

ORGANISATION AFRICAINE DE LA PROPRIETE INTELLECTUELLE
(O.A.P.I.)

(19)

(11) N°

13316

(51) Inter. Cl. 7

A61K 31/46
C07D 451/02
C07D 451/00

BREVET D'INVENTION

(21) Numéro de dépôt : 1200600122

(22) Date de dépôt : 12.10.2004

(30) Priorité(s) : US
14.10.2003 N° 60/511009

(24) Délivré le : 29.12.2006

(45) Publié le : 13.04.2007

(73) Titulaire(s) :

Glaxo Group Limited
Glaxo Wellcome House
Berkeley Avenue
GREENFORD
Middlesex, UB6 0NN (GB)

(72) Inventeur(s) :

1- BUSCH-PETERSEN Jakob
709 Swedeland Road
KING OF PRUSSIA
PA 19406 (US)
2- PALOVICH Michael R. (US)
3- WAN Zehong (US)
4- YAN Hongxing (US)
5- ZHU Chongjie (US)

(74) Mandataire :

Cabinet J. EKEME
B.P. 6370 YAOUNDE (CM)

(54) Titre : Muscarinic acetylcholine receptor antagonists.

(57) Abrégé :

Muscarinic Acetylcholine Receptor Antagonists and methods of using them are provided.

MUSCARINIC ACETYLCHOLINE RECEPTOR ANTAGONISTS**FIELD OF THE INVENTION**

This invention relates to novel derivatives of 8-azoniabicyclo[3.2.1]octanes, pharmaceutical compositions, processes for their preparation, and use thereof in
5 treating M_3 muscarinic acetylcholine receptor mediated diseases.

BACKGROUND OF THE INVENTION

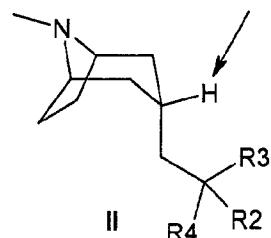
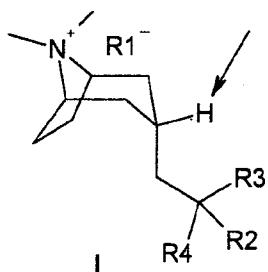
Acetylcholine released from cholinergic neurons in the peripheral and central nervous systems affects many different biological processes through interaction with two major classes of acetylcholine receptors – the nicotinic and the muscarinic
10 acetylcholine receptors. Muscarinic acetylcholine receptors (mAChRs) belong to the superfamily of G-protein coupled receptors that have seven transmembrane domains. There are five subtypes of mAChRs, termed M_1 - M_5 , and each is the product of a distinct gene. Each of these five subtypes displays unique pharmacological properties. Muscarinic acetylcholine receptors are widely distributed in vertebrate organs, and
15 these receptors can mediate both inhibitory and excitatory actions. For example, in smooth muscle found in the airways, bladder and gastrointestinal tract, M_3 mAChRs mediate contractile responses. For review, please see {Brown 1989 247 /id}.

Muscarinic acetylcholine receptor dysfunction has been noted in a variety of different pathophysiological states. For instance, in asthma and chronic obstructive
20 pulmonary disease (COPD), inflammatory conditions lead to loss of inhibitory M_2 muscarinic acetylcholine autoreceptor function on parasympathetic nerves supplying the pulmonary smooth muscle, causing increased acetylcholine release following vagal nerve stimulation. This mAChR dysfunction results in airway hyperreactivity mediated by increased stimulation of M_3 mAChRs {Costello, Evans, et al. 1999 72 /id} {Minette, Lammers, et al. 1989 248 /id}. Similarly, inflammation of the gastrointestinal tract in
25 inflammatory bowel disease (IBD) results in M_3 mAChR-mediated hypermotility {Oprins, Meijer, et al. 2000 245 /id}. Incontinence due to bladder hypercontractility has also been demonstrated to be mediated through increased stimulation of M_3 mAChRs {Hegde & Eglen 1999 251 /id}. Thus the identification of subtype-selective
30 mAChR antagonists may be useful as therapeutics in these mAChR-mediated diseases.

Despite the large body of evidence supporting the use of anti-muscarinic receptor therapy for treatment of a variety of disease states, relatively few anti-

013316

muscarinic compounds are in use in the clinic. Thus, there remains a need for novel compounds that are capable of causing blockade at M_3 mAChRs. Conditions associated with an increase in stimulation of M_3 mAChRs, such as asthma, COPD, IBD and urinary incontinence would benefit by compounds that are inhibitors of mAChR binding.



SUMMARY OF THE INVENTION

This invention provides for a method of treating a muscarinic acetylcholine receptor (mAChR) mediated disease, wherein acetylcholine binds to an M_3 mAChR and which method comprises administering an effective amount of a compound of Formula (I) or Formula (II) [except the compound of Formula (II) with R2 and R3 as 2-thiophene and R4 as $-\text{OC}(\text{O})\text{CH}_3$] or a pharmaceutically acceptable salt thereof.

This invention also relates to a method of inhibiting the binding of acetylcholine to its receptors in a mammal in need thereof which comprises administering to an aforementioned mammal an effective amount of a compound of Formula (I) or Formula (II).

The present invention also provides for the novel compounds of Formula (I) or Formula (II), and pharmaceutical compositions comprising a compound of Formula (I) or Formula (II), and a pharmaceutical carrier or diluent.

Compounds of Formula (I) or Formula (II) useful in the present invention are represented by the structure:

wherein:
the H atom indicated is in the exo position;

013316

R1⁻ represents an anion associated with the positive charge of the N atom. R1⁻ may be but is not limited to chloride, bromide, iodide, sulfate, benzene sulfonate and toluene sulfonate;

5 R2 and R3 are independently selected from the group consisting of straight or branched chain lower alkyl groups (having preferably from 1 to 6 carbon atoms), cycloalkyl groups (having from 5 to 6 carbon atoms), cycloalkyl-alkyl (having 6 to 10 carbon atoms), heterocycloalkyl (having 5 to 6 carbon atoms) and N or O as the heteroatom; heterocycloalkyl-alkyl (having 6 to 10 carbon atoms) and N or O as the heteroatom,
10 aryl, optionally substituted aryl, heteroaryl, and optionally substituted heteroaryl;

R4 is selected from the group consisting of (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₇)heterocycloalkyl, (C₁-C₆)alkyl(C₃-C₁₂)cycloalkyl, (C₁-C₆)alkyl(C₃-C₇)heterocycloalkyl, aryl, heteroaryl, (C₁-C₆)alkyl-aryl, (C₁-C₆)alkyl-heteroaryl, -OR₅,
15 -CH₂OR₅, -CH₂OH, -CN, -CF₃, -CH₂O(CO)R₆, -CO₂R₇, -CH₂NH₂, -CH₂N(R₇)SO₂R₅, -SO₂N(R₇)(R₈), -CON(R₇)(R₈), -CH₂N(R₈)CO(R₆), -CH₂N(R₈)SO₂(R₆), -CH₂N(R₈)CO₂(R₅), -CH₂N(R₈)CONH(R₇);

20 R5 is selected from the group consisting of (C₁-C₆)alkyl, (C₁-C₆)alkyl(C₃-C₁₂)cycloalkyl, (C₁-C₆)alkyl(C₃-C₇)heterocycloalkyl, (C₁-C₆)alkyl-aryl, (C₁-C₆)alkyl-heteroaryl;

25 R6 is selected from the group consisting of (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₇)heterocycloalkyl, (C₁-C₆)alkyl(C₃-C₁₂)cycloalkyl, (C₁-C₆)alkyl(C₃-C₇)heterocycloalkyl, aryl, heteroaryl, (C₁-C₆)alkyl-aryl, (C₁-C₆)alkyl-heteroaryl;

R7 and R8 are, independently, selected from the group consisting of H, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₇)heterocycloalkyl, (C₁-C₆)alkyl(C₃-C₁₂)cycloalkyl, (C₁-C₆)alkyl(C₃-C₇)heterocycloalkyl, (C₁-C₆)alkyl-aryl, and (C₁-C₆)alkyl-heteroaryl.

Suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of inorganic and organic acids, such as hydrochloric acid, hydrobromic acid, sulphuric acid, phosphoric acid, methane sulphonic acid, ethane sulphonic acid, acetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, 5 succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid and mandelic acid. In addition, pharmaceutically acceptable salts of compounds of Formula (I) or Formula (II) may also be formed with a pharmaceutically acceptable cation. Suitable pharmaceutically acceptable cations are well known to those skilled in the art and include alkaline, alkaline earth, ammonium and quaternary ammonium 10 cations.

The following terms, as used herein, refer to:

- "halo" - all halogens, that is chloro, fluoro, bromo and iodo.
- "C₁₋₁₀alkyl" or "alkyl" - both straight and branched chain moieties of 1 to 10 carbon atoms, unless the chain length is otherwise limited, including, but not limited to, 15 methyl, ethyl, *n*-propyl, *iso*-propyl, *n*-butyl, *sec*-butyl, *iso*-butyl, *tert*-butyl, *n*-pentyl and the like.
- "cycloalkyl" is used herein to mean cyclic moiety, preferably of 3 to 8 carbons, including but not limited to cyclopropyl, cyclopentyl, cyclohexyl, and the like.
- "alkenyl" is used herein at all occurrences to mean straight or branched chain 20 moiety of 2-10 carbon atoms, unless the chain length is limited thereto, including, but not limited to ethenyl, 1-propenyl, 2-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl and the like.
- "aryl" - phenyl and naphthyl;
- "heteroaryl" (on its own or in any combination, such as "heteroaryloxy", or 25 "heteroaryl alkyl") - a 5-10 membered aromatic ring system in which one or more rings contain one or more heteroatoms selected from the group consisting of N, O or S, such as, but not limited, to pyrrole, pyrazole, furan, thiophene, quinoline, isoquinoline, quinazolinyl, pyridine, pyrimidine, oxazole, tetrazole, thiazole, thiadiazole, triazole, imidazole, or benzimidazole.
- "heterocyclic" (on its own or in any combination, such as "heterocyclicalkyl") 30 - a saturated or partially unsaturated 4-10 membered ring system in which one or more rings contain one or more heteroatoms selected from the group consisting of N, O, or S;

such as, but not limited to, pyrrolidine, piperidine, piperazine, morpholine, tetrahydropyran, thiomorpholine, or imidazolidine. Furthermore, sulfur may be optionally oxidized to the sulfone or the sulfoxide.

• "arylalkyl" or "heteroarylalkyl" or "heterocyclicalkyl" is used herein to mean 5 C1-10 alkyl, as defined above, attached to an aryl, heteroaryl or heterocyclic moiety, as also defined herein, unless otherwise indicated.

• "sulfinyl" - the oxide S (O) of the corresponding sulfide, the term "thio" refers to the sulfide, and the term "sulfonyl" refers to the fully oxidized S(O)2 moiety.

• "wherein two R₁ moieties (or two Y moieties) may together form a 5 or 6 10 membered saturated or unsaturated ring" is used herein to mean the formation of an aromatic ring system, such as naphthalene, or is a phenyl moiety having attached a 6 membered partially saturated or unsaturated ring such as a C₆ cycloalkenyl, i.e. hexene, or a C₅ cycloalkenyl moiety, such as cyclopentene.

Preferred compounds useful in the present invention include:

15 (Endo)-3-(2-methoxy-2,2-di-thiophen-2-yl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane iodide;

3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionitrile;

(Endo)-8-methyl-3-(2,2,2-triphenyl-ethyl)-8-aza-bicyclo[3.2.1]octane;

3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionamide;

20 3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionic acid;

(Endo)-3-(2-cyano-2,2-diphenyl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane iodide;

(Endo)-3-(2-cyano-2,2-diphenyl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane bromide;

25 3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propan-1-ol;

N-Benzyl-3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionamide;

(Endo)-3-(2-carbamoyl-2,2-diphenyl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane iodide;

30 1-Benzyl-3-[3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-urea;

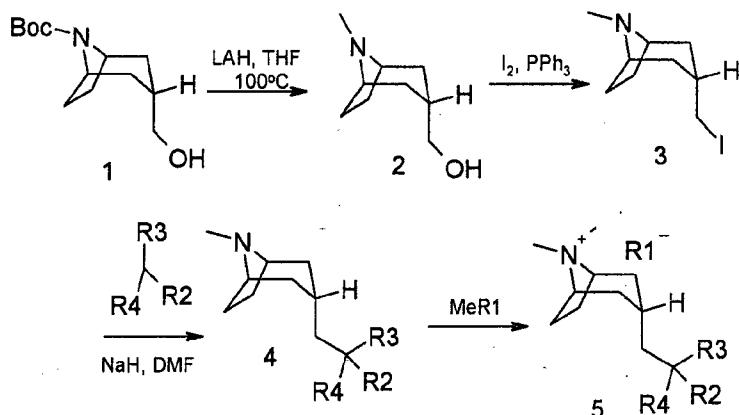
1-Ethyl-3-[3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-urea;

N-[3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-acetamide;
N-[3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-benzamide;
3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-di-thiophen-2-yl-propionitrile;
(Endo)-3-(2-cyano-2,2-di-thiophen-2-yl-ethyl)-8,8-dimethyl-8-azonia-
5 bicyclo[3.2.1]octane iodide;
N-[3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-
benzenesulfonamide;
[3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-urea;
N-[3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-
10 methanesulfonamide; and
(Endo)-3-{2,2-diphenyl-3-[(1-phenyl-methanoyl)-amino]-propyl}-8,8-dimethyl-8-
azonia-bicyclo[3.2.1]octane bromide.

More preferred compounds useful in the present invention include:

(Endo)-3-(2-methoxy-2,2-di-thiophen-2-yl-ethyl)-8,8-dimethyl-8-azonia-
15 bicyclo[3.2.1]octane iodide;
(Endo)-3-(2-cyano-2,2-diphenyl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane
iodide;
(Endo)-3-(2-cyano-2,2-diphenyl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane
bromide;
20 (Endo)-3-(2-carbamoyl-2,2-diphenyl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane
iodide;
(Endo)-3-(2-cyano-2,2-di-thiophen-2-yl-ethyl)-8,8-dimethyl-8-azonia-
bicyclo[3.2.1]octane iodide; and
(Endo)-3-{2,2-diphenyl-3-[(1-phenyl-methanoyl)-amino]-propyl}-8,8-dimethyl-8-
25 azonia-bicyclo[3.2.1]octane bromide.

Methods of Preparation.

