(12) PATENT (11) Application No. AU 199881237 B2
(19) AUSTRALIAN PATENT OFFICE (10) Patent No. 752048

(54) Title
A computer graphics system

(51)7 International Patent Classification(s)
GO06T 015/50

(21) Application No: 199881237 (22) Application Date: 1998.07.02
(87) WIPO No: WO099/01846

(30) Priority Data

(31) Number (32) Date (33) Country
60/051507 1997.07.02 uUs
(43) Publication Date : 1999.01.25

(43) Publication Journal Date : 1999.03.18
(44) Accepted Journal Date : 2002.09.05

(71) Applicant(s)
Mental Images GmbH and Co. KG

(72) Inventor(s)
Thomas Driemeyer; Rolf Herken

(74) Agent/Attorney
CALLINAN LAWRIE,Private Bag 7,KEW VIC 3101

(56) Related Art
WO 95/06298

N i

OPI DATE 25/01/99 APPLN. ID

| AOJP DATE 18/03/99 PCT NUMBER PCT/IB98/01073

81237/98

AU9881237
IN\\ - ce i e e B P T Y A
(51) International Patent Classification 6 : (11) International Publication Number: WO 99/01846
GO6T 15/50 Al L
(43) International Publication Date: 14 January 1999 (14.01.99)
(21) International Application Number: PCT/IB98/01073 | (81) Designated States: AU, CA, JP, European patent (AT, BE,
CH, CY, DE, DK, ES, F], FR, GB, GR, [E, IT, LU, MC,
(22) International Filing Date: 2 July 1998 (02.07.98) NL, PT, SE).
(30) Priority Data: Published
60/051,507 2 July 1997 (02.07.97) us With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
(71) Applicant: MENTAL IMAGES GMBH & CO. KG [DE/DE]; amendments.
Fasanenstrasse 81, D-10623 Berlin (DE).
(72) Inventors: DRIEMEYER, Thomas; Schweidnitzer Strasse 6,
D-10709 Berlin (DE). HERKEN, Rolf, Dachsberg 10,
D-14193 Berlin (DE).
(74) Agents: GREENWOOD, John, David et al.; Graham Watt &
Co., Riverhead, Sevenoaks, Kent TN13 2BN (GB).
(54) Titlee A COMPUTER GRAPHICS SYSTEM
BASE SHADER
OPERATOR < » PHENOMENON |e
INTERFACE 27 CREATOR 24 NODE DATABASE
PHENOMENON EDITOR
ENTITY GEOMETRIC AND CONTROL TREE PHENOMENON
REPRESENTATION ’ DATABASE 25
GENERATOR 23 GENERATOR 26
PHENOMENON
SCENE STRUCTURE SCENE ASSEMBLER
GENERATION 34 < lNSTANC;DATABASE
PORTION
20 ,
SCENE IMAGE
GgNERI:"I‘ 1ON A
;1 RTIO SCENE > SCENE IMAGE OPERATOR
DATABASE 22 o GENERATOR 30 INTERFACE 31

(57) Abstract

A computer graphics system is described in which a new type of entity, referred to as a "phenomenon", can be created, instantiated
and used in rendering an image of a scene. A phenomenon is an encapsulated shader DAG comprising one or more nodes, each comprising
a shader, or an encapsulated set of such DAG’s which are interconnected so as to cooperate, which are instantiated and attached to entities
in the scene which are created during the scene definition process to define dirverse types of features of a scene. Phenomena selected for
use by an operator in connection with a scene may be predefined, or they may constructed from base shader nodes by an operator using a
phenomenon creator. The phenomenon editor allows the operator to view the effects produced by various settings for the parameter values

which are selected.

WO 99/01846 PCT/1B98/01073

A COMPUTER GRAPHICS SYSTEM
FIELD OF THE INVENTION

The invention relates generally to the field of computer graphics, computer-
aided design and the like, and more particularly to systems and methods for
generating shader systems and using the shader systems so generated in rendering an
image of a scene. The invention in particular provides a new type of component
useful in a computer graphics system, identified herein as a "phenomenon," which
comprises a system including a packaged and encapsulated shader DAG ("directed
acyclic graph") or set of cooperating shader DAGs, each of which can include one
or more shaders, which is generated and encapsulated to assist in defining at least a
portion of a scene, in a manner which will ensure that the shaders can correctly
cooperate during rendering.

BACKGROUND OF THE INVENTION

In computer graphics, computer-aided geometric design and the like, an artist,
draftsman or the like (generally referred to herein as an “operator”) attempts to
generate a three-dimensional representation of objects in a scene, as maintained by
a computer, and thereafter render respective two-dimensional images of the objects
in the scene from one or more orientations. In the first, representation generation
phase, conventionally, computer graphics systems generate a three-dimensional
representation from, for example, various two-dimensional line drawings comprising

contours and/or cross-sections of the objects in the scene and by applying a number

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 ~ PCT/IB98/01073

-2-
of operations to such lines which will result in two-dimensional surfaces in three-
dimensional space, and subsequent modification of parameters and control points of
such surfaces to correct or otherwise modify the shape of the resulting representation
of the object. During this process, the operator also defines various properties of the
surfaces of the objects, the structure and characteristics of light sources which
illuminate the scene, and the structure and characteristics of one or more simulated
cameras which generate the images. After the structure and characteristics of the
scene, light source(s) and camera(s) have been defined, in the second phase, an
operator enables the computer to render an image of the scene from a particular
viewing direction.

The objects in the scene, light source(s) and camera(s) are defined, in the first,
scene definition, phase, by respective multiple-dimensional mathematical
representations, including at least the three spatiél dimensions, and possibly one time
dimension. The mathematical representations are typically stored in a tree-structured
data structure. The properties of the surfaces of the objects, in turn, are defined by
"shade trees," each of which includes one or more shaders which, during the second,
scene rendering, phase, enables the computer to render the respective surfaces,
essentially providing color values representative of colors of the respective surfaces.
The shaders of a shade tree are generated by an operator, or are provided a priori by
a computer graphics system, in a high-level l;nguage such as C or C+ +, which

together enable the computer to render an image of a respective surface in the second,

scene rendering, phase.

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/1B98/01073

-3-

A number of problems arise from the generation and use of shaders and shade
trees as currently provided in computer graphics arrangements. First, shaders
generally cannot cooperate with each other unless they are programmed to do so.
Typically, input values provided to shaders are constant values, which limits the
shaders’ flexibility and ability to render features in an interesting and life-like
manner. In addition, it is generally difficult to set up systems of cooperating shaders
which can get their input values from a common source.

SUMMARY OF THE INVENTION

The invention provides a new and improved computer graphic system and
method that provides for enhanced cooperation among shaders by facilitating
generation of packaged and encapsulated shader DAGs, each of which can include
one or more shaders, generated in a manner so as to ensure that the shaders in the
shader DAGs can correctly cooperate during rendering.

In brief summary, a computer graphics system is provided in which a new
type of entity, referred to as a "phenomenon,"” can be created, instantiated and used
in rendering an image of a scene. A phenemenon is an encapsulated shader DAG
comprising one or more nodes each comprising a shader, or an encapsulated set of
such DAGs which are interconnected so as to cooperate, which are instantiated and
attached to entities in the scene which are created during the scene definition process
to define diverse types of features of a scene, including color and textural features of
surfaces of objects in the scene, characteristics of volumes and geometries in the

scene, features of light sources illuminating the scene, features of simulated cameras

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/1B98/01073

-4~
which will be simulated during rendering, and numerous other features which are
useful in rendering.

Phenomena selected for use by an operator in connection with a scene may be
predefined, or they may be constructed from base shader nodes by an operator using
a phenomenon creator. The phenomenon creator ensures that phenomena are
constructed so that the shaders in the DAG or cooperating DAGs can correctly
cooperate during rendering of an image of the scene.

Prior to being attached to a scene, a phenomenon is instantiated by providing
values, or functions which are used to define the values, for each of the
phenomenon’s parameters, using a phenomenon editor.

After a representation of a scene has been defined and phenomena attached,
a scene image generator can generate an image of the scene. In that operation, the
scene image generator operates in a series of phases, including a pre-processing
phase, a rendering phase and a post-processing phase. During a pre-processing
phase, the scene image generator can perform pre-processing operations, such as
shadow and photon mapping, multiple inheritance resolution, and the like. The scene
image generator may perform pre-processing operations if, for example, a
phenomenon attached to the scene includes a geometry shader to generate geometry
defined thereby for the scene. During the rendering phase, the scene image generator
renders the image. During the post-processing phase, the scene image generator may
perform post-processing operations if, for example, a phenomenon attached to the

scene includes a shader that defines post-processing operations, such as depth of field

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/IB98/01073

-5-
or motion blur calculations which are dependent on velocity and depth information
stored in connection with each pixel value in the rendered image.

