge of each sector is labeled A, B and C, for the top
bit-
fields 60a, 62a and 64a, respectively. Where this data is
placed
by a periodic shift within the sector is indicated with a

matching label. The location in which the protruding data

21

10

15

20

25

30

WO 01/13256 PCT/US00/40633

belongs as a result of a uniform shift is indicated with
an arrow. It will be recognized that the uniform shift is
accomplished by simply substituting the bits of
periodically shifted data that wrap around past the edge
of one sector (the wrapped bits) for the wrapped bits
within the next adjacent sector. Therefore, bits replace
corresponding bits. In other words, a uniform shift
transfers bits to the same relative positions within a
sector as a same-sized periodic shift. A uniform shift

merely places the wrapped bits in the appropriate sector.

In the described embodiment, all processing
nodes 12 operate synchronously, each acting on an
identically structured sector of lattice data, with each
processing the same site-group at the same time.
Periodically shifted site data for a designated set of
bit-fields and for a designated site-group are assembled
by addressing the appropriate DRAM words and rotating each
word (as needed), 1in the manner described above. Bits of
data that wrap around the edge of a sector are
communicated to an adjacent sector, where they replace the
corresponding (wrapped) bits in the site-group being
processed in that adjacent sector. In this manner,
exactly the data that are needed for the set of
corresponding site-groups being processed by the various
nodes are read from DRAM.

After the data movement is completed, each
lattice site is updated independently and the bit-fields
that constitute each updated site-group are written to
DRAM. Thus, all bits that are read from memory are used
immediately and returned to memory. Similarly, the
processing node 12 can alternatively (or also) perform

shifts of the bit-fields after the updating (processing)

22

10

15

20

25

30

WO 01/13256 PCT/US00/40633

operation, using the addressing of where data is written

to perform the periodic portion of the shifts.

Shifting in 2D and 3D

A memory organization based on shift-invariant
partitioning of lattice sectors is also effective in
multi-dimensional applications. Referring to FIG. 7, an
exemplary square 2D sector 70 (shown as a 16x16 lattice)
is partitioned into sixty-four four-element site-groups
72, of which four -- a first site-group 72a, a second
site~-group 72b, a ninth site-group 72i and a tenth site-
group 723 -- are shown. The first site-group 72a is
spread evenly along a diagonal. The other 63 site-groups,
including the site-groups 72b, 72i and 727j are periodic
translations of the diagonal pattern. Thus, these site-
groups demonstrate the property of a shift-invariant
partition. That is, all sets of bit-field bits that are
grouped together before a shift are also grouped together
after the shift. Assuming that bits are ordered
vertically within words, that is, the first bit belongs to
the uppermost lattice site in a site group, and so on from
top to bottom, it can be seen that purely horizontal
periodic shifts of bit-fields do not change which bits are
grouped together into words or the bit order (within
words). Purely vertical periodic shifts may rotate the
bits within a word. Thus, once again, any periodically
shifted data for a designated set of bit-fields and for a
designated site-group can be assembled by reading the
appropriate shifted data, and rotating the bits within the
words which require bit re-ordering. By constructing a
set of larger site-aggregates out of the site-groups in a

shift-invariant fashion (as described above), a processing

23

10

15

20

25

30

WO 01/13256 PCT/US00/40633

node can process entire rows at a time, processing each
constituent site-group in turn.

Periodically shifted bit-fields within each 2D
sector can be glued together into uniformly shifted bit-
fields that slide seamlessly along the composite space.
As was described above with reference to 1D sectors,
wrapped data from one sector replaces corresponding bits
in an adjacent sector. This substitution is performed one
dimension at a time. The processing node takes data that
has wrapped around horizontally and moves it to the
adjacent sector where it belongs. The now horizontally-
correct data is then shifted vertically by moving data
that has wrappéd around vertically into the adjacent
sector where it belongs. The net effect of this two-hop
process may be to communicate data to a diagonally
adjacent sector, even though the processing nodes only
communicate directly with their nearest neighbors.

The above-described technique applies équally
well to 3D. Consider, for example, a bit-field sector in
which one site-group is evenly spaced along the diagonal
of a cube and the other
site-groups are periodic shifts of the diagonal pattern.
Assuming that the bits within the words are numbered from
top (of the cube) to bottom, the side-to-side and front-
to-back periodic shifts of bit-fields do not change the
order of bits within a word. Once again, vertical
periodic shifts merely rotate thé bit order within a word.

Thus, a periodic bit-field shift can always be
accomplished by addressing plus a rotation of bits within
a word. A uniform shift can be achieved through periodic

shifts and inter-node communications.

24

10

15

20

25

30

WO 01/13256 PCT/US00/40633

Balancing Communication Demands

Returning to FIG. 4, it can be seen that each
site-group has exactly one lattice site within four
positions of the edge of the sector, two within eight
positions, and so forth. Consequently, a bit-field can be
shifted by four positions by communicating exactly one bit
to an adjacent sector for each DRAM word. To shift by
eight-positions requires a communication of two bits. In
1D, this even spacing of site-groups is an automatic by-
product of shift invariance and guarantees that, for a
given shift amount, the demand for inter-node
communication resources is divided as evenly as possible
between the various words of a bit-field.

Again referring to the 2D example of FIG. 7, it
is likewise noted that each site-group has exactly one
lattice site within four positions from each edge of the
sector, two within eight, and so on. Consequently, the
communication resources needed to implement a shift of a
bit-field are as balanced as possible between the various
words of the bit-field. Because not all shift-invariant
partitions in 2-D have this additional balanced property,
it is desirable to choose partitions which do so that
communication resources are used as efficiently as
possible. 1In 3D, the periodically shifted diagonal site-
groups discussed above/also have this balanced property.

Consider now a bit-field sector having edges of
unequal lengths. Sector size is selected to be a power of
two along each dimension. In the 2D example shown in FIG.
8, the horizontal dimension is twice as long as the
vertical dimension. In the example, the elements of each
site group are spread out twice as much horizontally as

vertically. One site-group still runs

25

WO 01/13256 PCT/US00/40633

10

15

20

25

30

"diagonally”™ from corner to corner, and the rest are stili
periodic shifts of this diagonal pattern. With this
partition, communication demands for each dimension will
be as balanced as is possible. In the illustrated
example, a given shift amount would require about twice
the communication resources per word for a given vertical
shift along the lattice as for the same horizontal shift,
since sites in each site-group are twice as close together
vertically. This disparity in communications is, however,
unavoidable in this case. The sector of the bit-field has
a horizontal edge that is twice as long as the vertical
edge, and so overall twice as many bits "spill over the
edge" for a given vertical shift as for the same

horizontal shift.
DRAM Module

In the described embodiment, each DRAM module 20
includes the circuitry needed to read or write 64-bit
words of uniformly shifting bit-field data using the
scheme described above. Referring now to FIG. 9, the
components of the DRAM module 20 are shown. The DRAM
module 20 includes a DRAM block 80, which is implemented
as a DRAM macro of the sort that is currently available as
a predefined block of circuitry from manufacturers of
chips having integrated DRAM and logic functionality. The
DRAM block 80 is organized as 1K rows, each of which holds
2K bits, with a 128 bit data word. If all of one row is
used while another row is activated, a new data word can
be accessed every 6ns. To reduce wiring and to better
match with logic speeds, a 64-bit data word with a 3ns
clock period is used instead. This rate conversion is

accomplished by a 128:64 multiplexer 82, which connects a

26

WO 01/13256 PCT/US00/40633

10

15

20

25

30

64-bit data path to a selected half of the 128-bit DRAM
block data word during each clock cycle. The multiplexer
82 provides an added level of memory granularity, as both
halves of each 128-bit word must be used for maximum
efficiency. This constraint is dealt with in the data
organization by adding one more level to the site grouping
hierarchy described above. 1In a similar manner,
additional levels in which the word-size is cut in half
could be added if additional rate conversion was desired.
Beyond the multiplexer 82, and thus for the remainder of
the operations performed by the processing node 12 (FIG.
2), the basic memory word size is taken to be 64 bits.
Coupled to the output of the multiplexer 82 is a
64-bit barrel rotator (or shifter) 84, which can shift a
memory word from 0 to 63 positions (with wraparound) in
one clock period. This rotation, together with word
addressing, allows the processing node to shift any bit-
field periodically within a sector.
Additional flexibility can be obtained by using

a butterfly network in place of the barrel shifter, as is

discussed under "Additional Features."