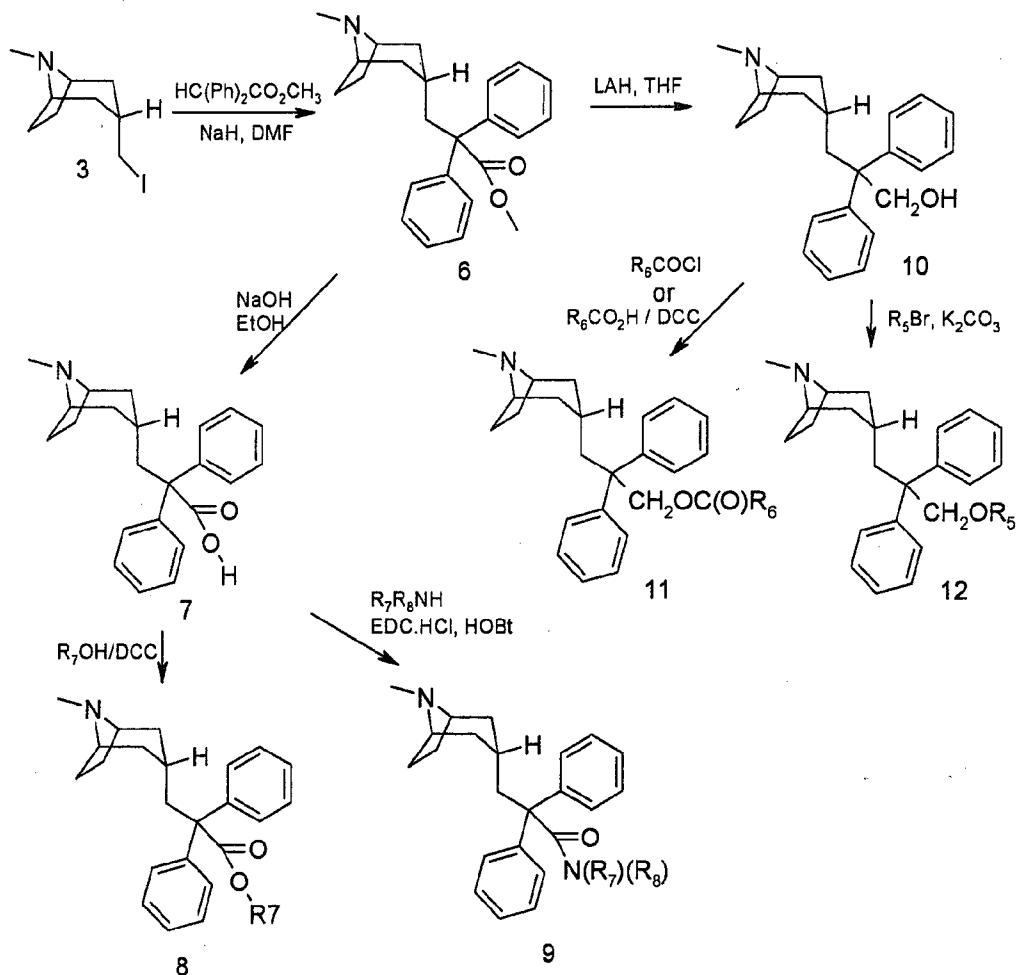

Preparation

The compounds of Formula (I) and Formula (II) may be obtained by applying
30 synthetic procedures, some of which are illustrated in the Schemes below. The
synthesis provided for these Schemes is applicable for producing compounds of
Formula (I) and Formula (II) having a variety of different R1, R2, R3 and R4 which are

reacted, employing substituents which are suitable protected, to achieve compatibility with the reactions outlined herein. Subsequent deprotection, in those cases, then affords compounds of the nature generally disclosed. While some schemes are shown with compounds only of Formula (II), this is merely for illustration purpose only.

5 The general preparation method is shown in **Scheme I**. The synthesis started with compound **1**. Reduction with lithium aluminium hydride (LAH) afforded alcohol **2**. Displacement with iodine provided **3**. Coupling reaction with the anion derived from $\text{HCR}_2(\text{R}_3)(\text{R}_4)$ then furnished compound **4**, which was easily converted to ammonium salt **5**.

10 **Scheme I.**

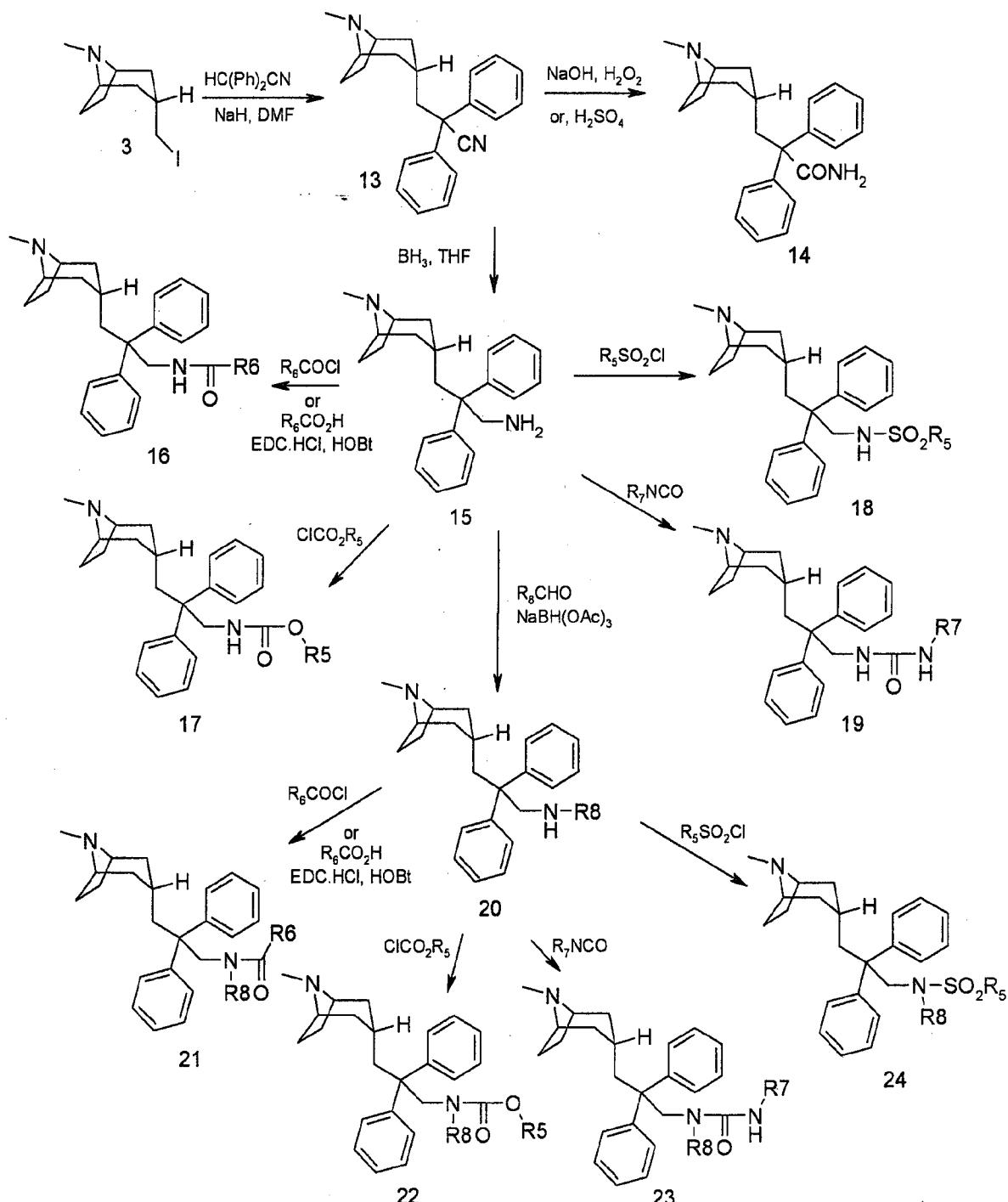

A more specific preparation method leading to compounds with Formula (II) is outlined in **Scheme II**. Alkylation of ester $\text{HC}(\text{Ph})_2\text{CO}_2\text{CH}_3$ with **3** afforded compound 15 **6**. Hydrolysis of **6** generated acid **7**. 1,3-Dicyclohexylcarbodiimide (DCC) mediated condensation of the acid with alcohol $(\text{R}_7)\text{OH}$ then furnished ester **8**. Condensation of acid **7** with amine $(\text{R}_7)(\text{R}_8)\text{NH}$ under suitable amide coupling conditions well known to those skilled in the art such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC.HCl) and 1-hydroxybenzotriazole hydrate (HOBr) provided amide **9**. Reduction of **6** generated alcohol **10**. Reaction of **10** with acid chloride $(\text{R}_6)\text{COCl}$ or acid $(\text{R}_6)\text{CO}_2\text{H}$ afforded ester **11**. Alkylation of **10** with appropriate reagents such as $(\text{R}_5)\text{Br}$ then furnished **12**.