BRIEF DESCRIPTION OF THE DRAWINGS

This invention is pointed out with particularity in the appended claims. The
above and further advantages of this invention may be better understood by referring
to the following description taken in conjunction with the accompanying drawings,
in which:

FIG. 1 depicts a computer graphics system that provides for enhanced
cooperation among shaders by facilitating generation of packaged and encapsulated
shader DAGs, each of which can include one or more shaders, which shader DAGs
are generated in a manner so as to ensure that the shaders in the shader DAG can
correctly cooperate during rendering, constructed in accordance with the invention;

FIG. 2 is a functional block diagram of the computer graphics system depicted
in FIG. 1;

FIG. 3 depicts a graphical user interface for one embodiment of the
phenomenon creator used in the computer graphics system whose functional block
diagram is depicted in FIG. 2;

FIG. 4 graphically depicts an illustrative phenomenon generated using the
phenomenon creator depicted in FIGS. 2 and 3;

FIG. 5 depicts a graphical user interface for one embodiment of the
phenomenon editor used in the computer graphics system whose functional block

- diagram is depicted in FIG. 2;

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 ' : PCT/1B98/01073

-6-

FIGS. 6A and 6B depict details of the graphical user interface depicted in
FIG. §; and

FIG. 7 is a flowchart depicting operations performed by a scene image
generation portion of the computer graphics system depicted in FIG. 2 in generating
an image of a scene.

DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT

FIG. 1 attached hereto depicts elements comprising an computer graphics
system 10 constructed in accordance with the invention. The computer graphics
system 10 provides for enhanced cooperation among shaders by facilitating generation
of new computer graphic components, referred to herein as "phenomenon” (in the
singular) or "phenomena" (in the plural), which are used to define features of a scene
for use in rendering. A phenomenon is a packaged and encapsulated system
comprising one or more shaders, which are organized and interconnected in the form
of one or more directed acyclic graphs ("DAGs"), with each DAG including one or
more shaders. The phenomena generated by the computer graphics system 10 are
generated in such a manner as to ensure that the shader or shaders in each shader
DAG can correctly cooperate during rendering, to facilitate the rendering of realistic
or complex visual effects. In addition, for phenomena which comprise multiple
cooperating shader DAGs, the computer graphics system 10 generates the phenomena
such that the shaders in all of the shader DAGs can correctly cooperate during the
rendering, to facilitate the rendering of progressively realistic or complex visual

effects.

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/IB98/01073

-7-

With reference to FIG. 1, the computer graphics system 10 in one embodiment
includes a computer including a processor module 11 and operator interface elements
comprising operator input components such as a keyboard 12A and/or a mouse 12B
(generally identified as operator input element(s) 12) and an operator output element
such as a video display device 13. The illustrative computer system 10 is of the
conventional stored-program computer architecture. Ther processor module 11
includes, for example, processor, memory and mass storage devices such as disk
and/or tape storage elements (not separately shown) which perform processing and
storage operations in connection with digital data provided thereto. The operator
input element(s) 12 are provided to permit an operator to input information for
processing. The video display devicé 13 is provided to display output information
generated by the processor module 11 on a screen 14 to the operator, including data
that the operator may input for processing, information that the operator may input
to control processing, as well as information generated during processing. The
processor module 11 generates information for display by the video display device 13
using a so-called "graphical user interface” ("GUI"), in which information for various
applications programs is displayed using vﬁous "windows." Although the computer
system 10 is shown as comprising particular components, such as the keyboard 12A
and mouse 12B for receiving input information from an operator, and a video display
device 13 for displaying output information to the operator, it will be appreciated that
the computer system 10 may include a variety of components in addition to or instead

of those depicted in FIG. 1.

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/1B98/01073

8

In addition, the processor module 11 may include one or more network ports,
generally identified by reference numeral 14, which are connected to communication
links which connect the computer system 10 in a computer network. The network
ports enable the computer system 10 to transmit information to, and receive
information from, other computer systems and other devices in the network. In a
typical network organized according to, for example, the client-server paradigm,
certain computer systems in the network are designated as servers, which store data
and programs (generally, "information") for processing by the other, client computer
systems, thereby to enable the client computer systems to conveniently share the
information. A client computer system which needs access to information maintained
by a particular server will enable the server to download the information to it over
the network. After processing the data, the client computer system may also return
the processed data to the server for storage. In addition to computer systems
(including the above-described servers and clients), a network may also include, for
example, printers and facsimile devices, digital audio or video storage and distribution
devices, and the like, which may be shared among the various computer systems
connected in the network. The communication links interconnecting the computer
systems in the network may, as is conventional, comprise any convenient information-
carrying medium, including Wires, optical fibers or other media for carrying signals
among the computer systems. Computer systems transfer information over the
network by means of messages transferred over the communication links, with each

message including information and an identifier identifying the device to receive the

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/IB98/01073

message.

As noted above, computer graphics system 10 provides for enhanced
cooperation among shaders by facilitating generation of phenomena comprising
packaged and encapsulated shader DAGs or cooperating shader DAGs, with each
shader DAG comprising at least one shader, which define features of a three-
dimensional scene. Phenomena can be used to define diverse types of features of a
scene, including color and textural features of surfaces of objects in the scene,
characteristics of volumes and geometries in the scene, features of light sources
illuminating the scene, features of simulated cameras or other image recording
devices which will be simulated during rendering, and numerous other features which
are useful in rendering as will be apparent from the following description. The
phenomena are constructed so as to ensure that the shaders in the DAG or
cooperating DAGs can correctly cooperate during rendering of an image of the
scene.

FIG. 2 depicts a functional block diagram of the computer graphics system 10
used in one embodiment of the invention. As depicted in FIG. 2, the computer
graphics system 10 includes two general portions, including a scene structure
generation portion 20 and an scene image generation portion 21. The scene structure
generation portion 20 is used by an artist, draftsman or the like (generally, an
“operator") during a scene entity generation phase to generate a representation of
various elements which will be used by the scene image generation portion 21 in

rendering an image of the scene, which may include, for example, the objects in the

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 : PCT/IB98/01073

-10-
scene and their surface characteristics, the structure and characteristics of the light
source or sources illuminating the scene, and the structure and characteristics of a
particular device, such as a camera, which will be simulated in generating the image
when the image is rendered. The representation generated by the scene structure
generation portion 20 is in the form of a mathematical representation, which is stored
in the scene object database 22. The mathematical representation is evaluated by the
image rendering portion 21 for display to the operator. The scene structure
generation portion 20 and the scene image generation portion 21 may reside on and
form part of the same computer, in which case the scene object database 22 may also
reside on that same computer or alternatively on a server for which the computer 20
is a client. Alternatively, the portions 20 and 21 may reside on and form parts of
different computers, in which case the scene object database 22 may reside on either
computer or a server for both computers.

More particularly, the scene structure generation portion 20 is used by the
operator to generate a mathematical representation defining comprising the geometric
structures of the objects in the scene, the locations and geometric characteristics of
light sources illuminating the scene, and the locations, geometric and optical
characteristics of the cameras to be simulated in generating the images that are to be
rendered. The mathematical representation preferably defines the three spatial
dimensions, and thus identifies the locations of the object in the scene and the features
of the objects. The objects may be defined in terms of their one-, two- or three-

dimensional features, including straight or curved lines embedded in a three-

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/1IB98/01073

-11-
dimensional space, two-dimensional surfaces embedded in a three-dimensional space,
one or more bounded and/or closed three-dimensional surfaces, or any combination
thereof. In addition, the mathematical representations may also define a temporal
dimension, which may be particularly useful in connection with computer animation,
in which the objects and their respective features are considered to move as a function
of time.

In addition to the mathematical representation of the geometrical structure of
the object(s) in the scene to be rendered, the mathematical representation further
defines the one or more light sources which illuminate the scene and a camera. The
mathematical representation of a light source particularly defines the location and/or
the direction of the light source relative to the scene and the structural characteristics
of the light source, including whether the light source is a point source, a straight or
curved line, a flat or curved surface or the like. The mathematical representation
of the camera particularly defines the conventional camera parameters, including the
lens or lenses, focal length, orientation of the image plane, and so forth.

The scene structure generation portion 20 also facilitates generation of
phenomena, which will be described in detail below, and association of the
phenomena to respective elements of the scene. Phenomena generally define other
information that is required for the completion of the definition of the scene which
will be used in rendering. This information includes, but is not limited to,
characteristics of the colors, textures, and so forth, of the surfaces of the geometrical

entities defined by the scene structure generation portion 20. A phenomenon may

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/1B98/01073

-12~
include mathematical representations or other objects which, when evaluated during
the rendering operation, will enable the computer generating the rendered image to
display the respective surfaces in the desired manner. The scene structure generation
portion 20, under control of the operator, effectively associates the phenomena to the
mathematical representations for the respective elements (that is, objects, surfaces,
volumes and the like) with which they are to be used, effectively "attaching" the
phenomena to the respective elements.

After the mathematical representations have been generated by the scene
structure generation portion 20 and stored in the scene representation database 22, the
scene image generation portion 21 is used by an operator during a rendering phase
to generate an image of the scene on, for example, the video display unit 13 (FIG.
1).

