woO 2007/005281 A2 |10 0 00O O OO

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
11 January 2007 (11.01.2007)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

lﬂfb A0 0O 00O

(10) International Publication Number

WO 2007/005281 A2

(51)
21
(22)
(25)

(26)
(30)

(1)

(72)

(81)

International Patent Classification:
GOGF 15/173 (2006.01)

International Application Number:

PCT/US2006/024034
International Filing Date: 22 June 2006 (22.06.2006)
Filing Language: English
Publication Language: English
Priority Data:
60/695,944 1 July 2005 (01.07.2005) US
11/354,800 15 February 2006 (15.02.2006) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: HUGHES, JR., Robert K.; One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
ARROUYE, Yves; One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(34)

AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,
SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: APPLICATION SECURITY IN AN INTERACTIVE MEDIA ENVIRONMENT

LOAD
APPLICATION |-
24

Y

DETERMINE
SIGNATURE STATUS
OF APPLICATION
26

ARE ALL CURRENTLY PROVIDE ALL

RUNNING APPLICATIONS
SIGNED?
28

-YES—»1
32

APPLICATIONS WITH HIGH
ACCESS PRIVILEGES

NO

PROVIDE ALL LOAD
APPLICATIONS WITH LOW | APPLICATION
ACCESS PRIVILEGES | Py
34

A

\

RUN APPLICATIONS WITH
LOW ACCESS PRIVILEGES
DIRECTLY OFF DISK
36

(57) Abstract: A security system is described which
controls the access of applications to system resources
in the field of interactive multimedia. The system es-
tablishes a framework for application security, includ-
ing a signature system, and further provides file for-
mats that support security. Signed applications are af-
forded high access privileges, while unsigned appli-
cations are afforded low access privileges. The com-
bination of signed and unsigned applications on, e.g.,
a disk, provides for low access privileges for all ap-
plications, signed and unsigned.

WO 2007/005281 A2 |} 0A 00 0T 0000 0 00 0 O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2007/005281 PCT/US2006/024034

APPLICATION SECURITY IN AN INTERACTIVE MEDIA ENVIRONMENT
STATEMENT OF RELATED APPLICATION
[0001] This application claims the benefit of provisional application number
60/695,944, filed July 1, 2005, which is incorporated by reference herein.
BACKGROUND
[0002] Some multimedia playback systems provide limited interactive graphics during
audio/video playback. The greater capabilities of interactive playback systems present
greater opportunities for malfeasance. It is critical to maintain the security of the playback
system against viruses, spyware and other malicious software. Malicious software could
cause the interactive playback system to malfunction or gather and transmit private user
information. In addition, an interactive playback system may be connected to a network.
The software or user information could propagate from the playback system to other
computing systems attached to the network. Consequently, it is critical that the interactive
playback system include adequate security provisions.
SUMMARY
[0003] A security system is provided which controls the privileges of unsigned
applications in the field of interactive multimedia. Interactive multimedia is an
environment in which applications typically manage multimedia objects including
graphics, audio and video responsively to user input events on a synchronized real-time,
frame-accurate basis. Applications here are termed “iHD” applications as they relate to
high-definition DVD (digital versatile disk) media. However, the disclosed security
system is applicable to other interactive multimedia environments more generally.
[0004] The system in particular applies to application security, not content security,
and establishes a framework for application security, including a signature system, and
further provides file formats that support security. Interactive multimedia applications run
on an interactive playback system (that is implemented as a standalone hardware device,
or alternatively as a software application running, for example, on a personal computer)
may be either signed or unsigned.
[0005] Signed applications are allowed practically unlimited applications. Unsigned
applications are greatly restricted in what the same can access. Moreover, if both signed
and unsigned applications are running, both are given only the security level and access
privileges of the unsigned application. Providing for unsigned applications allows for

home-authored discs customizable with rich interactivity features, but restricts access to

10

15

20

25

30

WO 2007/005281 PCT/US2006/024034

networks, e.g., the Internet, and sensitive information stored within the playback system,
to authorized parties.

[0006] Signed applications may be provided with special file formats, allowing
determination of the signature status without requiring parsing of the entire file.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Fig. 1 is a flowchart illustrating a method of assigning privileges to
applications where signature statuses of applications are detected from a disk.

[0008] Fig. 2 is a flowchart illustrating a method of assigning privileges to
applications where the signature status of an applications is detected upon loading into a
playback system.