20 Compounds with structures similar to **6**, **7**, **8**, **9**, **10**, **11** and **12** were converted to corresponding ammonium salts by reacting with appropriate reaction reagents such as

013316

MeBr and MeI (not shown in the scheme). Appropriate protection and deprotection methods were utilized in some preparation procedures.

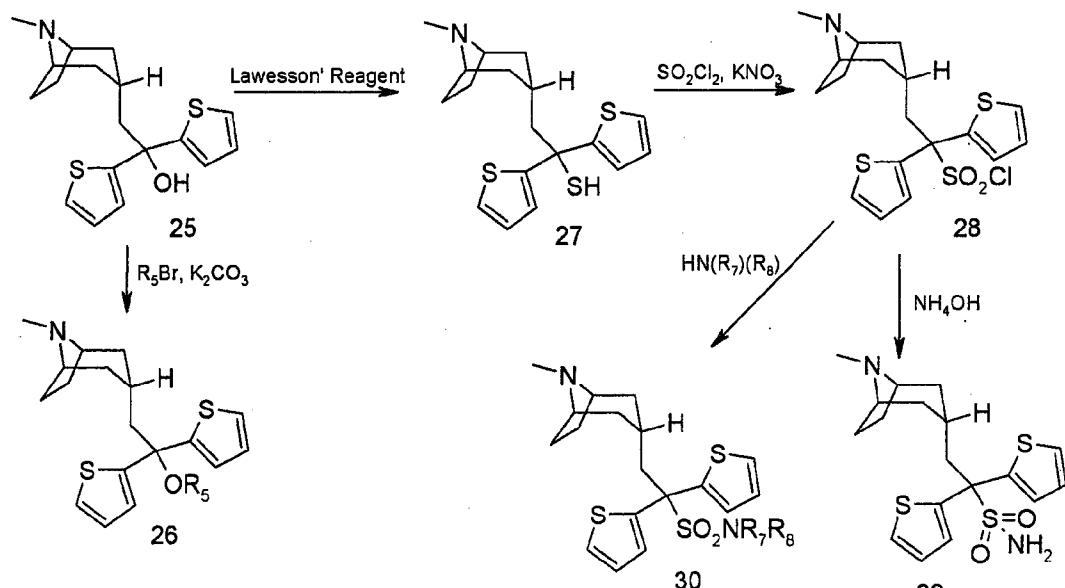
Scheme II.


5 A more specific preparation method leading to compounds with Formula (II) is outlined in **Scheme III**. Alkylation of $\text{HC}(\text{Ph})_2\text{CN}$ with **3** provided nitrile **13**. Hydrolysis of **13** under either basic conditions (e.g., NaOH and H_2O_2) or acidic conditions (e.g., H_2SO_4) afforded amide **14**. Reduction of **13** led to amine **15** that was conveniently transformed to amide **16**, carbamide **17**, sulfonamide **18** and urea **19**.

10 Condensation of **15** with aldehyde ($\text{R}_8\text{CH}(\text{O})$) followed by reduction with $\text{NaBH}(\text{OAc})_3$ furnished amine **20** that was easily converted to amide **21**, carbamide **22**, urea **23** and sulfonamide **24**.

Compounds with structures similar to **13**, **14**, **15**, **16**, **17**, **18**, **19**, **20**, **21**, **22**, **23** and **24** were converted to corresponding ammonium salts by reacting with appropriate

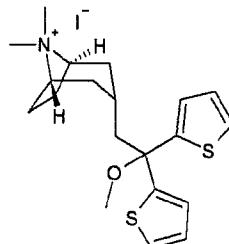
reaction reagents such as MeBr and MeI (not shown in the scheme). Appropriate protection and deprotection methods were utilized in some preparation procedures.


Scheme III.

A more specific preparation method leading to compounds with Formula (II) is outlined in **Scheme IV**. Alkylation of **25** with (R₅)Br provided **26**. Reaction of **25** with Lawesson's reagent afforded **27**. Oxidation of **27** with SO₂Cl₂ and KNO₃ furnished **28** that was converted to either **29** or sulfonamide **30**.

5 Compounds with structures similar to **26**, **27**, **29** and **30** were easily converted to the corresponding ammonium salts by reacting with appropriate reaction reagents such as MeBr and MeI (not shown in the scheme). Appropriate protection and deprotection methods were utilized in some preparation procedures.

Scheme IV

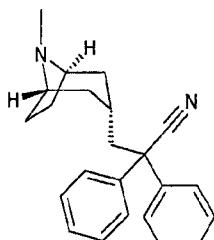

10

SYNTHETIC EXAMPLES

The following examples are provided as illustrative of the present invention but not limiting in any way:

15

Example 1


(Endo)-3-(2-methoxy-2,2-di-thiophen-2-yl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane iodide

To a solution of 2-(8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-1,1-dithiophen-2-yl-ethanol (prepared according to US2800482) (212mg, 0.64mmol) in 5 mL

5 methylenechloride and iodomethane (0.40mL, 6.4 mmol), 50% aqueous potassium hydroxide (0.25mL, 3.2 mmol) and tetrabutylammonium chloride (5mg, 3 mol%) was added. The reaction mixture was heated to reflux for 5 d. Each day, an additional 0.2mL iodomethane and 0.1mL potassium hydroxide was added. Upon completion, the reaction mixture was cooled to room temperature, diluted with methylenechloride and 10 washed with water. The aqueous layer was extracted with methylenechloride and the combined organic layers were washed with brine, dried over MgSO_4 and concentrated *in vacuo*. The crude product was recrystallized from methylenechloride/ethyl acetate to give 109mg of the title compound: LCMS (ES) m/z 362 (M^+).

15

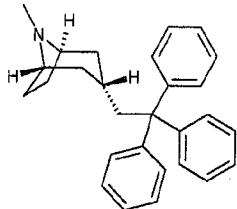
Example 2

3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionitrile

2a) Preparation of ((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-methanol

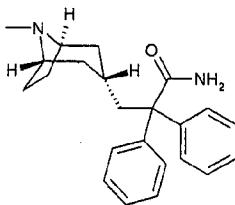
A mixture of 1,1-dimethylethyl (endo)-3-(hydroxymethyl)-8-azabicyclo[3.2.1]octane-8-carboxylate (0.50 g, 2.05 mmol) and LiAlH_4 (6.16 mL, 1.0 M in THF, 6.16 mmol) was heated at 80°C with a microwave reactor for 60 min. The solution was then mixed with saturated Na_2SO_4 solution, filtered through celite and concentrated to afford the title compound (0.31 g, 97 %): LCMS (ES) m/z 156 ($\text{M}+\text{H}^+$); $^1\text{H-NMR}(\text{CDCl}_3)$ δ 1.28 (s, 1H), 1.59 (m, 4H), 1.90 (m, 1H), 2.13 (m, 4H), 2.32 (s, 3H), 2.51 (s, 2H), 3.59 (d, 2H).

2b) Preparation of (endo)-3-iodomethyl-8-methyl-8-aza-bicyclo[3.2.1]octane

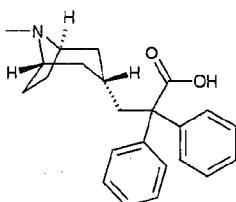

013316

A solution of iodine (6.67 g, 25.8 mmol) and ((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-methanol (2.0 g, 12.9 mmol) in CH_2Cl_2 (120 mL) was mixed with PPh_3 (on resin, 8.6 g, 3 mmol/g, 25.8 mmol). The resultant mixture was stirred for 17 hours, filtered and concentrated to afford the title compound (2.63 g, 77 %): LCMS (ES) m/z 266 ($\text{M}+\text{H}$)⁺; $^1\text{H-NMR}(\text{CDCl}_3)$ δ 2.05 (m, 4H), 2.39 (m, 3H), 2.79 (d, 3H), 2.98 (m, 2H), 3.45 (d, 2H), 3.81 (s, 2H).

