発明者：近藤 敬（KONDO, Junko）；〒22785 東京都横浜市青葉区鵠沼丘6-2 日本たばこ産業株式会社品質分析センター内 Kanagawa（JP）。

代理人：許務務法人特許事務所サイクス (SIKS & CO.)；〒1040042 東京都中央区銀座1丁目8番7号 京橋日比ビル6階 Tokyo（JP）。

(19) 世界知的所有権機関
国際事務局
(43) 国際公開日
2016年11月3日 (03.11.2016)
(51) 国際特許分類
C12P 1/02 (2006.01)
A23L 33/10 (2006.01)
A23L 27/10 (2001.6.01)
A23L 27/20 (2001.6.01)
A23L 27/22 (2001.6.01)
A23L 31/15 (2001.6.01)
(21) 国際出願番号
PCT/JP2015/016177
(22) 国際出願日
2015年4月28日 (28.04.2015)
(25) 国際公開の言語
日本語
(26) 国際公開の言語
日本語
(74) 代理人：許務務法人特許事務所サイクス (SIKS & CO.)；〒1040042 東京都中央区銀座1丁目8番7号 京橋日比ビル6階 Tokyo（JP）。

(10) 国際公開番号
WO 2016/175235 A1

(60) 各国への局所公開
JP 2016-275235

(72) 発明者：近藤 敬（KONDO, Junko）；〒22785 東京都横浜市青葉区鵠沼丘6-2 日本たばこ産業株式会社品質分析センター内 Kanagawa（JP）。

[図1] AA フラクトース強度
BB 模様液(1)系統
CC 模様液(2)系統

DD 内容量が採取された成分 p in solid basis

(45) 発明の名称：酵母エキスの製造方法、それにより得られる酵母エキス、調味料組成物および食品

(53) Title: METHOD FOR PRODUCING YEAST EXTRACT, YEAST EXTRACT OBTAINED THEREBY, SEASONING COM-
POSITION AND FOOD

(57) Abstract: Provided is a method for producing yeast extract that contains organic acids, in particular succinic acid at a high concentration and also contains glutamic acid at a high concentration. The production method comprises: an organic acid synthesis treatment step for maintaining a cultured yeast suspension, under conditions effective to synthesize organic acids to thereby increase the organic acid content in the yeast; and a hot water extraction step for extracting a yeast extract from the yeast, which has been subjected to the organic acid synthesis treatment step, at 56°C or higher.

(57) 要約：酵母エキス、特にコハク酸を高濃度で含有する、さらにグルタミン酸を高濃度で含有する酵母エキスの製造方法を提供する。培養された酵母の発酵液を、有機酸生成有効な条件下で保持することにより、酵母の有機酸含有量を高める。有機酸生成処理工程および有機酸生成処理工程を経た酵母から、56°C以上で酵母エキスを抽出する、熱水抽出工程を含む、製造方法を提供する。
規則 13 の 2 に基づいて明細書とは別に提出された、寄託された生物材料に関する表示（規則 13 の 2.4 (d)(i) 及び 4.2 (a)(viii))
明細書

発明の名称:
酵母エキスの製造方法、それにより得られる酵母エキス、調味料組成物および食品

技術分野

[0001] 本発明は、酵母エキスの新規な製造方法に関する。より詳細には、コハク酸およびグルタミン酸を強化した酵母エキスの製造方法に関する。本発明は、食品製造の分野等で有用である。

背景技術

[0002] 食品における代表的な旨み成分には、呈味性核酸、グルタミン酸またはグルタミン酸ナトリウム、およびコハク酸等の有機酸がある。呈味性核酸は、鰹節やシイタケのうま味成分として知られており、イノシン酸ナトリウムやガニ酸ナトリウムの形態で用いられる。グルタミン酸またはグルタミン酸ナトリウムは、昆布だしのうま味成分として、またコハク酸は、果物のうま味成分として知られている。さらに乳酸や酢酸のミネラル塩もまた、調味料として風味の調和を整える目的で食品に使用されている。

[0003] 従来、このような旨み成分は、化学合成や微生物発酵により生産され、化学調味料と称されて用いられてきた。しかし、近年、消費者の天然志向の高まりにより、食品添加物として扱われる人工的な調味料に代わり、酵母エキスの消費量が増加している。酵母エキスは、酵母の生産する多数の成分を保有するために、特有の複雑な味わいや香気を有している。酵母エキスは、特定の味や香りのエンハンス効果、マスキング効果等を有することが分かってきており、食品への様々な目的での利用が検討されている。

[0004] 呈味性核酸とグルタミン酸またはグルタミン酸ナトリウムが相乗的にうま味を増強することはよく知られている。酵母エキスに関しても、グルタミン酸またはグルタミン酸ナトリウムを、単独または核酸と共含有するものが種々検討されてきた（特許文献1〜7）。コハク酸に関しては、例えば特許文献8
は、だし本来のもつ厚みや複雑味のみならず、全体のだし呈味をバランスよく強化し、さらに旨味の部分においても適正に強化することを可能にする酵母エキスとして、酵母を消化、或いは分解した酵母エキスであり、1マイクロメーターの口径を有する濾過膜を透過させ、その透過部をゲル濾過に供し、分画された流出液中の220nmにおける吸光光度法で検出されたペプタイド類において、分子量10000以上となるものの比率が、全検出されたペプタイド類の総量に対し、10%以上となる事を特徴とする酵母エキスを提供する。この酵母エキスは、好ましい態様においてはグルタミン酸ソーダを固形分当り10%以上含有し、また固形分当り0.6%以上のコハク酸を含有すると記載されてい る。また特許文献9は、コハク酸を従来よりも高濃度に含有する酵母エキスの製造方法として、KLa（酸素移動容量係数）が0.9〜195h1となる条件で培養された酵母から、自己消化により酵母エキスを抽出することを特徴とする酵母エキスの製造方法を提案する。

先行技術文献

特許文献

特許文献1 ：特開平09-29458 1号公報
特許文献2 ：特開平09-3 13169号公報
特許文献3 ：特開平10-327802 号公報
特許文献4 ：特開2002-171961号公報
特許文献5 ：特開2006-129835 号公報
特許文献6 ：特開2009-261253 号公報
特許文献7 ：特開2010-148517号公報
特許文献8 ：特許43982 13号公報
特許文献9 ：国際公開WO2012/067106A1

発明の概要

発明が解決しようとすると課題

うま味成分のうち、呈味性核酸とグルタミン酸ナトリウムに関しては、そ
それらを多く含む酵母エキスが既に製品化され、流通している。しかしコハク酸に関しては、既存の酵母エキス製品の中でコハク酸含有量が最も高いものでも1.8%程度である。また、前掲特許文献8にはグルタミン酸ナトリウムを10%以上、コハク酸を0.6%以上含有する酵母エキスが示されているが、コハク酸の含有量が特に高いとはいえない。

したがって、グルタミン酸またはグルタミン酸ナトリウムとコハク酸を共に高い濃度で含有する酵母エキスを得るための製造方法は未だ知られていない。前掲特許文献9にはコハク酸を酵母エキス乾燥重量当たり3.0〜30.0%含有する酵母エキスの製造方法が示されているが、グルタミン酸ナトリウム含有量については示されていない。また、特許文献9の製造方法は、酵母をKLaが0.9〜195hr^{-1}となる条件で培養することが必要であり、このような条件では酵母の増殖速度が著しく遅く、商業的な生産には適さないと予想される。

本発明は、有機酸、特にコハク酸を高い濃度で含有する酵母エキスを製造するための実用的な方法を提供することを課題とする。また本発明の好ましい態様においては、コハク酸を高い濃度で含有することに加えて、さらにグルタミン酸を高い濃度で含有する酵母エキスの製造方法を提供することを課題とする。

課題を解決するための手段

本発明者らは、上記課題を解決するべく、鋭意検討した結果、酵母を好気条件下で増殖させた後、得られた酵母の懸濁液を所定の条件で保持することで、コハク酸を含む特定の有機酸の量を増減できることを見出し、本発明を完成した。

また本発明者らは、グルタミン酸生産能の高い酵母を育種し、グルタミン酸高含有酵母エキスの開発を行ってきたが、このような酵母を用い、所定の条件でコハク酸の含有量を増加させつつ、グルタミン酸も増加させることを鋭意検討した。その結果、高濃度のコハク酸とグルタミン酸を共含有する酵母エキスが得られることを見出し、本発明を完成した。

本発明は以下を提供する：
培養された酵母の懸濁液を、有機酸生成上有効な条件で保持することにより、酵母の有機酸含有量を高める、有機酸生成処理工程;および有機酸生成処理工程を経た酵母から、熱水で酵母エキスを抽出する、熱水抽出工程を含む、酵母エキスの製造方法。

1〜9のいずれか1項に記載の製造方法。

熱水抽出工程において、56℃以上の熱水で酵母エキスを抽出する、1に記載の製造方法。

有機酸生成上有効な条件が、酵母の懸濁液を攪拌しながら2〜30時間保持することを含む、1または2に記載の製造方法。

有機酸生成上有効な条件が、酵母の懸濁液を40〜55℃、pH4.0〜7.5に保持することを含む、1〜3のいずれか1項に記載の製造方法。

有機酸生成処理工程で処理される培養された酵母が、酸素移動容量定数(KLa)が500hr⁻¹以上となる条件で培養されたものである、1〜4のいずれか1項に記載の製造方法。

有機酸生成処理工程で処理される培養された酵母が、培養終了時の酵母に含まれる窒素量が、乾燥酵母重量当たり8.5%以下の酵母である、1〜5のいずれか1項に記載の製造方法。

有機酸、コハク酸、乳酸、および酢酸からなる群より選択されるいずれかである、1〜6のいずれか1項に記載の製造方法。

有機酸生成上有効な条件が、酵母のグルタミン酸含有量を高めるものでもある、1〜7のいずれか1項に記載の製造方法。

酵母が、サッカロマイセス属またはキャンディダ属に属する、1〜8のいずれか1項に記載の製造方法。

酵母が、高グルタミン酸生産性である、1〜9のいずれか1項に記載の製造方法。

1〜9のいずれか1項に記載の製造方法により製造された酵母エキスであって、酵母が、サッカロマイセス属に属し、乾燥酵母エキス重量当たりリコハク酸
酵母が、キャンディダ属に属し、乾燥酵母エキス重量当たリコハク酸を2.0重量%以上、およびグルタミン酸を10.0重量%以上含むか、または酵母が、リコハク酸を2.0重量%以上、およびグルタミン酸を10.0重量%以上含む酵母エキスを原料に含む食品の、魚介風味または呈味を改善するための調味料組成物。
図面の簡単な説明

[0013] [図1] うま味強度の比較。グルタミン酸と呈味核酸を含む液（模擬液1）と、さらに有機酸を含む液（模擬液2）とのうま味強度を比較した。

[図2]酵母エキスによる呈味改善効果。洋風魚介に、（1）〜（8）の酵母エキス、または酵母エキス中のうま味成分を試薬にて再構築した模擬液を、喫食時0.01%（乾燥酵母エキス重量）、またはそれに相当するうま味成分濃度となるよう調整し、魚介風味の好ましさと呈味の強さについて、評価した。

[図3]酵母エキスによる呈味改善効果。チキンスープに、（1）〜（8）の酵母エキス、または酵母エキス中のうま味成分を試薬にて再構築した模擬液を、喫食時0.05%（乾燥酵母エキス重量）、またはそれに相当するうま味成分濃度となるよう添加し、評価した。

