I*I Innovation, Sciences et Innovation, Science and CA 3023492 A1 2017/12/14
Développement economique Canada Economic Development Canada
en 3 023 492

Office de la Propriéte Intellectuelle du Canada Canadian Intellectual Property Office

12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
13) A1

(86) Date de depot PCT/PCT Filing Date: 2017/06/01 (51) CLInt./Int.Cl. GO6F 27/57(2013.01),
(87) Date publication PCT/PCT Publication Date: 2017/12/14 GO6F 21/53(2013.01), HO4L 9/52(2006.01)
: : - _ (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2018/11/06 MICROSOFT TECHNOLOGY LICENSING. LLC. US
(86) N° demande PCT/PCT Application No.: US 201/7/035341

(72) Inventeur/Inventor:
(87) N publication PCT/PCT Publication No.: 2017/213943 GRAY, JOHN MARLEY, US

(30) Priorites/Priorities: 2016/06/06 (US62/346,431); (74) Agent: SMART & BIGGAR
2016/10/18 (US15/296,953)

(54) Titre : APPLICATIONS CRYPTOGRAPHIQUES DESTINEES A UN SYSTEME DE CHAINE DE BLOCS
54) Title: CRYPTOGRAPHIC APPLICATIONS FOR A BLOCKCHAIN SYSTEM

332

I
320 330 | 350 370

C smartir::i?(n)t*ast::) (cryptodzlegate) : < cryetlet contziner) (crypllet)
321 :
register cryptlet |
(cryptlst code, corfiguration) \ |
|
‘ 331 |
establish secure connection |
With SCS i
|
|

forward register cryptlet '

check hash of cryptlet code

302

|

|

|

|

| record regisiration info n
| cryptiet ragistretior blockehain
|

|

I

|

|

322
subscribe to "eceive avens

. —

—_— 338

forward subscription

——

.

_— 333
forward subscription

e, ———

— 37
record subscription

0
.
4
-
-
4
-

0
.
4

.
-
4

0
4
4
.
Al
-
-
-
-
4
.
4
Al

0
4

Attested host 340

|
|
|
|
|
i
smart Contract VM 310 :
|

FIG. 3

(57) Abréegée/Abstract:

A method Is provided for delegating behavior of a smart contract associated with a blockchain to code that is not part of the
blockchaln. A system directs execution by a virtual machine of the smart contract. During execution of the smart contract, the smart
contract sends to a cryptlet container service, via a cryptodelegate, a request to delegate a behavior to a cryptlet that executes on
an attested host. During execution the cryptlet container service identifies a host for executing code of the cryptlet in an appropriate
cryptlet container. The cryptlet container service directs the identified host to execute the code of the cryptlet to perform the
delegated behavior. After the delegated behavior Is performed, the cryptlet container service receives from the cryptlet a response
to the requested behavior. The cryptlet container service sends the response to the smart contract on the blockchain that is verified
by the cryptodelegate.

50 rue Victoria e Place du Portage1l e Gatineau, (Québec) K1AOC9 e www.opic.ic.gc.ca i+

50 Victoria Street e Place du Portage 1 ¢ Gatineau, Quebec K1AO0C9 e www.cipo.ic.gc.ca C anada

wo 2017/213943 A1 IO AR A A A

CA 03023492 2018-11-06

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
14 December 2017 (14.12.2017)

(51) International Patent Classification:
GO6F 21/51 (2013.01)

(10) International Publication Number

WO 2017/213943 Al

WIPO I PCT

HO04L 9/32 (2006.01)

GO6F 21/53 (2013.01)
(21) International Application Number:
PCT/US2017/035341
(22) International Filing Date:
01 June 2017 (01.06.2017)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
62/346,431 06 June 2016 (06.06.2016) Us
15/296,953 18 October 2016 (18.10.2016) US

(71) Applicant:

(72)

(74)

(81)

MICROSOFT TECHNOLOGY LI-
CENSING, LLC [US/US]; One Microsoit Way, Redmond,
Washington 98052-6399 (US).

Inventor: GRAY, John Marley;, Microsoft Technology
Licensing, LLC, One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US).

Agent: MINHAS, Sandip et al.; Microsoft Technology Li-
censing, LLC, One Microsoft Way, Redmond, Washington
98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR,
KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME, MG,

(54) Title: CRYPTOGRAPHIC APPLICATIONS FOR A BLOCKCHAIN SYSTEM

320

smart contract::
init{)

321

register cryptlet
(cryptlet code, configuration)

322
subscribe to receive events

—

330

(cryptodelegate)

I \ 331

establish secure connection
with CCS

LEP,

forward register cryptlet

I
;
I
:
I
;
I
:
I
;
I
.
|
.
I
;
I
:
I
;
I
;
I
;
I
;

333

forward subscription

—

350

(cryptlet container)

3/0

Coe)

check hash of cryptlet code

352

record registration info in
cryptlet registration blockchain

Smart Contract VM 310

I
,
I
:
I
,
I
:
I
;
I
;
I
;
|
r
|
.
I
:
I
;
I
.
I
:
I
;
I
;
I
;
|
’
I
;
I
:
I
;
I

- 353

forward subscription

. ——

_ 371
record subscription

Attested host 340

FIG. 3

(57) Abstract: A method 1s provided for delegating behavior of a smart contract associated with a blockchain to code that 1s not part
of the blockchain. A system directs execution by a virtual machine of the smart contract. During execution of the smart contract, the
smart contract sends to a cryptlet container service, via a cryptodelegate, a request to delegate a behavior to a cryptlet that executes on
an attested host. During execution the cryptlet container service identifies a host for executing code of the cryptlet in an appropriate
cryptlet container. The cryptlet container service directs the identified host to execute the code of the cryptlet to perform the delegated
behavior. After the delegated behavior 1s performed, the cryptlet container service receives from the cryptlet a response to the requested
behavior. The cryptlet container service sends the response to the smart contract on the blockchain that 1s verified by the cryptodelegate.

[Continued on next page/

CA 03023492 2018-11-06

WO 20177213943 AT |0 DR0CA)AV0 0000 0K RAR AR RAR SR OAR

MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, 8T, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

— as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

CRYPTOGRAPHIC APPLICATIONS FOR A BLOCKCHAIN SYSTEM

BACKGROUND

[0001] The bitcoin system was developed to allow electronic cash to be transferred
directly from one party to another without going through a financial institution, as
described 1in the white paper entitled “Bitcoin: A Peer-To-Peer Electronic Cash System”
by Satosh1 Nakamoto. A bitcoin (e.g., an electronic coin) 1s represented by a chain of
transactions that transfers ownership from one party to another party. To transfer
ownership of a bitcoin, a new transaction 1s generated and added to a stack of transactions
in a block. The new transaction, which includes the public key of the new owner, 1s
digitally signed by the owner with the owner’s private key to transter ownership to the
new owner as represented by the new owner public key. Once the block 1s full, the block
1s “capped” with a block header that 1s a hash digest of all the transaction 1dentifiers within
the block. The block header 1s recorded as the first transaction in the next block 1n the

p;

chain, creating a mathematical hierarchy called a “blockchain.” To verity the current
owner, the blockchain of transactions can be followed to verity each transaction from the
first transaction to the last transaction. The new owner need only have the private key that
matches the public key of the transaction that transferred the bitcoin. The blockchain
creates a mathematical proof of ownership 1in an entity represented by a security i1dentity
(e.g., a public key), which in the case of the bitcoin system 1s pseudo-anonymous.