The scene structure generation portion 20 includes several elements, including
an entity geometrical representation generator 23, a phenomenon creator 24, a
phenomenon database 25, a phenomenon editor 26, a base shader node database 32,
a phenomenon instance database 33 and a scene assembler 34, all of which operate
under control of operator input information entered through an operator interface 27.
The operator interface 27 may generally include the operator input devices 12 and the
video display unit 13 of computer graphics system 10 as described above in
connection with FIG. 1. The entity geometrical representation generator 23, under
control of operator input from the operator interface 27, facilitates the generation of

the mathematical representation of the objects in the scene and the light source(s) and

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 ' PCT/IB98/01073

-13-

camera as described above. The phenomenon creator 24 provides a mechanism
whereby the operator, using the operator interface 27 and base shader nodes from the
base shader node database 32, can generate phenomena which can be used in
connection with the scene or otherwise (as will be described below). After a
phenomenon is generated by the phenomenon creator 24, it (that is, the phenomenon)
will be stored in the phenomenon database 25. After a phenomenon has been stored
in the phenomenon database 25, an instance of the phenomenon can be created by the
phenomenon editor 26. In that operation, the operator will use the phenomenon
editor 26 to provide values for the phenomenon’s various parameters (if any). For
example, if the phenomenon has been created so as to provide features, such as color
balance, texture graininess, glossiness, or the like, which may be established, adjusted
or modified based on input from the operator at attachment time or thereafter, the
phenomenon editor 26 allows the operator, through the operator interface 27, to
establish, adjust or modify the particular feature. The values for the parameters may
be either fixed, or they may vary according to a function of a variable (illustratively,
time). The operator, using the scene assembler 34, can attach phenomenon
instances generated using the phenomenon editor 26 to elements of the scene as
generated by the entity geometrical representation generator 23.

Although the phenomenon editor 26 has been described as retrieving
phenomena from the phenomenon database 25 which have been generated by the
phenomenon creator 24 of the scene structure generation portion 20 of computer

graphics system 10, it will be appreciated that one or more, and perhaps all, of the

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 : PCT/IB98/01073

-14-
phenomena provided in the computer graphics system 10 may be predefined and
created by other devices (not shown) and stored in the phenomenon database 25 for
use by the phenomenon editor 26. In such a case, the operator, controlling the
phenomenon editor through the operator interface 27, can select appropriate
predefined phenomena for attachment to the scene.

The scene image generation portion 21 includes several components including
an image generator 30 and an operator interface 31. If the scene image generation
portion 21 forms part of the same computer as the scene structure generation portion
20, the operator interface 31 may, but need not, comprise the same components as
operator interface 27. On the other hand, if the scene image generation portion 21
forms part of a different computer from the computer of which the scene structure
generation portion, the operator interface 31 will generally comprise different
components as operator interface 27, although the components of the two operator
interfaces 31 and 27 may be similar. The image generator 30, under control of the
operator interface 31, retrieves the representation of the scene to be rendered from
the scene representation database 22 and generates a rendered image for display on
the video display unit of the operator interface 31.

Before proceeding further, it would be helpful to further describe a
"phenomenon” used in connection with the invention. A phenomenon provides
information that, in addition to the mathematical representation generated by the entity
geometrical representation generator 23, is used to complete the definition of the

scene which will be used in rendering, including, but not limited to, characteristics

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/IB98/01073

-15~-
of the colors, textures, and closed volumes, and so forth, of the surfaces of the
geometrical entities defined by the scene structure generation portion 20. A
phenomenon comprises one or more nodes interconnected in the form of a directed
acyclic graph ("DAG") or a plurality of cooperating DAGs. One of the nodes is a
primary root node which is used to attach the phenomenon to an entity in a scene, or,
more specifically, to a mathematical representation of the entity. Other types of
nodes which can be used in a phenomenon comprise optional root nodes and shader
nodes. The shader nodes can comprise any of a plurality of conventional shaders,
including conventional simple shaders, as well as texture shaders, material shaders,
volume shaders, environmental shaders, shadow shaders, and displacement shaders,
and material shaders which can be used in connection with generating a representation
to be rendered. In addition, a number of other types of shader nodes can be used in
a phenomenon, including

(1) Geometry shaders, which can be used to add geometric objects to the
scene. Geometry shaders essentially comprise pre-defined static or procedural
mathematical representations of entities in three-dimensional space, similar to
representations that are generated by the entity geometrical representation generator
23 in connection with in connection with entities in the scene, except that they can
be provided at pre-processing time to, for example, define respective regions in which
other shaders used in the respective phenomenon are to be delimited. A geometry
shader essentially has access to the scene construction elements of the entity

geometrical representation generator 23 so that it can alter the scene representation

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/1B98/01073

-16-

as stored in the scene object database to, for example, modify or create new
geometric elements of the scene in either a static or a procedural manner. It should
be noted that a Phenomenon that consists entirely of a geometry shader DAG or of
a set of cooperating geometry shader DAGs can be used to represent objects in a
scene in a procedural manner. This is in contrast to typical modeling, which is
accomplished in a modeling system by a human operator by performing a sequence
of modeling operations to obtain the desired representation of an object in the
computer. Hence, in the essence, a geometry phenomenon represents an encapsulated
and automated, parameterized abstract modeling operation. An instance of a
geometry phenomenon (that is, a geometry phenomenon associated with a set of
parameter values which are either fixed or which vary in a predetermined manner
with time or the like) will result in a specific geometric scene extension when it is
evaluated by the scene image generator 30 at runtime during a pre-processing phase.
(i1) Photon shaders, which can be used to control the paths of photons in the scene
and the characteristics of interaction of photons with surfaces of objects in the scene,
such as absorption, reflection and the like. Photon shaders facilitate the physically
correct simulation of global illumination and caustics in connection with rendering.
In one embodiment, photon shaders are used during rendering by the scene image
generator 30 during a pre-processing operation.

(iii) Photon volume shaders, which are similar to photon shaders, except that
they operate in connection with a three-dimensional volume of space in the scene

instead of on the surface of an object. This allows simulation of caustics-and global

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/IB98/01073

17
illumination to be extended to volumes and accompanying enclosed participating
media, such as scattering of photons by dust or fog particles in the air, by water
vapor such as in clouds, or the like.

(iv) Photon emitter shaders, which are also similar to photon shaders, except
that they are related to light sources and hence to emission of photons. The simulated
photons for which emission is simulated in connection with photon emitter shaders
may then be processed in connection with the photon shaders, which can be used to
simulate path and surface interaction characteristics of the simulated photons, and
photon volume shaders which can be used to simulate path and other characteristics
in three-dimensional volumes in particular along the respective paths.

(v) Contour shaders, which are used in connection with generation of contour
lines during rendering. In one embodiment, there are three sub-types of contour
shaders, namely, contour store shaders, contour contrast shaders and contour
generation shaders. A contour store shader is used to collect contour sampling
information for, for example, a surface. A contour contrast shader is used to
compare two sets of the sampling information which is collected by use of a contour
store shader. Finally, a contour generation shader is used to generation contour dot
information for storage in a buffer, which is then used by an output shader (described
below) in generating contour lines.

(vi) Output shaders, which are used to process information in buffers
generated by the scene image generator 30 during rendering. An output shader can

access pixel information generated during rendering to, in one embodiment, perform

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/1B98/01073

-18-
compositing operations, complex convolutions, and contour line drawing from contour
dot information generated by contour generation shaders as described above.

(vii) Three-dimensional volume shaders, which are used to contro! how light,
other visible rays and the like pass through part or all of the empty three-dimensional
space in a scene. A three-dimensional volume shader may be used for any of a
number of types of volume effects, including, for example, fog, and procedural
effects such as smoke, flames, fur, and particle clouds. In addition, since a three-
dimensional volume shader is used in connection with light, they are also useful in
connection with shadows which would arise from the procedural effects; and

(viii) Light shaders, which are used to control emission characteristics of light
sources, including, for example, color, direction, and attenuation characteristics
which can result from properties such as the shapes of respective light sources,
texture projection, shadowing and other light properties.

Other types of shaders, which may be useful in connection with definition of
a scene may also be used in a phenomenon.

A phenomenon is defined by

(1) a description of the phenomenon’s externally-controllable parameters,

(ii) one primary root node and, optionally, one or more optional root nodes,

(iii) a description of the internal structure of the phenomenon, including the
identification of the shaders that are to be used as nodes and how they are
interconnected to form a DAG or a plurality of cooperating DAGs , and

(iv) optionally, a description of dialog boxes and the like which may be

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/IB98/01073

-19-
defined by the phenomenon for use by the phenomenon editor 26 to allow the
operator to provide values for parameters or properties that will be used in evaluation
of the respective phenomenon.

In addition, a phenomenon may include external declarations and link-
executable code from libraries, as is standard in programming.

As noted above, a phenomenon may include a plurality of cooperating DAGs.
In such a phenomenon, during rendering, information generated from processing of
one or more nodes of a first DAG in the phenomenon may be used in processing in
connection with one or more nodes of a second DAG in the phenomenon. The two
DAGs are, nonetheless, processed independently, and may be processed at different
stages in the rendering process. The information generated by a respective node in
the first DAG which may be "cooperating” with a node in the second DAG (that is,
which may be used by the node in the second DAG in its processing, may be
transferred from the respective node in the first DAG to the node in the second DAG
over any convenient communication channel, such as a buffer which may be allocated
therefor. Providing all of the DAGs which may need to cooperate in this manner in
a single phenomenon ensures that all of the conditions for cooperation will be
satisfied, which may not be the case if the DAGs are provided unencapsulated or
separated in distinct phenomena or other entities.