発明を実施するための形態

[0014] 数値範囲「X〜Y」は、特に記載した場合を除き、両端の値XおよびYを含む。

[0015] 酵母エキスということとは、特に記載した場合を除き、酵母からの抽出物成分を指し、これには通常、有機酸、アミノ酸、ベプチド、核酸、ミネラル等が含まれている。酵母エキスということ、形態は特に限定されず、濃縮物、粗精製物、液状物、乾燥物、粉末、顆粒等の形態であり得る。

[0016] 酵母または酵母エキスの成分に関し、グルタミン酸というときは、特に記載した場合を除き、グルタミン酸が塩または溶媒和物の形態である場合、例えばグルタミン酸ナトリウム（monosodium glutamate, MSG, グルタミン酸ソーダということもある。）を含む。また酵母または酵母エキスの成分に関し
て、核酸というときは、特に記載した場合を除き、うま味を有する呈味性核酸を意味し、これには、5'-イノシン酸、5'-グァニル酸、5'-アデニル酸、5'-ウラジル酸、5'-シチジル酸、それらの金属塩、およびそれらの溶媒和物（例えば、2ナトリウム塩の7水和物）が含まれる。酵母または酵母エキスの成分に関して、アミノ酸というときは、特に記載した場合を除き、L体のアミノ酸を指す。

[001 7] 食品は、固形もののみならず、飲料およびスープのような液状の経口摂取物も含む。また、そのまま摂取される形態のも（例えば、調理済みの各種の食品、サプリメント、ドリンク剤）のみならず、食品添加物、調味料組成物、飲料濃縮物も含む。さらに、ヒトのみならず、非ヒト動物（ペット、家畜等）のためのものも含む。食品はまた、一般食品（いわゆる健康食品を含む。）のほか、保健機能食品（栄養機能食品、および保健機能食品を含む。）を含む。

以下、本発明を詳細に説明する。

[001 8] 本発明は、酵母エキスの製造方法を提供する。本発明の方法は、次の工程を含む：

培養された酵母の懸濁液を、有機酸生成上有効な条件で保持することにより、酵母の有機酸含有量を高める、有機酸生成処理工程；および

有機酸生成処理工程を経た酵母から、熱水で酵母エキスを抽出する、熱水抽出工程。

[001 9] [酵母]

[0020] 用いられる酵母は、食品製造の分野において通常用いられている酵母であければ特に限定されない。サッカロマイセス（Saccharomyces）属、シソサッカロマイセス（Shizosaccharomyces）属、ピシア（Pichia）属、キャンディダ（Candida）属、クリベロマイセス（K Luyveromyces）属、ウイリオプシス（W illiops is）属、デバリオマイセス（Debaryomyces）属、ガラクトマイセス（Ga lactomyces）属、トリラスボラ（Torus laspora）属、ドトレラ（Rhodotorula）属、ヤロウィア（Yarrowia）属、およびジゴサッカロマイセス（Zygosa
ccharomyces）属からなる群より選択されるいずれかの属に属する酵母を用いることができる。酵母は、増殖性が良好であることから、パン製造に用いられているパン酵母、食料や飼料等の製造に用いられているトルラ酵母、ビール製造に用いられているビール酵母であることが好ましく、サッカロマイセス（iacccharomyces）に属する菌やカンディダ（Candida）に属する菌であることがより好ましい。サッカロマイセス属の例として、サッカロマイセス・セレビジエ（Saccharomyces cerevisiae）が挙げられる。カンディダ属の例として、カンディダ・トロピカリス（Candida tropicalis）、カンディダ・リポリティカ（Candida lypolic acid）、カンディダ・ユーテリス（candida utilis）、カンディダ・サケ（Candida sake）が挙げられる。好ましい例は、サッカロマイセス・セレビジエ（Saccharomyces cerevisiae）である菌株である。

[0021]より好ましい例は、グルタミン酸高含有酵母、および核酸高含有酵母であり、さらに好ましい例は、グルタミン酸高含有酵母である。この例として、サッカロマイセス・セレビジエFT4株を挙げることができる。特に好ましい態様においては、グルタミン酸高含有酵母から、クエン酸耐性スクリーニングにより取得した株を用いることができる。グルタミン酸高含有酵母からのクエン酸耐性スクリーニングは、例えば、グルタミン酸高含有酵母またはその変異株を、50〜100mMのクエン酸を含む培地で至適温度付近で、3〜7日間培養し、増殖速度が速い株を選抜することにより得られる。さらに適切であれば、得られた株について目的の有機酸含量またはグルタミン酸含有量を測定し、高い濃度で有する株を選抜してもよい。グルタミン酸高含有酵母から、クエン酸耐性スクリーニングにより取得した株の例として、サッカロマイセス・セレビジエSC21株を挙げることができる。

[0022]サッカロマイセス・セレビジエFT4株は、日本たばこ産業株式会社（住所：日本国東京都港区虎ノ門二丁目2番1号）により、2002年6月20日付けで独立行政法人産業技術総合研究所（住所：日本国つくば市東1丁目1番地1中央第6
) へ寄託され、受託番号 FERM BP-8081 が付与されている。また、サッカロマイス・セレピジェ SC21 株は、2015年3月6日付けで、近藤敦 (住所 : 日本国東京都大田区羽田旭町5-14 テーブルマーク株式会社 食品開発センター) により、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(住所 : 日本国千葉県木更津市かずさ鎌足2-5-8 122号室) へ寄託され、受託番号 NITE BP-02025 が付与されている。その後寄託者の名義は、近藤敦からテーブルマーク株式会社 (住所 : 日本国東京都中央区築地6-4-10) へ変更された。なお独立行政法人産業技術総合研究所の業務は、2012年4月から、独立行政法人製品評価技術基盤機構 バイオテクノロジーセンター 特許微生物寄託センター (NITE-IPOD) (2013年4月からの住所 : 日本国千葉県木更津市かずさ鎌足2-5-8 120号室) が承継している。また2015年4月に、独立行政法人産業技術総合研究所は、国立研究開発法人産業技術総合研究所に改名された。

[0023] [培養]

酵母は、後述する有機酸生成処理工程に先立ち、培養される。培養は、好気的な条件で行われることが好ましい。十分な菌体収量が得られるからである。具体的には、酸素移動容量定数 (KLa) が、250hr⁻¹以上となる条件で、例えば300hr⁻¹以上となる条件で、好ましくは350以上となる条件で、より好ましくは380hr⁻¹以上となる条件で、さらに好ましくは400hr⁻¹以上となる条件で、さらに好ましくは500hr⁻¹以上となる条件で、さらに好ましくは750hr⁻¹以上となる条件で培養される。KLa値は、当業者であれば適宜求めることができる。KLaは、培養液への通気条件や攪拌条件を調整することにより調整できる。本願に係る発明、ならびにその実施態様および実施例に関して示すKLaの値は、特に記載した場合を除き、亜硫酸酸化法で測定したものである。亜硫酸酸化法は、Cooper (Ind. Eng. Chem. 36, 504-509 1944) により提唱された方法である。

[0024] 酵母の培養に用いる培地の組成は、酵母が増殖可能であり、十分な菌体収量が得られる限り、特に限定されず、酵母エキスの生産において使用されている各種のものを利用できる。炭素源として、例えば、サトウキビ廃糖蜜、
ビート廃糖蜜、蔗糖、木材チップ蒸解液、亜硫酸パルプ廃液、サトウキビ抽出液、グルコース、酢酸、およびエタノールからなる群より選択されるいずれかを用いることができる。窒素源として、例えば、酵母エキス、ベプトン、コーンステイプリカー（CSL）、カゼイン等の含窒素有機物、ならびに尿素、アンモニア、硫化アンモニウム、塩化アンモニウム、およびリン酸アンモニウム等の無機塩からなる群より選択されるいずれかを用いることができる。さらに、リン酸成分、カリウム成分、マグネシウム成分を培地に添加してもよく、ビオチン、パントテン酸、チアミン、イノシトール、ビリドキシン等のビタミン類、亜鉛、銅、鉄、マンガン等のミネラル類を添加してもよい。ビタミン類等の生育促進物質を培地に補うために、エキス類やベプトン等を培地に添加してもよい。

本発明者等の検討によると、培地中の尿素の量を減らすことにより、コハク酸がより蓄積することが分かった。すなわち培養工程において、窒素源を低減し、酵母の窒素含有量を減らすことにより、コハク酸がより蓄積することが分かった。酵母菌体の窒素含有量が低下することで、糖や脂肪酸などの炭素化合物からのアミノ酸などの窒素化合物への変換が進まず、結果としてグルタミン酸の低下とコハク酸の増加が起きると推測される。酵母の窒素含有量は、具体的には、有機酸生成処理工程に供される酵母、すなわち培養終了時の酵母において、窒素量が、乾燥酵母重量当たり8.5%以下、好ましくは8.0%以下、より好ましくは7.5%以下、さらに好ましくは7.0%以下となるようにする。また、酵母の窒素含有量が低すぎてもコハク酸の蓄積が十分でなくなる可能性があることから、観点からは、培養終了時の酵母の窒素量は、乾燥酵母重量当たり4.5%以上、好ましくは5.0%以上、より好ましくは5.5%以上、さらに好ましくは6.0%以上となるようにする。

培養終了時の乾燥酵母酵母菌体当たりの窒素量は、培養用いる培地に含まれる窒素の量を変えることにより、具体的には窒素源となる成分、例えば尿素の量を変えることにより、調節できる。尿素以外に、酵母エキス、糖蜜等が窒素源となり得るが、成分当たりの窒素含有量が高く、また窒素以外の他
の成分の組成を大きく変えないとの観点からは、培地中の窒素源の量は、尿素の量で調節することが好ましい。培地中の尿素の量は、例えば16g/L以下とすることができ、13g/L以下が好ましく、11g/L以上がより好ましい。また培地当たりの窒素量の下限値は、例えば5g/L以上とることができ、7g/L以上が好ましく、9g/L以上がより好ましい。なお、乾燥酵母重量当たりの窒素量の測定は、対象となる酵母（必要に応じ、洗浄する。）を乾燥して得た試料について、ケルダール法により行うことができる。ケルダール法の実施により、既存のケルダール分析装置（例えば、フォス・ジャパン社製ケルテックシステムKjeLtec2300）が利用できる。

酵母の培養条件は、用いる酵母に応じ、当業者であれば適宜設計できる。酵母が増殖可能であり、十分な菌体収量が得られる限り、特に限定されず、酵母エキスの生産において使用されている通常の培養条件を適用することが可能である。具体的には、温度は20〜40℃とることができ、25〜35℃が好ましく、pHは3.5〜7.8とることができ、4.0〜7.5とすることがより好ましい。pHは、適切な方法で制御することができる。培養時間は30時間以下とすることが可能であり、25時間以下とすることが好ましい。いずれの場合であっても、培養時間の下限は、酵母が増殖可能であり、十分な菌収量が得られる限り、限定されないが、例えば、5時間以上、好ましくは7時間以上、より好ましくは10時間以上とすることができる。

培養形式もまた、用いる酵母や培養スケールに応じ、当業者であれば適宜選択できる。酵母が増殖可能であり、十分な菌収量が得られる限り、特に限定されず、例えば、回分培養、流加培養、連続培養とすることが可能である。培養槽もまた、十分な好気的な条件がもたらされるものであれば特に限定されず、従来の攪拌型培養槽、エアリフト型培養槽、外部循環型培養槽、またはそれらの機構を組み合わせた培養槽を用いることができる。