[0002] To ensure that a previous owner of a bitcoin did not double-spend the bitcoin
(1.e., transfer ownership of the same bitcoin to two parties), the bitcoin system maintains a
distributed ledger of transactions. With the distributed ledger, a ledger of all the
transactions for a bitcoin 1s stored redundantly at multiple nodes (1.e., computers) of a
blockchain network. The ledger at each node 1s stored as a blockchain. In a blockchain,
the transactions are stored in the order that the transactions are received by the nodes.
Each node 1n the blockchain network has a complete replica of the entire blockchain. The
bitcoin system also implements techniques to ensure that each node will store the 1dentical
blockchain even though nodes may receive transactions in different orderings. To verity
that the transactions 1n a ledger stored at a node are correct, the blocks 1n the blockchain
can be accessed from oldest to newest, generating a new hash of the block and comparing
the new hash to the hash generated when the block was created. If the hashes are the

same, then the transactions 1n the block are verified. The bitcoin system also implements

techniques to ensure that 1t would be infeasible to change a transaction and regenerate the

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

blockchain by employing a computationally expensive technique to generate a nonce that
1s added to the block when 1t 1s created.

[0003] Although the bitcoin system has been very successful, 1t 1s limited to
transactions in bitcoins or other cryptocurrencies. Efforts are currently underway to use
blockchains to support transactions of any type, such as those relating to the sale of
vehicles, sale of financial derivatives, sale of stock, payments on contracts, and so on.
Such transactions use 1dentity tokens, which are also referred to as digital bearer bonds, to
uniquely 1dentify something that can be owned or can own other things. An identity token
for a physical or digital asset 1s generated using a cryptographic one-way hash of
information that uniquely 1dentifies the asset. Tokens also have an owner that uses an
additional public/private key pair. The owner public key 1s set as the token owner 1dentity
and when performing actions against tokens, ownership proof 1s established by providing a
signature generated by the owner private key and validated against the public key listed as
the owner of the token. A person can be uniquely identified, for example, using a
combination of a user name, social security number, and biometric (e.g., fingerprint). A
product (e.g., refrigerator) can be uniquely 1dentified, for example, using the name of its
manufacturer and 1ts seral number. The 1dentity tokens for each would be a cryptographic
one-way hash of such combinations. The 1dentity token for an entity (e.g., person or
company) may be the public key of a public/private key pair, where the private key 1s held
by the entity. Identity tokens can be used to identify people, institutions, commodities,
contracts, computer code, equities, derivatives, bonds, insurance, loans, documents, and so
on. Identity tokens can also be used to 1dentify collections of assets. An identity token for
a collection may be a cryptographic one-way hash of the digital tokens of the assets in the
collection. The creation of an identity token for an asset in a blockchain establishes
provenance of the asset, and the identity token can be used in transactions (e.g., buying,
selling, 1nsuring) of the asset stored in a blockchain, creating a full audit trail of the
transactions.

[0004] To record a simple transaction 1n a blockchain, each party and asset involved
with the transaction needs an account that 1s identified by a digital token. For example,
when one person wants to transfer a car to another person, the current owner and next
owner create accounts, and the current owner also creates an account that 1s uniquely
1dentified by 1ts vehicle i1dentification number. The account for the car identifies the
current owner. The current owner creates a transaction against the account for the car that

indicates that the transaction 1s a transfer of ownership transfer, indicates the public keys

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

(1.e., 1dentity tokens) of the current owner and the next owner, indicates the 1dentity token
of the car, and the transaction 1s signed by the private key of the current owner. The
transaction 1s evidence that the next owner 1s now the current owner.

[0005] To enable more complex transactions, some systems use “smart contracts.”
A smart contract 1s computer code that implements transactions of a contract. The
computer code may be executed in a secure platform (e.g., an Ethereum platform) that
supports recording transactions in blockchains. In addition, the smart contract itself 1s
recorded as a transaction in the blockchain using an identity token that 1s a hash (i.e.,
1dentity token) of the computer code so that the computer code that 1s executed can be
authenticated. When deployed, a constructor of the smart contract executes initializing the
smart contract and 1ts state. The state of a smart contract 1s stored persistently in the
blockchain (e.g., via a Merkle tree). When a transaction 1s recorded against a smart
contract, a message 1S sent to the smart contract and the computer code of the smart
contract executes to implement the transaction (e.g., debit a certain amount from the
balance of an account). The computer code ensures that all the terms of the contract are
complied with before the transaction 1s recorded in the blockchain. For example, a smart
contract may support the sale of an asset. The inputs to a smart contract to sell a car may
be the 1dentity tokens of the seller, the buyer, and the car and the sale price in U.S. dollars.
The computer code ensures that the seller 1s the current owner of the car and that the buyer
has sufficient funds 1n their account. The computer code then records a transaction that
transfers the ownership of the car to the buyer and a transaction that transfers the sale price
from the buyer’s account to the seller’s account. If the seller’s account 1s in U.S. dollars
and the buyer’s account 1s Canadian dollars, the computer code may retrieve a currency
exchange rate, determine how many Canadian dollars the seller’s account should be
debited, and record the exchange rate. If either transaction 1s not successful, neither
transaction 1s recorded.

[0006] When a message 1s sent to a smart contract to record a transaction, the
message 1S sent to each node that maintains a replica of the blockchain. Each node
executes the computer code of the smart contract to implement the transaction. For
example, 1f 100 nodes each maintain a replica of a blockchain, then the computer code
executes at each of the 100 nodes. When a node completes execution of the computer
code, the result of the transaction 1s recorded in the blockchain. The nodes employ a
consensus algorithm to decide on which transactions to keep and which transactions to

discard. Although the execution of the computer code at each node helps ensure the

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

authenticity of the blockchain, 1t requires large amounts of computer resources to support
such redundant execution of computer code.

[0007] Smart contracts, like the one for the sale of an asset, often need to retrieve
event or time-based information such as currency exchange rates, stock prices, interest
rates, and so on. To support the need for such information, “oracles” have been developed
to record transactions with the needed information. For example, an oracle can record a
transaction 1n the blockchain listing currency exchange rates at a certain time each day.
The computer code for a smart contract can search through the blockchain to find the
needed currency exchange rate. Unfortunately, current blockchain platforms do not
provide a way to ensure that the information added by an oracle can be trusted.
SUMMARY

[0008] A method 1s provided for delegating behavior of a smart contract associated
with a blockchain to code that 1s not part of the blockchain. A system directs execution by
a virtual machine of the smart contract. During execution of the smart contract, the smart
contract sends to a cryptlet container service, via a cryptodelegate, a request to delegate a
behavior to a cryptlet that executes on an attested host. During execution of the cryptlet
container service, the cryptlet container service identifies a host for executing code of the
cryptlet within a cryptlet container. The cryptlet container service directs the identified
host to execute the code of the cryptlet to perform the delegated behavior. After the
delegated behavior 1s performed, the cryptlet container service receives from the cryptlet a
response to the requested behavior. The cryptlet container service sends the response to
the smart contract as a message that 1s validated by the cryptodelegate. The
cryptodelegate and the cryptlet container service provide for secure communications
between the smart contract and the cryptlet.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Figure 1 1s a block diagram that illustrates an example 1n which a smart
contract requests services of a cryptlet.

[0010] Figure 2 1s a block diagram that illustrates a connection between a
cryptodelegate and a cryptlet in some embodiments.

[0011] Figure 3 1s a flow diagram 1llustrating on overview of an initialization of a
smart contract that employs a cryptlet in some embodiments.

[0012] Figures 4A, 4B and 4C are block diagrams 1llustrating an architecture of the

CMP that supports the event use cases or utility cryptlets in some embodiments.

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

[0013] Figures SA, 5B, 5C and 5D are block diagrams 1llustrating an architecture of
the CMP that supports the control use cases, contract Cryptlets and use of enclaves 1n
some embodiments.