Mesh I/O

Connected to the output of the barrel shifter 84
is a mesh I/O unit 86. The mesh I/0 unit 86 performs
substitutions of bits in one processing node for
corresponding bits in another processing node to turn
periodic bit-field shifts within each node into uniform
lattice shifts. 1In the illustrated embodiment, each
processing node has sufficient I/0 resources to send and

receive up to 8 bits per clock along each of the three

27

WO 01/13256 PCT/US00/40633

10

15

20

25

30

axes of a 3D cubic lattice; however, this number could be
made larger or smaller. Because of the manner in which
bit-field shifts are implemented, any bit that is
transferred out of the processing node by the mesh I/0
unit 86 in one direction is replaced with a bit that
arrives at the mesh I/O unit 86 from the opposite
direction. Thus, I/O bit-streams for opposite directions
along the lattice are configured in pairs. As shown in
the figure, the 24-bit mesh I/0 bit-stream consists of a
24-bit mesh I/0 unit input 88 and a 24-bit mesh I/0 unit
output 90. When an input 88 is configured to replace a
bit, the bit to be replaced appears at the corresponding
output 90. Otherwise, the output 90 has a constant value
of zero. The 48 mesh-I/0 signals 14 (FIG. 2) for the chip
thus consist of 24 inputs which are distributed to all
mesh I/0O units, and 24 outputs which are constructed by
taking the logical OR of all corresponding mesh-I/0 unit
outputs.

Mesh communication resources are shared among
all of the DRAM modules. Each DRAM module deals with only
one word at a time, and all of the bits in each word
belong to a single bit-field which may be shifted. There
is no fixed assignment of I/0 resources to particular DRAM
modules. How far a given bit-field can be shifted in one
step depends on competition for resources among all the
modules. In the described embodiment, sufficient
communications resources are provided to simultaneously
shift 8 bit-fields, each by up to the distance between two
elements of a site-group, with each bit-field shifting
along all three orthogonal dimensions at the same time.
The actual maximum size of these shifts in units of
lattice positions depends upon the size of the sector,

which is what determines the site-group spacing. With the

28

WO 01/13256 PCT/US00/40633

10

15

20

25

30

same communication resources, four bit-fields can be
shifted up to twice as far, two bit-fields four times as
far, or one bit-field eight times as far.

Bits that are to be replaced in one node are
output through the mesh I/0 unit 86 onto the mesh I/O
interface 14 (FIGS. 1-2) to be received by a mesh I/O unit
in another node, where the received bits are used to
replace the corresponding bits that were output from that
node, as earlier described. Mesh signals are reclocked
after each traversal of a mesh link 14, and a single bit
can hop along each of the three dimensions in turn as part
of a single shift operation, thereby allowing the bit-
field shifts to be in arbitrary directions in 3D. If the
processing nodes are interconnected as a 1D or 2D array,
the mesh I/0 resources from the unused dimensions are

reassigned to active dimensions.
The Processing Element

After all bit substitutions have béen made, the
output from the DRAM module 20 on a 64-bit data bus 92 is
a 64 bit word of correctly shifted bit-field data that is
available as input data for the processing elements 18.
As shown in FIG. 2, the
processing node 12 includes twenty of the DRAM modules 20.

This

number of modules is a practical number which can
reasonably be

fit onto a semiconductor chip today. Using twenty DRAM
modules,

the processing node can potentially process up to 20 bits
of

shifted bit-field data for each of 64 lattice sites at a

29

WO 01/13256 PCT/US00/40633

10

15

20

25

30

time, as
illustrated in the memory access example 94 of FIG. 10.
Referring to FIG. 10, rows of words accessed
simultaneously 95 (in each of twenty DRAM modules 20 of
FIG. 2) are shown. The first word 96a accessed in each
DRAM module 20 is shown on the left, the second word 96b
is shown on the right. It will be understood that for a
DRAM row of 32 64-bit memory words, all 32 words of each
row are processed as a unit, all 32 being either read or
written. For simplicity, however, only two words of each
row are depicted. The order in which the various words
are accessed depends upon the various shifts of the
associated bit-fields that are being performed, as was
described earlier. Some of the twenty DRAM rows 95 that
are simultaneously accessed may contain non-bit-field
data. For example, one of the rows may contain data which
controls which set of DRAM rows will be processed next,
and how they will be processed.
Groups of twenty words (e.g., 96a or 96b) are
accessed
simultaneously. Of these twenty words 95, those that
contain
bit-field data that are to be used together all are
associated
with the same set of 64 lattice sites: the same site-
group.
FIG. 10 illustrates that groups of corresponding bits from
each
simultaneous word (e.g., 97 or 98) are handled by
individual PEs
(e.g., PEO or PE63). Each PE processes bit-field data
from one

lattice site at a time.

30

WO 01/13256 PCT/US00/40633

10

15

20

25

30

A wide variety of different processing elements,
with or without persistent internal state, are compatible
with the
memory/communications organization used in this design.

In

FIG. 11, the processing element 18 (FIG. 2) is illustrated
as a PE well suited to symbolic processing of lattice
data. As shown, a 20-bit memory-to-PE interface 100
connects each PE 18 to the

twenty DRAM modules 20. Each PE 18 receives a bit-line
from each

of the DRAM modules 20 and all of the twenty bit lines in
the

interface 100 for a particular PE 18 correspond to the
same bit

position within a DRAM word. Some of the lines are used
as inputs and some are used as outputs. The direction of
data flow depends upon how the DRAM modules have been
configured for the current set of rows that are being
processed.

The PE 18 includes a permuter 102, which
attaches each of the 20 bit-lines from the memory 16 to
any of 20 functional lines inside the PE. The permuter
102 is a reconfigurable switching device which produces a
complete one-to-one mapping of bit-lines from two separate
sets of lines (i.e., the memory module side and internal
PE side) based on configuration information supplied by
the controller 30 (FIG. 2). The permuters 102 in each PE
18 are configured identically at any given time. In each
PE 18, 9 inputs are dedicated to data coming from a set of
bit-fields, 8 outputs are dedicated to data going to a
different set of bit-fields, one input is dedicated to

program control information that is sent to the controller

31

10

15

20

25

30

WO 01/13256 PCT/US00/40633

30, one input carries lookup table data to be used for
later processing, and the remaining wire is involved in
I/0 operations to and from the memory 16. The permuter
allows data from any DRAM module to play any role.
Bit-field data flows through the processing
elements. Input data arrive from one set of DRAM modules
and results are deposited into a different set of DRAM
modules. Since entire DRAM rows are processed at a time,
a given choice of DRAM data directions, mesh I/O
communication paths and PE permuter settings lasts at
least 32 clocks (the time it takes to access all 32 64-bit
words of a given 2 Kbit row). The amount of time required
to process one set of DRAM rows is referred to as a row-

period.

Table Lookup Processing

The basic data-transforming operation within
each PE 18 is performed by a lookup table (LUT) 104 with
8-inputs and 8-outputs. All LUTs 104 in all of the PEs
use identical table data. Each LUT 104 performs
independent 8-bit lookups into the shared data. Eight
input bits 106 from some lattice site are transformed by
the LUT 104 into 8 new output bits 108, which are
deposited into a different set of bit-fields than the
input bits 106 came from. A ninth input bit is used as a
conditional bit 110. This ninth bit (together with global
control information) determines whether or not the LUT 104
should be bypassed within the PE. When not bypassed, the
8-bit LUT output 108 becomes the 8-bit PE output 112.

When bypassed, the 8-bit LUT output 108 of the LUT 104 is
ignored and the input bits 106 become the PE output 112.

As shown in the figure, the conditional bit operates as a

32

WO 01/13256 PCT/US00/40633

10

15

20

25

30

select for a LUT MUX 114, which receives as inputs the
input bits 106 and the 8-bit LUT output 108 and, based on
the state of the conditional bit 110, selects one of these
inputs as the PE output 112. Larger LUTs (i.e., LUTs with
more inputs) can be efficiently simulated by using a
sequence of smaller LUTs in conjunction with the
conditicnal bit 110. Using a sequence of data movements
and LUTs, any calculation on a regular spatial lattice can
be performed.

During each update of a site-group, all of the
PEs 18 operate in the same manner. FEach works on the same
set of bit-fields and sees the data for a particular
lattice site. They each transform their respective data
in the same manner, using the same LUT 104. The LUT 104
has 256 8-bit entries, specified by a total of 2 Kbits of
data copied from a single DRAM row. During each row-
period, one DRAM module is selected to provide a row of
data for use as the LUT 104 during the next row-period.
The data arrives as 32 64-bit words, with one bit of each’
word entering each PE through a next-LUT input 122 during
each of 32 clocks. The data is double buffered, so at any
given time, each PE stores 32 bits of current LUT data and
32 bits of next-LUT data. Each of the 64 PEs broadcasts
its current 32 bits of LUT data onto a separate portion of
the 2K-bit LUT bus 40, and all of the PEs share the data
on the LUT bus 40, each using a multiplexer to perform 8-
input/8-output lookups with these 2K shared bits.

Referring to FIG. 12, the composition of the LUT
104 is shown. The 8 bits of LUT input data 106 control a
256x8 to 8 multiplexer 130, which selects 8 bits of data
from the LUT bus 40. The LUT 104 further includes a LUT
data unit 132, which holds 64 bits of LUT data. The LUT
data unit 132 is illustrated in more detail in FIG. 13.