[0009] Fig. 3 is a flowchart illustrating creation of an author identifier — keyed
directory.

[0010] Fig. 4 is a schematic depiction of an application file.

DETAILED DESCRIPTION

[00010] Interactive multimedia applications are those in which the application is
responsive to user events. An example is a menu implemented within an application that is
accessed by the user, in which the user submits an input that causes the application to
change state. In such a case, the interactivity is with the menu graphics which are
rendered while video plays beneath them, e.g., on the z=0 layer, on a real time, frame-
synchronous basis. The interactivity may lead, for example, to changes in how the video
stream is displayed.

[00011] For example, an underlying video may be a high-definition movie. The
graphic overlay may be part of a commentary by the director of the movie, showing, e.g., a
schematic of various camera locations overlayed on top of the scene itself. The user may,
employing the remote control, switch to a view envisioned by any of those camera
locations.

[00012] As noted above, the greater capabilities of interactive playback systems present
greater opportunities for malfeasance. Malicious software could cause the playback
system to malfunction or gather and transmit private user information.

[00013] In the current system, interactive applications for use in the playback system
may be either signed or unsigned. Signed applications are those which inherit a root
certificate from a trusted root authority (e.g., a movie studio) and are considered safe.
[00014] Signed applications are given high-level access privileges. This almost-

unrestricted privilege allows access to, e.g., networking, file I/O, security and diagnostic

10

15

20

25

30

WO 2007/005281 PCT/US2006/024034

APIs, and may access persistent storage to store and retrieve data that is to persist across
invocations of the application.

[00015] Unsigned applications, on the other hand, are given low-level access privileges.
They are denied access to the type of functionality afforded by high access. They may be
limited to the utilization of the markup language, as well as, e.g., certain objects from the
following exemplary APIs in ECMAScript: XML (without the I/O functionality);
globalization; drawing functions associated with graphics elements; and user input
operations.

[00016] This level of functionality prohibits access to any networking, security, or file
I/O. Any attempt to call a function outside the above namespaces or load resources from
persistent local storage may result in an exception which will terminate the application.
[00017] In one embodiment, a set of applications is present on a media disk, e.g., a HD-
DVD, and the same are employed to run an interactive graphics and video application.
Referring to Fig. 1, the media disk is received by the playback system (step 12). The
playback system, which may be a general purpose computer system or a more specialized
media center system, determines the signature status of the applications on the media (step
14). If the signature status of all applications is determined (step 16) to be signed, then all
of the applications are given the high access privileges (step 18). If the signature status of
any one application is determined to be unsigned, then all of the applications are given low
access privileges (step 22). That is, if an unsigned application is running, all concurrently
running applications, whether signed or unsigned, may be restricted to the unsigned
application permission level. This prevents an unsigned application from leveraging the
privileges of a concurrent signed application.

[00018] In another embodiment, a similar method may apply directly to applications
loaded into the playback system. Referring to Fig. 2, an application may be loaded into
the playback system (step 24). The signature status of the application is then detected
(step 26). If the signature status is determined (step 28) to be signed, then the application
may be run at a high privilege access level (step 32). However, if the signature status is
determined (step 28) to be unsigned, then the application is run at a low privilege access
level (step 34). In this case, the application is run directly from the media (step 36), e.g. a
disk. This provides enhanced security, as all unsigned applications are then prevented
from running or loading resources from local persistent storage of the playback system. If
additional applications are loaded (step 38), then they may be tested or not for their
signature status: in general, they will be afforded a low access level (step 34). If an

10

15

20

25

30

WO 2007/005281 PCT/US2006/024034

application is signed and thus given high access privileges, and then a later application is
loaded and is unsigned, then the high access application is lowered to the low-access level.
[00019] Referring to Fig. 3, for signed applications, the playback system may include
employment of a set of author identifiers that are detected (step 44) upon the media
introduction (step 42) into the playback system. That is, each media or application may be
associated with an author identifier, which uniquely identifies content authors, and which
is particularly important to the security of applications in persistent storage, i.e., those
which can access persistent storage to store and retrieve data that are desired to be
persistent across invocations.

[00020] The author identifier is then associated with creation (step 46) of a directory
associated with that author identifier. The application from that media may access only
the directory corresponding to its author identifier in persistent storage. The file system,
as the application views it, is rooted in that directory. While the application can manage
subdirectories, it cannot go above its root directory and see other author’s data.