DETAILED DESCRIPTION

[0014] The combination of a smart contract and a distributed ledger (1.e., a
blockchain) provides the opportunity for a consortium of entities (e.g., banks), referred to
as members, to record transactions between the members and other parties. A distributed
ledger has several advantages for a consortium, such as being cryptographically authentic,
shared, distributed, and a ledger. A distributed ledger 1s cryptographically authentic in the
sense that the use of public and private keys ensures that transactions are impervious to
fraud and establish a shared truth. The distribution of a distributed ledger means that there
are many replicas of the ledger. The value of a distributed ledger increases as the number
of members 1n a consortium increases because more transactions involving members can
be recorded 1n the distributed ledger and the members can share the costs associated with
maintaining the distributed ledger. Since the distributed ledger 1s a “ledger,” 1t serves as
an 1mmutable record of the transactions and can be used to establish compliance with
regulatory requirements. A distributed ledger for such a consortium 1s private in the sense
that an entity needs permission from the existing members to become a member.

[0015] Because smart contracts can be used to represent virtually all types of
contracts, many different consorttums may use smart contracts. The members of a
consortium can agree to a standard set of smart contracts to be used to record transactions.
For example, a consortium of banks may agree on a smart contract relating to mortgages
with an adjustable rate. Such a smart contract can be programmed to enforce the terms of
a mortgage, such as debiting an account of a mortgagee and crediting an account of a
mortgagor by determining the appropriate adjustable rate and calculating a variable
payment based on the terms of the mortgage. Smart contracts provide an opportunity for a
consortium to replace an existing business model (e.g., paper contracts) with smart
contracts and have the advantages of a distributed ledger as discussed above.

[0016] To make such a consortium truly effective, however, the consortium needs
more services than those that can be provided with just smart contracts and a distributed
ledger. For example, the members of a consortium may need their existing systems (e.g.,
an accounting system or a reporting system) to access the data of the distributed ledger,
systems to help with the management and operation of the distributed ledger, systems to

help ensure the privacy of the data in the distributed ledger (e.g., terms of contracts),

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

systems that support identity and key management, systems to support analytics (e.g.,
business intelligence and machine learning), and so on. In addition, the parties to a
contract may want to avoid the costs associated with executing logic that implements a
contract redundantly at each node.

[0017] To support the needs of a consortium, a cryptographic middleware platform
(“CMP”) 1s provided that allows smart contracts to interact with computer programs to
provide the additional needed services of a consortium and to help avoid redundant
execution of logic that implements a contract. The computer programs are “off-the-
blockchain™ 1n that they, unlike smart contracts, are not recorded 1n the distributed ledger.
These programs are cryptographic applets, which are referred to herein as “cryptlets.”
[0018] In some embodiments, the CMP delegates behavior associated with a
contract installed on a blockchain to a non-blockchain application. The CMP provides a
cryptographic delegate (“cryptodelegate”) and a cryptlet container service. The
cryptodelegate interfaces with a virtual machine executing code of a contract to provide
access to a cryptlet executing outside the virtual machine. The cryptodelegate receives
from the virtual machine an 1dentity token of the cryptlet and an indication of a requested
behavior to be performed by the cryptlet as provided by the code of the contract. For
example, the requested behavior may be supplying the current price of a certain stock.
The cryptodelegate interfaces with the cryptlet container service to provide a secure
communication channel from the virtual machine to the host (e.g., an attested computer
and cryptlet container) on which the cryptlet 1s to execute. The cryptlet container service
stores information relating to the registration of cryptlets that i1t supports. For example, the
information may include a mapping from the identity token of the cryptlet to the host on
which the cryptlet executes and various policies (e.g., process isolation) relating to
execution of the cryptlet. The cryptlet container service directs the cryptlet to provide the
requested service and provides the response to the cryptodelegate and blockchain.

[0019] Figure 1 1s a block diagram that illustrates an example in which a smart
contract requests services of a cryptlet. The figure illustrates a bank 101, a hedge fund
102, and an insurance company 103 that are members of a consortium whose distributed
ledger 1s stored on nodes 110 and whose smart contracts are executed by a virtual machine
120 (e.g., an Ethereum wvirtual machine). The members are parties to a contract
represented by a smart contract in which a calculation that uses a certain currency

exchange rate needs to be performed every day at 16:00 GMT. As part of the contract, the

parties agree that the smart contract will use the currency exchange rate provided by a

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

cryptlet 131 that runs on an attested host 130. The host 1s attested in the sense that it 1s
guaranteed to execute the cryptlet in a trusted environment. An 1dentity key (e.g., public
key) for the computer code of the cryptlet 1s generated for inclusion 1n the smart contract
and for use in authenticating the cryptlet at runtime. The smart contract includes a
reference to the attested host and the cryptlet. When the smart contract 1s first installed on
the blockchain, i1ts constructor executes and registers to receive a “wake up” event every
day at 16:00 GMT and what values 1t wishes to receive upon awakening. The wake-up
event may be generated by a special-purpose cryptlet that sends wake-up messages to
smart contracts. When woken up, the smart contract 1s executed by the virtual machine
with any attested values provided by the cryptlet. The secure channel 1s validated by the
cryptodelegate, which 1s an adapter that interfaces with the virtual machine and insures
that only the referenced cryptlet can provide this event and data for execution.

[0020] Figure 2 1s a block diagram that illustrates a connection between a
cryptodelegate and a cryptlet in some embodiments. A virtual machine 210 includes a
cryptodelegate 211 and 1s executing a smart contract 212. The cryptodelegate interfaces
with a CryptletContainerService 220. The CryptletContainerService (or cryptlet container
service) provides services to look up a cryptlet, enforce policies of the cryptlet, check
signatures and so on. The cryptodelegate uses the cryptlet container service to establish a
secure connection 240 with a cryptlet 231 within a cryptlet container 230 that 1s hosted by
an attested computer. A cryptlet container includes both the cryptlet and the runtime
environment (e.g., operating system) for the cryptlet. The cryptlet container may be
loaded 1nto and executed by a virtual machine of the attested host.

[0021] Figure 3 1s a flow diagram illustrating an overview of an 1nitialization of a
smart contract that employs a cryptlet in some embodiments. A smart contract virtual
machine 310 executes an 1nitialization function 320 of a smart contract and a
cryptodelegate 330. A cryptlet container service (“CCS”) host 340 executes the cryptlet
container 350. A cryptlet container 360 executes a cryptlet 370. The 1nitialization
function of the smart contract registers 321 the cryptlet by sending, for example, the
cryptlet code and configuration information to the cryptodelegate. The cryptodelegate
establishes 331 a secure connection with the cryptlet container service and forwards 332
the registration request to the cryptlet container service. The cryptlet container service
generates and checks 351 a hash of the cryptlet code. The cryptlet container service then
registers 352 the cryptlet in a cryptlet registration blockchain. The 1nitialization function

of the smart contract may then subscribe 322 to receive notifications for the cryptlet (e.g.,

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

changes 1n the price of a commodity) by sending a request to the cryptlet via the
cryptodelegate. The request may include an 1dentifier of a callback function of the smart
contract. The cryptodelegate forwards 333 the subscription request to the cryptlet
container service. The cryptlet container service forwards 3353 the request to the cryptlet.
The cryptlet container service may also direct the instantiation of the cryptlet container
that includes the cryptlet. Upon receiving the request, the cryptlet records 371 the request.
Eventually, the cryptlet may decide to publish to the smart contract an event (e.g., change
1n commodity price) based on the subscription. In such a case, the cryptlet sends the event
via the cryptlet container service to the blockchain which the cryptodelegate validates, and
causes the callback function of the smart contract to be invoked to handle the event.