33

10

15

20

25

30

WO 01/13256 PCT/US00/40633

Referring to FIG. 13, the LUT data unit 132
includes a 32 bit shift register 140 for loading a
sequence of 32 next-LUT data bits 122 on consecutive
clocks of the row-period, and a 32 bit latch 142 which can
latch 32 bits in parallel from shift register 140 and
drive them onto 32 distinct wires of the 2 Kbit wide LUT
bus 40. New data is serially accumulated in the shift
register 140 while previous data is being driven onto the
LUT bus 40. Thus all LUT data can be changed as often as
every row-period. Both the serial loading of next-LUT
data 122 and the parallel loading of current-LUT data 134
are separately controlled during each row-period (with
shared control for all PEs). Note that when LUT data on
the LUT bus 40 is changed, other data paths to the memory
20 and the mesh I/0 14 are normally also changed. Data on
the LUT bus 40 remains constant for at least one row-
period before it is again changed.

In addition to allowing the LUT 104 to be
changed for every row-period, the above-described scheme
also provides a large lookup table shared by all PEs that
can be quickly filled with a row of bit-field data. When
used in this manner, all lattice sites in the same sector
can randomly access the set of lattice site data contained
in the LUT 104. This provides a non-local communications
mechanism. A similar operation is also very useful for
data reformatting. A row of bit-field data to be
reformatted is stored into the LUT. A set of predefined
constant rows of data are then used as LUT inputs in order
to permute this data within a row (or even between rows)
in any desired manner. This kind of operation can be made
more efficient if, in addition to an 8-input/8-output LUT,
the same 2 Kbits of table data can also alternatively be

used as an ll-input/l-output LUT. Since this only uses a

34

10

15

20

25

30

WO 01/13256 PCT/US00/40633

total of 12 wires, whereas an 8-input/8-output LUT uses
16, there are 4 unused LUT wires in this case. These can
be usefully assigned as output wires, containing
additional copies of the single output value. The
conditional bit 110 can still be used in the 1ll-input/1-
output case. It simply replaces the single output bit of
the LUT with one of the inputs.

Serial Arithmetic

An important application of lattice computation
is numerical processing. Integer addition and subtraction
can be performed efficiently using the LUT mechanism
described above, but multiplication and division (as well
as floating point operations, and transcendental
functions) would be rather slow. To multiply two k-bit
integers using only LUTs, the processing node 12 needs to
pass each bit of each number in and out of DRAM
approximately k times. With the addition of simple bit-
serial arithmetic hardware, which includes data registers
within the PEs, these operations can be performed with
only a single pass through DRAM, using the full memory
bandwidth.

Bit-serial processing is also fully compatible
with the site-group shifting mechanism, and allows
economical
register use with time-multiplexed PEs. Bit-serial
arithmetic hardware receives the bits of the numbers it
operates on sequentially. For example, to multiply two
unsigned integers, the bits of the multiplicand might
first be sent into
the serial multiplication unit, one bit at a time. Then

the bits

35

WO 01/13256 PCT/US00/40633

10

15

20

25

30

of the multiplier would be sent in one at a time, starting
with

the least significant bit (1lsb). As the multiplier bits
enter the multiplication unit, bits of the product leave
the multiplication unit. The hardware inside the
multiplication unit is very simple. It includes a
register large enough to hold the multiplicand, an
accumulator register of the same size that can shift by
one position at a time, and an adder that can
conditionally add the multiplicand into the accumulator,
depending on the value of the current multiplier bit.
When no additional multiplier bits remain, a new
multiplicand can be loaded in while the final bits of the
product are leaving. Division uses essentially the same
hardware, and algorithms for common transcendental
functions are known which use similar hardware.

To map such a numerical processing algorithm
onto the embodiment heretofore described, integer data is
stored together in DRAM rows, and serial arithmetic
hardware is added to each PE. An appropriate data format
for serial arithmetic is to have single DRAM rows hold
data corresponding to many different bit fields for the
same set of lattice sites. For example, one word of a row
could contain the lsb of a 32-bit integer present at each
of 64 lattice sites (i.e., the lsb bit-field for a site-
group). Other words within the row would contain each of
the other bit-fields for the same site-group of integers.

An exemplary data format for_serial arithmetic is
illustrated in FIG. 14B.

Referring to FIG. 14A, in a single-bit-field
(per row) data format 160, all words 161 in a given DRAM
row contain data belonging to the same bit-field. Each

word 161 contains data from a different site-group. Taken

36

10

15

20

25

30

WO 01/13256 PCT/US00/40633

together, these words form a larger site-aggregate.
Referring to FIG. 14B, in a single site-group (per row)
data format (or, numerical row format) 162, all words
contain data from the same site-group, with each word
belonging to a different bit-field. 1If these words are
read starting with the lsb-word 164 and proceeding in
order of bit significance to the msb-word 166, then each
PE sees the consecutive bits of an integer -- for example,
PEO sees consecutive bits of one integer 168 and PE63 sees
consecutive bits of another integer 170 -- in successive
clocks, which is exactly the kind of format needed by
serial arithmetic algorithms. Reading these words in
other orders yields other useful serial bit orderings. A
number of DRAM rows belonging to the same site-group of
lattice sites may also be processed before moving on to
the next site~group. In this way, data can remain in PE
registers during sequences of operations.

The single site-group per row data format 162
(FIG. 14B) puts site-groups of 32-bit integers together
into single DRAM rows. By addressing the appropriate set
of rows, shifted integer data can be brought together for
a given site-group. Since each DRAM word is the portion
of a bit-field belonging to this site-group, the rotation
and inter-chip bit substitution hardware of FIG. 9 is
perfectly suited to complete the shift of integer bit-
field data seamlessly, exactly as described earlier. Data
can also be quickly converted back and forth between
single site-group per row format 162 and the single-bit-
field per row format 160 (FIG. 14A) as necessary, using
the LUT-based PE of FIG. 11. If the controller 30 is able
to change the order of the LUT inputs at each clock (e.g.,
the permuter is a Benes network, and the controller

changes the bits controlling the final butterfly involving

37

WO 01/13256 PCT/US00/40633

10

15

20

25

30

the LUT inputs), then this format conversion only requires
each bit of each number to pass through the PEs twice. 1If
about 100 bits of storage is available within each bit-
serial arithmetic processor, this conversion can be done
in a single pass. Moreover, since numbers will mostly be
handled arithmetically, such conversion shouldn't need to
be done frequently.

Single-input and single-output bit-serial
arithmetic hardware can be integrated with the LUT based
PE of FIG. 1l1l. For example, eight copies of such serial
hardware (with a total of eight inputs and eight outputs)
could be configured by the controller 30 to replace the
multiplexer 130 of FIG. 12, taking inputs 106 and
transforming them into outputs 108. All serial units in
all PEs would share a common configuration/control stream.

Next-LUT data 122, I/0 data 38, and control data 36 would
all pass through the PE as usual. The shared LUT data on
the LUT bus 40 would be available for use by the
arithmetic hardware. This shared LUT could contain,. for
example, function tables used by CORDIC algorithms. Note
that this bit-serial arithmetic processing approach would
also work efficiently in a chip architecture with very few

DRAM modules coupled to each set of PEs.

External Memory

Providing the processing nodes 12 with access to
external memory makes it possible to perform large
computations using small arrays of nodes. Even on large
arrays of nodes, the usefulness of calculations
(particularly in 3 or more dimensions) may depend
crucially on how large a lattice can be emulated.

External memory is also useful for holding extra lookup

38

10

20

30

WO 01/13256 PCT/US00/40633

table data and other control information, and for
accumulating analysis information.

As shown in the processing node 12 of FIG. 2,
the master memory interface 22 serves as a high-speed
interface to a (potentially large) external memory
associated with each node. Communication between external
memory and the DRAM modules 20 passes through the PE I/O
port 38 (FIG. 11). External memory can be regarded as an
additional level in the memory granularity hierarchy
discussed earlier. In order to emulate a very large
lattice, each processing node can keep most of its sector
data in external memory. This sector is partitioned in a
shift-invariant manner into external site-aggregates, each
consisting of the number of lattice sites that will be
accessed together in the external memory. For a
particular set of bit-field shifts, the update operation
that is to be applied to the entire lattice can be
performed on each external site-aggregate separately.
Periodically shifted data for a particular external site-
aggregate can be read into on-chip memory, processed, and
then written back to external memory. If the update
operation involves lattice sites with many bit-fields,
some of which must be accessed multiple times in the
course of the update, then completely processing one
external site aggregate before moving on to the next may
save a significant amount of time (since keeping the data
on-chip greatly speeds up the repeated accesses).