[00021] The author identifier may be associated with either a disk, including all the
applications on that disk, or a single application, either on that disk, spread over several
disks, or otherwise loaded into the playback system, e.g., via an internet download.
Furthermore, a given media may be associated with a single author identifier, but a given
author identifier may be found on multiple media. Another embodiment may be to use the
identifier referred to by the key that signed the application. Assuming that different
applications may be signed by different persons on a single media, this embodiment would
lead to even greater segregation of storage. Using the chain of certificates instead of the
last signature would do so even more.

APPLICATION STRUCTURE

[00022] The structure of a signed application is now described. Referring to Fig. 4, a
signed application 50 may include a manifest file 52 and at least one resource file 54. The
manifest file 52 is signed with the author’s signature and certificate and authenticates all
the resources it references.

[00023] The application may have its manifest file 52 and all resource files 54-58
bundled into an uncompressed archive 48. The file format for archive 48 need not even
support encryption. The archive file 48 is in essence a container and generally does not
need to be signed independently. The manifest file 52 may reference each of the resource
files 54-58 of the interactive application. The archive 48 architecture may be specified

such that the archive 48 may be streamed efficiently, e.g., the signed manifest file 52 may

10

15

20

25

30

WO 2007/005281 PCT/US2006/024034

be the first file within the archive 48, allowing the verification of the signature without
reading the entire archive. Subsequent versions of the archive format may be backwards
compatible with previous ones.
[00024] Authentication of the data in the archive 48 may be provided by the use of, e.g.,
XML-Signature as defined by RFC 3275.
MANIFEST FILE FORMAT
[00025] In one example, the format of the signed manifest file 52 may make use of a
subset of the W3C Recommendation for XML-Signature Syntax and Processing defined
by RFC 3275. In this way, the following subset of elements may be included and
supported:

ds:Signature

ds:SignatureValue

ds:SignatureType

ds:Reference

ds:Reference/ds:DigestValue
[00026] Other elements may be determined by the system. Digest values for each
resource item included in the manifest may be listed as ds:Reference elements.
CERTIFICATES AND SIGNATURES
[00027] As an example, the required certificate type may be, e.g., X.509. The signature
method as defined by ds:SignatureMethod may be RSA-SHA1. The canonicalization
method may be specified to be Exclusive XML Canonicalization 1.0. The digest method
may be the same as the signature method, RSA-SHA1. The key information may be
inferred by the system from the identity of the media or local storage area from which the
application is being run.
CERTIFICATE REVOCATION LISTS
[00028] To provide a mechanism for revocation and replacement of compromised
applications, each interactive video and graphics application author can include a Content
Revocation List (“CRL”) which lists the bundle file digest values of revoked applications.
This CRL may be included in a separate file. This file contains a list of bundle signature
digests which have been revoked, and the signature of the content creator who authored
the disc. Assuming that the original author’s signature of each revoked application
matches that of the signature in the CRL file, the application digests listed will be stored in

the content provider’s restricted area of local storage and will be no longer allowed to run.

WO 2007/005281 PCT/US2006/024034

If a CRL is included in an application, it may be given a recognizable name such as
Revocation.xml.

[00029] The application author may desire to replace the revoked application with a
new version. This can be accomplished in several different ways. Titles running on
Internet-connected players may be caused to check their home servers for updated
playlists or interactive video and graphics bundles which specify newly downloaded
applications. Alternatively, the media revoking an application could also supply the
replacement itself.

[00030] The following table describes one possible format of the archive file, along
with comments describing the fields. It should be noted that numerous other formats may
be used. In this table, abbreviations are used to represent types: Uin represents a unsigned
integer of » bits. For example, Ui8 is an 8-bit unsigned integer, and Ui32 is a 32-bit one.
An array of type is indicated by using square brackets, and the length of the array is
indicated in between those brackets. If the length depends on a previous field, that field’s
name, or a shorter name indicated in the field, can be used to refer to the value of that
field. Hexadecimal values are indicated using the 0xdd notation. All variable-length

strings, and hence resource names, may be encoded using UTF-8 using a Pascal string

notation (8-bit length followed by bytes).

Field: " v i Type |.© :Comment L
Magic Ui8[5] [The values of the 5 byteqs’
.g 5 must be : 0x69, 0x48, 0x44,
53 0x61, 0x72.
4T Version Ui8 Version of the format
The value must be 0x01.
Resource Entry Length Uilé Length of this resource
entry.
Resource Offset Ui32 Byte offset of the resource
@ | in the resource data block.
§ E Resource Length Ui32 Length of the resource in
3 "§ bytes.
=] =
% § Resource Checksum Ui32 CRC-32 checksum of the
M|

resource bytes.