[0022] In some embodiments, the CMP may be implemented as a cloud-based
service. Various consortiums may interact with the cloud-based service to provide smart
contracts and cryptlets that are available only to members of each consortium. The cloud-
based service may support the registration of a consortium and 1ts members. The cloud-
based service may provide an authentication service, blockchain management services,
virtual machines for hosting smart contracts of the members, cryptodelegate services,
cryptlet services, security services, standard cloud services, and so on. Whenever a smart
contract 1s to be executed for a consortium, the cloud-based service may instantiate a
virtual machine for securely executing the smart contract and communicating with the
cryptlets via a cryptodelegate and a cryptlet container service.

[0023] In some embodiments, a cryptodelegate may be called 1n a similar manner to
EIP - 7 DELEGATECALL (https:// github.com/ ethereum/ EIPs/ blob/ master/ EIPS/ eip-
7.md) of the Ethereum platform. Alternatively, a special instruction of the virtual machine
may be defined to support the calling of cryptlets. However, instead of functioning as a
regular (e.g., in terms of gas) call to another smart contract, 1t 1s a costless call to the oft-
the-blockchain computer code of a cryptlet. A cryptlet can be 1n any language, and it
executes within a secure, 1solated, and trusted container, and communicates with using
secure communications. Cryptlets can be used 1n smart contract systems and 1n non-smart
contract systems such as Unspent Transaction Output (“UTXO”) systems when additional
functionality or information 1s needed.

[0024] A cryptodelegate 1s a function “hook” within a smart contract virtual
machine that calls the cryptlet for the smart contract extending the secure and authentic
envelope for transactions to the execution of the cryptlet. A cryptlet called via a

cryptodelegate 1s trusted either by being signed with the same signature as the smart

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

contract or a digital signature that was trusted and validated when written or at design
time. Cryptlets have their own composite 1dentities, which may include their binary hash,
version and publisher certificate to sign transactions. Global or shared cryptlets can have
attested i1dentifiers that will also include the signature of the attested host that can be
mapped to local addresses for identity flow and additional security. Each call through a
cryptodelegate checks signatures for validity at runtime and records them along with the
transaction. For non-smart contract systems, cryptlets can be called with adapters that
perform the functions that the cryptodelegate would 1n a smart contract virtual machine.
[0025] The CMP may support two types of cryptlets: utility and contract. Utility
cryptlets may be created before smart contracts are written and perform common
functionality like encryption, time-based event publication, accessing of external data, and
so on. Utility cryptlets can be used by smart-contract developers who need access to
external data or functionality in a trusted way. Utility cryptlets may be grouped into
libraries, some provided by the attester and others from third parties like independent
software vendors. The capabilities provided by the CMP may be implemented using
utility cryptlets.

[0026] A contract cryptlet 1s created and bound to a specific smart contract instance.
A contract cryptlet can host sophisticated logic not entirely suited to run 1in a blockchain
virtual machine environment for performance and scale purposes. With contract cryptlets,
a smart contract stmply contains the state and key variables for the smart contract, while
the cryptlet contains the programming logic, including logic to access external data
sources and create and handle events of the smart contract. A contract cryptlet 1s the
runtime surrogate for a particular smart contract. Contract cryptlets used with smart
contracts allow for more advanced scenarios where performance and scalability are
desired. For example, a contract cryptlet can perform the entire operation of a smart
contract 1n parallel while other contracts run on the blockchain virtual machine without
tying 1t up. Using contract cryptlets means that the smart contract code running on all the
nodes of the blockchain 1s of much lighter weight because 1t only writes to the blockchain
database and defers the handling of the bulk of the computing, the integrating with
external data, and so on to the host designated to run the smart contract’s delegated
contract cryptlet.

[0027] Contract cryptlets can be created when a smart contract 1s deployed to the
blockchain or other deployment methods. When the smart contract 1s deployed, the

constructor of the smart contract registers the properties and the code (e.g., C#, F#, Java,

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

and C++) for the cryptlet. The smart contract provides configuration information that may

include an interface definition for the cryptlet and various properties such as custom types,

the public key, and so on for the cryptlet. The interface definition for a cryptlet 1s

1llustrated 1n the following:

//Utility cryptlet

contract PropertyPrivacyCryptlet{
address cryptlet = 0x39e2842... ;
function();

event();

//Contract cryptlet base type
contract ContractCryptlet{
uint mimimumlInstances:
uint maximumInstances;
address cryptlet;
function();
event();
// check that only the cryptlet surrogate
// is able to call the smart contract
modifier onlyBy(address cryptlet)
{
if (msg.sender != cryptlet)

throw:

10028]

The properties for a cryptlet may be provided using a cryptlet schema that 1s

based on Java Script Object Notation (“JSON”), as 1llustrated by the following:

"title": "cryptlet Schema",
"type": "object”,
"properties": {

"name":

10

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

"type": "string"

s
"publicKey": {

"type": "string"

s
"config": {
"description”: "describe what cryptlet does”,
"1solation": "boolean",
j
;-

"required": ["name", "publicKey"]

10029]

When a smart contract registers a cryptlet with the cryptlet container service,

the cryptlet container service generates a hash of the cryptlet code and ensures that the

hash matches the public key provided by the smart contract. The cryptlet container service

then records the configuration information and the cryptlet code 1n a cryptlet registration

blockchain that may be linked to distributed data store metadata and policy information for

the cryptlet. The cryptlet registration blockchain 1s a blockchain database maintained by

the cryptlet container service. Utility cryptlets are registered independently from smart

contracts and are referenced by them.

10030]

A cryptlet interface definition may be imported into a smart contract using

the following import statements:

import "github.com/cryptlets/encryption/propertyPrivacy.sol" as propertyPrivacy;
import “github.com/cryptlets/stocktools/equitytools” as equityTools;

10031]

Smart contracts that use a cryptlet may be derived from a cryptletProxy base

class that provides most of the default configuration information. A smart contract that

uses a utility cryptlet may be represented as follows:

contract cryptletProxy
function cryptletProxy() {owner = msg.sender; }

address owner;

11

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

string name;
address publicKey;
string attestedHost;
string 1nterface;
j
contract PropertyPrivacy 1s cryptletProxy{
name = propertyPrivacycryptlet;
publicKey =’ 0xd5f9d8d94886¢e70b06e474c3tb141d43e2123970’;
attestedHost = ‘19 3E EA B7 C5 54 60 1D 81 BD...’;
interface = propertyPrivacy; //import statement
R
contract StockClient 1s cryptletProxy{

name = stockClientcryptlet;
publicKey ="0xe7t9d8d94886e70b06e474c3tb141d43e212381";

attestedHost = ‘19 3E EA B7 C5 54 60 1D 81 BD...’;

interface = equity Tools; //import statement

;

[0032] A smart contract may during execution of 1ts constructor, register to receive

events from a utility cryptlet as follows:

var stockClient;
function 1nit(){
stockClient = StockClient();
[event(stockclient. Price Update.Subscribe(‘au’, CalculatePrice)],

j

//callback method that 1s run when the cryptlet PriceUpdate event fires

function CalculatePrice(uint price){...}

[0033] The stockClient() constructor for the cryptlet 1s invoked to register the
stockClient cryptlet with the cryptlet container service. The event method 1s invoked to
send an event to subscribe to recetve PriceUpdate events for gold. The event specifies the
callback method of the smart contract, CalculatePrice, to be invoked when the cryptlet

sends a PriceUpdate event to the smart contract. The smart contract may also invoke

methods of the cryptlet as follows:

var msft = StockClient.getCurrentPrice(‘msft’);

12

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

[0034] The CMP allows cryptlet behaviors, such as process isolation to run a
cryptlet container and cryptlet in an 1solated enclave, to be specified during execution of
the smart contract. Alternatively, the CMP may allow the behaviors to be established by a

policy of the cryptlet container service, which may override code setting, as follows:

PropertyPrivacy .processlsolation = true;

[0035] In addition, the code of a smart contract may specify an attribute to indicate
that execution of logic at the attribution point 1s delegated through the cryptodelegate. For
example, 1f a property 1n a smart contract needs to be encrypted and visible only to parties

of the contract, an attribute can be applied as follows:

|[encryptField="ContractSignersOnly']

uint public trade amount = O;

[0036] In this example, the cryptodelegate will ensure that the trade amount 1s
encrypted and can only be decrypted when provided to a signer of the contract.