Note that, for arithmetic operations, the single
site-group per row data format 162 discussed earlier makes
it possible to have each DRAM row filled with data from
just 64 lattice sites. This can make it convenient to
perform numerical computations in which very large data

objects are kept at each lattice site, and only a very

39

WO 01/13256 PCT/US00/40633

10

15

20

small part of the lattice is on-chip at any given time.

Simplifying the Shifting

Shifting hardware and control can be simplified
if some mild constraints are placed on the way that sites
can be aggregated.

As has been described, a hierarchy of
shift-invariant partitions is used to aggregate lattice
sites that are processed together, and bit-field data are
structured as a corresponding hierarchy of bit-aggregates
in the memory. Shifting is performed
hierarchicaly. Shifted bit-field data for a largest
site—-aggregate is accessed by addressing a largest
bit-aggregate
associated with a correspondingly shifted largest
site-aggregate,
and then performing any remaining shift on the addressed

data.

30

This remaining shift only involves data within the largest
bit-aggregate, and is performed by a recursive application
of the

same technique of splitting the shift into a part that can
be

performed by addressing, and a part that is restricted to
smaller

site-aggregates.

Shifting can be simplified if the
site-aggregates that are grouped together to form a larger
aggregate are all related by a translation along a single
direction. For example, the first 16 site-groups of the
partition illustrated in FIG. 7 are all horizontal shifts

of each other, and so could form such a

40

WO 01/13256 PCT/US00/40633

10

15

20

25

30

single-direction site-aggregate. The vertical shifts of
such a

site-aggregate would form other single-direction
site-aggregates,

which together would constitute a shift-invariant
partition of the lattice. The site-groups that form each
aggregate are naturally ordered sequentially along the
aggregation direction. If the corresponding words of a
bit-field are similarly ordered, then periodic shifts
along this direction only involve a rotation of this
ordering. A particularly simple example of
single-direction aggregation is the grouping of individual
sites into the striped site-groups shown in FIG. 7. As
already discussed, in performing bit-field shifts only a
rotator is needed to reorder the bits within words.

If this single aggregation-direction constraint
is observed at the lowest levels of aggregation, then both
the control and the hardware can be simplified, since only
address rotations are needed to perform shifts at these
levels. Furthermore, it is sometimes the case (as in the
first example above) that shifts along the aggregation
direction can be accomplished by addressing alone, without
need for any further shifting within each addressed
bit-aggregate. The use of such aggregates allows the
additional simplification that all elements of such an
aggregate can be processed using identical periodic
shifts. It is assumed that DRAM row data have this
property, so that all words in a row are rotated

identically.

41

WO 01/13256 PCT/US00/40633

10

15

20

25

30

Control

Given a high rate of access to lattice data,
complex processing requires a concomitantly high rate of
access to control information. Since a row-period is the
atomic unit of processing, for maximum flexibility a
significant amount of control information will be
associated with each row-period. As has been described,
1/20 of the memory bandwidth has been devoted to ensuring
that a different LUT can be used for each row-period.
Another 1/20 of the memory bandwidth is devoted to
ensuring that
other control information can be changed for each row-
period.

As can be seen in FIG. 11, during each row-
period, one of the DRAM modules attached to each PE
provides control information via control output 36. While
one set of DRAM rows are being processed, 2 Kbits of data
are accumulated within the controller 30 (FIG. 2) for
controlling the next row-period via control stream 37.
This data includes the next row address to be used by each
of the DRAM modules 20, information about the order in
which words within rows should be accessed for each DRAM
module, information about word rotations for controlling
the barrel shifter 84 (FIG. 9) and the mesh I/0 unit 86,
the common setting to be used for all permuters 102 (FIG.
11) and other PE configuration data, information about
which DRAM module will be connected via I/0 38 to external
memory through RDRAM master 24 (FIG. 2) or RDRAM slave 28,
etc. The 2Kbits of control data can be viewed as a single
microcode instruction. Provisions are made for encoding a
sequence of similar operations on a group of consecutive

rows within each DRAM module 20 as a single instruction in

42

10

15

20

25

30

WO 01/13256 PCT/US00/40633

order to reduce the memory used for instruction storage.

In addition to the internal control stream 37,
control and initialization data also pass through external
I/0 interfaces 28 and 34 (FIG. 2). These I/0 channels are
used for initializing
memory contents and for real-time control and feedback.
Instruction data are stored within the memory modules 20
of each
node, and function as a set of microprograms. Execution
of the
current microprogram and scheduling of the next are
overlapped:
data are broadcast to all processing nodes about which
2Kbit
microcode instruction to execute when the current
microprogram
finishes (or reaches a scheduled decision point). In a
single-node system, the external control that schedules
the
sequence of microprograms to run comes from a conventional
microprocessor and is memory mapped using the slave memory
interface 26 shown in FIG. 2. In a larger system, memory
mapped
microprogram-scheduling data come into a single
distinguished node via the slave interface 26 and are
passed along to the rest of the system via the serial-I/O
interface 34. Serial-I/0O pipeline delays are compensated
for within each node separately when nodeé are initiating
(or terminating) a synchronous parallel operation. Low-
bandwidth data-I/0 (including initial program loading into
all nodes) can also use the serial-I/0 interface 34.

For higher bandwidth external-I/0, data is

accessed through the slave interface 26 of the

43

10

15

20

25

30

WO 01/13256 PCT/US00/40633

distinguished node, and the DRAM on this node is memory
mapped. Any data anywhere in the array of nodes can be
shifted (under microprogram control) through the mesh I/0
interface 14, so that it becomes accessible within the
distinguished node. Data that is common to all nodes (or
any subset of nodes) can be written once, and then rapidly
distributed under microprogram control. This kind of data
broadcast is important for distributing program data to
all nodes. It is also useful in setting up large physical
simulations, which often have initial states that are
characterized statistically and algorithmically as a
function of spatial location. Even complex surfaces can
be described in a compressed, encoded format, which is
later expanded algorithmically within the nodes. By
writing the same sectors of data to many nodes, modifying
small portions of the data, and performing some local
computation within each node, many physical simulations
can be initialized without transferring large amounts of
data. For loading or saving large data sets in parallel,
all of the nodes can perform I/O through their respective
master memory interfaces 24. 1In addition to RDRAM memory,
large disk devices with direct RDRAM interfaces can also
be connected here and, anticipating FPGA's with RDRAM
interfaces, other high-bandwidth circuitry can be
interfaced here.

Conditional operations can be performed which
depend upon lattice data. Each conditional operation
involves using serial-I/0 interface 34 to communicate a
request to all other nodes, which may subsequently at a
suitable decision point simultaneously initiate a new
microprogram -- without the intervention of an external
microprocessor. Some control latency can be hidden by

speculative execution. The next microprogram is started

44

WO 01/13256 PCT/US00/40633

10

15

20

25

30

at the decision point assuming no new program will be
scheduled. This program is written in a manner that
avoids overwriting current lattice state information as
new state information is generated, at least until enough
time has passed that it is known that no new program will
be scheduled. Such execution can be interrupted if
necessary, and a new microprogram started that ignores the
partially completed new lattice state data.

In a single-chip embedded system, a nonvolatile
memory such as a serial ROM can be connected to serial
I/0 line 34 to provide initialization data, making it
possible to avoid the use of a microprocessor altogether.

Controller status information and DRAM I/0 data 38 (FIG.
11) may be placed on the serial-I/0 interface 34 under
program control. This data can be decoded by external
logic to produce signals that interface with external
circuitry (eg., interrupt signals for a microprocessor).
It might be convenient to have a simple conventional
processor on-chip managing the serial-I/0 interface 34,
thereby making its protocols flexible and extendible.
Such an on-chip processor could also be useful in system

initialization.
Virtual Machine Models

The foregoing efficiently supports a wide
variety of virtual machine models. The simplest of these
is a fixed-lattice machine havingvuniform bit-field data
movement. Another supported model is the multi-resolution
machine: a fixed lattice machine in which some bit-fields
are represented with less resolution than others. This
kind of model can be implemented by reusing the same bit-

field data at several different nearby-shifted positions,

45

10

15

20

25

30

WO 01/13256 PCT/US00/40633

rather than keeping separate data for all lattice sites.
If the lower resolution data is not changed during site
updating, then the processing remains equivalent to a
simultaneous updating of all sites. If the lower
resolution bits are changed, then their values at the end
of each update of the lattice will depend upon the order
in which they are paired with other lattice bits.