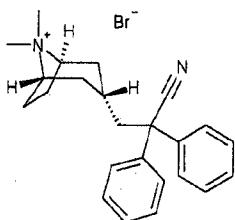
5 2c) Preparation of 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionitrile


A solution of (endo)-3-iodomethyl-8-methyl-8-aza-bicyclo[3.2.1]octane (1.06 g, 10 4.0 mmol) and Ph_2CHCN (2.32 g, 12.0 mmol) in DMF (20 mL) was mixed with NaH (0.288 g, 12.0 mmol). The resultant mixture was stirred at room temperature for 60 minutes. Filtration and purification via a reverse phase HPLC (Gilson) then afforded the title compound (1.16 g, 93 %): LCMS (ES) m/z 331 ($\text{M}+\text{H}$)⁺; $^1\text{H-NMR}(\text{CDCl}_3)$ δ 1.64 (m, 2H), 2.14 (m, 1H), 2.26 (m, 2H), 2.34 (m, 2H), 2.52 (m, 2H), 2.75 (m, 5H), 15 3.83 (s, 2H), 7.39 (d, 10H).

Example 3



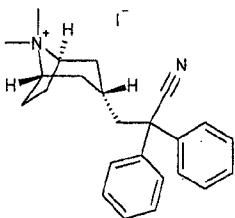
(Endo)-8-methyl-3-(2,2,2-triphenyl-ethyl)-8-aza-bicyclo[3.2.1]octane


20 A solution of triphenylmethane (0.276 g, 1.13 mmol) in THF (0.5 mL) was mixed with *n*-BuLi (0.706 mL, 1.6 M in Hexane, 1.13 mmol). The solution was stirred for 10 minutes and added by a solution of (endo)-3-iodomethyl-8-methyl-8-aza-bicyclo[3.2.1]octane (100 mg, 0.377 mmol) in DMF (1.0 mL). The mixture was stirred at room temperature for 60 minutes, mixed with H_2O (0.1 mL), concentrated and 25 filtered. Purification via a reverse phase HPLC (Gilson) then afforded the title compound (23.8 mg, 17 %): LCMS (ES) m/z 382 ($\text{M}+\text{H}$)⁺; $^1\text{H-NMR}(\text{CDCl}_3)$ δ 1.07 (d, 2H), 2.12 (m, 1H), 2.22 (m, 4H), 2.31 (m, 2H), 2.65 (d, 3H), 2.97 (d, 2H), 3.63 (s, 2H), 7.21 (m, 3H), 7.30 (d, 12H).

Example 43-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionamide

A solution of 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionitrile (53 mg, 0.16 mmol) in CH_2Cl_2 (0.25 mL) was mixed with H_2SO_4 (0.28 mL, 96 %) and stirred at 40°C for 30 hours. The mixture was then poured into ice, neutralized with $\text{NH}_3\text{H}_2\text{O}$, extracted with EtOAc and concentrated. The resultant residue was dissolved in DMSO and filtered. Purification via a reverse phase HPLC (Gilson) provided the title compound (17.2 mg, 30 %): MS (ES) m/z 347 ($\text{M}+\text{H}$)⁺; ¹H-NMR(CDCl_3) δ 1.31 (d, 2H), 1.98 (m, 1H), 2.28 (m, 4H), 2.39 (m, 2H), 2.67 (d, 3H), 2.79 (d, 2H), 3.66 (s, 2H), 5.82 (s, br, 1H), 6.88 (s, br, 1H), 7.37 (m, 10H).

Example 515 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionic acid


A solution of 2-[(3-endo)-8-methyl-8-azabicyclo[3.2.1]oct-3-yl]-1,1-diphenylethanol (100 mg, 1.56 mmol) in HCOOH (0.25 mL) was quickly added by H_2SO_4 (2.73 mL, 90 %) at 0°C. The reaction vial was capped immediately and stored in a refrigerator at -20°C for 7 days. The solution was poured into ice, neutralized with $\text{NH}_3\text{H}_2\text{O}$, extracted with EtOAc and concentrated. The resultant residue was dissolved in DMSO and filtered. Purification via a reverse phase HPLC (Gilson) then afforded the title compound (52 mg, 48 %): LCMS (ES) m/z 350 ($\text{M}+\text{H}$)⁺; ¹H-NMR(MeOD) δ 1.39 (d, 2H), 1.86 (m, 1H), 1.97 (m, 2H), 2.30 (m, 4H), 2.69 (s, 3H), 2.84 (d, 2H), 3.69 (s, 2H), 7.28 (m, 2H), 7.36 (m, 8H).

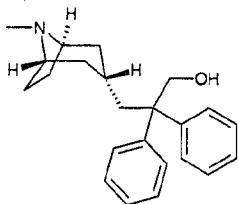
Example 6

(Endo)-3-(2-cyano-2,2-diphenyl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane bromide

5 A solution of 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionitrile (310 mg, 0.938 mmol) in acetone (6.0 mL) was mixed with MeBr (4.69 mL, 2.0 M in *t*-BuOMe, 9.38 mmol). The resultant mixture was stirred at room temperature for 60 minutes and filtered. The solid was washed with acetone (2 x 3 mL) to afford the title compound (333 mg, 83 %): LCMS (ES) *m/z* 345 (M)⁺; ¹H-NMR(MeOD) δ 1.82 (d, 2H), 2.17 (m, 1H), 2.35 (m, 2H), 2.49 (m, 4H), 3.01 (d, 2H), 3.07 (s, 3H), 3.10 (s, 3H), 3.79 (s, 2H), 7.36 (m, 2H), 7.43 (m, 4H), 7.49 (m, 4H).

10

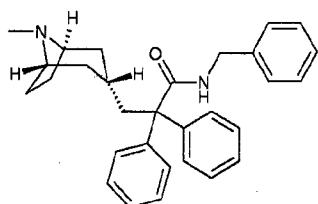
Example 7


(Endo)-3-(2-cyano-2,2-diphenyl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane

15 iodide

A solution of 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionitrile (26.5 mg, 0.080 mmol) in CH₂Cl₂ (0.5 mL) and MeCN (0.5 mL) was mixed with MeI (0.125 mL, 2.00 mmol). The resultant mixture was stirred at room temperature for 3 hours, diluted with DMSO (0.3 mL) and concentrated. Purification 20 via a reverse phase HPLC (Gilson) then afforded the title compound (22.9 mg, 60 %): LCMS (ES) *m/z* 345 (M)⁺; ¹H-NMR(CDCl₃) δ 1.83 (d, 2H), 2.17 (m, 1H), 2.35 (m, 2H), 2.49 (m, 4H), 3.01 (d, 2H), 3.07 (s, 3H), 3.10 (s, 3H), 3.79 (s, 2H), 7.36 (m, 2H), 7.43 (m, 4H), 7.49 (m, 4H).

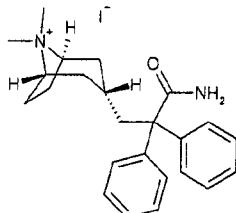
013316


Example 8

3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propan-1-ol

A mixture of 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionic acid (42.5 mg, 0.122 mmol) and LiAlH₄ (0.488 mL, 1.0 M in THF, 0.488 mmol) was heated with a microwave reactor at 100°C for 1 hour. It was diluted with saturated Na₂SO₄ solution, filtered through celite and concentrated. The resultant residue was dissolved in DMSO and filtered. Purification via a reverse phase HPLC (Gilson) then afforded the title compound (29.1 mg, 71 %): LCMS (ES) *m/z* 336(M+H)⁺; ¹H-NMR(CDCl₃) δ 1.40 (d, 2H), 1.92 (m, 1H), 2.29 (m, 6H), 2.59 (m, 2H), 2.68 (d, 3H), 3.72 (s, 2H), 4.16 (s, 2H), 7.13 (m, 3H), 7.30 (m, 7H).