As an example of a phenomenon including several cooperating DAGs, a
phenomenon may include several DAGs, including a material shader DAG, an output

shader DAG and instructions for generating a label frame buffer. The material shader

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 ' PCT/IB98/01073

-20-
DAG includes at least one material shader for generating a color value for a material
and also stores label information about the objects which are encountered during
processing of the material shader DAG in the label frame buffer which is established
in connection with processing of the label frame buffer generation instructions. The
output shader DAG, in turn, includes at least one output shader which retrieves the
label information from the label frame buffer to facilitate performing object-specific
compositing operations. In ;clddition to the label frame buffer generation instructions,
the phenomenon may also have instructions for controlling operating modes of the
scene image generator 30 such that both DAGs can function and cooperate. For
example, such instructions may control the minimum sample density required for the
two DAGs to be evaluated.

As a second example of a phenomenon including multiple cooperating shader
DAGs, a material phenomenon may represent a material that is simulated by both a
photon shader DAG, which includes at least one photon shader, and a material shader
DAG, which includes at least one material shader. During rendering, the photon
shader DAG will be evaluated during caustics and global illumination pre-processing,
and the material shader DAG will be evaluated later during rendering of an image.
During processing of the photon shader DAG, information representing simulated
photons will be stored in such a way that it can be used during later processing of the
material shader DAG to add lighting contributions from the caustic or global
illumination pre-processing stage. In one embodiment, the photon shader DAG

stores the simulated photon information in a photon map, which is used by the photon

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/1B98/01073

-21-
shader DAG to communicate the simulated photon information to the material shader
DAG.

As a third example of a phenomenon including multiple cooperating shader
DAGs, a phenomenon may include a contour shader DAG, which includes at least
one shader of the contour shader type, and an output shader DAG, which includes at
least one output shader. The contour shader DAG is used to determine how to draw
contour lines by storing "dots" of a selected color, transparency, width and other
attributes. The output shader DAG is used to collect all cells created during
rendering and, when the rendering is completed, join them into contour lines.. The
contour shader DAG includes a contour store shader, a contour contrast shader and
a contour generation shader. The contour store shader is used to collect sampling
information for later usé by a contour contrast shader. The contour contrast shader,
in turn, is used to determine whether the sampling information collected by the
contour store shader is such that a contour dot is to be placed in the image, and, if
so, the contour generation shader actually places the contour dot. This illustrative
phenomenon illustrates four-stage cooperation, including

(1) a first stage, in which sampling information is collected (by the contour
store shader);

(2) a second stage, in which the decision as to whether a contour cell is to be
placed (by the contour contrast shader);

(3) a third stage, in which the contour dot is created (by the contour

generation shader); and

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/1B98/01073

-22-

(4) a fourth stage, in which created contour dots are created (by the output
shader DAG).

None of the shaders in any stage makes use of another shader in another stage,
but instead are processed and evaluated individually at different times, but they
cooperate to enable the generation of the final result.

As a fourth example of a phenomenon including multiple cooperating shader
DAGs, a phenomenon may include a volume shader DAG and a geometry shader
DAG. The volume shader DAG includes at least one volume shader that defines
properties of a bounded volume, for example a fur shader that simulates fur within
the bounded volume. The geometry shader DAG includes at least one geometry
shader that is used to include an outer boundary surface as a new geometry into the
scene before rendering begins, with appropriate material and volume shader DAGs
attached to the outer boundary surface to define the calculations that are to be
performed in connection with hair in connection with the original volume shader
DAG. In this illustrative phenomenon, the cooperation is between the geometry
shader DAG and the volume shader DAG, with the geometry shader DAG
introducing a procedural geometry in which the geometry shader DAG supports the
volume shader DAG. The volume shader DAG makes use of this geometry, but it
would not be able to create the geometry itself since the geometry is generated using
the geometry shader DAG during a pre-processing operation prior to rendering,
whereas the volume shader DAG is used during rendering. The cooperation

illustrated in connection with this fourth illustrative: example differs from that

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/IB98/01073

-23-
illustrated in connection with the first through third illustrative examples since the
shader or shaders comprising the geometry shader procedurally provide elements that
are used by the volume shader DAG, and do not just store data, as is the case in
connection with the cooperation in connection with the first through third illustrative
examples.

All of these examples illustrate computer graphic effects in which an image
of a scene can be rendered using multiple cooperating but independent shader DAGs
which are bundled and encapsulated into a single phenomenon.

With this background, the operations performed in connection with the
phenomenon creator 24 and phenomenon editor 26 will be described in connection
with FIGS. 3 and 5, respectively. In addition, an illustrative phenomenon created in
connection with the phenomenon creator 24 will be described in connection with FIG.
4, and details of the operations performed by the phenomenon editor 26 in connection
with the phenomenon depicted in connection with FIG. 4 will be described in
connection with FIGS. 6A and 6B. FIG. 3 depicts a phenomenon creator window 40,
which the phenomenon creator 24 enables the operator interface 27 to display to the
operator, to enable the operator to define a new phenomenon and modify the
definition of an existing phenomenon. The phenomenon creator window 40 includes
a plurality of frames, including a shelf frame 41, a supported graph node frame 42,
a controls frame 43 and a phenomenon graph canvas frame 44. The shelf frame 41
can include one or more phenomenon icons, generally identified by reference numeral

45, each of which represents a phenomenon which has been at least partially defined

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/1B98/01073

-24-
for use in the scene structure generation portion 20. The supported graph node frame
42 includes one or more icons, generally identified by reference numeral 46, which
represent entities, such as interfaces, the various types of shaders which can be used
in a phenomenon, and the like, which can the operator can select for use in a
phenomenon. As will be described below, the icons depicted in the supported graph
node frame 42 can be used by an operator to form the nodes of the directed acyclic
graph defining a phenomenon to be created or modified. In one embodiment, there
are a number of types of nodes, including:

(i) A primary root node, which forms the root of the directed acyclic graph
and forms the connection to the scene and typically provides a color value during’
rendering.

(il) Several types of optional root nodes, which may be used as anchor points
in a phenomenon DAG to support the main root node (item (i) above). Illustrative
types of optional root nodes include:

@) A lens root node, which can be used to insert lens shaders or lens

shader DAGs into a camera for use during rendering;

(b) A volume root node, which can be used to insert global volume (or
atmosphere) shaders or shader DAGs into a camera for use during
rendering;

©) An environment root node, which can be used to insert global
environment shader or shader DAGs into a camera for use during

rendering;

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/IB98/01073

-25-

(d) A geometry root node, which can be used to specify geometry shaders

or shader DAGs that may be pre-processed during rendering to enable
procedural supporting geometry or other elements of a scene to be
added to the scene database;

(e) A contour store root node, which can be used to insert a contour store

shader into a scene options data structure;

6)) An output root node, which can be used in connection with post

processing after a rendering phase, and

(g) A contour contrast root, which can be used to insert a contour contrast

shader into the scene options data structure.

(iii) A shader node, which represents a shader, that is, a function written in
a high-level language such as C or C++.

(iv) A light node, which is used in conjunction with a light source. A light
node provides the light source with a light shader, color, intensity, origin and/or
direction, and optionally, a photon emitter shader.

(v) A material node, which is used in conjunction with a surface. A material
node provides a surface with a color value, and has inputs for an opaque indication,
indicating whether the surface is opaque, and for material, volume, environment,
shadow, displacement, photon, photon volume, and contour shaders.

(vi) A phenomenon node, which is a phenomenon instance.

(vii) A constant node, which provides a constant value, which may be an input

to any of the other nodes. The constant value may be most types of data types in the

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 : PCT/IB98/01073

-26-
programming language used for the entities, such as shaders, represented by any of
the other nodes, such as scalar, vector, logical (boolean), color, transformation, and
so forth; and

(viii) A dialog node, which represents dialog boxes which may be displayed
by the phenomenon editor 26 to the operator, and which may be used by the operator
to provide input information to control the phenomenon before or during rendering.
The dialog nodes may enable the phenomenon editor 26 to enable pushbuttons,
sliders, wheels, and so forth, to be displayed to allow the operator to specify, for
example, color and other values to be used in connection with the surface to which
the phenomenon including the dialog node is connected.

As shown in FIG. 3, the shelf frame 41 and the supported graph node frame
42 both include left and right arrow icons, generally identified by reference numeral
47, which allow the icons shown in the respective frame to be shifted to the left or
right (as shown in FIG. 3), to shift icons to be displayed in the phenomenon creator
window 40 if there are more entities than could be displayed at one time.

The controls frame 43 contains icons (not shown) which represent buttons
which the operator can use to perform control operations, including, for example,
deleting or duplicating nodes in the shelf frame 41 or supported graph node frame 42,
beginning construction of a new phenomenon, starting an on-line help system, exiting

the phenomenon creator 24, and so forth.