A related model is the multi-grid machine, in
which power-of-two subsets of lattice data interact more
often and at greater range than other lattice data. For
example, an entire 2D lattice might first be updated using
a nearest neighbor interaction, then only sites with
coordinates that are both even would be updated, using a
second neighbor interaction along each axis, then only
sites with coordinates that are multiples of four using a
fourth neighbor interaction, etc. This kind of technique
is sometimes used to speed up numerical lattice
simulations. Here, each power-of-two subset is an element
of a shift-invariant partition of the lattice, and can be
constructed out of the kind of shift-invariant striped
partitions that have been used above. For very coarse
partitions, only a few elements from each stripe will be
updated -- this can be accomplished using the conditional
bit 110 (FIG. 11) in the PE. The controller 30 (FIG. 2)
also suppresses the mesh-I/0 unit substitution of data
that won't be updated, permitting all of the communication
resources to be reserved for bits that will actually
participate in the update. Note that, when eight or fewer
bits in a site-group are shifted, these can be moved
arbitrarily far through the lattice before being
substituted for bits in other nodes (the number of clocks
used by the mesh communication pipeline is extended as

necessary) .

46

10

15

20

25

30

WO 01/13256 PCT/US00/40633

A particular kind of multi-resolution model is a
pyramid machine model. A 2D example of such a model might
begin with a lattice filled with numerical data, with the
goal being to calculate the sum of all of the numbers.
This could be accomplished by partitioning the lattice
into 2x2 blocks and calculating the sum for each block
separately. These sums could then in turn be partitioned
into 2x2 blocks, and the sum for each of these blocks
calculated, and so on. At each step, data at two
different resolutions interact, and the spatial distance
between the lower-resolution sum-sites (which can be
pictured as lying at the center of each 2x2 block of
higher-resolution sum-sites) doubles at every step. Just
as in the multi-grid model, the final steps are performed
by masking updating of some sites using the conditional
bit 110, and taking advantage of fast shifts of sparse
data. This kind of calculation is useful for accumulating
statistical information about a spatial system, finding
extreme values of field data, and for other kinds of
analysis.

A crystal lattice model is a machine model in
which the spatial arrangement of lattice data is not
uniform, but has a regular crystalline structure.
Regularly spaced subsets of the crystal lattice sites are
called sublattices, and bit-fields are
associated with sublattices. For example, a 2D
checkerboard has
two sublattices, which could be called the red sublattice
and the
black sublattice. Some bit-fields might be associated
with both
sublattices, and some only with the red sublattice. The
black

47

10

15

20

25

30

WO 01/13256 PCT/US00/40633

sublattice would then have no bit-fields associated with
corresponding data. Some of the site-updating might
involve the

data associated with both sublattices, and might apply to
all sites. Some of the site-updating might cause the
uniform data to interact with the red-sublattice data, and
would apply only to the sites of the red sublattice.

It might also be that red sublattice data
sometimes shifts to the black sublattice, leaving no data
on the red sublattice at the next step. This would be a
simple example of a reconfiguring crystal lattice model,
in which the system goes through a sequence of crystal
lattices. In such a model, both the amount and type of
data associated with the various sublattices can change
with time. Note that reconfiguring lattice models are
very common, since any use of temporary variables in
updating lattice sites results in some bit-fields that
appear and then disappear. In calculations where several
processing steps are applied to the same site-aggregate
before moving on to another site-aggregate, temporary
variables may be used and freed, and so the same memory
storage may be available for reuse as temporary storage in
updating subsequent site-aggregates.

Clearly many other variants and combinations of
machine models are also possible. Fine-grained control at
the level of each individual row-period also makes many
other kinds of efficient computations possible, such as
the kinds of data-reformatting transformations alluded to
earlier for numerical data. Computations can be “pipelined
in time” by emulating a wavefront of variable data moving
through a higher dimensional volume of parameters (e.qg.,
the wavefront of a computation moving through a logic

circuit). The shared LUT within each node can act as a

48

WO 01/13256 PCT/US00/40633

10

15

20

25

30

powerful communications primitive, allowing non-local
transfers of data in the emulated lattice. Combined with
the facility to send small amounts of lattice data
arbitrarily far in one processing step, various kinds of
mesh routing algorithms can be efficiently implemented.
Thus the machine model encompasses considerably more than

a fixed lattice with uniform data movement.
Additional Features

It should be emphasized that a spatially

scalable mesh ‘

architecture of the sort described here is also scalable
as

technology improves, allowing more devices to be put onto
each

chip. The most direct scaling involves simply putting
several of

the nodes described above onto each chip, arranged in a
regular

array. Only one copy of the direct RDRAM slave interface
28

(FIG. 2) and of the serial-I/0 interface 34 are required.
The number of PEs may be adjusted to match advancing
logic speed and changing DRAM parameters by altering the
time-multiplexing factor for the PEs (i.e., the effective
word size, as determined by the multiplexer 82 of FIG. 9).

Some computations would be more efficient if it

were possible to use a smaller site-group. In particular,
this would allow the use of smaller 3D sectors to
efficiently emulate small 3D lattices. The effect of
having smaller site-groups can be achieved by splitting

the site-groups up into a set of smaller site-aggregates

49

10

15

20

25

30

WO 01/13256 PCT/US00/40633

that together form a shift-invariant partition of the
lattice. Each site-group then consists of several smaller
site-aggregates, all of which are processed in parallel.
The same amount of information is needed to control the
permuting of the bits within a word in all cases. As a
single 64-bit word, for example, 6 bits are needed to
specify the rotation amount, and by choosing the
aggregation of words into rows appropriately, the same
rotation can be used for all words of the same bit-field
during a given row-period. Similarly, if, for example,
the 64-bit word is divided up into four 16-bit aggregates,
then 4 bits are needed for a given bit-field to specify a
single fixed rotation of all 16-bit aggregates during a
row-period. Two additional bits are needed to specify a
rotation of the order of the four aggregates that comprise
each 64-bit word, again totaling 6 bits of control
information. The amount of hardware used in a 64-bit
barrel rotator 84 isralso sufficient for the more general
permutation. In fact, if the rotator is implemented as a
butterfly network, then it is only necessary to change the
control of the network to allow the 64-bit word to be
split into smaller bit-aggregates that can be individually
rotated, and also rotated as blocks within the word. This
additional flexibility in the control of the butterfly
network also removes some constraints on the control of
the mesh-I/0 unit 86 (FIG. 9), which may make it slightly
more complicated.

Another possible enhancement concerns
interconnect. Thus far, the discussion has been limited
to arrays of nodes in 1D, 2D and 3D, since physical arrays
of nodes in more dimensions are not uniformly scalable.

It should be noted, however, that the same hardware

described here, with only the provision of additional

50

WO 01/13256 PCT/US00/40633

10

15

20

25

30

communication resources, and a corresponding change to the
mesh-I/0 unit, can be used with any number of dimensions
of interconnect. It should be emphasized, however, that
the physical interconnect does not limit the maximum
number of dimensions of the lattice that can be emulated
by a

given array of nodes of the preferred embodiment, since
each node

can emulate a sector of a lattice with any desired number
of

dimensions, limited only by available memory.

The embodiment described here is aimed at
simultaneously achieving very high memory bandwidth, a
single large on-chip address-space, and efficient sharing
of inter-chip communications resources. Similar
architectures based on data movement using shift-invariant
partitioning can be adapted to other constraints. A
particularly interesting example is a lattice-computer
node design that is constrained to be essentially just an
ordinary DRAM chip. In this case a single large block of
on—-chip DRAM might be coupled to the PEs, with whole rows
still accessed one word at a time. By providing storage
for several rows of DRAM data along with the PEs, new PEs
that were very similar to those outlined above could be
constructed (but with only one serial arithmetic unit per
PE). Mesh-communications resources (i.e., pins) would
only be needed for shifting a single bit-field at a time,
and if the master RDRAM interface 24 in FIG. 2 is omitted,
the result would be a memory chip with only a handful of
extra pins. For LUT processing, correctly shifted bit-
field data for the PE inputs would be accumulated one row
at a time, then the LUT would be used to produce the

output rows, one at a time, which would be stored back

51

10

15

20

25

30

WO 01/13256 PCT/US00/40633

into DRAM. This would also have the advantage that update
operations with fewer than eight bit-field inputs or
outputs would not waste dedicated memory bandwidth, and
similarly as long as control or LUT data isn't changed, no
memory bandwidth is dedicated there either. Long power-
hungry wires wouldn't be needed to bring together data
from distant DRAM blocks, and there would be no constraint
on which rows of DRAM can be accessed simultaneously --
the constraint of "only one row from each DRAM block"
disappears when there is only one DRAM block. High

aggregate memory bandwidth could be achieved with this

kind of architecture by putting arrays consisting of

several single-DRAM nodes together on the same chip. With
such an array,

however, the advantage of a single large address space
would be

lost, and more mesh-1/0 pins would be needed.

The single memory-module version of the data
movement architecture discussed above uses more buffering
and less parallelism than the 20 memory-module version.
Intermediate architectures with a few coupled memory
modules would also be interesting. These would also share
the advantage of having little memory bandwidth dedicated
to specific functions, such as control, and would have
more parallism. In multi-module embodiments, including
the 20 memory module embodiment detailed above, it may be
useful to allow memory lines that aren't used by a PE to
be connected to each other. Since all of the bit-field
shifting is done by the memory modules 20, this would
allow bit-field data to be shifted and copied
independently of the other operations of the PEs.