[0037] The following 1s another example of a cryptlet:

contract CreditDefaultSwap 1s Contractcryptlet
uint price;
uint rate;
//constructor definition of contract cryptlet
//that will act as an execution surrogate
function CreditDefaultSwap(){
minimumlInstances = 1;
maximumIlInstances = 3;
//code could be brought in with an include statement

string code = “c#, java, C++, etc... code ...”;

j

[0038] Contract cryptlets allow for parallel execution that does not require every
node on the network to run the smart contract code. Thus, many contract cryptlets can run
different smart contract code by surrogation at the same time on different machines and
record their signed transactions authentically to the blockchain database. Contract
cryptlets allow for smart contract blockchains to scale to much larger volumes and

compute power while maintaining the integrity of the blockchain itself.

13

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

[0039] In some embodiments, to implement a call to a cryptlet, the CMP may use a
virtual machine that runs the smart contracts and that 1s modified to add a new 1nstruction
for accessing the cryptodelegate. Alternatively, a compiler for an Ethereum virtual
machine may flag accessors of variables and static methods of a cryptlet with the address

of the cryptodelegate as follows:

value=0x5b Mnemonic=JUMPDEST 0=0 o=0

The modified virtual machine may use DELEGATECALL at interception during runtime
to map to the JUMPDEST of the cryptodelegate as follows:

value=0xt4 Mnemonic=DELEGATECALL 06=7 o=1

In this way, the cryptodelegate can synchronously process on another thread while the
calling thread waits in-proc. Once the DELEGATECALL maps to the JUMPDEST of the
cryptodelegate passing in the public key of the cryptlet as well as various attributes,
execution 1s picked up by the cryptodelegate.

[0040] The cryptodelegate may be included In

oithub.com/ethereum/core/cryptodelegate as a package included 1n the core as follows:

package backends

import (
"math/big"

"o1thub.com/ethereum/go-ethereum/accounts/abi/bind”
"github.com/ethereum/go-ethereum/common”
"github.com/ethereum/go-ethereum/core"

) github .com/ethereum/ go-ethereum/ core/state”
"github.com/ethereum/go-ethereum/core/types”
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/ethdb"
"o1thub.com/ethereum/go-ethereum/event”

"o1thub.com/ethereum/go-ethereum/params”

14

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

// Default chain configuration which sets homestead phase at block O
// (1.e. no frontier)

var chainConfig = &core.ChainConfig{ HomesteadBlock:
params.MainNetHomesteadBlock }

// This nil assignment ensures compile time that SitmulatedBackend
/implements bind.ContractBackend.

var bind.ContractBackend = (*SimulatedBackend)(nil)

// StmulatedBackend implements bind. ContractBackend,

// stmulating a blockchain in the background.

// Its main purpose 1s to allow easily testing contract bindings.

type SimulatedBackend struct {
database ethdb.Database // In memory database to store our testing data
blockchain *core.BlockChain // Ethereum blockchain to handle the consensus
cryptodelegate *core. CryptoDelegate // Ethereum CryptoDelegate module

handling secure envelope for cryptlets

The cryptodelegate may alternatively be included within the virtual machine itself.
[0041] At node startup, a command line option specifies where the cryptodelegate

looks up cryptlet registration and policies as follows:

geth --cryptoDelegatePath 'https://azure.com/myconsortium’' --

cryptoDelegateSignature '0x23 1dw...

Once the cryptodelegate receives the jumped call, 1t passes the cryptlet public key to the
cryptlet container along with the requested payload and options like 1solation. The
payload may be a static method called on the cryptlet with parameters, subscription to a
published cryptlet event with callback details, or creation of a contract cryptlet.

[0042] In some embodiments, the cryptlet container will be encapsulated within a
protected enclave, a private, tamper proof, secure area for code execution and data. The
cryptlet container and the cryptlet(s) 1t hosts will execute within the secure enclave to
provide secure execution and data with attested guarantees that the results are authentic
and tamper proof. The cryptlet container using the enclave provides a secure, private

environment for cryptlets to execute. Contract cryptlets and those that are performing

15

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

encryption services are examples of those that will execute within an enclave. Cryptlet
containers running within an enclave can communicate securely with other cryptlets in
other enclaves securely as well as communicate with other security devices like a HSM
(hardware security modules). The enclaving protections can be provided by hardware or
software.

[0043] In some embodiments, on the cryptlet side, the cryptlet container service
listens to a port for signed requests from registered cryptodelegates (by signature in geth
parameters) for cryptlet public keys to instantiate. The cryptlet container service checks
the cryptlet registration blockchain for the cryptlet and checks the policy for signature
validation, process 1solation, method to call dependencies, potential type conversion
functions, and so on.

[0044] In some embodiments, a cryptlet call may be routed to a preloaded static
stateless instance of the cryptlet in a cryptlet container, routed to a new and optional
process 1solated container instance (using an enclave), or routed to a cryptlet container that
has smart contract affinity for contract cryptlets. Cryptlets may be preloaded into a
cryptlet container for performance.

[0045] Once the cryptlet container service creates and/or routes the call to the
cryptlet container, the cryptlet container instantiates the cryptlet and invokes the
appropriate call. If the call 1s an event registration, the callback details are recorded and
the cryptlet may or may not remain active. For example, if the call 1s an event registration
for a callback at a specific date and time, the cryptlet would need to remain running. For
long-running cryptlets, configuration for the maximum number of instances on the
blockchain can provide a level of fault tolerance without having a 1-1 ratio between
cryptlet and node. Callback functions may be message calls from the cryptlet to the
subscribing smart contract’s callback function.

[0046] In some embodiments, the security envelope 1s extended from the smart
contract on the blockchain via the cryptodelegate that instantiates or locates the cryptlet
communicating with the appropriate certificate (HTTPS/SSL) on the attested host and that
checks the signature for the cryptlet and the container running 1t on each call. The
cryptodelegate may also record calls to cryptlets and the data they provide in the smart
contract along with the signature of the cryptlet, optional cryptlet container signature, and
attested host address so an authentic ledger for audit 1s available.

[0047] In some embodiments, cryptlets and their cryptlet containers could be signed

by or include digital signatures from 1dentities that would allow a cryptlet to do work “on

16

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

behalf of” one or more 1dentities. For example, a user could create a cryptlet and sign it
with their digital signature, and when the cryptlet 1s invoked 1t would perform actions as
an agent for the user 1n a business process.

[0048] In this way, cryptlets provide a formal security model for interacting with the
real world, providing interoperability with existing systems in a trusted way for enterprise
consortiums and providing an additional level of re-use for developers writing cryptlets.
Cryptlets also provide an entire middleware tier for blockchains of any sort and provide a
flexible execution environment, allowing for partial delegation of logic and full delegation
for greater scale.