The phenomenon graph canvas 44 provides an area in which a phenomenon

can be created or modified by an operator. If the operator wishes to modify an

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 ’ PCT/1B98/01073

-27-
existing phenomenon, he or she can, using a "drag and drop” methodology using a
pointing device such as a mouse, select and drag the icon 45 from the shelf frame 41
representing the phenomenon to the phenomenon graph canvas 44. After the selected
icon 45 associated with the phenomenon to be modified has been dragged to the
phenomenon graph canvas 44, the operator can enable the icon 45 to be expanded to
show one or more nodes, interconnected by arrows, representing the graph defining
the phenomenon. A graph 50 representing an illustrative phenomenon, is depicted
in FIG. 3. As shown in FIG. 3, the graph 50 includes a plurality of graph nodes,
comprising circles and blocks, each of which is associated with an entity which can
be used in a phenomenon, which nodes are interconnected by arrows to define the
graph associated with the phenomenon.

After the graph associated with the icon 45 which has been dragged to the
phenomenon graph canvas 44 has been expanded to show the graph defining the
phenomenon associated with the icon 45, the operator can modify the graph defining
the phenomenon. In that operation, the operator can, using a corresponding "drag
and drop" methodology, select and drag icons 46 from the supported graph nodes
frames 42 representing the entities to be added to the graph to the phenomenon graph
canvass 44, thereby to establish a new node for the graph. After the new node has
been established, the operator can interconnect it to a node in the existing graph by

clicking on both nodes in an appropriate manner so as to enable an arrow to be

displayed therebetween. Nodes in the graph can also be disconnected from other

nodes by deleting arrows extending between the respective nodes, and deleted from

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/IB98/01073

-28-
the graph by appropriate actuation of a delete pushbutton in the controls frame 43.

Similarly, if the operator wishes to create a new phenomenon, he or she can,
using the corresponding "drag and drop" methodology, select and drag icons 46 from
the supported graph nodes frames 42 representing the entities to be added to the graph
to the phenomenon graph canvas 44, thereby to establish a new node for the graph
to be created. After the new node has been established in the phenomenon graph
canvas 44, the operator can interconnect it to a node in the existing graph by clicking
on both nodes in an appropriate manner so as to enable an arrow to be displayed
therebetween. Nodes in the graph can also be disconnected from other nodes by
deleting arrows extending between the respective nodes, and deleted from the graph
by appropriate actuation of a delete pushbutton in the controls frame 43.

After the operator has specified the DAG or set of cooperating DAGs for the
phenomenon, either for a new phenomenon or for a modified phenomenon, and
before the phenomenon represented by the graph is stored in the phenomenon
database 25, the phenomenon creator 24 will examine the phenomenon graph to verify
that it is consistent and can be processed during rendering. In that operation, the
phenomenon creator 24 will ensure that the interconnections between graph nodes do
not form a cycle, thereby ensuring that the graph or graphs associated with the
phenomenon form directed acyclic graphs, and that interconnections between graph

nodes represent respective input and output data types which are consistent. It will

be appreciated that, if the phenomenon creator 24 determines that the graph nodes do

form a cycle, the phenomenon will essentially form an endless loop that generally

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/IB98/01073

-29-~
cannot be properly processed. These operations will ensure that the phenomenon so
created or modified can be processed by the scene image generation portion when an
image of a scene to which the phenomenon is attached is being rendered.

After the operator has created or modified a phenomenon, it will be stored in
the phenomenon database 25.

FIG. 4 depicts an illustrative phenomenon created in connection with the
phenomenon creator 24 which can be generated using the phenomenon creator
window described above in connection with FIG. 3. The illustrative phenomenon
depicted in FIG. 4, which is identified by reference numeral 60, is one which may
be used for surface features of a wood material. With reference to FIG. 4, the
phenomenon 60 includes one root node, identified by reference numeral 61, which
is used to attach the phenomenon 60 to an element of a scene. Other nodes in the
graph include a material shader node 62, a texture shader node 63, a coherent noise
shader node 64, which represent a material shader, a texture shader and a coherent
noise shader, respectively, and a dialog node 65. The dialog node 65 represents a
dialog box that is displayed by the phenomenon editor 26 to allow the operator to
provide input information for use with the phenomenon when the image is rendered.

Details of a material shader, a texture shader and a ¢oherent noise shader are
known to those skilled in the art and will not be described further herein. Generally,

the material shader has one or more outputs, represented by "result,” which are

provided to the root node 61. The material shader, in turn, has several inputs,

including a "glossiness" input, an "ambient" color input, a "diffuse" color input, a

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 : PCT/IB98/01073

-30-
"transparency” input, and a "lights" input, and the material shader node 62
represented thereby is shown as receiving inputs therefor from the dialog node 65 (in
the case of the glossiness input), from the texture shader node 63 (in the case of the
ambient and diffuse color inputs), from a hard-wired constant (in the case of the
transparency input) and from a lights list (in the case of the lights input). The hard-
wired constant value, indicated as "0.0," provided to the transparency input indicates
that the material is opaque. The "glossiness" input is connected to a "glossiness"
output provided by the dialog node 65, and, when the material shader represented by
node 62 is processed during rendering, it will obtain the glossiness input value
therefor from the dialog box represented by the dialog node, as will be described
below in connection with FIGS. 6A and 6B.

The ambient and diffuse inputs of the material shader represented by node 62
are provided by the output of the texture shader, as indicated by the connection of the
"result" output of node 63 to the respective inputs of node 62. When the wood
material phenomenon 60 is processed during the rendering operation, and, in
particular, when the material shader represented by node 62 is processed, it will
enable the texture shader represented by node 63 to be processed to provide the
ambient and diffuse color input values. The texture shader, in turn, has three inputs,
including ambient and diffuse color inputs, represented by "colorl" and "color2"

inputs shown on node 63, and a "blend" input. The values for the ambient and

diffuse color inputs are provided by the operator using the dialog box represented by

the dialog node 65, as represented by the connections from the respective diffuse and

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/IB98/01073

-31-
ambient color outputs from the dialog node 65 to the texture shader node 63 in FIG.
4,

In addition, the input value for the input of the texture shader represented by
node 63 is provided by the coherent noise shader represented by node 64. Thus,
when the texture shader represented by node 63 is processed during the rendering
operation, it will enable the coherent noise shader represented by node 64 to be
processed to provide the blend input value. The coherent noise shader has two
inputs, including a "turbulence" input and a "cylindrical" input. The value for the
turbulence input is provided by the operator using the dialog box represented by the
dialog node 65, as represented by the connections from the turbulence output from
the dialog node 65 to the coherent noise shader node 64. The input value for the
cylindrical input, which is shown as a logical value "TRUE," is hard-wired into the
phenomenon 60.

Operations performed by the phenomenon editor 26 will be described in
connection with FIG. 5. FIG. 5 depicts a phenomenon editor window 70 which the
phenomenon editor 26 enables to be displayed by the operator interface 27 for use by
an operator in one embodiment of the invention to establish and adjust input values
for phenomena which have been attached to a scene. In particular, the operator can
use the phenomenon editor window to establish values for phenomena which are

provided by dialog boxes associated with dialog nodes, such as dialog node 65 (FIG.

4), established for the respective phenomena during the creation or modification as

described above in connection with FIG. 3. The phenomenon editor window 70

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/1B98/01073

-32-
includes a plurality of frames, including a shelf frame 71 and a controls frame 72,
and also includes a phenomenon dialog window 73 and a phenomenon preview
window 74. The shelf frame 71 depicts icons 80 representing the various phenomena
which are available for attachment to a scene. As with the phenomenon creator
window 40 (FIG. 3), the shelf frame includes left and right arrow icons, generally
identified by reference numeral 81, which allow the icons shown in the respective
frame to be shifted to the‘left or right (as shown in FIG. 3), to shift icons to be
displayed in the phenomenon editor window 70 if there are more icons than could be
displayed at one time.

The controls frame 73 contains icons (not shown) which represent buttons
which the operator can use to perform control operations, including, for example,
deleting or duplicating icons in the shelf frame 71, starting an on-line help system,
exiting the phenomenon editor 26, and so forth.

The operator can select a phenomenon whose parameter values are to be
established by suitable manipulation of a pointing device such as a mouse in order to
create an instance of a phenomenon. (An instance of a phenomenon corresponds to
a phenomenon whose parameter values have been fixed.) After the operator has
selected a phenomenon, the phenomenon editor 26 will enable the operator interface
27 to display the dialog box associated with its dialog node in the phenomenon dialog

window. An illustrative dialog box, used in connection with one embodiment of the

wood material phenomenon 60 described above in connection with FIG. 4, will be

described below in connection with FIGS. 6A and 6B. As the operator provides and

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/1IB98/01073

-33-
adjusts the input values that can be provided through the dialog box, the phenomenon
editor 26 effectively processes the phenomenon and displays the resulting output in
the phenomenon preview window 74. Thus, the operator can use the phenomenon
editor window 70 to view the result of the values which he or she establishes using
the inputs available through the dialog box displayed in the phenomenon dialog
window.