As noted earlier, an FPGA with a direct RDRAM

interface would provide a convenient way to connect a

52

10

15

20

25

WO 01/13256 PCT/US00/40633

processing node to external circuitry -- for example, for
image processing. An alternative would be to put some
FPGA logic onto the same chip with the processing node,
adding some reconfigurable I/O pins, and perhaps making
the existing mesh-I/0 pins reconfigurable. Such a hybrid
lattice/FPGA chip would be particularly convenient for
embedded applications, which would involve electronic
interfacing and some buffering of data for synchronous
lattice processing. The FPGA array would connect to the
rest of the chip through the controller 30 of FIG. 2. It
would be capable of overriding parts of the controller's
state machine, in order to directly control the RDRAM
interfaces and other on-chip resources. It could use the
DRAM modules 20 simply as high-bandwidth on-chip memory,
if desired.

Finally, it should be emphasized that the design
of the PE is quite independent of the mechanism described
here for efficiently assembling groups of shifted lattice
site bits. The same shift mechanism can be used with many
fewer or many more bit-fields coming together at each PE.

The basic elements stored and shifted and applied to each
PE can also be larger than single bits. There is a rich
history of SIMD PEs, which provides many alternatives for
how to independently and identically process many parallel
streams of data. The preferred embodiment described here
couples one particular style of SIMD processing with a
rather general data-field shift mechanism in a spatial

lattice computer.

53

WO 01/13256 PCT/US00/40633

10

Other Embodiments

It is to be understood that while the invention
has been described in conjunction with the detailed
description thereof, the foregoing description is intended
to illustrate and not limit the scope of the invention,
which is defined by the scope of the appended claims.
Other embodiments are within the scope of the following

claims.

What is claimed is:

54

10

15

20

25

30

WO 01/13256 PCT/US00/40633

CLAIMS

1. A method of performing operations associated
with a process occurring in at least one emulated lattice
of at least one sector having lattice sites therein, the
operations being performed by at least one processing
node, the processing node associated with the dt least one
sector and including a memory, comprising:

associating each of the lattice sites with data
in a data structure;

partitioning the data at the lattice sites into
sets of homologous bits, one from each data structure at
each lattice site, to form corresponding bit-fields;

partitioning the lattice sites in a shift-
invariant manner into groups each including a plurality of
lattice sites to form corresponding first site-aggregates,
the data in each bit-field being correspondingly
partitioned into first bit-aggregates;

grouping together the first site-aggregates to
form a plurality of second site-aggregates that partition
the lattice sites in a shift-invariant manner;

grouping together pluralities of the first bit-
aggregates to form second bit-aggregates, each second bit-
aggregate aggregating data associated with the lattice
sites of a corresponding second site-aggregate;

storing in the memory each second bit-aggregate
as an addressable unit composed of separately addressable
first bit-aggregates; and

shifting data for at least one of the bit-fields
within the at least one sector by addressing each second
bit-aggregate in which a portion of the at least one of
the bit-fields is stored, and addressing each of the

constituent first bit-aggregates in the addressed each

55

10

15

20

25

30

WO 01/13256 PCT/US00/40633

second bit-aggregate.

2. The method of claim 1, further comprising:
processing bit-field data for each of the
lattice sites to be updated to transform the value of the

associated data structure.

3. The method of claim 2, wherein processing

comprises performing a symbolic operation.

4. The method of claim 2, wherein processing

comprises performing a numerical operation.

5. The method of claim 2, wherein processing
comprises:

reading from the memory the bit-field data for
each lattice site to be updated;

updating the read bit-field data; and

writing the updated bit-field data to the

memory.

6. The method of claim 5, wherein the step of
updating occurs after the step of shifting and the bit-
field data read from the memory are shifted bit-field
data.

7. The method of claim 5, wherein the step of
updating occurs before the step of shifting and the bit-
field data written to the memory are shifted bit-field
data.

8. The method of claim 1, wherein the at least one

sector comprises a plurality of sectors and the operations

56

10

15

20

25

30

WO 01/13256 PCT/US00/40633

are performed by an array of processing nodes, each
associated with a different one of the sectors in the
plurality of sectors and communicating with others of the
processing nodes associated with neighboring ones of the

sectors in the plurality of sectors.

9. The method of claim 8, further comprising:

shifting periodically the bit-field data within
each sector of each associated processing node, whereby
the data that shifts past an edge of the sector wraps to
the beginning of an opposite edge of the sector, the
periodic shifting being performed by memory addressing and
by re-ordering bits within addressed ones of the first

bit-aggregates.

10. The method of claim 9, further comprising:
reading by the processing nodes the periodically
shifted bit-field data, each accessing data for a one of
the first site-aggregates to be processed; and
communicating the wrapped data to a nearby one
of the processing nodes, the communicated wrapped data
being substituted for the wrapped data within the nearby

one of the processing nodes to which it is communicated.

11. The method of claim 10, further comprising:

processing the shifted bit-field data.

12. The method of claim 11, wherein processing

includes using a table lookup.
13. The method of claim 12, wherein each of the

processing nodes includes a plurality of processing

elements for processing a parallel stream of the bit-field

57

10

15

20

25

30

WO 01/13256 PCT/US00/40633

data and the table lookup is shared by all of the

processing elements in each processing node.

14. The method of claim 13, further comprising:
loading the bit-field data into the shared

lookup table so that data from all of the lattice sites in

a given one of the sectors can be used to randomly access

data belonging to a fixed set of the lattice sites.

15. The method of claim 11, wherein the plurality of
lattice sites aggregated within each of the first site-
aggregates have a uniform spacing relative to each edge of
the at least one sector, the difference for any two of the
first site-aggregates in the respective numbers of lattice
sites lying within a give distance of an edge being at

most one.

16. The method of claim 11, wherein each second bit-
aggregate aggregates first bit-aggregates associated with
a single one of the sectors in the plurality of sectors,
and which in their pattern of grouping of data associated
with the lattice sites, are all periodic translations of

each other along a single line in the single sector.

17. The method of claim 11, wherein each of the
processing nodes includes a plurality of processing
elements for processing a parallel stream of the bit-field
data, wherein the second bit-aggregate aggregates first
bit-aggregates associated with a plurality of the bit-
fields, and wherein each processing element includes bit-

serial arithmetic hardware.

18. The method of claim 11, wherein the at least one

58

10

15

20

25

30

WO 01/13256 PCT/US00/40633

emulated lattice includes at least two emulated lattices,
the at least two emulated lattices having unequal numbers
of the bit-fields, and wherein shifted bit-field data from

the at least two emulated lattices are processed together.

19. The method of claim 11, wherein the at least one
sector has at least two dimensions, and each of the first
site-aggregates includes a set of the lattice sites that
is unsymmetric about every parallel to at least one edge

of the at least one sector.

20. The method of claim 1, wherein the memory has
the property that consecutive accesses to each of the
plurality of first bit-aggregates is fastest if each first
bit-aggregate in the plurality of first bit-aggregates is

a part of a single one of the second bit-aggregates.

21. The method of claim 20, wherein the at least one
sector has at least two dimensions, and each of the first
site-aggregates includes a set of the lattice sites that
is unsymmetric about every parallel to at least one edge

of the at least one sector.

22. The method of claim 21, wherein the at least one
sector comprises a plurality of sectors and the operations
are performed by an array of processing nodes, each
associated with a different one of the sectors in the
plurality of sectors and communicating with others of the
processing nodes associated with neighboring ones of the

sectors in the plurality of sectors.

23. A processor for performing operations associated

with a process occurring in at least one emulated lattice

59

WO 01/13256 PCT/US00/40633

10

15

20

25

30

having at least one sector and having a plurality of
lattice sites therein, the processor comprising:

a processing node associated with the at least
one sector, the processing node including a memory for
storing lattice site data associated with the plurality of
lattice sites, each of the lattice sites having an
associated data structure;

wherein sets of homologous bits, one from each
associated data structure at each lattice site, form bit-
fields;

wherein a shift-~invariant partition of the least
one sector into pluralities of lattice sites form first
site-aggregates;

wherein first site-aggregates are grouped to
partition the lattice sites of the at least one sector in
a shift-invariant manner to form a plurality of second
site-aggregates;

wherein a portion of each bit-field associated
with each first site-aggregate forms a first bit-
aggregate;

wherein pluralities of the first bit-aggregates
are grouped together to form second bit-aggregates, each
aggregating data associated with a corresponding second
site-aggregate;

wherein the memory stores each second bit-
aggregate as an addressable unit composed of separately
addressable first bit-aggregates; and

wherein the processing node shifts data for at
least one of the bit-fields within the at least one sector
by addressing each second bit-aggregate in which each
portion of the at least one of the bit-fields is stored,
and addressing each of the constituent first bit-

aggregates in the addressed each second bit-aggregate.