[0049] Figures 4A, 4B and 4C are block diagrams 1llustrating an architecture of the
CMP that supports utility Cryptlets and event use cases 1n some embodiments. A utility
cryptlet architecture 400 includes a blockchain node 410 and a cryptlet system 420. The
blockchain node 410 includes a virtual machine 411, a consensus algorithm component
414, a database 415 (e.g., distributed ledger and Merkle trees), and a networking
component 416. The virtual machine includes a cryptodelegate 412 and executes code of
a smart contract 413. The cryptlet system includes a cryptlet container service 430 and a
cryptlet container 440 that contains a cryptlet 441. The cryptlet container service includes
a cryptlet metadata store 431, a cryptlet registration blockchain 432, and a policy store
433. The cryptlet registration blockchain store stores information about registered
cryptlets. The cryptlet metadata store stores metadata for the registered cryptlet, and the
policy store stores policy information for the cryptlet container service. The cryptlet
container service also includes a registration interface 434 for registering cryptlets, a
lookup interface 435 for looking up information about cryptlets, and a secure channel
interface 436. When the virtual machine executes instructions 417 of the code of the
smart contract, a message 1s sent to the stockClient cryptlet via the secure channel to the
cryptlet. During 1nitialization of the smart contract, an initialization function (e.g.,
constructor) of the smart contract was invoked to locate and establish a secure connection
with the stockClient cryptlet.

[0050] Figures 5SA, 5B, 5C and 5D are block diagrams 1llustrating an architecture of
the CMP that supports contract Cryptlets, control use cases and the use of enclaving in
some embodiments. Figures SA and 5B are similar to Figures 4A and 4B except that the
contract includes an indication of the code of the contract cryptlet, which 1s sent to the
cryptlet container service as a create contract cryptlet package 517. The cryptlet container

service 530 also includes a cryptlet factory for creating instances of contract cryptlets.

17

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

The code of the smart contract requests behavior of the contract cryptlet, and the responses
are sent as messages to the smart contract. Figure 5D illustrates the use of protected
enclaves via hardware or software to create private, secure, tamper proof operations for
execution and data. Cryptlets running in an enclave are hosted by the appropriate cryptlet
container for the language the cryptlet 1s written 1n.

[0051] The computing systems on which the CMP may be implemented may
include a central processing unit, input devices, output devices (e.g., display devices and
speakers), storage devices (e.g., memory and disk drives), network interfaces, graphics
processing units, accelerometers, cellular radio link interfaces, global positioning system
devices, and so on. The input devices may include keyboards, pointing devices, touch
screens, gesture recognition devices (e.g., for air gestures), head and eye tracking devices,
microphones for voice recognition, and so on. The computing systems of clients may
include desktop computers, laptops, tablets, e-readers, personal digital assistants,
smartphones, gaming devices, servers, and so on. The computing systems of servers may
include servers of a data center, massively parallel systems, and so on. The computing
systems may access computer-readable media that include computer-readable storage
media and data transmission media. The computer-readable storage media are tangible
storage means that do not include a transitory, propagating signal. Examples of computer-
readable storage media include memory such as primary memory, cache memory, and
secondary memory (e.g., DVD) and other storage. The computer-readable storage media
may have recorded on 1t or may be encoded with computer-executable instructions or logic
that implements the CMP. The data transmission media 1s used for transmitting data via
transitory, propagating signals or carrier waves (e.g., electromagnetism) via a wired or
wireless connection. The computing systems may include a secure cryptoprocessor as part
of a central processing unit for generating and securely storing keys and for encrypting
and decrypting data using the keys.

[0052] The CMP may be described 1n the general context of computer-executable
instructions, such as program modules and components, executed by one or more
computers, processors, or other devices. Generally, program modules or components
include routines, programs, objects, data structures, and so on that perform particular tasks
or implement particular data types. Typically, the functionality of the program modules
may be combined or distributed as desired in various examples. Aspects of the CMP may
be implemented 1n hardware using, for example, an application-specific integrated circuit

(ASIC) or FPGA, field programmable gate array.

18

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

[0053] The following paragraphs describe various embodiments of aspects of the
CMP. An implementation of the CMP may employ any combination of the embodiments.
The processing described below may be performed by a computing device with a
processor that executes computer-executable instructions stored on a computer-readable
storage medium that implements the CMP.

[0054] In some embodiments, a computer system for delegating behavior associated
with a contract installed on a blockchain to a non-blockchain application 1s provided. The
computer system comprises one or more computer-readable storage media storing
computer-executable instructions of a cryptodelegate and a cryptlet container service and
one or more processors for executing the computer-executable instructions store in the one
or more computer-readable storage media. The cryptodelegate includes instructions that
recetve from code of the contract executing on a virtual machine an 1dentity of a cryptlet
and a requested behavior to be performed by the cryptlet, provide to the cryptlet container
service the 1dentity and the requested behavior, receive from the cryptlet container service
a response generated by the cryptlet performing the requested behavior, and send to the
code of the contract the response. The cryptlet container service includes instructions that
store information relating to registered cryptlets including references to the cryptlets,
recetve from the cryptodelegate the 1dentity and the requested behavior, identify a host for
executing the cryptlet container and cryptlet, authenticate the cryptlet, provide the
requested behavior to the cryptlet, receive the response generated by the cryptlet, and send
to the blockchain and verified by cryptodelegate the response. In some embodiments, the
cryptodelegate 1s executed by the virtual machine. In some embodiments, the requested
behavior 1s to send events to the contract. In some embodiments, the cryptodelegate
further 1includes 1nstructions to receive code of the cryptlet from the contract and provide
the code to the cryptlet container service and wherein the cryptlet container service
verifies the code by generating a hash of the code and checking that it matches a hash
provided by the contract, records the code 1n a cryptlet registration blockchain, and directs
an attested host to execute the cryptlet to perform the requested behavior. In some
embodiments, the cryptodelegate records in a blockchain associated with the contract an
indication of each request by and response provided to the contract. In some
embodiments, the contract provides to the cryptodelegate an indication of a host that 1s to
execute the cryptlet. In some embodiments, the cryptlet executes within an environment
provided by a cryptlet container. In some embodiments, the cryptlet container executes

within a protected enclave environment for secure, tamper proof operation. In some

19

10

15

20

25

30

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

embodiments, the contract provides to the cryptodelegate configuration information for the
cryptlet. In some embodiments, the configuration information includes an interface
definition for the cryptlet and specification of attributes of the cryptlet.

[0055] In some embodiments, a method performed by a computing system 1s
provided. The method receives from a smart contract being executed by a virtual machine
a request to register a contract cryptlet for performing behavior on behalf of the smart
contract, code of the contract cryptlet, and an indication of an attested host to execute the
code of the contract cryptlet. The method verifies the code of the contract cryptlet. The
method stores the code of the contract cryptlet in a cryptlet registration blockchain and
data storage. The method receives from the smart contract a request for the contract
cryptlet to perform the behavior. The method directs the contract cryptlet to execute on
the attested host. The method sends to the contract cryptlet executing at the attested host
the request to perform the behavior. In some embodiments, communications with the
smart contract and the contract cryptlet are via secure channels. In some embodiments,
the verifying of the code includes generating a hash of the code and comparing the hash to
a public key associated with the code. In some embodiments, the request that 1s received
from the smart contract 1s received via a cryptodelegate that 1s executed by the virtual
machine. In some embodiments, the cryptodelegate records in a blockchain of the smart
contract an indication of communication with the smart contract and the cryptodelegate.
In some embodiments, the virtual machine executes on a node of a blockchain and the
attested host 1s a computer that 1s external to nodes of the blockchain. In some
embodiments, the cryptlet registration blockchain 1s separate from a blockchain of the
smart contract. In some embodiments, code of the smart contract and the cryptlet are
approved by members of a consortium.