FIGS. 6A and 6B graphically depict details of a dialog node (in the case of
FIG. 6A) and an illustrative associated dialog box (in the case of FIG. 6B), which are
used in connection with the wood material phenomenon 60 depicted in FIG. 4. The
dialog node, which is identified by reference numeral 65 in FIG. 4, is defined and
created by the operator using the phenomenon creator 24 during the process of
creating or modifying the particular phenomenon with which it is associated. With
reference to FIG. 6A, the dialog box 65 includes a plurality of tiles, namely, an
ambient color tile 90, a diffuse color tile 91, a turbulence tile 92 and a glossiness tile
93. It will be appreciated that the respective tiles 90 through 93 are associated with
the respective ambient, diffuse, turbulence and glossiness output values provided by
the dialog node 65 as described above in connection with FIG. 4. The ambient and
diffuse color tiles are associated with color values, which can be specified using the
conventional red/green/blue/alpha, or "RGBA," color/transparency specification |,

and, thus, each of the color tiles will actually be associated with multiple input

values, one for each of the red, green and blue colors in the color representation and

one for transparency (alpha). On the other hand, each of the turbulence and

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 ‘ PCT/1B98/01073

-34-
glossiness tiles 92 and 93 is associated with a scalar value.

FIG. 6B depicts an illustrative dialog box 100 which is associated with the
dialog node 65 (FIG. 6A), as displayed by the operator interface 27 under control of
the phenomenon editor 26. In the dialog box 100, the ambient and diffuse color tiles
90 and 91 of the dialog node 65 are each displayed by the operator interface 27 as
respective sets of sliders, generally identified by reference numerals 101 and 102,
respectively, each of which is associated with one of thé colors in the color
representation to be used during processing of the associated phenomenon during
rendering. In addition, the turbulence and glossiness tiles 92 and 93 of the dialog
node 65 are each displayed by the operator interface as individual sliders 103 and
104. The sliders in the respective sets of sliders 101 and 102 may be manipulated by
the operator, using a pointing device such as a mouse, in a conventional manner
thereby to enable the phenomenon editor 26 to adjust the respective combinations of
colors for the respective ambient and diffuse color values provided by the dialog node
65 to the shaders associated with the other nodes of the phenomenon 60 (FIG. 4).
In addition, the sliders 103 and 104 associated with the turbulence and glossiness
inputs may be manipulated by the operator thereby to enable the phenomenon editor
26 to adjust the respective turbulence and glossiness values provided by the dialog
node 65 to the shaders associated with the other nodes of the wood material

phenomenon 60.

Returning to FIG. 2, after the operator, using the phenomenon editor 26, has

established the values for the various phenomena and phenomena instances associated

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/1B98/01073

-35-
with a scene, those values are stored with the scene in the scene object database 22.
Thereafter, an image of scene can be rendered by the scene image generation portion
21, in particular by the scene image generator 30 for display by the operator interface
31. Operations performed by the scene image generator 30 will generally be
described in connection with the flowchart depicted in FIG. 7. With reference to
FIG. 7, the scene image generator 30 operates in a series of phases, including a pre-
processing phase, a rendering phase and a post-processing phase. In the pre-
processing phase, the scene image generator 30 will examine the phenomena which
are attached to a scene to determine whether it will need to perform pre-processing
and/or post-processing operations in connection therewith (step 100). The scene
image generator 30 then determines whether the operations in step 100 indicated that
pre-processing operations are required in connection with at least one phenomenon
attached to the scene (step 101), and, if so, will perform the pre-processing operations
(step 102). Illustrative pre-processing operations include, for example, generation of
geometry for the scene if a phenomenon attached to the scene includes a geometry
shader, to generate geometry defined thereby for the scene. Other illustrative pre-
processing operations include, for example, shadow and photon mapping, multiple
inheritance resolution, and the like. Following step 102, or step 101 if the scene
image generator 30 makes a negative determination in that step, the scene image

generator 30 can perform further pre-processing operations which may be required

in connection with the scene representation prior to rendering, which are not related

to phenomena attached to the scene (step 103).

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/1B98/01073

-36-

Following step 103, the scene image generator 30 will perform the rendering
phase, in which it performs rendering operations in connection with the pre-processed
scene representation to generate a rendered image (step 104). In that operation, the
scene image generator 30 will identify the phenomena stored in the scene object
database 22 which are to be attached to the various components of the scene, as
generated by the entity geometric representation generator 23 and attach all primary
and optional root nodes of the respective phenomena to the scene components
appropriate to the type of the root node. Thereafter, the scene image generator 30
will render the image. In addition, the scene image generator 30 will generate
information as necessary which may be used in post-processing operations during the
post-processing phase.

Following the rendering phase (step 104), the scene image generator 30 will
perform the post-processing phase. In that operation, the scene image generator 30
will determine whether operations performed in step 100 indicated that post-
processing operations are required in connection with phenomena attached to the
scene (step 105). If the scene image generator 30 makes a positive determination in
step 105, it will perform the post-processing operations required in connection with
the phenomena attached to the scene (step 106). In addition, the scene image
generator 30 may also perform other post-processing operations which are not related
to phenomena in step 106. The scene image generator 30 may perform post-
processing operations in connection with manipulate pixel values for color correction,

filtering to provide various optical effects. .In addition, the scene image generator 30

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/1B98/01073

37
may perform post-processing operations if, for example, a phenomenon attached to
the scene includes an output shader that defines post-processing operations, such as
depth of field or motion blur calculations that can be, in one embodiment, entirely
done in an output shader, for example, dependent on the velocity and depth
information stored in connection with each pixel value, in connection with the
rendered image.

The invention provides a number of advantages. In particular, the invention
provides an computer graphics system providing arrangements for creating (reference
the phenomenon creator 24) and manipulating (reference the phenomenon editor 26)
phenomena. The phenomena so created are processed by the phenomenon creator 24
to ensure that they are consistent and can be processed during rendering. Since the
phenomena are created prior to being attached to a scene, it will be appreciated that
they can be created by programmers or others who are expert in the development in
computer programs, thereby alleviating others, such as artists, draftsmen and the like
of the necessity developing them. Also, phenomena relieve the artist from the
complexity of instrumenting the scene with many different and inter-related shaders
by separating it (that is, the complexity) into an independent task performed by a
phenomenen creator expert user in advance. With phenomena, the instrumentation
becomes largely automated. Once a phenomenon or phenomenon instance has been

created, it is scene-independent and can be re-used in many scenes thus avoiding

TEPELTivE WOrK.

It will be appreciated that a number of changes and modifications may be

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/1B98/01073

-38-
made to the invention. As noted above, since phenomena may be created separately
from their use in connection with a scene, the phenomenon creator 24 used to create
and modify phenomena, and the phenomenon editor 26 used to create phenomenon
instances, may be provided in separate computer graphics systems. For example, a
computer graphics system 10 which includes a phenomenon editor 26 need not include
a phenomenon creator 24 if, for example, the phenomenon database 25 includes
appropriate previously-created phenomena and the operator will not need to create or
modify phenomena.

Furthermore, as noted above, the values of parameters of a phenomenon may
be fixed, or they may vary based on a function of one or more variables. For
example, if one or more values of respective parameters vary in accordance with time
as a variable, the phenomenon instance can made time dependent, or "animated."
This is normally discretized in time intervals that are labeled by the frame-numbers
of a series of frames comprising an animation, but the time dependency may
nevertheless take on the form of any phenomenon parameter valued function over the
time, each of ’
which can be tagged with an absolute time value, so that, even if an image is
rendered at successive frame numbers, the shaders are not bound to discrete intervals.

In this connection, the phenomenon editor is used to select time dependent

values for one or more parameters of a phenomenon, creating a time dependent

“phenomenon instance.” The selection of time dependent values for the parameters

of a phenomenon is achieved, in one particular embodiment, by the graphically

SUBSTITUTE SHEET (RULE 26)

WO 99/01846 PCT/IB98/01073

-39-
interactive attachment of what will be referred to herein as "phenomenon property
control trees" to an phenomenon. A phenomenon property control tree, which may
be in the form of a tree or a DAG, is attached to phenomenon parameters, effectively
outside of the phenomenon, and is stored with the phenomenon in the phenomenon
instance database. A phenomenon property control tree consists of one or more
nodes, each of which is a shader in the sense of the functions that it provides, for
example, motion curves, data look-up functions and the like. A phenomenon property
control tree preferably can remain shallow, and will normally have only very few
branching levels. A phenomenon property control tree can consist of only one
shader, which defines a function to compute the value for the parameter associated
with it at run time. A phenomenon property control tree can remain shallow because
the phenomenon allows and encourages encapsulation of the complicated shader trees
or DAGs, facilitating evaluation in an optimized manner during the rendering step,
by for example, storing data for re-use. Allowing an operator to attach such
phenomenon property control trees to control the phenomenon’s parameters greatly
increases the flexibility of the user to achieve custom effects based on his use of a
predefined and packaged phenomenon. The number of distinct phenomenon instances
that may be created this way is therefore greatly increased, while the ease of use is
not compromised thanks to the encapsulation of all complexity in the phenomenon.

In addition, it will be appreciated that the appearance and structures of the

windows used in connection with the phenomenon creator 24 and phenomenon editor

26, described in connection with FIGS. 3 and 5, may differ from those described herein.