60

10

15

20

25

30

WO 01/13256 PCT/US00/40633

24. The processor of claim 23, wherein the
processing node includes a plurality of processing
elements coupled to the memory, the processing elements
operating in parallel to process the shifted data received
from the memory, each of the processing elements in the
plurality of processing elements updating bit-field data
corresponding to a different lattice site in the shifted

data.

25. The processor of claim 24, wherein the memory
includes at least two memory blocks, and more than one of
the at least two memory blocks are coupled to each

processing element.

26. The processor of claim 24, wherein the plurality

of processing elements share a lookup table.

27. The processor of claim 24, wherein each
processing element includes bit-serial arithmetic

hardware.

28. The processor of claim 23, wherein the memory
includes at least one memory block and portions of the at
least one memory block are selected to store control
information used during a period in which a row of memory

words is processed.

29. The processor of claim 24 further comprising:

a plurality of the processing nodes, each of the
processing nodes in the plurality of processing nodes
connected by mesh I/O links to neighboring processing

nodes in the plurality of processing nodes to form a mesh

61

10

15

20

25

30

WO 01/13256 PCT/US00/40633

array, each of the processing nodes in the plurality of
processing nodes being associated with an equal-sized
sector of the emulated lattice; and

wherein the performance of the operations is

divided among the plurality of the processing nodes.

30. The processor of claim 28, further comprising:
a barrel shifter connected to the at least one

memory block for re-ordering bits within memory words.

31. The processor of claim 28, further comprising:
a butterfly network connected to the at least

one memory block for re-ordering bits within memory words.

32. The processor of claim 28, further comprising:
a mesh I/0 unit coupled to the at least one
memory block for identifying a bit as having shifted
beyond a sector boundary and transferring the identified
bit to a next adjacent sector for a corresponding bit

substitution.

33. The processor of claim 24, wherein the
operations are performed under the control of a host to

which the processor is connected.

34. The processor of claim 24, wherein the
processing node is coupled to a nonvolatile memory device
for storing a program and a copy of the program is loaded

into the processing node at boot time.
35. The processor of claim 24, wherein the

processing node includes reprogrammable logic blocks of

the sort used in FPGA devices, along with reprogrammable

62

10

15

20

25

30

WO 01/13256 PCT/US00/40633

I/0 pins, for interfacing with other electronic devices.

36. The processor of claim 24, wherein the
processing node controls an external memory device used
for storing bit-field data and for storing control

information.

37. The processor of claim 24, wherein the memory
has the property that consecutive memory accesses to each
of a set of several first bit-aggregates is fastest if
each first bit-aggregate of the set of several first bit-
aggregates is a part of a single one of the second bit-

aggregates.

38. The processor of claim 23, wherein the at least
one sector has at least two dimensions, and each of the
first site-aggregates includes a set of lattice sites that
is unsymmetric about every parallel to at least one edge

of the at least one sector.

39. The processor of claim 23, wherein constituent
first bit-aggregates are ordered within each second bit-
aggregate, such ordering being reflected in the associated
memory addresses, and wherein the grouping and ordering of
first bit-aggregates is such that the shifting of the at
least one bit-field involves only a cyclic permutation in
the order of each set of constituent first bit-aggregates

within the corresponding second bit-aggregate.

40. A method of performing operations associated
with a process occurring in at least one emulated lattice
of at least one sector of at least two dimensions having

lattice sites therein, the operations being performed by

63

10

15

20

25

30

WO 01/13256 PCT/US00/40633

at least one processing node, the at least one processing
node associated with the at least one sector and including
a memory, comprising:

associating each of the lattice sites with data
in a
data structure;

partitioning the data at the lattice sites into
sets of
homologous bits, one from each data structure at each
lattice site, to form corresponding bit-fields;

partitioning the lattice sites in a shift-
invariant manner into groups of lattice sites, each group
being unsymmetric about every parallel to at least one
edge of the at least one sector, to form a plurality of
corresponding site-aggregates, the data in each bit-field
being correspondingly partitioned to form bit-aggregates;

storing each bit-aggregate as an addressable
unit in the memory; and

shifting data for at least one of the bit-fields
within the at least one sector of the emulated lattice by
addressing each bit-aggregate in which a portion of the at

least one of the bit-fields is stored.

41. The method of claim 40, further comprising;
processing bit-field data for each of the
lattice sites to be updated to transform the value of the

associated data structure.

42. The method of claim 41, wherein processing

comprises performing a symbolic operation.

43. The method of claim 41, wherein processing

comprises performing a numerical operation.

64

10

15

20

25

30

WO 01/13256 PCT/US00/40633

44 . The method of claim 41, wherein processing
comprises:

‘reading from the memory the bit-field data for
each lattice site to be updated;

updating the read bit-field data; and

writing the updated bit-field data to the

memory.

45. The method of claim 44, wherein the step of
updating occurs after the step of shifting and the bit-
field data read from the memory are shifted bit-field
data.

46. The method of claim 44, wherein the step of
updating occurs before the step of shifting and the bit-
field data written to the memory are shifted bit-field
data.

47, The method of claim 40, wherein the at least one
sector comprises a plurality of sectors and the operations
are performed by an array of processing nodes, each
associated with a different one of the sectors in the
plurality of sectors and communicating with others of the
processing nodes associated with neighboring ones of the

sectors in the plurality of sectors.

48. The method of claim 47, further comprising:
shifting periodically the bit-field data within
each sector of each processing node, whereby the data that
shifts past an edge of the sector wraps to the beginning
of an opposite edge of the sector, the periodic shifting

being performed by memory addressing and by re-ordering

65

10

15

20

25

30

WO 01/13256 PCT/US00/40633

bits within the addressed ones of the bit-aggregates.

49. The method of claim 48, further comprising:
reading by the processing nodes the periodically
shifted bit-field data, each accessing data for a one of
the site-aggregates to be processed; and
communicating the wrapped data to a nearby one
of the processing nodes, the communicated wrapped data
being substituted for the wrapped data within the nearby

one of the processing nodes to which it is communicated.

50. The method of claim 49, further comprising:

processing the shifted bit-field data.

51. The method of claim 50, wherein processing

includes using a table lookup.

52. The method of claim 51, wherein each of the
processing nodes includes a plurality of processing
elements for processing a parallel stream of the bit-field
data and the table lookup is shared by all of the

processing elements in each processing node.

53. The method of claim 52, further comprising:
loading the bit-field data into the shared
lookup table so that data from all of the lattice sites in
a given one of the sectors in the plurality of sectors can
be used to randomly access data belonging to a fixed set

of the lattice sites.

54. The method of claim 50, wherein the lattice
sites that are aggregated within each of the site-

aggregates have a uniform spacing relative to each edge of

66

10

15

20

25

30

WO 01/13256 PCT/US00/40633

the at least one sector, the difference for any two of the
site-aggregates in the respective numbers of lattice sites
lying within a given distance of an edge being at most

one.

55. The method of claim 50, wherein there are at
least two emulated lattices, the at least two emulated
lattices having unequal numbers of the bit-fields, and
wherein shifted bit-field data from the at least two

emulated lattices are processed together.

56. A processor for performing operations associated
with a process occurring in at least one emulated lattice
having at least one sector of at least two dimensions
having lattice sites therein, the processor comprising:

a processing node associated with the at least
one sector, the processing node including a memory for
storing lattice site data associated with the lattice
sites, each of the lattice sites having an associated data
Structure;

wherein sets of homologous bits, one from each
associated data structure at each lattice site, form bit-
fields;

wherein a shift-invariant partition of the at
least one sector into pluralities of lattice sites forms
pluralities of site-aggregates, each site-aggregate being
unsymmetric about every parallel to at least one edge of
the at least one sector;

wherein a portion of each bit-field associated
with each site-aggregate forms a bit-aggregate;

wherein the memory stores each bit-aggregate as
an addressable unit; and

wherein the processing node shifts data for at

67

10

15

20

25

30

WO 01/13256 PCT/US00/40633

least one of the bit-fields within the at least one sector
of the emulated lattice by addressing each bit-aggregate
in which each portion of the at least one of the bit-

fields is stored.

57. The processor of claim 56, wherein the
processing node includes a plurality of processing
elements coupled to the memory, the processing elements
operating in parallel to process the shifted data received
from the memory, each of the processing elements in the
plurality of processing elements updating bit-field data
corresponding to a different lattice site in the shifted

data.

58. The processor of claim 57, wherein the memory
includes at least two memory blocks, and more than one of
the at least two memory blocks are coupled to each

processing element.

59. The processor of claim 57, wherein the plurality

of processing elements share a lookup table.

60. The processor of claim 57, wherein each
processing element includes bit-serial arithmetic

hardware.