Resource Type

Resource Name Length Ui8 RNL
Resource Name Ui8[RNL] The filesystem name of the
resource.

WO 2007/005281 PCT/US2006/024034

10

15

Field ~ Type Comment
Resource Entry Length Uilé Length of this resource
entry.
Resource Offset Ui32 Byte offset of the resource
in the resource data block.
Resource Length Ui32 Length of the resource in
bytes.
g Resource Checksum Ui32 CRC-32 checksum of the
[resource bytes.
4 Resource Type
g Resource Name Length Ui8 RNL
Q
&(‘9 Resource Name Ui8[RNL] The filesystem name of the
resource.

All the resource data, in
continuous blocks.

Resource Data
Block

[00031] Certain rules may apply to the application resources noted above. For
example, resource names must be file system names or logical URIs. The directory in
which an archive file will be extracted may be considered to be the root of the file system
during that extraction. In that way, all names will be made relative to that directory, so
that absolute paths will behave the same as relative ones. If a name results in a location
outside of that directory, the name and the entry may be considered invalid.
[0033] The following sections give more detailed information about various fields and
sections of the above exemplary archive file.

Archive Header

Magic Field
[0034] This is a “magic number” used to uniquely identify archives. It may consist of
the string “iHDar”, i.e., iHD archive, coded as a sequence of 5-character values in UTF-8,
ASCII, ete., i.e. 0x69, 0x48, 0x44, 0x61, 0x72.
Version Field
[0035] The version field allows an archive reader to read different versions of the
archive format. By looking at the version field, one can know what to expect in the

different sections of the file, and thus read information that was not present in some

10

15

20

25

30

WO 2007/005281 PCT/US2006/024034

versions of the file format. The value of this field may be, e.g., 0x01. Future versions may
have values from 0x02 to Oxff.

Resource Catalog and Resource Entries

[0036] The resource catalog includes a number of resource entries. Each entry follows
the same format.

Resource Entry Length

[0037] This is the length, in bytes, of the resource entry itself. This value is used by
readers who are reading a format whose version they do not understand. Assuming that an
archive written using version 2 of the format is seen by a reader made for version 1, the
reader can read the fields it knows about and then skip to the next resource entry since it
knows the length of the current entry.

Resource Offset

[0038] This indicates the byte offset of the resource in the resource data block. The
offset of the first resource is 0x0000.

Resource Length

[0039] This is the length of the resource, in bytes.

[0040] If resources A and B are contiguous in the archive file, then the resource offset
for B is equal to the sum of A’s resource offset and resource length.

Resource Checksum

[0041] This represents a CRC-32 checksum of the resource, as defined by ISO 3309.
Note that this checksum should only be used for simple verification of the integrity of a
resource transported over an unreliable medium. Because the CRC-32 checksum is neither
keyed nor collision-proof, it should not be used for authentication purposes. If one needs
to authenticate resources, the signature mechanism described above may be employed.
Resource Type

[0042] This is the MIME type of the resource.

Resource Name Length

[0043] This is the length of the resource name in bytes. The resource name
immediately follows this field.

Resource Name

[0044] This is the resource name itself.

10

15

20

25

30

WO 2007/005281 PCT/US2006/024034

Resource Data Block

[0045] The resource data block contains all the bytes for the resources, in the order
they appear in the resource catalog. There is generally no explicit separation between two
resources, as their offsets and lengths are well-known quantities.

[0046] The system may be described in the general context of computer-executable
instructions, such as program modules, being executed by a computer. Generally, program
modules include routines, programs, objects, components, data structures, etc. that
perform particular tasks or implement particular abstract data types. The system and
method may also be practiced in distributed computing environments where tasks are
performed by remote processing devices that are linked through a communications
network. In a distributed computing environment, program modules may be located in
both local and remote computer storage media including memory storage devices.