SUBSTITUTE SHEET (RULE 26)

eeoo

-40~-

It will be appreciated that a system in accordance with the invention can be
constructed in whole or in part from special purpose hardware or a general purpose
computer system, or any combination thereof, any portion of which may be controlled
by a suitable program. Any program may in whole or in part comprise part of or be
stored on the system in a conventional manner, or it may in whole or in part be
provided in to the system over a network or other mechanism for transferring
information in a conventional manner. In addition, it will be appreciated that the
system may be operated and/or otherwise controlled by means of information
provided by an operator using operator input elements (not shown) which may be
connected directly to the system or which may transfer the information to the system
over a network or other mechanism for transferring information in a conventional
manner.

The foregoing description has been limited to a specific embodiment of this
invention. It will be apparent, however, that various variations and modifications
may be made to the invention, with the attainment of ‘some or all of the advantages
of the mvenﬁon. It 1s the object of the appended claims to c';over these and such other
variations and modifications as come within the true spirit and scope of the invention.
Where the terms “comprise”, “comprises”, “comprised” or “comprising” are

used in this specification, they are to be interpreted as specifying the

presence of the stated features, integers, steps or components referred to,

but not to preciude the presence-or—addition-of one_aor more other feature,

integer, step, component or group thereof.

o0 L]
L]
. oo
LA X Y]
L4 .
XXX}
e oo

LX)
(XXX]
. .
eeece
XXX
L]

00 oo

10

15

20

25

30

-4]1 -

The claims defining the invention are as follows:

1. A computer graphics system for generating an image of a scene from a
representation of the scene to which at least one shader directed acyclic graph (DAG)
having a plurality of nodes, including at least one primary root node for attaching the
shader DAG to an element of the scene representation and at least one shader node
connected thereto in the DAG, the computer graphics system including:

A. at least one of
(1) a pre-processor module configured to determine whether the at least

one shader node is of a type that is used in performing a pre-processing
operation in connection with said representation, and, if so, using the at
least one shader node to perform said pre-processing operation to generate a
pre-processed representation of the scene, or
(i) a post-processor module configured to determine whether the at
least one shader node is of a type that is used in performing a post-
processing operation in connection with said representation and, if so,
using the at least one shader node to perform said post-processing operation
in connection with a rendered image; and

B. a renderer module configured to generate the rendered image from one of the

representation of the scene or, if the computer graphics system includes the pre-

processor module, the pre-processed representation of the scene.

2. A computer graphics system as defined in claim 1 in-which the at least one
shader node is of a geometry shader node type, the computer graphics system including the
pre-processor module, the pre-processor module being configured to perform said pre-
processing operation using the at least one shader node of the geometry shader node type

to define geometry for the scene.

3. A computer graphics system as defined in claim 1 in which the at least one

shader node is of a photon shader node type, the computer graphics system including the

pre-processor module, the pre-processor module being configured to perform the pre-
processing operation using the at least one shader node of the photon shader node type to
control the path of at least one photon in the scene or at least one characteristic of

interaction of at least one photons with a surface of an object in the scene.

28/05/02,td11020.clms.doc,41

e o
.
o oo
scee
. [
XY XY
* oo
3
eee o
ecoe
. .
seee
soece
.

000 o0

10

15

20

25

30

-42-

4, A computer graphics system as defined in claim 1 in which the at least one
shader node is of a photon emitter shader node type, the computer graphics system
including the pre-processor module, the pre-processor module being configured to perform
said pre-processing operation using the at least one shader node of the photon emitter
shader node type to simulate generation of at least one photon by a light source

illuminating the scene.

5. A computer graphics system as defined in claim 1 in which the at least one
shader node is of a photon volume shader node type, the computer graphics system
including the pre-processor module, the pre-processor module being configured to perform
said pre-processing operation using the at least one shader node of the photon volume
shader node type to simulate interaction of at least one photon from a light source with a

three-dimensional volume of space in the scene.

6. A computer graphics system as defined in claim 1 in which the shader node
is of an output shader node type, the computer graphics system including the post-
processor module, the post-processor module being configured to perform said post-

processing operation using the at least one shader node of the output shader node type.

7. A computer graphics system as defined in claim 6 in which the rendered
image includes a plurality of pixels each associated with a pixel value, the post-processor
module being configured to perform said post-processing operation in connection with said

pixel values.

8. A computer graphics system as defined in claim 6 in which the post-
processor module is configured to use the at least one shader node of the output shader
node type to perform at least one of a compositing operation, a complex convolution

operation, or a contour line drawing operation.

9. A computer graphics system as defined in claim 1 further including a
second shader DAG having the primary root node and at least one shader node, in which
the at least one shader node of one of said DAGs, when used by at least one of the pre-

processor module, the post-processor module, or the renderer module, provides at least one

28/05/02,td11020.clms.doc,42

LA X X]
A4 L]
eeoe
e oo

LEX]
LA XN
. [
eooe
XL X}
L]

oo
oo

10

15

20

25

30

-43 -

value that is used in the processing of the at least one shader node of the other of said

DAGsS.

10. A computer graphics system as defined in claim 1 in which said shader
DAG further has at least one optional root node for attaching the shader DAG to a second
element of the scene representation, the at least one optional root node being further

connected to the at least one shader node in the DAG.

11. A computer graphics method of generating an image of a scene from a
representation of the scene to which at least one shader directed acyclic graph (DAG)
including a plurality of nodes, including a primary root node for attaching the shader DAG
to an element of the scene representation and at least one shader node connected thereto in
the DAG, the computer graphics method including:

A at least one of
@) a pre-processor step of determining whether the at least one shader

node is of a type that is used in performing a pre-processing operation in
connection with said representation, and, if so, using the at least one shader
node to perform said pre-processing operation using the at least one shader
node to generate a pre-processed representation of the scene, or
(ii) a post-processor step of determining whether the at least one shader
node is of a type that is used in performing a post-processing operation in
connection a rendered image and, if so, using the at least one shader node to
perform said post-processing operation using the at least one shader node in
connection with a rendered image; and
B. a rendering step of generating the rendered image from one of the representation of
the scene or, if the computer graphics method includes the pre-processor step, the pre-

processed representation of the scene.

12. A computer graphics method as defined in claim 11 in which the at least

_one shader nade is of a geometry shader node type, the computer graphics method

including the pre-processor step, the pre-processor step including the step of performing

said pre-processing operation using the at least one shader node of the geometry shader

node type to define geometry for the scene.

28/05/02,td11020.clms.doc,43

10

15

20

25

30

-44 -

13. A computer graphics method as defined in claim 11 in which the at least
one shader node is of a photon shader node type, the computer graphics method including
the pre-processor step, the pre-processor step including the step of performing the pre-
processing operation using the at least one shader node of the photon shader node type to
control the path of at least one photon in the scene or at least one characteristic of

interaction of at least one photons with a surface of an object in the scene.

14. A computer graphics method as defined in claim 11 in which the at least
one shader node is of a photon emitter shader node type, the computer graphics method
including the pre-processor step, the pre-processor step including the step of performing
said pre-processing operation using the at least one shader node of the photon emitter
shader node type to simulate generation of at least one photon by a light source

illuminating the scene.

15. A computer graphics method as defined in claim 11 in which the at least
one shader node is of a photon volume shader node type, the computer graphics method
including the pre-processor step, the pre-processor step including the step of performing
said pre-processing operation using the at least one shader node of the photon volume
shader node type to simulate interaction of at least one photon from a light source with a

three-dimensional volume of space in the scene.

16. A computer graphics method as defined in claim 11 in which the at least
one shader node is of an output shader node type, the computer graphics method including
the post-processor step, the post-processor step including the step of performing said post-

processing operation using the at least one shader node of the output shader node type.

17. A computer graphics method as defined in claim 16 in which the rendered
image includes a plurality of pixels each associated with a pixel value, the post-processor

step including the step of performing said post-processing operation in connection with

said pixel values

18. A computer graphics method as defined in claim 16 in which the post-
processor step includes the step of using the at least one shader node of the output shader

node type to perform at least one of a compositing operation, a complex convolution

%

28/05/02,td11020.clms.doc, 44

ecee
3
eeove
o eo
eae
LY XY
. *
soee
ecee

Y

10

15

20

25

30

-45-

operation, or a contour line drawing operation.

19. A computer graphics method as defined in claim 11 in which the at least
one shader DAG includes a plurality of DAGs, each of said plurality of DAGs including at
least one shader node, in which the at least one shader node in one of said DAGs, when
used by at least one of the pre-processor step, the post-processor step, or the renderer step,
provides at least one value that is in processing of the at least one shader node of the other

of said DAGs.

20. A computer program product for use in connection with a computer to
provide a computer graphics system for generating an image of a scene from a
representation of the scene to which at least one shader directed acyclic graph (DAG)
including a plurality of nodes, including at least one primary root node for attaching the
shader DAG to an element of the scene representation and at least one shader node
connected thereto in the DAG, the computer program product including a computer-
readable medium having encoded thereon:

A at least one of
(1) a pre-processor module configured to enable the computer to

determine whether the at least one shader node is of a type that is used in
performing a pre-processing operation in connection with said
representation, and, if so, using the at least one shader node to perform said
pre-processing operation to generate a pre-processed representation of the
scene, or

(i) a post-processor module configured to enable the computer to
determine whether the at least one shader node is of a type that is used in
performing a post-processing operation in connection with said
representation and, if so, using the at least one shader node to perform said
post-processing operation in connection with a rendered image; and

B. a renderer module configured to enable the computer to generate the rendered

im i if the computer program

product includes the pre-processor module, the pre-processed representation of the

‘scene.