61. The processor of claim 56, wherein the memory
includes at least one memory block and portions of the at
least one memory block are selected to store control
information using during a period in which a row of memory

words in processed.

62. The processor of claim 57 further comprising:

68

10

15

20

25

30

WO 01/13256 PCT/US00/40633

a plurality of the processing nodes, each of the
processing nodes in the plurality of processing nodes
connected by mesh I/O links to neighboring processing
nodes in the plurality of processing nodes to form a mesh
array, each of the processing nodes in the plurality of
processing nodes being associated with an equal-sized
sector of the emulated lattice; and

wherein the performance of the operations is

divided among the plurality of the processing nodes.

63. The processor of claim 61, further comprising:
a barrel shifter connected to the at least one

memory block for re-ordering bits within memory words.

64. The processor of claim 61, further comprising:
a butterfly network connected to the at least

one memory block for re-ordering bits within memory words.

65. The processor of claim 61, further comprising:
a mesh I/0 unit coupled to the at least one
memory block for identifying a bit as having shifted
beyond a sector boundary and transferring the identified
bit to a next adjacent sector for a corresponding bit

substitution.

66. The processor of claim 57, wherein the
operations are performed under the control of a host to

which the processor is connected.

67. The processor of claim 57, wherein the
processing node is coupled to a nonvolatile memory device
for storing a program and a copy of the program is loaded

into the processing node at boot time.

69

10

WO 01/13256 PCT/US00/40633

68. The processor of claim 57, wherein the
processing node includes reprogrammable logic blocks of
the sort used in FPGA devices, along with reprogrammable

I/0 pins, for interfacing with other electronic devices.

69. The processor of claim 57, wherein the
processing node controls an external memory device used
for storing bit-field data and for storing control

information.

70

WO 01/13256 PCT/US00/40633

1/14
//0
/Y
| l /.//2
i | | I | B
i | P
[P
1 | N
|
i i
T
|
| 1 |
Lt l

FIG. 1

WO 01/13256

PCT/US00/40633

2/14
12 22
16 V/ /
a 29
Direct 64 /
'\ 56 RDRAM - >
Azl DRAM | f==[T=s,
mesh 1/0 2 s
I/0 i
| = LA l Meodule #0T 1K rows x 2K cols r B R[;;e:;/l f,‘l Cf
20. / L‘_—[—' Moduie #1 - 1K rows x 2K cols .r B slave R?[}SM
<\ ; . [~ha6
<] Module #19 1K rows x 2K cols | 334 =32
’_’)7 r20 H0 120 1 39 4p. {20 39 Yy r
2K - 2K P
r:E—o}:é[?a}ré.. -;:[JPES—{L_L:, e == {34
serial
1 (/0
/

)

36 3% 3

—
¢

36 37

WO 01/13256 PCT/US00/40633
3/14

WO 01/13256

50
/

4/14

+ + +

PCT/US00/40633

SRS JERL IElEAE~ I

e TN 02 —

* R Beds lvE] peb-gab vy B

e

BN Batl BAERH IR F-Taa¥(s

- -

SRV | ET;’ B FERSuR P iﬂia-\ a/
57

FIG. 4

WO 01/13256 PCT/US00/40633
5/14

50

J

ENIEENEEEEENENEE EREEIZIESRSSCuEnm

JA[SFEAEEN. DS EIRRE

GEHBAT 2ZREANENTEEE

SENNTSEESIZIZANER

+ + +

FIG. 5

WO 01/13256 PCT/US00/40633
6/14

=N), B/,
\\ a ’ e 2
L0} b

WO 01/13256

7/14

te
QAN SARANRNRIA
"Ja‘qaumva:ﬂau4'
SEBOWME M IGARHLT
R N J::E*hﬂﬂm“:
7B L Bk o
BEEIL PRI P it
FELLEERERT B 5
CRAIVARR B AL H BTN
“AGR T INUACIBNT
ANFBAARAFAERBAF S
FEWSTLESMRAANME T
FH¥ R I ABALL G
SOABATISBIIWONRD
BEETE R T DA ET

B L i
iS!ﬂﬂﬂl!!dlixJﬁﬂ
AAEWMANIMNINAADE S
naAKWEGRAII AN
FARAMNAG 433 HIRE A
IAAAATIRAIAAF AN
JORMNRANDHARNR AL 2
IGLANRVAR B LRI
IANSAAQMAWIN AT
IRNGAAINI ARG AN AI Y
IATDINAIAIAI DALY
DRGARRNIA AN AN
INSAARATAAD DM
JMASAABA S RN S it
AUATUONANURIX LS
T CEER T ETTE B

PCT/US00/40633

WO 01/13256

8/14

D .
Jdailan&n;uﬂﬂ-u-w.naqy
THREAIAYASAIY R AT A WSS AMAT A 48 8N
IARARRIEAEARA < TN TN TN CH AW S & S 2)
iauaes - i 4

e
“ﬂ\lt ‘1“~l'11(4. 3«‘-.&5‘4
HERM UL R AN S A -«wawnn»-a-c
e 9.‘wunauw‘wiuu‘:uliwnﬁa14u4~-'4~1

-

]
"1a1,ﬂa-u--n‘1-- SuvnnBACT vAnc

FIG. 8

PCT/US00/40633

WO 01/13256 PCT/US00/40633

9/14
Ve,
{
DRAM Block — 2’0
1K rows x 2K cols
128
128:64 Mux —~ g2
64
Barrel shifter ~ §9
64 24
22 xyz mesh I/O]
6
5§, A% | T
42 S

FIG. 9

PCT/US00/40633
10/14

WO 01/13256

o 9T

n.wun g.%
J—V— | . bl # SQ%Q s\..bQ\ 3@%
) 8 yQ F T
: . i
.? ety 7 Y
| # Sim@ é&% ac_&
~pnith) e o147 o Wi~} ™y

\
574

WO 01/13256

10

PCT/US00/40633
11/14
18
» ’60 ;
. DRAM
:ﬁ ™ Memory 1A
teo {20
permuter ~p 192
39
I/0 /‘/
next) 34
bouade 2 L Jew
~122
LUT 256x8 | LUT bus

N

FIG.11

WO

01/13256
12/14

/89

PCT/US00/40633

1L

LUT

input

FIG. 12

- |LUT
'%3’1output
¢8 'e /30
—="256x8:8 MUX\
/32
LUT | 1l [next LUT
data | data)
/22
18 256x8 32
139

LUT ous_

{
. Ho

WO 01/13256 PCT/US00/40633

13/14
_ /90 172
’Zl /——\‘—A N
— s
Next L uf pas e b - - - - —{Cutn
lﬂ““’.-,.-—-—— bito bitt «-s.—{En BH3T

— /3¢

Wrbes 9y vy

PCT/US00/40633

WO 01/13256

14/14

or)1 5944

g4 9l

JTRNEY
p

L

lspppr-1:9 ° Q*bam\wﬁd

-—

R

CA Vv X 4 ‘oy dnasf. S

124120 deg O Proshags |

——

ie gt pion

(& P24
I 2

04 prt

Vi 214

! Oppyot -39 IERFresb =315 Aw.s\s

~r oy \\&..‘\,-\..M sm\w \\S\ “‘\ \N.ﬁ M\‘NN& pion

~’ O 21419 'lgduesb-2):s | 11 pon

_ g # %\M.-H.-w.-ﬂ

“o¥ \:S.u-ufw _Qw fiom~

/AI‘[\.\I)\\I/(\

091

|,
S

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/40633

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GOGF 15/00
US CL :712/13,14,17,22

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation séarched (classification system followed by classification symbols)

U.s.

712/13,14,17,22, 10, 11, 12, 15, 16, 18, 19, 20, 21

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

USPAT, EPO, JPO, DERWENT, IEEE, ACM

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5,159,690 A (MARGOLUS ET AL.) 27 OCTOBER 1992 1-69
A US 5,691,885 A (WARD ET AL.) 25 NOVEMBER 1997 1-69
A US 5,848,260 A (CHEN ET AL.) 8 DECEMBER 1998 1-69
D Further documents are listed in the continuation of Box C. | i Sec patent family annex.
= Special categories of cited documents: T later document published after the international filing date or priority
- L . date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance
— N . . . - X" document of particular relevance; the claimed invention cannot be
E carlier document published on or after the intemational filing date considered novel or cannot be considered to invoive an inventive sle;;
"L document which may throw doubts on priority claim(s) or which is when the document is taken alone

cited to blish the publication date of her citation or other

special reason (as spec.i-ﬁed)

"o" document referring to an oral disclosure, use, exhibition or other
means
‘P document published prior to the international filing date but later than

the priority date claimed

Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

20 NOVEMBER 2000

Date of mailing of the international search report

03 JAN 2001

Name and mailing address of the [SA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

WILLIAM M. TREA%WA. 8 Motthaas

Telephone No. (703) 305-9699

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