酵母の栽培における対糖収率（培養に使用した糖重量当たりの酵母菌体収量）は非常に重要な要素であり、使用する糖源（サトウキビ廃糖蜜、ビート廃糖蜜、グルコース、蔗糖、サトウキビ搾汁液等）から如何に効率よ
く酵母菌体を得るかが製造コストを大きく左右する。対糖収率を最大限高めるため、一般的には培養槽内に吹き込む空気の量（通気量）を増やし、かつ、培養槽の構造をDO（Disolved Oxygen；溶存酸素量）が最大となるように、撹拌機で撹拌する。培養液をポンプによって外部循環させる。又は培養槽内部に隔壁を設けて気泡により液を循環させることで培養槽内に吹き込んだ空気中の酸素を効率よく培養液に溶け込む等の技術が用いられている。これらの技術を本発明に適用してもよい。

特に好ましい状態においては、培養は、上述のような高効率培養槽を用い、対糖収率を高めるため撹拌を600rpm以上、通気量を0.8vvm以上（vvm=volume per minute、単位体積当たりのガス通気量）として実施する。好ましくは、撹拌数を650rpm〜800rpm、通気量を1.0〜2.0vvmとして実施する。

培養された酵母は、通常、ノズルセパレーター等の遠心分離器を用いて培地上清を除去した後、必要に応じて浄水にて数回洗浄され、酵母菌体の懸濁液（イーストクリーム）として、有機酸生成処理工程に供される。

[有機酸生成処理工程]
有機酸生成処理工程では、培養された酵母は、懸濁液として、有機酸生成上有効な条件で保持することにより、酵母の有機酸含有量が高められる。有機酸は、コハク酸、乳酸、および酢酸からなる群より選択されるいずれかであり、うま味を増加できるとの観点からは、乳酸またはコハク酸であることが好ましく、コハク酸であることがより好ましい。コハク酸を多く生成させることを目的とする場合、コハク酸生成上有効な条件でこの工程を実施する。

有機酸生成上有効な条件（特に好ましい状態においてはコハク酸生成上有効な条件）は、具体的には酵母の懸濁液を遅やかに撹拌することを含む。このとき、通気してもよい。

有機酸生成上有効な条件は、さらに、酵母の懸濁液を40〜60℃、好ましくは40〜55℃、より好ましくは45℃〜50℃で保持することを含む。し
ずれの場合であっても、pHは4.0〜7.5、好ましくは6.0〜7.0とすることが好ましい。pHは適切な手段で制御することができる。

いずれの条件であっても、その条件で酵母懸濁液を2〜30時間、好ましくは4〜12時間、さらに好ましくは6〜9時間、保持することができる。有機酸生成処理工程の時間は、コハク酸やグルタミン酸の蓄積量が安定するとの観点からは、長いほうが好ましいが、環境中のバクテリアが増殖し腐敗が生じる可能性があるとの観点からは、9時間以下であることが好ましい。

上で示した有機酸生成上効果的な条件は、コハク酸を生成する上で特に適している。したがって、上で示した条件は、コハク酸生成上効果的な条件でもある。

本発明者らは、有用な成分を強化した酵母エキスについて鋭意検討する中で、酵母を特定の条件で維持すると、コハク酸が生成される現象を発見した。コハク酸は、グリオキシル酸の合成においてイソロイシンから合成され、GABA経路では、グルタミン酸からGABAを経て生成され、TCAサイクルではスクシニル-CoAまたはフマル酸から変換される。特定条件下での保持は、酵母菌体内でのこのような酵素反応を促進しているものと推測される。

また本発明者らの検討によると、自己消化処理では、通常、酵母の自己消化による構造分解が起きているが、有機酸生成処理においては、自己消化が起きていないか、起きていたとしてもごく一部に限られ、酵母菌体の構造が維持され得る。有機酸生成処理工程においては、酵母菌体をバイオリアクターのように利用して有機酸を生成していると考えられる。したがって有機酸生成処理工程は、従来の自己消化処理工程とは異なる工程であるといえる。

有機酸生成処理工程により、酵母菌体内に蓄積された前駆体から目的の有機酸が生成される。その一方で、有機酸生成上効果的な条件により、酵母のグルタミン酸含有量も高められる。先に述べたとおり、グルタミン酸はGABA経路コハク酸生成のための原料ともなりうるので、コハク酸を効率に生成する条件はグルタミン酸の含有量を低下させる可能性がある。しかしながら本発明者らの検討によると、上で示した有機酸生成上効果的な条件（コハク酸生成上
有効な条件でもある）では、有機酸のみならずグルタミン酸の生成量も高められることが分かった。

[0040] 有機酸生成処理後の酵母懸濁液は、次いで熱水抽出工程に供される。

[0041] [熱水抽出工程]

有機酸生成処理工程を経た酵母懸濁液は、熱水で酵母エキスが抽出される。熱水抽出は、例えば56°C以上、好ましくは65~95°C、好ましくは75~85°Cの熱水を用いて行われる。いずれの温度であっても、少なくとも10分間以上、例えば20分間以上、好ましくは30分間以上、処理される。

[0042] 熱水抽出後の液は、水溶性のエキス成分と酵母細胞壁等の不溶性成分を含んだ状態であるため、ノズルセバレーター等の遠心分離器により、不溶性成分を分離・除去する操作を行うことができる。通常、水溶性のエキス成分を酵母エキスとして得る。

[0043] 得られた酵母エキスは、必要に応じセラミックフィルター、精密ろ過膜(MF)、リーフフィルター、またはオリバーフィルターによる清澄化のための処理を施すことができる。必要に応じ、濃縮機により濃縮することで、ベースト状の酵母エキスとすることができる。

[0044] また、得られた酵母エキスはそのまま、またはマルトデキストリン、デンプン、もしくは加工デンプン等の賦形剤を加えた後に、プレードライヤー、フリーズドライヤー、もしくはドラムドライヤー等の乾燥機にて乾燥させて粉体化することで、パウダー状の酵母エキスとすることができる。また、逐次の工程として流動層造粒機により造粒し、使用しやすい顆粒状の酵母エキスを得ることもできる。

[0045] [酵母エキス]

このようにして得られた酵母エキスは、酵母として、サッカロマイセス属に属するものを使用した場合、乾燥酵母エキス重量当り、コハク酸を5.0重量%以上、好ましくは6.0重量%以上、より好ましくは10.0重量%以上含む。好ましい状態においては、コハク酸含有量がいずれの場合であっても、グルタミン酸を10.0重量%以上含み、好ましくは13.0重量%以上含み、より好ましく
は15.0重量%以上含む。

あるときは、酵母として、キャンディダ属に属するものを使用した場合、乾燥酵母エキス重量当たり、コハク酸を2.0重量%以上、好ましくは4.0重量%以上、より好ましくは5.0重量%以上含む。好ましい性質においては、コハク酸含有量がいずれの場合であっても、グルタミン酸を6.0重量%以上含み、好ましくは7.0重量%以上含み、より好ましくは9.0重量%以上含む酵母エキスは、コハク酸等による新規な相乗効果を奏するものと考えられる。

本発明者からの検討によると、本発明により得られるコハク酸およびグルタミン酸を高い濃度で含む酵母エキスは、食品において、先味、コクおよび呈味からなる群より選択されるいずれかを改善することができる。また、魚介を原料に含む食品の、魚介味風味または呈味を改善することができる。

先味、コクおよび呈味からなる群より選択されるいずれかが改善されなかった場合、その程度は、当業者であれば、食品のための官能評価の手法を用い、適宜評価できる。評価に際しては、官能評価基準を設けることができる。またより具体的な評価のための方法、基準は、本発明の実施例の項を参考にすることができる。

また本発明者からの検討によると、コハク酸およびグルタミン酸の含有が高い酵母エキスにおいては、呈味性核酸とグルタミン酸の相乗効果以外の、コハク酸等による相乗効果が奏されていると考察された（実施例12、13参照）。すなわち、本発明によって提供されるコハク酸とグルタミン酸の含有が高い酵母、具体的には、酵母として、サッカロマイセス属に属するものを使用した場合、乾燥酵母エキス重量当たり、コハク酸を5.0重量%以上、好ましくは6.0重量%以上、より好ましくは10.0重量%以上含み、かつグルタミン酸を10.0重量%以上含み、好ましくは13.0重量%以上含み、より好ましくは15.0重量%以上含む酵母エキス、または酵母として、キャンディダ属に属するものを使用した場合、乾燥酵母エキス重量当たり、コハク酸を2.0重量%以上、好ましくは4.0重量%以上、より好ましくは5.0重量%以上含み、かつグルタミン酸を6.0重量%以上含み、好ましくは7.0重量%以上含み、より好ましくは9.0重量%以上含む酵母エキスは、コハク酸等による新規な相乗効果を奏するものと考えられる。
なお、本発明によって提供される、本発明の製造方法により製造された酵母エキスは、酵母の培養物（発酵物）に由来し、多数の成分を含んでいる。その上、有機酸生成処理工程では培養とは異なる特定の条件下で、酵母菌体内に残存する各代謝系に関連する酵素群により有用成分が生産されていると考えられる。そしてそのように生産された多種多様な成分的作用によって目的の先味、コクおよび呈味からなる群より選択されるいずれかを改善効果が生じているものと考えられる。そのため、培養物を原料とし、有機酸生成処理工程や熱水抽出工程を経た本発明の酵母エキスの組成を分析し、目的の効果に寄与している成分を特定するためには、酵母エキスに含まれる極めて多数の複雑な成分を対象に特定を行うことになる。また目的の効果が複数の成分の相互作用によって生じるのであれば、特定された微量成分について、種々の組み合わせを試行して逐次効果を確認するという、膨大な数の実験が必要になると考えられる。しかも、実験に際しては他の物質の影響を完全に排除するために、候補となる多数の微量成分のすべてについて、それぞれ高純度に精製する必要がある。そうすると、本発明の酵母エキスを、その組成または特性により直接特定することは、およそ実際的でないと考えられる。

本発明の酵母エキスを食品に添加する場合、添加量の下限値は、目的の効果が観される限り、特に限定されない。どのような食品に対しても、乾燥酵母エキスとして、0.001％以上とすることができ、0.002％以上とすることが好ましく、0.004％以上とすることがより好ましく、0.008％以上とすることがさらに好ましい。

添加量の上限値は、酵母エキスに由来する味・風味により、対象となる食品が本来有する味・風味のバランスを損なわないかどうかの観点から定めることができる。この観点からは、どのような食品に対しても、例えば、5％以下で添加することができ、4％以下とすることが好ましく、3％以下とすることがより好ましく、2％以下とすることがさらに好ましい。酵母エキスに由来する味・風味を感じないとの観点からは1％以下とすることが好ましく、0.5
%以下とすることがより好ましい。

[0053] 魚介類を原料に含む食品に対しては、乾燥酵母エキスとして、0.001%以上とすることができ、0.002%以上とすることが好ましく、0.004%以上とすることがより好ましく、0.008%以上とすることがさらに好ましく、また0.5%以下で添加することができ、0.4%以下とすることが好ましく、0.3%以下とすることがより好ましく、0.2%以下とすることがさらに好ましい。酵母エキスに由来する味・風味を感じないとの観点からは0.1%以下とすることが好ましく、0.05%以下とすることがより好ましい。

[0054] [調味料組成物、その他]

本発明により、乾燥酵母エキス重量当リコハク酸を5.0重量%以上、およびグルタミン酸を10.0重量%以上含む酵母エキスを含む調味料組成物が提供される。このような調味料組成物は、先味、コクおよび呈味からなる群より選択されるいずれかを食品において改善するために、また魚介を原料に含む食品の、魚介風味または呈味を改善するために、特に適している。