[6047] The instructions which execute the method and system may be stored on a
variety of computer readable media. Computer readable media can be any available media
that can be accessed by a computer and includes both volatile and nonvolatile media,
removable and non-removable media. By way of example, and not limitation, computer
readable media may comprise computer storage media and communication media.
Computer storage media includes both volatile and nonvolatile, removable and non-
removable media implemented in any method or technology for storage of information
such as computer readable instructions, data structures, program modules or other data.
Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be used to store the desired
information and which can accessed by a computer. Communication media typically
embodies computer readable instructions, data structures, program modules or other data
in a modulated data signal such as a carrier wave or other transport mechanism and
includes any information delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or changed in such a manner as to
encode information in the signal. By way of example, and not limitation, communication
media includes wired media such as a wired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared and other wireless media. Combinations of

the any of the above should also be included within the scope of computer readable media.

10

15

20

25

30

WO 2007/005281 PCT/US2006/024034

[0048] Although described in connection with an exemplary computing system
environment, including a computer, the system is operational with numerous other general
purpose or special purpose computing system environments or configurations. The
computing system environment is not intended to suggest any limitation as to the scope of
use or functionality. Moreover, the computing system environment should not be
interpreted as having any dependency or requirement relating to any one or combination of
components illustrated in the exemplary operating environment. Examples of well known
computing systems, environments, and/or configurations that may be suitable that may be
used include, but are not limited to, personal computers, server computers, hand-held or
laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes,
programmable consumer electronics, mobile telephones, network PCs, minicomputers,
mainframe computers, distributed computing environments that include any of the above
systems or devices, and the like.

[0049] The systems and methods described herein may be implemented in software or
hardware or both using techniques some of which are well known in the art.

[0050] The order of execution or performance of the methods illustrated and described
herein is not essential, unless otherwise specified. That is, elements of the methods may be
performed in any order, unless otherwise specified, and that the methods may include
more or less elements than those disclosed herein.

[0051] When introducing elements of the present invention or the embodiment(s)
thereof, the articles "a," "an," "the," and "said" are intended to mean that there are one or

"nong

more of the elements. The terms "comprising," "including," and "having" are intended to
be inclusive and mean that there may be additional elements other than the listed elements.
[0052] As various changes could be made in the above constructions, products, and
methods without departing from the scope of the invention, it is intended that all matter
contained in the above description shall be interpreted as illustrative and not in a limiting
sense.

[0053] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the specific features or acts
described above. Rather, the specific features and acts described above are disclosed as

example forms of implementing the claims.

10

10

15

20

25

30

WO 2007/005281 PCT/US2006/024034

10.

CLAIMS
A method for ensuring security of an application in an interactive multimedia

environment, comprising:

a. receiving an application implementing interactive video and frame-
synchronous graphics;

b. detecting the signature status of the application;

c. if the signature status is signed, then giving permission access to a source

of local storage and a network resource;
d. if the signature status is unsigned, then denying permission access to a
source of local storage and a network resource.
The method of claim 1, further comprising if the signature status is signed, then
giving permission access to file I/O and security and diagnostic APIs.
The method of claim 1, wherein the detecting comprises reading a manifest file
associated with the application, and determining if the manifest is signed with an
author’s signature and certificate.
The method of claim 3, wherein the application contains an archive which houses
the manifest file and at least one resource file, and wherein the manifest file is the
first file in the archive.
The method of claim 4, wherein the archive has a format such that the archive may
be streamed efficiently.
The method of claim 1, further comprising if the signature status is signed, then the
application includes a signed root certificate, a content revocation list, or an author
identifier.
The method of claim 1, wherein the source of local storage is a directory keyed to
the author identifier.
The method of claim 1, further comprising if the signature status is unsigned, then
denying permission access to file I/O and security and diagnostic APIs.
The method of claim 1, further comprising if the signature status is unsigned, then
giving permission access to utilization of a markup language and utilization of the
objects consisting of: XML without I/O functionality, globalization, drawing
functions, and user input operations.
The method of claim 1, further comprising if the signature status is unsigned, and
the application is received from an optical disk, then running the application only

from the optical disk.

11

10

15

20

25

30

WO 2007/005281 PCT/US2006/024034

11.

12.

13.

The method of claim 1, further comprising:
receiving another application;

b. detecting the signature status of the another application;

c. if the signature status of the application or the another application is
unsigned, then denying permission access for both applications to both a
source of local storage and a network resource; or

d. if the signature status of the application and the another application are both
signed, then granting permission access for both applications to both a
source of local storage and a network resource.