[0056] In some embodiments, a method performed by one or more computing
systems 1S provided. The method directs execution by a virtual machine of a smart
contract associated with a blockchain. During execution of the smart contract, the method
sends via a cryptodelegate to a cryptlet container service a request to delegate a behavior
to a cryptlet that executes on an attested host. During execution of the cryptlet container
service, the method 1dentifies a host for executing code of the cryptlet, directs the
1dentified host to execute the code of the cryptlet to perform the delegated behavior,
receives from the cryptlet a response to the requested behavior, and sends the response to
the smart contract on the blockchain validated by the cryptodelegate. In some

embodiments, the cryptodelegate establishes a secure communications channel to the

20

10

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

cryptlet container service and the cryptlet container service establishes a secure
communications channel with the host. In some embodiments, the cryptlet 1s a contract
cryptlet, the code of the cryptlet 1s provided or identified by the smart contract, and the
host 1s 1dentified by the smart contract. In some embodiments, the cryptlet 1s a utility
cryptlet that 1s available to smart contracts of different consortiums.

[0057] Although the subject matter has been described in language specific to
structural features and/or acts, it 1s to be understood that the subject matter defined 1n the
appended claims 1s not necessarily limited to the specific features or acts described above.
Rather, the specific features and acts described above are disclosed as example forms of
implementing the claims. Accordingly, the invention 1s not limited except as by the

appended claims.

21

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

CLAIMS

1. A computer system for delegating behavior associated with a contract
installed on a blockchain to a non-blockchain application, the computer system
comprising:

one or more computer-readable storage media storing computer-executable

instructions of a cryptodelegate and a cryptlet container service,

the cryptodelegate including instructions that receive from code of the
contract execu,ting on a virtual machine an identity of a cryptlet and
a requested behavior to be performed by the cryptlet, provide to the
cryptlet container service the identity and the requested behavior,
receive from the cryptlet container service a response generated by
the cryptlet performing the requested behavior, and send to the code
of the contract the response; and

the cryptlet container service including instructions that store information
relating to registered cryptlets including references to the cryptlets,
receive from the cryptodelegate the identity and the requested
behavior, i1dentify a host for executing the cryptlet container and
cryptlet, authenticate the cryptlet, provide the requested behavior to
the cryptlet, receive the response generated by the cryptlet, and send
to the blockchain and verified by cryptodelegate the response; and

one or more processors for executing the computer-executable instructions store in

the one or more computer-readable storage media.

2. The computer system of claim 1 wherein the cryptodelegate 1s executed by
the virtual machine.

3. The computer system of claim 1 wherein the requested behavior 1s to send
events to the contract.

4. The computer system of claim 1 wherein the cryptodelegate further
includes 1nstructions to recetve code of the cryptlet from the contract and provide the code
to the cryptlet container service and wherein the cryptlet container service verifies the
code by generating a hash of the code and checking that it matches a hash provided by the
contract, records the code 1n a cryptlet registration blockchain, and directs an attested host

to execute the cryptlet to perform the requested behavior.

22

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

5. The computer system of claim 1 wherein the cryptodelegate records 1n a
blockchain associated with the contract an indication of each request by and response
provided to the contract.

6. The computer system of claim 1 wherein the contract provides to the
cryptodelegate an indication of a host that 1s to execute the cryptlet.

7. A method performed by a computing system, the method comprising:

receiving from a smart contract being executed by a virtual machine a request to

register a contract cryptlet for performing behavior on behalf of the smart
contract, code of the contract cryptlet, and an indication of an attested host
to execute the code of the contract cryptlet;

verifying the code of the contract cryptlet;

storing the code of the contract cryptlet in a cryptlet registration blockchain and

data storage:;

receiving from the smart contract a request for the contract cryptlet to perform the

behavior;

directing the contract cryptlet to execute on the attested host; and

sending to the contract cryptlet executing at the attested host the request to perform

the behavior;

wherein communications with the smart contract and the contract cryptlet are via

secure channels.

8. The method of claaim 7 wherein the verifying of the code includes
generating a hash of the code and comparing the hash to a public key associated with the
code.

9. The method of claim 7 wherein the request that 1s received from the smart
contract 1s received via a cryptodelegate that 1s executed by the virtual machine.

10. The method of claim 9 wherein the cryptodelegate records 1n a blockchain
of the smart contract an indication of communication with the smart contract and the
cryptodelegate.

11. The method of claim 7 wherein the virtual machine executes on a node of a
blockchain and the attested host 1s a computer that 1s external to nodes of the blockchain.

12. The method of claim 7 wherein the cryptlet registration blockchain 1s

separate from a blockchain of the smart contract.

23

CA 03023492 2018-11-06

WO 2017/213943 PCT/US2017/035341

13. A method performed by one or more computing systems, the method
comprising:

directing execution by a virtual machine of a smart contract associated with a

blockchain;

during execution of the smart contract, sending via a cryptodelegate to a cryptlet

container service a request to delegate a behavior to a cryptlet that executes
on an attested host; and

during execution of the cryptlet container service

1dentifying a host for executing code of the cryptlet;

directing the 1dentified host to execute the code of the cryptlet to perform
the delegated behavior;

receiving from the cryptlet a response to the requested behavior; and

sending the response to the smart contract on the blockchain validated by
the cryptodelegate.

14, The method of claim 13 wherein the cryptodelegate establishes a secure
communications channel to the cryptlet container service and the cryptlet container service
establishes a secure communications channel with the host.

15. The method of claim 13 wherein the cryptlet 1s a contract cryptlet, the code
of the cryptlet 1s provided or identified by the smart contract, and the host 1s identified by
the smart contract.

to the smart contract on the blockchain that 1s verified by the cryptodelegate.

24

CA 03023492 2018-11-06

PCT/US2017/035341

WO 2017/213943

1/10

150U palsajie

["OIA

02}
(8pON)
aulyoew _m:t_>

c0l
aoueInsU|

117’ oLl

—OM Ol)
B g =

0L}

Jabpa| ureyo)o0|g

8 E

0L} 0Ll

5 B

O} oL}

CA 03023492 2018-11-06

PCT/US2017/035341

WO 2017/213943

2/10

¢Le

‘0 = Junowe apeJy al|gnd uIn

[Ajlupsiaubigloenuon, =piatdidAious)

JOBQUODNLBWS

olebajagoidAlD

auIyoey\ [enMIA Joe[UOI MBS

174

0l¢

0¢¢

¢ OIA

lsuuey) sdi

pulubis uoRoesuel |
buyosyn algjeubis

dnx007 J9RdAD
9JIAIRSISUIRJUO)IRJAC

1
Duis, 1 odAy,
j owey,
1 :.selledoid,
_..__Hom_.ﬂo: “__®Q>H:
W Busyog JepdAig, 1,am,

laurejuoniepdiiy

0td

CA 03023492 2018-11-06

PCT/US2017/035341

WO 2017/213943

3/10

OFE 1SOY PajSajly . 0LE WA JPEIJUOY HEWS

uonduosgns pJooal

L /&

0L&

191dAID

| _ uonduosgns plemio] _

. EEE -

_ _ SJUaA® aAldal O] aguIsgns

| 743 _
ureyoxoo|q uonensibal 1apdAio |
Ul oJul uonjensibal ploosl |
¢GE |
|
ap09 19)1dAID Jo Usey Yosyo "
GE |
19[1dAID Js)sibal plemio] .
| .
| 433
|
| SO0 Yim
_ LONY8UU0D 8IN28s UsI|ge)ss
_ L EE
. (uoneJnbijuoo ‘epod jodAIo)
| 191dAID Jo)siIba.
“ 28
Jaulejuog 19)jdAIo _ a)ebsjepo)dAlD L
[EJUO2 S} | }EDOISPO} JOBJUOD LBWS
0513 | %3 0CE