[0055] 酵母エキスは、単独で調味料組成物としてもよいが、他の調味料、例えば、醤油、味噌、オイスターソース、食塩、砂糖、蛋白加水分解物等やその他食品素材を混合して調味料組成物としてもよい。

[0056] 調味料組成物には、酵母エキスが目的の効果を発揮しうる限り、酵母エキス以外の他の成分を配合することができる。他の成分は、食品として許容される種々の添加剤であり得る。この例は、酸化防止剤（酸化防止剤）、香料、甘味料、着色料、増粘安定剤、発色剤、漂白剤、防かび剤、ガムベース、苦味料等、調味料、酵素、光沢剤、酸味料、乳化剤、結合剤、等張化剤、緩衝剤、溶解補助剤、防腐剤、安定化剤、凝固剤等である。

[0057] 本発明により、酵母エキスまたは酵母エキスを含む調味料組成物を使用した食品が提供される。酵母エキスまたは調味料組成物が添加されることが好ましい食品は、例えば、魚介を原料に含む食品である。

[0058] より具体的な例として、スープまたはスープの素（例えば、ヒュメドボソン（西洋料理に用いられる魚介のだし）ブイヤベース、コンソメスープ、
コーヌスープ、オニオンスープ、トマトスープ、味噌汁、吸い物、ラーメンスープ、うどんスープ）、調味料組成物（例えば、チキンコンソメ、ビーフコンソメ、化学調味料組成物、調味塩組成物、マヨネーズ、トマトケチャップ、ウスターソース、とんかつソース、たれ、ドレッシング、ハーブ塩、味噌、醤油、めんつゆ、だし）、ソース類（例えば、ホワイトソース、デミグラスソース、トマトソース、ミートソース、カレール、バスタソース）、魚すり身製品（例えば、ちくわ、笹かまぼこ、伊達巻、かまぼこ、魚肉ソーセージ、はんぺん、つみれ、焼豚巻き、さつまあげ、えび天、じゃこ天）、畜肉製品（例えば、ハム類：ポンレッハム、ロースハム、生ハム、骨付きハム、プレスハム、等；ソーセージ類：ウィンナー、ドライ、フランクフルト、ポロニア、ロイナ、等；ベーコン類、コンピーフ、焼き豚）、チーズ、バター、スナック菓子（例えば、ポテトチップス、ポップコーン、コーンスナック、クラッカー、ピスケット、クッキー、プレッツェル）、レトルトパッケージ、チルド惣菜、冷凍惣菜、即席めん、フライ類（例えば、フライドポテト、フライドチキン、フライドフィッシュ）が含まれる。また、パン類、ナン、皮類（例えば、ピザクラスト、パイクラスト、餃子の皮、シュウマイの皮）、トーティーヤ、タコ・シェル、コーネフレーク、および麩類（例えば、バスタ、うどん、ピーフン。それぞれ、生、乾麩、フライ麩を含む。）、並びにそれらのためのプレミックス、保存食（例えば、酢漬け、塩漬け）、が挙げられる。

[0059] このような食品は、公知の技術を用いて製造することができる。本発明により、乾燥酵母エキス重量当りリコハク酸を5.0重量%以上、およびグルタミン酸を10.0重量%以上含む酵母エキスを食品に添加し、食品の先味、コクおよび呈味からなる群より選択されるいずれかが改善された食品を得る工程を含む、食品の製造方法、ならびに乾燥酵母エキス重量当りリコハク酸を5.0重量%以上、およびグルタミン酸を10.0重量%以上含む酵母エキスを魚介を原料に含む食品に添加し、魚介風味または呈味の改善された食品を得る工程を含む、食品の製造方法も提供する。酵母エキスまたは調味料組成物を添加するエ
程は、食品の製造工程の種々の段階であつ得る。当業者であれ、各成分の溶解性、安定性、揮発性を考慮して、喫食時において所定の比および/または濃度となる食品の製造工程を、適宜設計しうる。

次に実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。

実施例

特に記載した場合を除き、本実施例の項では、下記の材料および方法で検討を行つた。

<使用菌株>

本発明で主に用いたサッカロマイセス・セレビジエ (Saccharomyces cerevisiae) SC21株は次の手順で得た。

この菌株は、FT4株 (受託番号FERM BP-8081) を用いクエン酸耐性スクリーニングにより取得した。FT4株をYPD培地 (パクトイーストエキストラクト 0.0%、パクトベプトン (DIFC0社) 2.0%、グルコース2.0%) で対数増殖期まで培養し、集菌・洗浄した後、0.067Mリン酸カリウム液に酵母をけん膵し、摂拌しながら紫外線を2分照射した。その後、75mMのクエン酸を含むSD寒天培地 （イーストニトロペンシア w/o アミノ酸（DIFC0社）0.67%、ダルコース2.0%、寒天2.0%) で30℃、5日培養し、増殖が速い30株をクエン酸耐性株として得た。これらの酵母30株を50mLのYPD培地で24時間培養した後、遠心分離にて集菌し、凍結乾燥菌体を調製した。調製した凍結乾燥菌体から95℃、20分で菌体内成分を抽出し、遠心分離後、上清中の有機酸とアミノ酸をHPLCにて測定した。その結果、コハク酸とグルタミン酸が高いるSC21株を得た。

<有機酸とアミノ酸の測定方法>

有機酸の測定方法：熟水抽出後遠心分離して得た上清を、0.45マイクロのフィルターでろ過し測定用試料を調製し、有機酸含量をHPLC法で測定した。HPLCの条件は以下の通りである。

カラム：GL-C61 0H-S (日立ハイテク)
カラム温度：56℃
溶離液 :3mM 過塩素酸
流量 0.5mL/min
反応液 :0.21% リン酸水素二ナトリウム、
0.00938% プロモチモールプルー
流量 0.5mL/min
検出 :UV 430nm
測定値は、測定サンプルの乾燥重量当たりの濃度 (%) で示す。
アミノ酸の測定方法 :熱水抽出後、遠心分離して得た上清を、0.20マイクロのフィルターでろ過し測定用試料を調製し、アミノ酸含量をアミノ酸分析機（日立L-8900）を用い測定した。反応液には、ニンヒドリンを用いた。
値は、各サンプルの乾燥重量当たりの濃度 (%) で示す。
< サンプルの乾燥重量測定法>
乾燥重量とは、予め風乾重量を測ったアルミ皿に、サンプルを5g秤量し、105℃、6時間乾燥機内で乾燥し、乾燥後の重量を測定することで算出した。
実験方法
< 前培養 >
以下の通り、本培養に利用する酵母を調製した。
(1) 500mLのバツフ付フラスコ5本に、200mLYPD培地を分注した。
(2) 上記YPD培地に対し、オートクレープ処理（121℃、15分間）を行った
(3) サッカロマイセス・セレビシエSC21株を、オートクレープ処理したYPD培地に植菌し、以下の条件で培養した
培養温度 30℃
振とう 200 rpm（ロータリー）
培養時間 24時間
前培養終了後、回収された酵母菌体を洗浄し、乾燥酵母重量が100g/Lとなるように水を添加して酵母懸濁液を調製した。

< 本培養 >
培養開始時の容量が1.2し、流加終了時の容量が1.7Lとなるように設定し、
本培養を行った。すなわち、まず、以下の組成からなる培地、1.15Lを、3Lのジャーファーメンター（ABLE製）内に直接、無菌的に調製した。さらに、糖度が43%になるように調整したサトウキビ廃糖蜜（以下、「糖蜜」という。）を、生成するアルコールにより生育阻害が発生しないように、適量ずつ流加することにより、最終的に容量が1.7Lになるように、本培養を行った。培養時間は15時間とした。

【0068】（初発培地組成）
尿素 20g
リン酸 1.5mL
硫酸マグネシウム 7水和物 0.3g
酵母エキス 1.2g
蒸留水で1.15Lまで、メスアップした。　

【0069】（培養条件）
植菌量 酵母懸濁液50mL
培養温度 32℃
通気 1.7L/分
撹拌 650 rpm
KLa 培養終了時500h r-1
pH制御 下限4.5（15%炭酸ナトリウムを添加することにより調整した。）
流加培地 糖蜜（糖度43%）容量500mL（生育阻害が起こらない条件で、適量ずつ添加した。）

【0070】＜有機酸生成処理条件＞
培養液から回収された酵母菌体を洗浄後、乾燥酵母重量が170g/Lとなるように水を添加して酵母懸濁液を得て、以下の条件で有機酸生成処理を実施した。
温度 45℃
pH非制御（pH 5.0～6.5）
時間 6時間（酵母懸濁液が泡立たない程度に撹拌した。）
尚、乾燥酵母重量は、予め風袋重量を測ったアルミ皿に、酵母懸濁液を5g秤量し、105℃、6時間乾燥機内で乾燥し、乾燥後の重量を測定することで算出した。

[0071]＜熱水抽出条件＞
酵母懸濁液を以下の条件で熱水抽出し、その後、遠心分離機で不溶性成分を分離した。
温度 85℃
時間 30分
攪拌 容器内側に酵母懸濁液が焦げ付かない程度の速度で攪拌

[0072]＜濾過条件＞
不溶性成分を除いて得られた酵母エキスを、精密濾過膜にて濾過した。
濾過膜 microza UMP-153（旭化成ケミカルズ製）

[0073]＜濃縮条件＞
濾過処理を施した酵母エキスをロータリーエバポレーター（EYELA製 NE）で濃縮した。
(条件)
ウォーターパス温度 60℃
プラスコ回転速度 100rpm／分
濃縮終了時固形分 45.9％

[0074]＜KLa値の算出方法＞
KLaは、亜硫酸酸化法に基づき、以下の関係式から算出した。

\[\text{OTR} = \text{KLa} (\text{C}^*-\text{C}) \]

OTRは酸素移動速度（mmol/L・hr）、C*は飽和溶解酸素濃度（mmol/L）、Cは溶解酸素濃度（mmol/L）である。
ここで、OTRは以下の亜硫酸ナトリウムの酸化反応に基づき算出した。

\[\text{Cu}^{2+} + \text{Na}_2\text{S}_2\text{O}_3 \cdot \frac{1}{20} \text{O}_2 \rightarrow \text{CuSO}_4 \]
すなわち、亜硫酸ナトリウムは、銅ないしコバルト共存下で、硫酸ナトリウムに酸化される。
実験手順
硫酸銅1mM、亜硫酸ナトリウム15mM以上となる水溶液に、一定条件で通気す
る。一定時間ごとに、サンプリングを行い未酸化の亜硫酸を過剰量のヨウ素
で酸化する。次いで、余ったヨウ素をチオ硫酸ナトリウムで逆滴定すること
で、サンプル中の亜硫酸の濃度を測定する。経時的な亜硫酸の濃度を以下の
式に加えKLaを算出する。
\[KLa = \frac{(C1 - C2)}{2C^*(t_2 - t_1)} \]
通気開始後、任意の時間t1, t2における亜硫酸濃度をそれぞれC1, C2(mmol/L
)とする。
ここでC*は飽和酸素濃度 (mmol/L) である。
実際の、KLaの算出は以下の通り行った。
具体的には、本検討では、3L容の培養槽（ABLE社製）に50mM～150mMの亜硫
酸ナトリウム水溶液を1.6L加え、通気摺拌を行い経時的な亜硫酸の量を測定
した。通気量は1.7L/分とし、摺拌速度を100、300、450、600、750rpmに
設定した。亜硫酸ナトリウム水溶液の濃度は、摺拌速度に合わせて増加させ
た。

<凍結乾燥菌体からの全窒素量の測定>
（凍結乾燥菌体の調製）
(1) 培養液20mlから遠心分離により酵母を分離し、酵母菌体を蒸留水で2度
洗浄する。
(2) 洗浄された酵母を-80℃で2時間冷凍する。
(3) 真空乾燥機(IWAKI製 FRD-50P)により、凍結菌体を24時間乾燥する。

(測定資料の調整)
(1) 試料0.5gを採取し、加熱可能な容器に加える
(2) ケルタブCu/4.5を1粒入れる (Kj eltab Cu/4.5)
(3) 濃硫酸を10m 加える
(4) 過酸化水素を7m し徐々に加える
(5) 420 ℃で3hr分解する
(6) 冷めるまで放置する。

[0079] (全窒素の測定)
利用装置 Kj えLt ec2300
換算式 0.14007 X 1%ホウ酸溶液の滴定量(ml)/試料重量

[0080] [実施例1:通気量の検討]
サッカロマイセス・セレビジーSC21株を、それぞれ、攪拌速度100、300、450、600、750 r לפm、通気1.6L/minの条件で培養した。各攪拌速度条件で得られた酵母をもちいて有機酸生成処理を実施し、有機酸生成処理後の酵母懸濁液でコハク酸が増加するか検証した。なお、750 r לפm以上での攪拌は、実際の生産では実施不能であると考えられるため、検討しなかった。

[0081] <前培養>
以下の通り、本培養に利用する酵母を調製した。
(1) 500m Lのパッフル付プラスコ14本に、以下の培地100gを分注した。
(2) 上記の培地に対し、オートクレープ処理（121℃、15分間）を行った。
(3) サッカロマイセス・セレビジーSC21株を、オートクレープ処理した培地に植菌し、以下の条件で培養した。

[0082] (培地組成)
糖蜜 18.6g
尿素 0.6g
(NH₄)₂SO₄ 0.16g
(NH₄)₂HPO₄ 0.08g
蒸留水を加え、合計100gとなるようにした。

(培養条件)
培養温度 30℃
振とう 160 לפm（ロータリー）
培養 時間 24時間

[0083] < 本培養>

培養開始時の容量が 1.2L 流加終了時の容量が 1.6L となるように設定し、
本培養を行った。3L のジャーフアーメンター（ABLE 製）を使用した。

[0084]（初発培地組成）

NH₄Cl 5.3g
(NH₄)₂H₂PO₄ 1.2g
蒸留水で 1.02L になるまでメスアツプした。

[0085]（培養条件）

植菌量 前培養液 180mL
培養温度 30℃
通気 1.6L/分
攪拌 100、300、450、600、750rpm
pH制御 下限 4.5（15%炭酸ナトリウムを添加することにより調整した。）
流加培地 糖蜜（糖度 43%） 容量 400mL（生育阻害が起こらない条件で、適量ずつ添加した。）

[0086] < 有機酸生成処理条件>

次の条件で、有機酸生成処理を行った。

温度 40、48、55℃
pH 非制御（pH5.0〜5.8）
時間 38時間
攪拌 酵母懸濁液が泡立たない程度に攪拌した。

[0087] 結果を下表に示した。

[0088]
[表1]

<table>
<thead>
<tr>
<th>培養条件・結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>搅拌数 (rpm)</td>
</tr>
<tr>
<td>通気量 L/min</td>
</tr>
<tr>
<td>液層/通気量 vvm</td>
</tr>
<tr>
<td>KLa (hr⁻¹)</td>
</tr>
<tr>
<td>乾燥菌体収量 g</td>
</tr>
<tr>
<td>培養液中の乾燥菌体濃度 %</td>
</tr>
</tbody>
</table>

有機酸生成処理時のコハク酸推移

<table>
<thead>
<tr>
<th>有機酸生成処理温度 40℃</th>
<th>有機酸生成処理前</th>
<th>(コハク酸%/乾燥菌体重量)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5H</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>14H</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>22H</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>38H</td>
<td>0.93</td>
</tr>
</tbody>
</table>

有機酸生成処理温度 48℃

<table>
<thead>
<tr>
<th>有機酸生成処理温度 48℃</th>
<th>有機酸生成処理前</th>
<th>(コハク酸%/乾燥菌体重量)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14H</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>22H</td>
<td>0.78</td>
</tr>
</tbody>
</table>

有機酸生成処理温度 55℃

<table>
<thead>
<tr>
<th>有機酸生成処理温度 55℃</th>
<th>有機酸生成処理前</th>
<th>(コハク酸%/乾燥菌体重量)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14H</td>
<td>0.64</td>
</tr>
</tbody>
</table>

[0089] (1) 培養結果

同じ培養条件で搅拌速度のみを変化させ培養を行ったところ、搅拌速度が速い方が菌体の収量は多かった。これは酸素が効率よく供給されたことで、酵母が効率よく増殖できたためであると思われる。
(2) 有機酸生成処理後の乾燥菌体当たりのコハク酸生産

撹拌速度が高い条件で培養した酵母で最も有機酸生成処理後の乾燥酵母重量当たりのコハク酸の濃度が高かった。この現象は、有機酸生成処理温度40°C、48°C、55°Cいずれの条件でも検出された。ただし、55°Cの条件では、酵母菌体が崩れた。

このことから、撹拌速度が速い、すなわち酸素移動量が高い方が、菌体収量が多くなり、かつ有機酸生成処理後のコハク酸量も多いことが示された。

[実施例2：有機酸生成処理による他の有機酸への影響の確認]

サッカロマイセス・セレビジエSC21株を用いて酵母を培養し、取得した酵母を用いて調製した酵母懸濁液を有機酸生成処理した。この検討で培養条件が有機酸生成処理における成分変化にどのように影響するか検証した。

実験条件を下表に示す。
表2-1

<table>
<thead>
<tr>
<th>工程</th>
<th>詳細条件</th>
</tr>
</thead>
</table>
| 前培養 | 培地：YPD液体培地
温度：30℃
ロータリー回転速度：200rpm
培養時間：24時間 |
| ↓ | |
| 本培養 | 培地：尿素20g、リン酸1.5ml、硫酸マグネシウム7水和物0.3g、酵母エキス1.2g、蒸留水で11.5Lにメスアップした。
菌株量：酵母懸濁液50ml（乾燥酵母重量5g）
温度：32℃
通気：1.7L/分
攪拌数：650rpm
培養終了時KLa：500hr-1
pH制御：下限4.5（15%炭酸ナトリウム水溶液を添加することにより調整した。）
流加培地：糖蜜（糖度43%） 容量500ml
培養時間：15時間 |
| ↓ | |
| 集菌・洗浄 | 遠心分離(→有機酸生成処理用菌体取扱) |
| ↓ | |
| 有機酸生成処理 | 溫度：45℃
時間：6時間
pH制御：非制御
攪拌：あり（スターラーポールにて）
乾燥酵母重量（固形分）：15% |

結果を下表に示す。
酵母懸濁液では、有機酸生成処理前後で乾燥酵母重量当たりのコハク酸が顕著に増加し、一方酢酸、乳酸がわずかに増加した。他方、クエン酸は低下した。以上の結果から、6時間の有機酸生成処理の過程において、酵母懸濁液の中の有機酸含量、特にコハク酸含量が変化することを見出した。

実験条件は、前培養〜有機酸生成処理までは実施例1と同様とした。加熱滅菌処理後、遠心分離により不溶性成分を除去し、酵母エキス（水溶性成分）を得た。

結果を下表に示す。
酵母懸濁液 酵母エキス

<table>
<thead>
<tr>
<th>有機酸生成処理時間</th>
<th>0</th>
<th>6</th>
<th></th>
<th>0%/乾燥酵母重量</th>
<th>0%/乾燥酵母エキス重量</th>
</tr>
</thead>
<tbody>
<tr>
<td>クエン酸</td>
<td>0.57</td>
<td>0.32</td>
<td></td>
<td>クエン酸</td>
<td>1.61</td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>0.19</td>
<td>0.02</td>
<td></td>
<td>リンゴ酸</td>
<td>0.05</td>
</tr>
<tr>
<td>コハク酸</td>
<td>0.57</td>
<td>1.34</td>
<td></td>
<td>コハク酸</td>
<td>4.52</td>
</tr>
<tr>
<td>乳酸</td>
<td>0.16</td>
<td>0.24</td>
<td></td>
<td>乳酸</td>
<td>0.83</td>
</tr>
<tr>
<td>酢酸</td>
<td>0.02</td>
<td>0.26</td>
<td></td>
<td>酢酸</td>
<td>0.93</td>
</tr>
<tr>
<td>ビログルタミン酸</td>
<td>0.45</td>
<td>0.43</td>
<td></td>
<td>ビログルタミン酸</td>
<td>0.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Asp</th>
<th>Thr</th>
<th>Ser</th>
<th>Glu</th>
<th>Gly</th>
<th>Ala</th>
<th>Cys</th>
<th>Val</th>
<th>Met</th>
<th>Ile</th>
<th>Leu</th>
<th>Tyr</th>
<th>Phe</th>
<th>Lys</th>
<th>His</th>
<th>Arg</th>
<th>Pro</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>有機酸生成処理時間</td>
<td>0.19</td>
<td>0.04</td>
<td>0.07</td>
<td>5.66</td>
<td>0.12</td>
<td>1.14</td>
<td>0.22</td>
<td>0.14</td>
<td>0.04</td>
<td>0.21</td>
<td>0.09</td>
<td>0.04</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.33</td>
<td>0.14</td>
<td>9.21</td>
</tr>
<tr>
<td>6%/乾燥酵母重量</td>
<td>0.15</td>
<td>2.58</td>
<td>0.26</td>
<td>5.91</td>
<td>0.18</td>
<td>1.3</td>
<td>0.24</td>
<td>0.21</td>
<td>0.08</td>
<td>0.29</td>
<td>0.14</td>
<td>0.05</td>
<td>0.06</td>
<td>0.09</td>
<td>0.05</td>
<td>0.38</td>
<td>0.32</td>
<td>9.46</td>
</tr>
</tbody>
</table>

[0100] 有機酸に関しては、コハク酸、酢酸が増加し、クエン酸が減少した。基本的には実施例2と同様の結果であった。一方、アミノ酸に関しては、グルタミン酸、アラニン、プロリンが微増した。アスパラギン酸は減少した。この結果から、有機酸生成処理により、有機酸だけではなくアミノ酸も増減することが分かった。
実施例4：処理時間の延長による影響

有機酸生成反応が酵素反応であると推測されるため、有機酸生成処理時間を延長しても同様の結果が得られるか、実施例1の条件について、有機酸生成処理時間を12時間に延ばし、酵母懸濁液中の成分がどのように変化するか検討した。

結果を下表に示す。

<table>
<thead>
<tr>
<th>(%/乾燥酵母重量)</th>
<th>0</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>クエン酸</td>
<td>0.75</td>
<td>0.18</td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>0.14</td>
<td>0.05</td>
</tr>
<tr>
<td>コハク酸</td>
<td>0.70</td>
<td>2.65</td>
</tr>
<tr>
<td>乳酸</td>
<td>0.10</td>
<td>0.26</td>
</tr>
<tr>
<td>酢酸</td>
<td>0.05</td>
<td>0.91</td>
</tr>
<tr>
<td>ピログルタミン酸</td>
<td>0.36</td>
<td>0.26</td>
</tr>
</tbody>
</table>

実施例1と同様に、有機酸生成処理後コハク酸、酢酸が顕著に増加し、乳酸がわずかに増加し、クエン酸が低下した。また、有機酸生成処理時間に伴い、変化の幅も拡大することが明らかになった。