Example 9

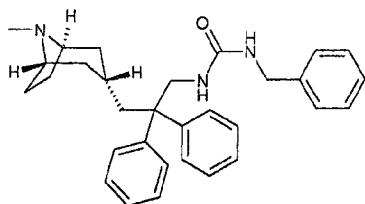

15

N-Benzyl-3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionamide

A solution of 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionic acid (82.0 mg, 0.235 mmol) in CH₂Cl₂ (3.0 mL) was mixed with PhCH₂NH₂ (28.2 μL, 0.258 mmol), EDC (49.5 mg, 0.258 mmol), HOEt (3.2 mg, 0.024 mmol) and (CH₃CH₂)₃N (0.232 mL, 1.65 mmol). The mixture was stirred at room temperature for 60 hours and concentrated. The resultant residue was dissolved in DMSO and filtered. Purification via a reverse phase HPLC (Gilson) then afforded the title compound (29.8 mg, 30 %): LCMS (ES) *m/z* 439(M+H)⁺; ¹H-NMR(CDCl₃) δ 1.34 (d, 2H), 1.96 (m,

1H), 2.23 (m, 2H), 2.38 (m, 4H), 2.63 (d, 3H), 2.83 (d, 2H), 3.66 (s, 2H), 4.41 (d, 2H), 6.93 (m, 2H), 7.22 (m, 3H), 7.38 (m, 10H).

Example 10



5

(Endo)-3-(2-carbamoyl-2,2-diphenyl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane iodide

The title compound was prepared from 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionamide by following the procedure of Example 7 (33 % yield): LCMS (ES) m/z 363 (M^+); 1 H-NMR($CDCl_3$) δ 1.49 (d, 2H), 1.95 (m, 1H), 2.25 (m, 2H), 2.42 (m, 4H), 2.84 (d, 2H), 3.17 (s, 3H), 3.23 (s, 3H), 3.93 (s, 2H), 5.65 (s, 1H), 5.91 (s, 1H), 7.39 (m, 10H).

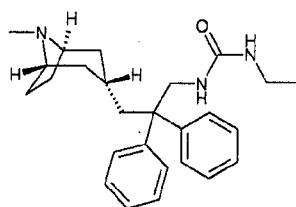
Example 11

15

1-Benzyl-3-[3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-urea

11a) 3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propylamine

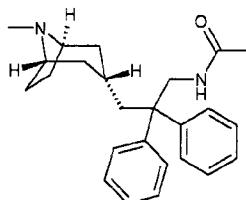
A solution of 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionitrile (250 mg, 0.758 mmol) in THF (2.5 mL) was mixed with BH_3 (2.53 mL, 1.5 M in THF, 3.79 mmol) at 0°C. The mixture was stirred at room temperature for 20 hours and diluted with H_2O (1.0 mL). The solution was then mixed with K_2CO_3 (0.1 g) and stirred at room temperature for 1 hour. Organic layers were separated and the aqueous part was extracted with EtOAc (2 x 3 mL). The organic layers were


combined, dried over Na_2SO_4 and concentrated. Purification via a reverse phase HPLC (Gilson) afforded the titled compound (159mg, 63%): LCMS (ES) m/z 335 ($\text{M}+\text{H}$) $^+$; $^1\text{H-NMR}(\text{MeOD}) \delta$ 1.35 (d, 2H), 2.01 (m, 3H), 2.34 (s, 4H), 2.55 (s, 2H), 2.68 (s, 3H), 3.73 (m, 5H), 7.26 (m, 4H), 7.33 (m, 2H), 7.43 (m, 4H).

5 11b) 1-Benzyl-3-[3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-urea

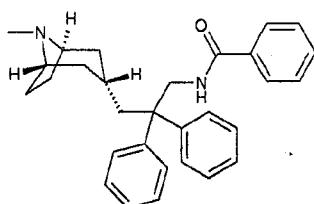
A solution of 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propylamine (50.0 mg, 0.149 mmol) in CH_2Cl_2 (2.0 mL) was mixed with PhCH_2NCO (20.4 μL , 0.164 mmol) and $(\text{CH}_3\text{CH}_2)_3\text{N}$ (62.8 μL , 0.447 mmol). The result mixture 10 was stirred at room temperature for 1 hours and concentrated. Purification via a reverse phase HPLC (Gilson) then afforded the titled compound (13.0mg, 19%): LCMS (ES) m/z 468 ($\text{M}+\text{H}$) $^+$; $^1\text{H-NMR}(\text{MeOD}) \delta$ 1.24 (d, 2H), 1.94 (m, 3H), 2.25 (m, 4H), 2.49 (d, 2H), 2.67 (s, 3H), 3.62 (s, 2H), 3.97 (s, 2H), 4.23 (s, 2H), 7.22 (m, 6H), 7.33 (m, 4H).

15

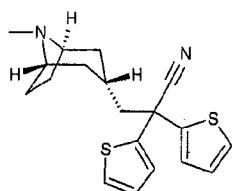

Example 12

1-Ethyl-3-[3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-urea

The title compound was prepared from 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propylamine and $\text{CH}_3\text{CH}_2\text{NCO}$ by following the 20 procedure in Example 11 (45% yield): LCMS (ES) m/z 406 ($\text{M}+\text{H}$) $^+$; $^1\text{H-NMR}(\text{MeOD}) \delta$ 1.03 (t, 3H), 1.33 (d, 2H), 1.94 (m, 3H), 2.25 (m, 4H), 2.55 (d, 2H), 2.67 (s, 3H), 3.07 (q, 2H), 3.68 (s, 2H), 3.94 (s, 2H), 7.24 (m, 6H), 7.34 (m, 4H).


Example 13

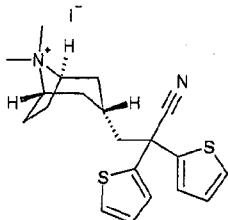
N-[3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-acetamide


A solution of 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propylamine (33.4 mg, 0.10 mmol) in CH_2Cl_2 (0.5 mL) was mixed with Ac_2O (18.9 μL , 0.20 mmol) and pyridine (16.2 μL , 0.20 mmol). The mixture was stirred at room 5 temperature for 1 hour and concentrated. Purification *via* a reverse phase HPLC (Gilson) then afforded the title compound (10.7mg, 29%): LCMS (ES) m/z 377 ($\text{M}+\text{H}$) $^+$; $^1\text{H-NMR}(\text{MeOD}) \delta$ 1.26 (d, 2H), 1.82 (s, 3H), 1.96 (m, 3H), 2.26 (s, 4H), 2.53 (d, 2H), 2.67 (s, 3H), 3.66 (s, 2H), 4.00 (s, 2H), 7.24 (m, 6H), 7.33 (m, 4H).

10

Example 14*N*-[3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-benzamide

The title compound was prepared from 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-15 3-yl)-2,2-diphenyl-propylamine and $(\text{PhCO})_2\text{O}$ by following the procedure in Example 13 (8% yield): LCMS (ES) m/z 439 ($\text{M}+\text{H}$) $^+$; $^1\text{H-NMR}(\text{MeOD}) \delta$ 1.28 (d, 2H), 2.00 (m, 3H), 2.24 (s, 4H), 2.59 (d, 2H), 2.67 (s, 3H), 3.65 (s, 2H), 4.21 (s, 2H), 7.31 (m, 6H), 7.39 (m, 6H), 7.50 (m, 3H).