CA 03023492 2018-11-06

PCT/US2017/035341

WO 2017/213943

4/10

1]

} L Aexangnd
{

_hmc _bw I . =ma>u=

AN

ey,
}.salledoid,
n_huom_‘DO: ”=®%H=

aWByog

JopdA1), 1o,

¥

1D JopdAi) ejowey
alli 15 |
I
3
B
01917 GEY
aoIA8QIsUIRIUONIBNdAIN

u1eyoyo0|q
uoneJisibal jo1dAin

>
eey

OSp ©9IAI8S Jaulejuod 1epdAln

pbljuoo-uos|
aorIa)Ul
(Usey)Aeyaligna

uoneJjsibey

vey

elepelay
JodAID

eV

JaurejuoNspdAIn

(Usey)Asyolignd
olUEU
Lolje|os|ssa00.d

Jaurejuonispdiin

00% JopdAig Aynn

Ovv

¢E €GgsuINeY
(UsW)sall4iusiinneb

Nd
JopdAID

laurejuonispdAin

02y WalsAg J8pdAid

CA 03023492 2018-11-06

PCT/US2017/035341

WO 2017/213943

5/10

dv OIA

Buryomsp aseqele(]
9V Gl

WUYLIoB|Y sSnsussuo)

142%

227

A%

(JJSW Jaoldiualinnieb jusi[Hyo0)s
=]JSW JeA

¢y

ryptoDelegate

O
--

. {)81 0AINDT BN DHO0)S — JUSI|DNI0)S

10}oNJ)sU09 ay)
se () sweNjoeuodewsS uonouny oy 1 { il uonouny

qUBIIDN00)S Jen

Juswig)e)s Joduwllf .s|oo | Alinbs — aoeLig)ul

¢ (€
18 A1 09 S GO /d ¥4 J€ 61, — 1SOHPOJSO)E

. L8STIZOCTPIvIUIEEY/ P 9000,/299dydParal/oXx0 -
Aayol1|and

JodAINIUBIDY00)S — swel
1 AxoldiepdAln s1usi|nyo0)S 198U

LY JORJUOD LewS

SUIYOBJ\ [ENHIA Uleyoxo0|d

0Ly SPON UleyIX00|g

e JopdAi) sjowey

CA 03023492 2018-11-06

PCT/US2017/035341

WO 2017/213943

6/10

uonduosgngAlisn

m)

Kol
JopdAID

lauejuonispdAin
.

09y JeurejuoDiepdiid

IV OIA

H(BlB(QIUBASD JBA)DJlI43l1R|No|BD Uuolloun)

LGNV, 508917, ‘8ny} ‘G-LIND 00-9 L.)JusAFjexiel 1oydjepajexewt)jusns)f vay
Sall] JUBAD alepdnadlld 19ndAID ayl uaym und si eyl poylaw yoeq|eo//

{
:()JaUOl_AAINIBIN = Jayoleanlax.iell JeAn
yOuul uonouNny

2GS 19e]UODHEWS

%1%

o)lebajooldAln

|G SUIYOEJ [eNHI/ J9BJUODHEWS
0S¢ IAON

¢ Gcel =NV

¢8 =a04dl |

&
JOLEN

TG RENTE
ANE
Ad 00-¥

0Ly

JUSAT — ase”) as()

CA 03023492 2018-11-06

PCT/US2017/035341

WO 2017/213943

7/10

I m C _bw I . __—mQ}H 1
. aueu,
¥ .sanledod,

"Joelgo, : ,adAh),
L awvyog
1epdAig, em,

¥

Ve OIA

N

abeyord 18)1dAID 1oBJUON

Ll il il
Lt e [|
Qw

P,
<
g,

—

@

T

Q)

2

;
2

9€S GES
RIIVEINET T eIg T e N g veS

dnyooT
uoneJjsiosy

/€S
u1eyoyo0|g

E uoneJisibal jodAin

>
€S CES

0SS S9II8S Jaurejuo) JopdAin

pljuoo-uos|
aorIa)Ul
(Ysey)Aeyolgna

JaurejuoNspdAIn

(Usey)Asyolignd
oleU
LolJe|0s|$$820.d

JaurejuoNspdAin

00G 31njoa)yaly J8ppdAu) Joenuo)

0vS

&

suonoesuel |
SUDIS 9 SaJLAN

laurejuonispdAin

02S WalsAg 19pdAid

CA 03023492 2018-11-06

PCT/US2017/035341

WO 2017/213943

8/10

23°

LS

abeyoed 19dA1D 10BNUO0D 8)Ra1N

¢S

ryptoDelegate

-
--

abeyoed 181dAID 10B1U0N

d¢ OIA

- H
G GlG

WYLIoB|y SNSUssuon

438

Bp0oY - BpO9
.SSalppe - ssalippe
} () demgynejeyipalg uonoun)

18 A1 09 S GO /d ¥4 J€ 61, — 1SOHPOJSO)E

. L8STIZOCTPIvIUIEOY / P 9000,/299dyPaPal/oXx0 -
Aayonand

nepdAinioeiuon si Aemgynejaipaln Joejuo

P09 sk $0°demg)|nela(qlipalo
jsdems/s)ojdAIooo gnuylb, Jodwl

JOBUOY) HeWS

elS

SUILOEJ [BNMIA UIBYDYOO|G

0LS SPON Uleyoxa0|g

&

CA 03023492 2018-11-06

PCT/US2017/035341

WO 2017/213943

9/10

uonebosing401uon

IS OIA

w_wm waidooe | aoud

lauiejuoniendAin
X

09G JaurejuodiepdAid

| = SIS]
G = Walqooe
7 = 90ld

}(21kl UIN)Waldooy uolounj
{
‘|leA=9211d
}(JeA 1uIn)adlid uoloun)
solpadoudy/

:SISeq unn
waJl4o9oe 1IN
:901d JUINn
handAinloeauon st demgynelaqlipaln 10BJ1U0D

2GS 10BQUODLEWS

a1ebojogoldiun

LGS SUlyIel [ENUIA JOEQUOOHEWS
065 dAON

_~ |0JjU0) — 3se) as

CA 03023492 2018-11-06

PCT/US2017/035341

WO 2017/213943

10/10

A

085G Jabps| uleyoyoolg

m_e 5

a 10 809

K[

T (=

laurejuonispdiin
BAR[

JaurejuonispdAiln

lauiejuoniendAln
210D 14N

9AB[OU] 9AB[OU] SAB[OU=

265 |65
$99IAI9S uondAioug pue [043u0) ‘JoRIJUOY) — BJe(] 31N23G PUR UOIINIXT 3INI3G

| |

320 330 | 390 | 370

(smartinciin)tract::) (cryptodelegate) : (cryptlet container) : | cryptlet)
I 321 ! !

register cryptlet
(cryptlet code, configuration)

331
with CCS
332

I

I

I

. . I
establish secure connection i
I

I

I

forward register cryptlet

391
check hash of cryptlet code

352

|

|

|

|

|

| record registration info in
| cryptlet registration blockchain
|

|

|

|

|

| 322

subscribe to recelve events I

—I_ 333

I forward subscription I

\E_ 353

I forward subscription I

AR 4 ANES 4 NS v« NS O+« AN v S s S 2 AR O R 2 R & AR 2 R s R 2 R & AR B R s R 2 R & R & R A AR A AR A4 AR A A

—\:_ 371

Smart Contract VM 310

|

I

I . .

| | I record subscription
|

I

| Attested host 340

I

FIG. 3

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - abstract drawing