これまでの検討から、調味料を製造する上で重要ないうま味成分であり、有機酸生成処理により増加するコハク酸に加えて、グルタミン酸の変化に着目し、以降検討を行った。

実施例5：pHの影響

有機酸生成処理時のpHの影響を検討するため、有機酸生成処理時のpHをpH3～7に制御して検討を行った。

結果を下表に示す。
表5

pH 7.0一定

<table>
<thead>
<tr>
<th>有機酸生成処理時間</th>
<th>0</th>
<th>2</th>
<th>12</th>
<th>15</th>
<th>0→15変化量</th>
</tr>
</thead>
<tbody>
<tr>
<td>クエン酸</td>
<td>0.66</td>
<td>0.45</td>
<td>0.14</td>
<td>0.05</td>
<td>-0.60</td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>0.09</td>
<td>0.01</td>
<td>0.05</td>
<td>0.03</td>
<td>-0.06</td>
</tr>
<tr>
<td>コハク酸</td>
<td>0.75</td>
<td>1.00</td>
<td>2.20</td>
<td>2.32</td>
<td>1.57</td>
</tr>
<tr>
<td>乳酸</td>
<td>0.12</td>
<td>0.13</td>
<td>0.35</td>
<td>0.39</td>
<td>0.27</td>
</tr>
<tr>
<td>醣酸</td>
<td>0.05</td>
<td>0.24</td>
<td>0.86</td>
<td>1.08</td>
<td>1.03</td>
</tr>
<tr>
<td>ピログルタミン酸</td>
<td>0.46</td>
<td>0.48</td>
<td>0.39</td>
<td>0.33</td>
<td>-0.13</td>
</tr>
</tbody>
</table>

pH 6.0一定

<table>
<thead>
<tr>
<th>有機酸生成処理時間</th>
<th>0</th>
<th>2</th>
<th>12</th>
<th>15</th>
<th>0→15変化量</th>
</tr>
</thead>
<tbody>
<tr>
<td>クエン酸</td>
<td>0.65</td>
<td>0.71</td>
<td>0.20</td>
<td>0.15</td>
<td>-0.51</td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>0.09</td>
<td>0.06</td>
<td>0.02</td>
<td>0.03</td>
<td>-0.06</td>
</tr>
<tr>
<td>コハク酸</td>
<td>0.74</td>
<td>1.22</td>
<td>1.92</td>
<td>1.97</td>
<td>1.22</td>
</tr>
<tr>
<td>乳酸</td>
<td>0.11</td>
<td>0.33</td>
<td>0.22</td>
<td>0.22</td>
<td>0.11</td>
</tr>
<tr>
<td>醣酸</td>
<td>0.04</td>
<td>0.22</td>
<td>0.63</td>
<td>0.67</td>
<td>0.63</td>
</tr>
<tr>
<td>ピログルタミン酸</td>
<td>0.49</td>
<td>0.41</td>
<td>0.68</td>
<td>0.54</td>
<td>0.05</td>
</tr>
</tbody>
</table>

pH 5.0一定

<table>
<thead>
<tr>
<th>有機酸生成処理時間</th>
<th>0</th>
<th>2</th>
<th>12</th>
<th>15</th>
<th>0→15変化量</th>
</tr>
</thead>
<tbody>
<tr>
<td>クエン酸</td>
<td>0.65</td>
<td>0.42</td>
<td>0.24</td>
<td>0.20</td>
<td>-0.46</td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>0.09</td>
<td>0.07</td>
<td>0.02</td>
<td>0.03</td>
<td>-0.06</td>
</tr>
<tr>
<td>コハク酸</td>
<td>0.74</td>
<td>1.19</td>
<td>1.52</td>
<td>1.55</td>
<td>0.81</td>
</tr>
<tr>
<td>乳酸</td>
<td>0.11</td>
<td>0.39</td>
<td>0.08</td>
<td>0.04</td>
<td>-0.07</td>
</tr>
<tr>
<td>醣酸</td>
<td>0.04</td>
<td>0.18</td>
<td>0.55</td>
<td>0.86</td>
<td>0.52</td>
</tr>
<tr>
<td>ピログルタミン酸</td>
<td>0.49</td>
<td>0.38</td>
<td>0.70</td>
<td>0.60</td>
<td>0.11</td>
</tr>
</tbody>
</table>

pH 4.0一定

<table>
<thead>
<tr>
<th>有機酸生成処理時間</th>
<th>0</th>
<th>2</th>
<th>12</th>
<th>15</th>
<th>0→15変化量</th>
</tr>
</thead>
<tbody>
<tr>
<td>クエン酸</td>
<td>0.66</td>
<td>0.63</td>
<td>0.32</td>
<td>0.34</td>
<td>-0.32</td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>0.09</td>
<td>0.04</td>
<td>0.00</td>
<td>0.01</td>
<td>-0.08</td>
</tr>
<tr>
<td>コハク酸</td>
<td>0.74</td>
<td>1.21</td>
<td>1.05</td>
<td>1.09</td>
<td>0.35</td>
</tr>
<tr>
<td>乳酸</td>
<td>0.11</td>
<td>0.23</td>
<td>0.07</td>
<td>0.07</td>
<td>-0.04</td>
</tr>
<tr>
<td>醣酸</td>
<td>0.04</td>
<td>0.19</td>
<td>0.35</td>
<td>0.35</td>
<td>0.31</td>
</tr>
<tr>
<td>ピログルタミン酸</td>
<td>0.49</td>
<td>0.50</td>
<td>0.79</td>
<td>0.73</td>
<td>0.24</td>
</tr>
</tbody>
</table>

pH 3.0一定

<table>
<thead>
<tr>
<th>有機酸生成処理時間</th>
<th>0</th>
<th>2</th>
<th>12</th>
<th>15</th>
<th>0→15変化量</th>
</tr>
</thead>
<tbody>
<tr>
<td>クエン酸</td>
<td>0.66</td>
<td>0.58</td>
<td>0.39</td>
<td>0.39</td>
<td>-0.28</td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>0.09</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>-0.08</td>
</tr>
<tr>
<td>コハク酸</td>
<td>0.74</td>
<td>1.10</td>
<td>1.01</td>
<td>1.01</td>
<td>0.27</td>
</tr>
<tr>
<td>乳酸</td>
<td>0.11</td>
<td>0.18</td>
<td>0.04</td>
<td>0.05</td>
<td>-0.05</td>
</tr>
<tr>
<td>醣酸</td>
<td>0.04</td>
<td>0.19</td>
<td>0.32</td>
<td>0.32</td>
<td>0.23</td>
</tr>
<tr>
<td>ピログルタミン酸</td>
<td>0.49</td>
<td>0.48</td>
<td>0.87</td>
<td>0.86</td>
<td>0.37</td>
</tr>
</tbody>
</table>
コハク酸の含有量はpHに依存しており、アルカリ性側にシフトするほど変化量が増加することが明らかになった。また、酢酸の増加量、クエン酸の減少量なども、今回検討した範囲ではアルカリ性側でより高く、最もアルカリ性側のpH7のものが最もコハク酸含有量が多くなることが明らかになった。

実施例6：pHの変化がアミノ酸量に与える影響]
次に、有機酸生成処理時のpHをpH5.8〜7.5に制御し、さらにアミノ酸の分析を行った。実験条件は、実施例4と同じとした。

結果を下表に示す。
コハク酸含量はpH6.8で最大となり、それより上になると下がる傾向が見られた。

グルタミン酸含量も同様であった。pH6.8でコハク酸とグルタミン酸が酵母乾燥重量当たり1.0%以上増加した。グルタミン酸は、代謝経路上コハク酸の上流に存在する。そのため、pH6.8におけるコハク酸の増加は、グルタミン酸の

<table>
<thead>
<tr>
<th>pH</th>
<th>5.8</th>
<th>6.2</th>
<th>6.8</th>
<th>7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>有機酸生成処理時間</td>
<td>0</td>
<td>6</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>クエン酸</td>
<td>0.35</td>
<td>0.23</td>
<td>0.13</td>
<td>0.16</td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>0.11</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>コハク酸</td>
<td>0.60</td>
<td>1.35</td>
<td>1.41</td>
<td>1.59</td>
</tr>
<tr>
<td>乳酸</td>
<td>0.06</td>
<td>0.24</td>
<td>0.14</td>
<td>0.35</td>
</tr>
<tr>
<td>酢酸</td>
<td>0.19</td>
<td>0.84</td>
<td>0.90</td>
<td>0.94</td>
</tr>
<tr>
<td>ビログルタミン酸</td>
<td>0.36</td>
<td>0.46</td>
<td>0.52</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Asp | 0.08 | 0.04 | 0.05 | 0.05 | 0.06 | 0.21 | 0.15 | 0.06 | 0.08 |
Thr | 0.49 | 0.67 | 0.54 | 0.25 | 0.28 | 0.14 | 0.11 | 0.19 | 0.14 |
Ser | 0.09 | 0.11 | 0.11 | 0.08 | 0.08 | 0.08 | 0.04 | 0.03 | 0.04 |
Glu | 4.09 | 3.55 | 3.66 | 4.27 | 4.74 | 5.45 | 5.45 | 5.11 | 5.21 |
Gly | 0.03 | 0.07 | 0.09 | 0.09 | 0.13 | 0.26 | 0.3 | 0.26 | 0.27 |
 Ala | 2.01 | 2.29 | 2.32 | 2.26 | 2.46 | 2.73 | 2.73 | 2.31 | 2.51 |
 Cys | 0.13 | 0.13 | 0.13 | 0.12 | 0.14 | 0.18 | 0.19 | 0.22 | 0.23 |
 Val | 0.15 | 0.23 | 0.23 | 0.27 | 0.3 | 0.48 | 0.47 | 0.37 | 0.39 |
 Met | 0 | 0.02 | 0.03 | 0.02 | 0.02 | 0 | 0 | 0.00 | 0.00 |
 Ile | 0.07 | 0.1 | 0.11 | 0.09 | 0.1 | 0.11 | 0.11 | 0.10 | 0.10 |
 Leu | 0.04 | 0.07 | 0.09 | 0.06 | 0.08 | 0.07 | 0.07 | 0.06 | 0.06 |
 Tyr | 0.03 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.05 | 0.04 | 0.04 |
 Phe | 0.06 | 0.07 | 0.07 | 0.06 | 0.07 | 0.06 | 0.07 | 0.07 | 0.08 |
 Lys | 0.01 | 0.1 | 0.11 | 0.1 | 0.12 | 0.11 | 0.12 | 0.04 | 0.05 |
 His | 0.08 | 0.09 | 0.07 | 0.11 | 0.12 | 0.08 | 0.09 | 0.13 | 0.15 |
 Arg | 0.34 | 0.38 | 0.39 | 0.15 | 0.07 | 0.04 | 0.03 | 0.08 | 0.06 |
 Pro | 1.09 | 1.19 | 1.22 | 1.14 | 1.26 | 1.36 | 1.33 | 1.19 | 1.21 |
 total | 8.79 | 9.15 | 9.26 | 9.16 | 10.07 | 11.36 | 11.3 | 10.27 | 10.62 |
上流に存在する何らかの起源物質を介して起きたか、もしくは、グルタミン酸を介さない経路で起きたかどちらかであると推測され、グルタミン酸がクエン酸の起源物質である可能性は低いと考えられた。

[0114] [実施例7:温度の影響]

クエン酸を生成するための、最適な温度条件を検討するため、pH非制御、処理時間3時間とし、温度40、47、55℃で行った以外は、実施例4と同じ条件で検討した。

[0115] 結果を下表に示す。

[0116]
表7

<table>
<thead>
<tr>
<th>時間</th>
<th>0</th>
<th>3</th>
<th>40</th>
<th>47</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>溫度</td>
<td>-</td>
<td>40</td>
<td>47</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>クエン酸</td>
<td>0.90</td>
<td>0.87</td>
<td>0.42</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>0.13</td>
<td>0.17</td>
<td>0.12</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>コハク酸</td>
<td>0.25</td>
<td>0.71</td>
<td>1.10</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>乳酸</td>
<td>0.06</td>
<td>0.23</td>
<td>0.37</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>酢酸</td>
<td>0.04</td>
<td>0.32</td>
<td>0.38</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>ピログルタミン酸</td>
<td>0.34</td>
<td>0.28</td>
<td>0.26</td>
<td>0.22</td>
<td></td>
</tr>
</tbody>
</table>

Asp | 1.24 | 1.01 | 0.52 | 0.81 |
Thr | 0.25 | 0.27 | 0.28 | 0.29 |
Ser | 0.18 | 0.13 | 0.16 | 0.23 |
Glu | 3.99 | 3.77 | 4.24 | 5.02 |
Gly | 0.14 | 0.19 | 0.23 | 0.27 |
Ala | 0.52 | 0.57 | 0.59 | 0.57 |
Cys | 0.27 | 0.29 | 0.31 | 0.32 |
Val | 0.04 | 0.04 | 0.05 | 0.04 |
Met | 0.01 | 0.01 | 0.02 | 0.02 |
Ile | 0.22 | 0.24 | 0.25 | 0.27 |
Leu | 0.16 | 0.17 | 0.20 | 0.23 |
Tyr | 0.08 | 0.09 | 0.10 | 0.12 |
Phe | 0.10 | 0.11 | 0.13 | 0.15 |
Lys | 0.15 | 0.18 | 0.20 | 0.23 |
His | 0.08 | 0.08 | 0.09 | 0.10 |
Arg | 0.45 | 0.47 | 0.46 | 0.49 |
Pro | 0.20 | 0.22 | 0.24 | 0.25 |
total | 8.09 | 7.85 | 8.07 | 9.40 |

[0117] コハク酸の増加は、47℃で最も促進されたが、グルタミン酸の増加は、55℃で最も促進された。グルタミン酸の増加に対し55℃では、コハク酸の増加量は低下した。グルタミン酸はコハク酸合成の上流に存在することと本検討の結果より、有機酸生成処理時のコハク酸の合成はグルタミン酸を介していることと、グルタミン酸からのコハク酸合成は47℃以上で活性が低下するこ
とが推測された。

[01 18] [実施例8 : 至適pHおよび温度での、処理時間の検討]

これまでに見出された至適pH (PH 6.8) と温度 (47℃) で有機酸生成処理を行った。有機酸生成処理時の成分変化を測定するため、有機酸生成処理時間を30時間まで延長した以外は実施例4と同一条件で検討した。

[01 19] 結果を下表に示す。

[01 20] [表8]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>22</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>クエン酸</td>
<td>0.61</td>
<td>0.51</td>
<td>0.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>0.16</td>
<td>0.06</td>
<td>0.08</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>コハク酸</td>
<td>0.54</td>
<td>1.72</td>
<td>2.10</td>
<td>2.79</td>
<td>2.88</td>
</tr>
<tr>
<td>乳酸</td>
<td>0.07</td>
<td>0.14</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>脂肪酸</td>
<td>0.04</td>
<td>0.37</td>
<td>0.59</td>
<td>1.35</td>
<td>1.44</td>
</tr>
<tr>
<td>ピログルタミン酸</td>
<td>0.60</td>
<td>0.34</td>
<td>0.29</td>
<td>0.39</td>
<td>0.32</td>
</tr>
<tr>
<td>Asp</td>
<td>0.79</td>
<td>0.41</td>
<td>0.22</td>
<td>0.17</td>
<td>0.26</td>
</tr>
<tr>
<td>Thr</td>
<td>0.75</td>
<td>0.35</td>
<td>0.29</td>
<td>0.28</td>
<td>0.31</td>
</tr>
<tr>
<td>Ser</td>
<td>0.10</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>Glu</td>
<td>4.76</td>
<td>5.06</td>
<td>5.22</td>
<td>5.36</td>
<td>5.58</td>
</tr>
<tr>
<td>Gly</td>
<td>0.13</td>
<td>0.19</td>
<td>0.21</td>
<td>0.28</td>
<td>0.33</td>
</tr>
<tr>
<td>Ala</td>
<td>1.44</td>
<td>1.50</td>
<td>1.45</td>
<td>1.51</td>
<td>1.56</td>
</tr>
<tr>
<td>yS</td>
<td>0.10</td>
<td>0.10</td>
<td>0.12</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Val</td>
<td>0.13</td>
<td>0.17</td>
<td>0.18</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>Met</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Ile</td>
<td>0.09</td>
<td>0.11</td>
<td>0.11</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Leu</td>
<td>0.04</td>
<td>0.06</td>
<td>0.06</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>Tyr</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Phe</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Lys</td>
<td>0.06</td>
<td>0.09</td>
<td>0.09</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>His</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>Arg</td>
<td>0.32</td>
<td>0.33</td>
<td>0.22</td>
<td>0.11</td>
<td>0.07</td>
</tr>
<tr>
<td>Pro</td>
<td>0.46</td>
<td>0.45</td>
<td>0.51</td>
<td>0.60</td>
<td>0.64</td>
</tr>
<tr>
<td>total</td>
<td>9.03</td>
<td>9.09</td>
<td>8.99</td>
<td>9.53</td>
<td>10.01</td>
</tr>
</tbody>
</table>
有機酸生成処理22時間でほぼ変化がなくなり、反応が終了したものと思われた。

実施例9：酵母エキスの調製
これまでに得られたコハク酸とグルタミン酸を増加させる至適条件（pH6.8、温度47℃、処理時間6時間）で有機酸生成処理を行った以外は、実施例8と同じ条件で有機酸生成処理済み酵母を調製し、次いで熱水抽出処理を行うことによって酵母エキスを得た。

結果を下表に示す。
酵母懸濁液

(％/乾燥酵母重量)

<table>
<thead>
<tr>
<th>有機酸生成処理時間</th>
<th>0</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>クエン酸</td>
<td>0.45</td>
<td>0.10</td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>0.23</td>
<td>0.10</td>
</tr>
<tr>
<td>コハク酸</td>
<td>0.50</td>
<td>2.56</td>
</tr>
<tr>
<td>乳酸</td>
<td>0.09</td>
<td>0.66</td>
</tr>
<tr>
<td>酢酸</td>
<td>0.02</td>
<td>0.54</td>
</tr>
<tr>
<td>ビログルタミン酸</td>
<td>0.76</td>
<td>0.37</td>
</tr>
</tbody>
</table>

酵母エキス

(％/乾燥酵母エキス重量)

<table>
<thead>
<tr>
<th>有機酸生成処理時間</th>
<th>0.32</th>
<th>0.41</th>
<th>3.70</th>
<th>1.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp</td>
<td>0.59</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>0.66</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>0.16</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>4.35</td>
<td>5.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>0.08</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>1.18</td>
<td>1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>0.11</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>0.15</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>0.12</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>0.05</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>0.03</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>0.09</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>0.06</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>0.36</td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>0.40</td>
<td>0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>8.47</td>
<td>9.48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[実施例10:異なる菌株での検討]

これまですサッカロマイセス・セレビジェSC21株のみ検討を行ってきたが、
他サッカロマイセス・セレビジェ、及びキャンディダ・ユティリス（Candida
Utilis）でも、これまでに得られた有機酸生成処理中に有機酸とアミノ酸
成分の増加がみられるか、及び酵母エキスとした時にどの程度の含量になるか以下の寄託株を用い検討した。

[0127] サッカロマイセス・セレビジェ：FERM BP-8081、FERM P-14013、キャンデイダ・ユティリス：NBRC619、NBCRC988、NBRC1086を用いた。なお、FERM BP-8081、FERM P-14013については、糖蜜の添加量を過不足なく供給されるように調整した以外は、既出のSC21株と同じ条件で培養した。キャンデイダ・ユティリスについては、本培養の初発培地条件を以下の通り変更し、過不足なく糖蜜を添加する以外は、SC21株と同じ条件で培養した。そして実施例8および9と同じ条件で有機酸生成処理を行って得られた酵母より熱水抽出を行い、酵母エキスを得た。

[0128] (初発培地組成)
尿素 30g
リン酸 5mL
硫酸マグネシウム7水和物0.3g
酵母エキス 1.2g
蒸留水で1.15Lまでメスアツプした。

[0129] 結果を下表に示す。

[0130]
酵母エキスの官能評価を実施するため、実施例9と同様にして酵母エキスの官能評価を実施した。

<table>
<thead>
<tr>
<th>評価項目</th>
<th>FERM BP-0081</th>
<th>FERM P-14013</th>
<th>NBRC619</th>
<th>NBRC988</th>
<th>NBRC1086</th>
</tr>
</thead>
<tbody>
<tr>
<td>順序</td>
<td>S. cerevisiae</td>
<td>S. cerevisiae</td>
<td>C. utilis</td>
<td>C. utilis</td>
<td>C. utilis</td>
</tr>
<tr>
<td>官能評価</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>処理前</td>
<td>0.65</td>
<td>0.19</td>
<td>0.11</td>
<td>0.12</td>
<td>0.20</td>
</tr>
<tr>
<td>6H処理後</td>
<td>0.40</td>
<td>0.19</td>
<td>0.06</td>
<td>0.06</td>
<td>0.19</td>
</tr>
<tr>
<td>12H処理後</td>
<td>0.36</td>
<td>0.19</td>
<td>0.05</td>
<td>0.05</td>
<td>0.18</td>
</tr>
<tr>
<td>24H処理後</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36H処理後</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

官能評価の結果は、Ferm BP-0081が最も高く、次にFerm P-14013、NBRC619、NBRC988、NBRC1086の順に評価が高かった。
を得た。得られた酵母エキスを、エバポレーターで濃縮し酵母エキスのペーストを調製した。

[01 32] 結果、コハク酸4.31%、グルタミン酸（以下Glu）8.6%、核酸（IMPニトリウム7水和物（以下I）およびGMPニトリウム7水和物（以下G）換算、以上を以下、I+Gとする）0.17%の酵母エキスペーストを取得した。

[01 33] <試作品の相乗効果の確認>
本試作品酵母エキスでI+GとGlu以外の相乗効果によるうま味の発現が存在するか検証するため、以下の実験を行った。

[01 34] 本試作酵母エキス0.2%（固形分）の希釈液に対して、2系統の模擬液（うま味成分を0.2%酵母エキス希釈液相当量含む液）を、試験を用いて製造した。
なおNaの調整にはNaCLを用い、Kの調整にはKH2PO4を用いた。

模擬液（1）：Glu、I+G含有
模擬液（2）：有機酸、アミノ酸、I+G、Na、K含有

[01 35] 次に、模擬液（1）、（2）について、うま味成分（コハク酸、Glu、I+G。（1）ではコハク酸はなし）のみ、50%、75%、125%、150%と増減させ（本試作品酵母エキスに含まれる量を100%とする。）、うま味強度の異なる模擬液を製造した。模擬液の詳細を下表に示す。