A method for ensuring security of a media disk, comprising:

a. receiving a media disk in a playback system, the media disk containing one
or more applications whereby the applications implement interactive video-
frame-synchronous graphics in an interactive multimedia environment;

b. detecting the signature status of each application on the media disk;

c. if the signature status of all the applications is signed, then giving high
permission access to each application to a source of local storage and a
network resource;

d. if the signature status of any of the applications is unsigned, then denying
to any of the applications high permission access to a source of local
storage and a network resource.

A multimedia playback system for applications whereby the applications

implement interactive video-frame-synchronous graphics in an interactive

multimedia environment, comprising:

a network resource;

a source of local storage;

a device to receive an application incorporating interactive graphics and
video;

a processor to detect the signature status of the application;

wherein if the application is signed, the application is given permission
access to the source of local storage and the network resource; and

wherein if the application is unsigned, the application is denied permission

access to the source of local storage and the network resource.

12

10

15

20

25

30

WO 2007/005281 PCT/US2006/024034

14.

15.

16.

17.

18.

19.

20.

21.

22,

The system of claim 13, wherein the processor detects the signature status of the
application by reading a manifest file associated with the application, and
determining if the manifest is signed with the author’s signature and certificate.
The system of claim 14, wherein the application contains an archive which houses
the manifest file and at least one resource file, and wherein the manifest file is the
first file in the archive.
The system of claim 13, wherein if the signature status is signed, then the
application includes a signed root certificate, a content revocation list, or an author
identifier.
The system of claim 16, wherein the source of local storage is a directory keyed to
the author identifier.
The system of claim 13, wherein if the signature status is signed, then the
application is given permission access to file /O and security and diagnostic APIs.
The system of claim 13, wherein if the signature status is unsigned, then the
application is:
denied permission access to file /O and security and diagnostic APIs; or
b. given permission access to utilization of a markup language and utilization
of the objects consisting of: XML without /O functionality, globalization,
drawing functions, and user input operations
The system of claim 13, wherein the processor is configured to detect the signature
status of another application, and wherein
a. if the signature status of the application or the another application is
unsigned, then permission access is denied for both applications to both a
source of local storage and a network resource; or
b. if the signature status of the application and the another application are both
signed, then permission access is granted for both applications to both a
source of local storage and a network resource.
The system of claim 13, further comprising if the signature status of the application
is unsigned, and the application is received from an optical disk, then the
application is only run from the optical disk.
A method of authoring secure applications , comprising:
developing an application implementing interactive video-frame-

synchronous graphics in an interactive multimedia environment;

13

WO 2007/005281 PCT/US2006/024034

converting the application into an archive file format having a manifest file
and at least one resource file;
disposing within the manifest file a certificate containing a signature; and
disposing the manifest file at the beginning of the archive file.
5 23. The method of claim 22, further comprising burning or saving the application onto
a disk.

14

WO 2007/005281

RECEIVE
MEDIA
12

'

DETERMINE
SIGNATURE STATUS
OF APPLICATIONS ON
MEDIA
14

PCT/US2006/024034

ARE ALL
APPLICATIONS
SIGNED?
16

PROVIDE APPLICATIONS
WITH HIGH ACCESS
PRIVILEGES
18

NO

Y

PROVIDE APPLICATIONS
WITH LOW ACCESS
PRIVILEGES
22

FIG. 1

1/3

WO 2007/005281

LOAD

APPLICATION |«

PCT/US2006/024034

24

'

DETERMINE
SIGNATURE STATUS
OF APPLICATION
26

ARE ALL CURRENTLY
RUNNING APPLICATIONS
SIGNED?
28

YES—p»>

PROVIDE ALL
APPLICATIONS WITH HIGH
ACCESS PRIVILEGES
32

NO

PROVIDE ALL
APPLICATIONS WITH LOW

LOAD
APPLICATION

ACCESS PRIVILEGES
34

Y

RUN APPLICATIONS WITH
LOW ACCESS PRIVILEGES
DIRECTLY OFF DISK
36

38
A

FIG. 2

2/3

WO 2007/005281

RECEIVE
SIGNED
APPLICATION
42

l

DETERMINE AUTHOR
IDENTIFIER FROM
SIGNED APPLICATION
44

l

CREATE DIRECTORY KEYED
TO AUTHOR IDENTIFIER
46

FIG. 3

3/3

PCT/US2006/024034

APPLICATION

/ 50

ARCHIVE FILE 48

RESOURCE

FILE 1

MANIFEST 54

FILE 52

RESOURCE
FILE 2
56

RESOURCE
FILEN
58

FIG. 4

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings