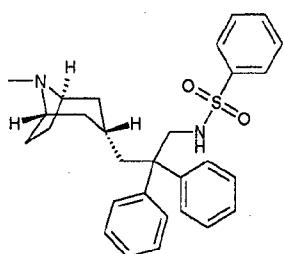

20

Example 15*3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-di-thiophen-2-yl-propionitrile*

013316

The title compound was prepared from (endo)-3-iodomethyl-8-methyl-8-aza-bicyclo[3.2.1]octane and 2,2-di-thiophen-2-yl-acetonitrile by following the procedure in Example 2C (34 % yield): LCMS (ES) m/z 343 ($M+H$)⁺; ¹H-NMR($CDCl_3$) δ 1.79 (m, 2H), 2.21 (m, 2H), 2.33 (m, 2H), 2.62 (m, 2H), 2.73 (m, 4H), 3.80 (m, 2H), 4.35 (s, 2H), 7.02 (m, 2H), 7.23 (m, 2H), 7.37 (m, 2H).

5 **Example 16**

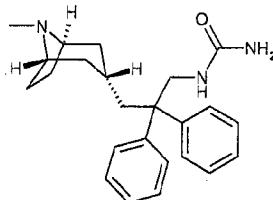


(Endo)-3-(2-cyano-2,2-di-thiophen-2-yl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane iodide

10 The title compound was prepared from 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-di-thiophen-2-yl-propionitrile by following the procedure in Example 7 (43 %): LCMS (ES) m/z 345 (M)⁺; ¹H-NMR($CDCl_3$) δ 1.82 (d, 2H), 2.35 (m, 2H), 2.23 (m, 3H), 2.58 (m, 4H), 2.82 (m, 2H), 3.37 (s, 6H), 4.25 (s, 2H), 7.02 (m, 2H), 7.24 (m, 2H), 7.36 (m, 2H).

15

Example 17

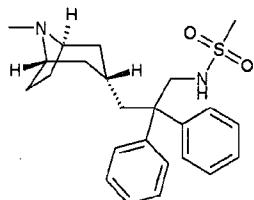


N-[3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-benzenesulfonamide

20 A solution of 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propylamine (67.0 mg, 0.20 mmol) in CH_2Cl_2 (2.0 mL) was mixed with $PhSO_2Cl$ (28.2 μ L, 0.22 mmol) and $(CH_3CH_2)_3N$ (84.3 μ L, 0.60 mmol). The result mixture was stirred at room temperature for 1 hours and concentrated. Purification *via* a reverse phase HPLC (Gilson) then afforded the title compound (51.5mg, 54%): LCMS (ES) m/z 475

(M+H)⁺; ¹H-NMR(MeOD) δ 1.39 (d, 2H), 2.01 (m, 3H), 2.30 (s, 4H), 2.69 (s, 5H), 3.60 (s, 2H), 3.68 (s, 2H), 7.12 (m, 4H), 7.27 (m, 6H), 7.55 (m, 2H), 7.63 (m, 1H), 7.78 (m, 2H).

Example 18

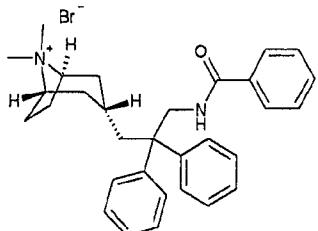

5

[3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-urea

To a solution of 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propylamine (50.0 mg, 0.149 mmol) in CH₂Cl₂ (4.0 mL), ClSO₂NCO (31.2 μL, 0.358 mmol) was added. The mixture was stirred at room temperature for 2 days and 10 concentrated. Purification via a reverse phase HPLC (Gilson) then afforded the title compound (21.6mg, 38%): LCMS (ES) *m/z* 378 (M+H)⁺; ¹H-NMR(MeOD) δ 1.33 (d, 2H), 2.01 (m, 3H), 2.29 (s, 4H), 2.57 (m, 2H), 2.68 (s, 3H), 3.69 (s, 2H), 4.01 (s, 2H), 7.25 (m, 6H), 7.34 (m, 4H).

15

Example 19



N-[3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-methanesulfonamide

The title compound was prepared from 3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propylamine and MeSO₂Cl by following the 20 procedure in Example 17 (28% yield): LCMS (ES) *m/z* 413 (M+H)⁺; ¹H-NMR(MeOD) δ 1.39 (d, 2H), 1.97 (m, 3H), 2.30 (s, 4H), 2.68 (s, 3H), 2.76 (s, 3H), 3.68 (s, 2H), 3.84 (s, 2H), 7.23 (s, 6H), 7.33 (s, 4H).

013316

Example 20

(Endo)-3-{2,2-diphenyl-3-[(1-phenyl-methanoyl)-amino]-propyl}-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane bromide

5 A solution of *N*-[3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-benzamide (29 mg, 0.0683 mmol) in CH₂Cl₂ (0.5 mL) and acetone (0.5 mL) was mixed with MeBr (0.342 mL, 2.0 M in *t*-butyl methyl ether, 0.683 mmol). The resultant mixture was stirred at room temperature for 3 hours and concentrated. Purification via a reverse phase HPLC (Gilson) then afforded the title compound (19.6 mg, 64 %): LCMS (ES) *m/z* 453 (M)⁺; ¹H-NMR(MeOD) δ 1.20 (d, 2H), 2.32 (m, 7H), 2.65 (d, 2H), 2.98 (s, 3H), 3.02 (s, 3H), 3.60 (s, 2H), 4.22 (s, 2H), 7.30(m, 6H), 7.39(m, 6H), 7.50 (s, 3H).

BIOLOGICAL EXAMPLES

15

The inhibitory effects of compounds at the M₃ mAChR of the present invention are determined by the following *in vitro* and *in vivo* assay:

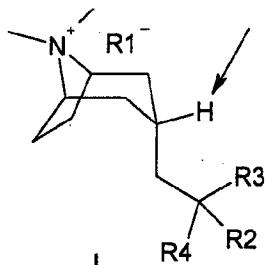
Analysis of Inhibition of Receptor Activation by Calcium Mobilization:

20 Stimulation of mAChRs expressed on CHO cells were analyzed by monitoring receptor-activated calcium mobilization as previously described¹⁰. CHO cells stably expressing M₃ mAChRs were plated in 96 well black wall/clear bottom plates. After 18 to 24 hours, media was aspirated and replaced with 100 μl of load media (EMEM with Earl's salts, 0.1% RIA-grade BSA (Sigma, St. Louis MO), and 4 μM Fluo-3-
25 acetoxyethyl ester fluorescent indicator dye (Fluo-3 AM, Molecular Probes, Eugene, OR) and incubated 1 hr at 37° C. The dye-containing media was then aspirated, replaced with fresh media (without Fluo-3 AM), and cells were incubated for 10

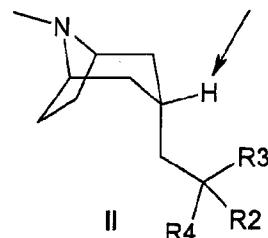
013316

minutes at 37° C. Cells were then washed 3 times and incubated for 10 minutes at 37° C in 100 μ l of assay buffer (0.1% gelatin (Sigma), 120 mM NaCl, 4.6 mM KCl, 1 mM KH₂PO₄, 25 mM NaHCO₃, 1.0 mM CaCl₂, 1.1 mM MgCl₂, 11 mM glucose, 20 mM HEPES (pH 7.4)). 50 μ l of compound (1x10⁻¹¹ – 1x10⁻⁵ M final in the assay) was 5 added and the plates were incubated for 10 min. at 37° C. Plates were then placed into a fluorescent light intensity plate reader (FLIPR, Molecular Probes) where the dye loaded cells were exposed to excitation light (488 nm) from a 6 watt argon laser. Cells were activated by adding 50 μ l of acetylcholine (0.1-10 nM final), prepared in buffer containing 0.1% BSA, at a rate of 50 μ l/sec. Calcium mobilization, monitored as 10 change in cytosolic calcium concentration, was measured as change in 566 nm emission intensity. The change in emission intensity is directly related to cytosolic calcium levels¹¹. The emitted fluorescence from all 96 wells is measured simultaneously using a cooled CCD camera. Data points are collected every second. This data was then plotting and analyzed using GraphPad PRISM software.

15


Methacholine-induced bronchoconstriction

Airway responsiveness to methacholine was determined in awake, unrestrained BalbC mice ($n = 6$ each group). Barometric plethysmography was used to measure enhanced pause (Penh), a unitless measure that has been shown to correlate with the changes in 20 airway resistance that occur during bronchial challenge with methacholine¹². Mice were pretreated with 50 μ l of compound (0.003-10 μ g/mouse) in 50 μ l of vehicle (10% DMSO) intranasally, and were then placed in the plethysmography chamber. Once in the chamber, the mice were allowed to equilibrate for 10 min before taking a baseline Penh measurement for 5 minutes. Mice were then challenged with an aerosol of 25 methacholine (10 mg/ml) for 2 minutes. Penh was recorded continuously for 7 min starting at the inception of the methacholine aerosol, and continuing for 5 minutes afterward. Data for each mouse were analyzed and plotted by using GraphPad PRISM software.


013316

What is claimed is:

1. A compound having structure I or II as indicated below except the compound of Formula (II) with R₂ and R₃ as 2-thiophene and R₄ as -OC(O)CH₃:

5

II

wherein:

the H atom indicated is in the exo position;

R₁⁻ represents an anion associated with the positive charge of the N atom. R₁⁻ may be but is not limited to chloride, bromide, iodide, sulfate, benzene sulfonate and toluene

10 sulfonate;

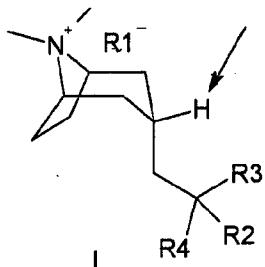
R₂ and R₃ are independently selected from the group consisting of straight or branched chain lower alkyl groups (having preferably from 1 to 6 carbon atoms), cycloalkyl groups (having from 5 to 6 carbon atoms), cycloalkyl-alkyl (having 6 to 10 carbon

15 atoms), heterocycloalkyl (having 5 to 6 carbon atoms) and N or O as the heteroatom, heterocycloalkyl-alkyl (having 6 to 10 carbon atoms) and N or O as the heteroatom, aryl, optionally substituted aryl, heteroaryl, and optionally substituted heteroaryl;

R₄ is selected from the group consisting of (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-

20 C₇)heterocycloalkyl, (C₁-C₆)alkyl(C₃-C₁₂)cycloalkyl, (C₁-C₆)alkyl(C₃-C₇)heterocycloalkyl, aryl, heteroaryl, (C₁-C₆)alkyl-aryl, (C₁-C₆)alkyl-heteroaryl, -OR₅, -CH₂OR₅, -CH₂OH, -CN, -CF₃, -CH₂O(CO)R₆, -CO₂R₇, -CH₂NH₂, -CH₂N(R₇)SO₂R₅, -SO₂N(R₇)(R₈), -CON(R₇)(R₈), -CH₂N(R₈)CO(R₆), -CH₂N(R₈)SO₂(R₆), -CH₂N(R₈)CO₂(R₅), -CH₂N(R₈)CONH(R₇);

25


013316

R5 is selected from the group consisting of (C₁-C₆)alkyl, (C₁-C₆)alkyl(C₃-C₁₂)cycloalkyl, (C₁-C₆)alkyl(C₃-C₇)heterocycloalkyl, (C₁-C₆)alkyl-aryl, (C₁-C₆)alkyl-heteroaryl;

5 R6 is selected from the group consisting of (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₇)heterocycloalkyl, (C₁-C₆)alkyl(C₃-C₁₂)cycloalkyl, (C₁-C₆)alkyl(C₃-C₇)heterocycloalkyl, aryl, heteroaryl, (C₁-C₆)alkyl-aryl, (C₁-C₆)alkyl-heteroaryl;

10 R7 and R8 are, independently, selected from the group consisting of H, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₇)heterocycloalkyl, (C₁-C₆)alkyl(C₃-C₁₂)cycloalkyl, (C₁-C₆)alkyl(C₃-C₇)heterocycloalkyl, (C₁-C₆)alkyl-aryl, and (C₁-C₆)alkyl-heteroaryl.

2. A compound according to claim 1 having structure I below:

15

3. A compound according to claim 1 selected from the group consisting of: (Endo)-3-(2-methoxy-2,2-di-thiophen-2-yl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane iodide; 3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionitrile; 20 (Endo)-8-methyl-3-(2,2,2-triphenyl-ethyl)-8-aza-bicyclo[3.2.1]octane; 3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionamide; 3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionic acid; (Endo)-3-(2-cyano-2,2-diphenyl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane iodide; 25 (Endo)-3-(2-cyano-2,2-diphenyl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane bromide; 3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propan-1-ol;

N-Benzyl-3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propionamide;
(Endo)-3-(2-carbamoyl-2,2-diphenyl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane iodide;

5 1-Benzyl-3-[3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-urea;
1-Ethyl-3-[3-((endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-urea;
N-[3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-acetamide;
N-[3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-benzamide;

10 3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-di-thiophen-2-yl-propionitrile;
(Endo)-3-(2-cyano-2,2-di-thiophen-2-yl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane iodide;
N-[3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-benzenesulfonamide;

15 [3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-urea;
N-[3-((Endo)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)-2,2-diphenyl-propyl]-methanesulfonamide; and
(Endo)-3-{2,2-diphenyl-3-[(1-phenyl-methanoyl)-amino]-propyl}-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane bromide.

20 4. A compound according to claim 3 selected from the group consisting of:
(Endo)-3-(2-methoxy-2,2-di-thiophen-2-yl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane iodide;
(Endo)-3-(2-cyano-2,2-diphenyl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane iodide;
(Endo)-3-(2-cyano-2,2-diphenyl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane bromide;
(Endo)-3-(2-carbamoyl-2,2-diphenyl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane iodide;

25 (Endo)-3-(2-cyano-2,2-di-thiophen-2-yl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane iodide; and

30 (Endo)-3-(2-cyano-2,2-di-thiophen-2-yl-ethyl)-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane iodide; and

(Endo)-3-{2,2-diphenyl-3-[(1-phenyl-methanoyl)-amino]-propyl}-8,8-dimethyl-8-azonia-bicyclo[3.2.1]octane bromide.

5. A pharmaceutical composition for the treatment of muscarinic acetylcholine receptor mediated diseases comprising a compound according to claim 1 and a pharmaceutically acceptable carrier thereof.
6. Use of a compound according to claim 1 in the manufacture of an inhibitor of the binding of acetylcholine to its receptors in a mammal in need thereof.
- 10 7. Use of a compound according to claim 1 in the manufacture of a medicament for treating a muscarinic acetylcholine receptor mediated disease, wherein acetylcholine binds to said receptor.
- 15 8. A use according to claim 7 wherein the disease is selected from the group consisting of chronic obstructive lung disease, chronic bronchitis, asthma, chronic respiratory obstruction, pulmonary fibrosis, pulmonary emphysema and allergic rhinitis.
- 20 9. A use according to claim 7 wherein administration is via inhalation via the mouth or nose.
10. A use according to claim 7 wherein administration is via a medicament dispenser selected from a reservoir dry powder inhaler, a multi-dose dry powder inhaler or a metered dose inhaler.
- 25 11. A use according to claim 7 wherein the compound has a duration of action of 12 hours or more for a 1 mg dose.
- 30 12. A use according to claim 11 wherein the compound has a duration of action of 24 hours or more.

013316

13. A use according to claim 12 wherein the compound has a duration of action of 36 hours or more.