21. A computer program product as defined in claim 20 in which the at least

28/05/02,td11020.clms.doc,45

L X3 [
L oo
LA XX
L4 [
eeve
e oo
eooe
eooo
. (]
LA 2]
LEAL X]
L]

LX]
L X

10

15

20

25

30

- 46 -

one shader node is of a geometry shader node type, the computer program product

including the pre-processor module, the pre-processor module being configured to enable

the computer to perform said pre-processing operation using the at least one shader node

of the geometry shader node type to define geometry for the scene.

22,

A computer program product as defined in claim 20 in which the at least

one shader node is of a photon shader node type, the computer program product including

the pre-processor module, the pre-processor module being configured to enable the

computer to perform the pre-processing operation using the at least one shader node of the

photon shader node type to control the path of at least one photon in the scene or at least

one characteristic of interaction of at least one photons with a surface of an object in the

scene.

23.

A computer program product as defined in claim 20 in which the at least

one shader node is of a photon emitter shader node type, the computer program product

including the pre-processor module, the pre-processor module being configured to enable

the computer to perform said pre-processing operation using the at least one shader node of

the photon emitter shader node type to simulate generation of at least one photon by a light

source illuminating the scene.

24,

A computer program product as defined in claim 20 in which the at least

one shader node is of a photon volume shader node type, the computer program product

including the pre-processor module, the pre-processor module being configured to enable

the computer to perform said pre-processing operation using the at least one shader node of

the photon volume shader node type to simulate interaction of at least one photon from a

light source with a three-dimensional volume of space in the scene.

25.

A computer program product as defined in claim 20 in which the shader

node is of an output shader node type, the computer program product including the post-

proces.
Ly

- i nfigured to enable the computer to

perform said post-processing operation using the at least one shader node of the output

shader node type.

A computer program product as defined in claim 25 in which the rendered

28/05/02,td11020.clms.doc,46

-47-

image includes a plurality of pixels each associated with a pixel value, the post-processor
module being configured to enable the computer to perform said post-processing operation

in connection with said pixel values.

5 27. A computer program product as defined in claim 25 in which the post-
processor module is configured to enable the computer to use the at least one shader node
of the output shader node type to perform at least one of a compositing operation, a

complex convolution operation, or a contour line drawing operation.

10 28. A computer program product as defined in claim 20 further including a
second shader DAG includiing the primary root node and at least one shader node, in
which the at least one shader node of one of said DAGs, when used by at least one of the
pre-processor module, the post-processor module, or the renderer module, provides at least

one value that is used in the processing of the at least one shader node of the other of said

15 DAGs.
Feees 29. A computer program product as defined in claim 20 in which said shader
: : DAG further has at least one optional root node for attaching the shader DAG to a second
s element of the scene representation, the at least one optional root node being further

.*.**. 20 connected to the at least one shader node in the DAG.

Dated this 28" day of May, 2002.

oo .

MENTAL IMAGES GmbH & Co. KG
eee. 25 By their Patent Attorneys:

L]
eeve

. CALLINAN LAWRIE

Yot Moy
e

o0

L

28/05/02,td11020.clms.doc,47

WO 99/01846 PCT/1B98/01073

1/8

FIG.1

11\

ORERATOR
INTERFACE 27

/

ENTITY GEOMETRIC
REPRESENTATION
GENERATOR 23

TN

SCENE STRUCTURE
GENERATION
PORTION

20

SCENE IMAGE
GENERATION
PORTION

21

FIG.2

BASE SHADER

PHENOMENON |€—
CREATOR 24 NODE [;/;TABASE
PHENOMENON EDITOR OHENOMENON

AND CONTROL TREE [
GENERATOR 26

DATABASE 25

\

SCENE ASSEMBLER

34

PHENOMENON
33

[<«— INSTANCE DATABASE

SCENE

DATABASE 22

> SCENE IMAGE
GENERATOR 30

| OPERATOR

INTERFACE 31

8/¢

9¥810/66 OM

€L010/864L/.LOd

(92 37NY) 133HS 3LNLILSEANS

2

4 SHELF: LIST OF
PHENOMENONS 41

Roe

[SUPPORTED GRAPH
(]+ OCa R

)

>-47

467 467

o— I

NEC=E
]
—__]

PHENOMENON GRAPH
CANVAS 44

CONTROLS 43

PHENOMENON CREATOR WINDOW 40

FIG.3

8/E

9$810/66 OM

€L010/864dL/LDd

(92 37nY) 133HS 3LN111SENS

DIALOG NODE 654

9r810/66 OM

8/v

SUBTILE| | TURBULENCE
suBTILE| | GLOSSINESS
DIFFUSE
AMBIENT
TEXTURE SHADER COHERENT NOISE
NODE 63 ~ SHADER NODE 64
MATERIAL
PHENO-
MENON GLOSSINESS |«
AMBIENT COLOR1 |«
O"_ ResuLT]JoiFFuse RESULT | [COLORZ}«— — RESULT | [TYRBULERGE
Coq TRANSPARENCY }«0.0 BLEND Te— | |
LIGHTS
MATERIAL SHADER -/ -
NODE 6p LIGHT TRUE
LIST

WOOD MATERIAL PHENOMENON 60

FI1G.4

€L010/8691/LDd

(92 31NY) L33HS ILNLILSANS

~ 81

80\ [80 -\‘
: ! SHELF: LIST OF
PHENOMENOM
INSTANCES 71
PHENOMENON PHENOMENON
DIALOG 73 PREVIEW 74

CONTROLS 72

PHENOMENON EDITOR WINDOW 70

FIG.5

8/S

9$810/66 OM

€L010/8641/L0d

65\
90
Ambient
color "ambient®
Diffuse
91~ color *diffuse”

(] Tumbuence | [_scalar “turbulence

~92

(] Glossiness [scalar *glossiness®

_~93

100\ /101
. ¢

Ambient B =] 51 Red
| CIID Green
Q[o] Buwe

[Oo [>] Alpha
— 102

Diffuse == 5] Red
| OO, [>] Green

< O >] Blue

A co >] Alpha
[0 Tubuence [To] |—103
[J Glossiness [<] CI o] b~ 104

Dialok Canvas for Wood

KF1IG. 64

Resulting Dialog for Wood

FIG. 6B

8/9

9¥810/66 OM

€L010/8641/LDd

WO 99/01846 ' PCT/IB98/01073
7/8

100. SCENE IMAGE GENERATOR 30 EXAMINES
PHENOMENA ATTACHED TO A SCENE TO DETERMINE
WHETHER IT WILL NEED TO PERFORM PRE-PROCESSING
AND/OR POST-PROCESSING OPERATIONS IN
CONNECTION THEREWITH

101. SCENE IMAGE GENERATOR 30 DETERMINES

WHETHER OPERATIONS IN STEP 100 INDICATED THAT
—NO PRE-PROCESSING OPERATIONS ARE REQUIRED IN
CONNECTION WITH THE PHENOMENA ATTACHED TO THE
SCENE

YES

102. SCENE IMAGE GENERATOR 30 PERFORMS THE
PRE-PROCESSING OPERATIONS REQUIRED IN

CONNECTION WITH PHENOMENA ATTACHED TO THE
SCENE

103. SCENE IMAGE GENERATOR PERFORMS FURTHER
PRE-PROCESSING OPERATIONS AS NEEDED WHICH MAY
BE REQUIRED IN CONNECTION WITH THE SCENE
REPRESENTATION PRIOR TO RENDERING, INCLUDING
PRE-PROCESSING OPERATIONS NOT RELATED TO
PHENOMENA ATTACHED TO THE SCENE

104. SCENE IMAGE GENERATOR 30 PERFORMS
RENDERING OPERATIONS TO GENERATE A RENDERED
IMAGE (THE RENDERING PHASE), IN THOSE OPERATIONS
GENERATING INFORMATION AS NECESSARY WHICH MAY
BE USEDIN POST-PROCESSING OPERATIONS

WO 99/01846 PCT/IB98/01073

8/8

105. SCENE IMAGE GENERATOR 30 DETERMINES
WHETHER OPERATIONS IN STEP 100 INDICATED THAT
POST-PROCESSING OPERATIONS ARE REQUIRED IN

CONNECTION WITH THE PHENOMENA ATTACHED TO THE
SCENE

—NO

YES

106. SCENE IMAGE GENERATOR 30 PERFORMS THE
POST-PROCESSING OPERATIONS REQUIRED IN
CONNECTION WITH PHENOMENA ATTACHED TO THE
SCENE, AND MAY ALSO PERFORM OTHER
POST-PROCESSING OPERATIONS WHICH ARE NOT
RELATED TO PHENOMENA

FIG. 74