[01 36]
表11-1

<table>
<thead>
<tr>
<th>短母エキス0.2%相当量</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
<th>125%</th>
<th>150%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
<th>125%</th>
<th>150%</th>
</tr>
</thead>
<tbody>
<tr>
<td>コハク酸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4826</td>
<td>7243</td>
<td>9657</td>
<td>12071</td>
<td>14485</td>
</tr>
<tr>
<td>GMP ニトロリウム7水和物（G）</td>
<td>151</td>
<td>227</td>
<td>303</td>
<td>379</td>
<td>454</td>
<td>151</td>
<td>227</td>
<td>303</td>
<td>379</td>
<td>454</td>
</tr>
<tr>
<td>IMP ニトロリウム7水和物（1）</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>22</td>
<td>26</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Glu</td>
<td>9610</td>
<td>14415</td>
<td>19221</td>
<td>24026</td>
<td>28831</td>
<td>9610</td>
<td>14415</td>
<td>19221</td>
<td>24026</td>
<td>28831</td>
</tr>
</tbody>
</table>

ミネラル

<table>
<thead>
<tr>
<th>(mg/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
</tr>
<tr>
<td>K</td>
</tr>
</tbody>
</table>

コハク酸以外の有機酸

<table>
<thead>
<tr>
<th>(mg/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>クエン酸</td>
</tr>
<tr>
<td>リンゴ酸</td>
</tr>
<tr>
<td>乳酸</td>
</tr>
<tr>
<td>酢酸</td>
</tr>
<tr>
<td>ピログルタミン酸</td>
</tr>
</tbody>
</table>

グルタミン酸以外のアミノ酸

<table>
<thead>
<tr>
<th>(mg/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp</td>
</tr>
<tr>
<td>Thr</td>
</tr>
<tr>
<td>Ser</td>
</tr>
<tr>
<td>Gly</td>
</tr>
<tr>
<td>Ala</td>
</tr>
<tr>
<td>Cys</td>
</tr>
<tr>
<td>Val</td>
</tr>
<tr>
<td>Met</td>
</tr>
<tr>
<td>Iso</td>
</tr>
<tr>
<td>Leu</td>
</tr>
<tr>
<td>Tyr</td>
</tr>
<tr>
<td>Phe</td>
</tr>
<tr>
<td>Lys</td>
</tr>
<tr>
<td>His</td>
</tr>
<tr>
<td>Arg</td>
</tr>
<tr>
<td>Pro</td>
</tr>
</tbody>
</table>

[0137]調製した各系統の模擬液と本試作品0.2%水溶液のうま味強度を評価し、グルタミン酸とH+G以外のうま味の相乗効果が存在するか、うま味が増強されるか官能評価にて評価した。
評価法：0.5点刻み 1〜10点 模擬液(2)のコハク酸酵母エキス100%相当量の
うま味成分を含むものをうま味強度5とする。
評価者：13人の訓練されたパネラー

結果を下表および図1に示す。

【表11-2】

<table>
<thead>
<tr>
<th>うま味強度</th>
<th>50.00%</th>
<th>75.00%</th>
<th>100.00%</th>
<th>125.00%</th>
<th>150.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>酵母エキス0.2%相当量</td>
<td>1.9</td>
<td>2.4</td>
<td>3.1</td>
<td>3.8</td>
<td>5.2</td>
</tr>
<tr>
<td>模擬液(2)新系</td>
<td>2.9</td>
<td>3.7</td>
<td>5.0</td>
<td>6.7</td>
<td>9.6</td>
</tr>
</tbody>
</table>

本試作酵母エキス0.2%希釈液：5.2

模擬液(1)増加割合
<table>
<thead>
<tr>
<th>75%/50%</th>
<th>100%/75%</th>
<th>125%/100%</th>
<th>150%/125%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.26</td>
<td>1.27</td>
<td>1.25</td>
<td>1.36</td>
</tr>
<tr>
<td>1.29</td>
<td>134</td>
<td>1.35</td>
<td>1.42</td>
</tr>
</tbody>
</table>

模擬液(1)では、うま味強度が相乗的に増加し、既報の通りグルタミン酸と
I+Gによるうま味の相乗効果が検出された。他方、模擬液(2)では、模擬液(1)
よりもうま味強度が著しく増強された。また、模擬液(2)100%品よりも、本試
作品0.2%の方がうま味強度は高く、模擬液に含まれていない成分によるうま
味の増加があることが示された。

模擬液(2)の方がうま味強度が強かった要因として、うま味成分であるコハク
酸が含まれていたことが理由として考えられる。しかし、模擬液(2)のうま
味強度は、模擬液(1)よりもさらに相乗的に増加していることから、模擬液(2)
でI+Gとグルタミン酸以外のうま味の相乗効果が起きていることが示された。
このことから、本試作酵母エキスは、I+GとGlueによるうま味の相乗効果以
外のうま味の相乗効果が期待される。

[実施例12:呈味改善効果の検討1]

マスコットフーズ社製のヒュメドボウソン2.0%熱水希釈液に対し、下表の(1)
〜(6)の酵母エキス、または酵母エキス中のうま味成分を試薬にて再構築し
た下表の模擬液を、喫食時0.01%（乾燥酵母エキス重量）、またはそれに相当
するうま味成分濃度となるよう調整した。
原料を計量し、蒸留水に溶解後、蒸留水で全体童量を1/3に調整

よく訓練されたパネル13人に試飲評価させ、魚介風味の好ましさと呈味の強さについて採点させた。

（官能評価基準）
魚介風味の強さはBlank（酵母エキス等を添加しない、2.0%熱水希釈液）を

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ミネラル</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>5126</td>
</tr>
<tr>
<td>K</td>
<td>8319</td>
</tr>
<tr>
<td>有機酸</td>
<td></td>
</tr>
<tr>
<td>クエン酸</td>
<td>1249</td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>169</td>
</tr>
<tr>
<td>コハク酸</td>
<td>9657</td>
</tr>
<tr>
<td>乳酸</td>
<td>1080</td>
</tr>
<tr>
<td>酢酸</td>
<td>2880</td>
</tr>
<tr>
<td>ピログルタミン酸</td>
<td>2329</td>
</tr>
<tr>
<td>遊離アミノ酸</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>406</td>
</tr>
<tr>
<td>Thr</td>
<td>339</td>
</tr>
<tr>
<td>Ser</td>
<td>110</td>
</tr>
<tr>
<td>Glu</td>
<td>19221</td>
</tr>
<tr>
<td>Gly</td>
<td>1126</td>
</tr>
<tr>
<td>Ala</td>
<td>3133</td>
</tr>
<tr>
<td>Cys</td>
<td>491</td>
</tr>
<tr>
<td>Val</td>
<td>847</td>
</tr>
<tr>
<td>Met</td>
<td>76</td>
</tr>
<tr>
<td>Iso</td>
<td>618</td>
</tr>
<tr>
<td>Leu</td>
<td>389</td>
</tr>
<tr>
<td>Tyr</td>
<td>93</td>
</tr>
<tr>
<td>Phe</td>
<td>288</td>
</tr>
<tr>
<td>Lys</td>
<td>398</td>
</tr>
<tr>
<td>His</td>
<td>279</td>
</tr>
<tr>
<td>Arg</td>
<td>1067</td>
</tr>
<tr>
<td>Pro</td>
<td>2227</td>
</tr>
<tr>
<td>核酸</td>
<td></td>
</tr>
<tr>
<td>Imp-Na₂・7H₂O</td>
<td>303</td>
</tr>
<tr>
<td>Gmp-Na₂・7H₂O</td>
<td>17</td>
</tr>
</tbody>
</table>
3点とし、Blankとの比較で、次のように採点した。1；魚介風味がとても弱い、2；魚介風味が弱い、4；魚介風味が強い、5；魚介風味がとても強い

呈味の強さについては、Blankを3点とし、次のように採点した。1；呈味がとても弱い、2；呈味が弱い、4；呈味が強い、5；呈味がとても強い

結果を下表および図2に示した。

[表 12-2]

<table>
<thead>
<tr>
<th>魚介 酵母エキス</th>
<th>魚介風味の 好ましさ</th>
<th>呈味の強さ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ひやし 母エキス</td>
<td>4.4</td>
<td>4.5</td>
</tr>
<tr>
<td>(2) 市販 母エキスA</td>
<td>3.4</td>
<td>4.0</td>
</tr>
<tr>
<td>(3) 亀 母エキスB</td>
<td>3.2</td>
<td>4.6</td>
</tr>
<tr>
<td>(4) 亀酵母エキスC</td>
<td>3.3</td>
<td>3.4</td>
</tr>
<tr>
<td>(5) 亀 母エキスD</td>
<td>3.2</td>
<td>3.6</td>
</tr>
<tr>
<td>(6) 市販酵母エキスE</td>
<td>3.2</td>
<td>3.7</td>
</tr>
<tr>
<td>(7) 市販酵母エキスF</td>
<td>3.2</td>
<td>3.0</td>
</tr>
<tr>
<td>(8) 酵母エキス微熱液</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

(2) ハイマチクス GL (株)・食品工業株式会社 (3) 亀 テクノス TGS (株)・食品工業株式会社 (4) イーストエキス クロFF-G (株)・食品工業株式会社 (5) 他の酵母

市販の酵母エキスに比較し、コハク酸及びグルタミン酸含量が多い本試作酵母エキスは、魚介風味の食品において、魚介風味を著しく増強し、また呈味をより強くするものであった。なお、用いた酵母エキスの各成分の測定値を下表にまとめた。

[表 12-3]

<table>
<thead>
<tr>
<th></th>
<th>総アミノ酸</th>
<th>グルタミン酸</th>
<th>核酸</th>
<th>コハク酸</th>
<th>酸</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 本試作酵母エキス</td>
<td>31108</td>
<td>19221</td>
<td>320</td>
<td>9657</td>
<td>2880</td>
</tr>
<tr>
<td>(2) 市販 母エキスA</td>
<td>27874</td>
<td>15481</td>
<td>2144</td>
<td>1773</td>
<td>517</td>
</tr>
<tr>
<td>(3) 亀酵母エキスB</td>
<td>12070</td>
<td>5966</td>
<td>2Q293</td>
<td>1324</td>
<td>188</td>
</tr>
<tr>
<td>(4) 市販 母エキスC</td>
<td>35666</td>
<td>1803</td>
<td>2461</td>
<td>250</td>
<td>80</td>
</tr>
<tr>
<td>(5) 亀 母エキスD</td>
<td>24348</td>
<td>17437</td>
<td>232</td>
<td>736</td>
<td>145</td>
</tr>
<tr>
<td>(6) 市 酵母エキスE</td>
<td>28230</td>
<td>18123</td>
<td>3S35</td>
<td>283</td>
<td>477</td>
</tr>
<tr>
<td>(7) 市販酵母エキスF</td>
<td>41827</td>
<td>2286</td>
<td>15</td>
<td>80S</td>
<td>409</td>
</tr>
</tbody>
</table>

(mg/100g、換算酵母エキス重量 100g)
実施例13:呈味改善効果の検討2

チキンスープ粉末（下表の組成）の2.0%熱水希釈液に対し、実施例12と同じ酵母エキス、または酵母エキス模擬液（1）〜（8）を喫食時0.05%となるよう調整した。

[0152] [表13-1]

<table>
<thead>
<tr>
<th>チキンスープ粉末</th>
<th>重量%</th>
</tr>
</thead>
<tbody>
<tr>
<td>上白湯</td>
<td>20.00</td>
</tr>
<tr>
<td>チキンエキスパウダー</td>
<td>11.50</td>
</tr>
<tr>
<td>粉末醤油</td>
<td>7.00</td>
</tr>
<tr>
<td>オニオンエキスパウダー</td>
<td>3.00</td>
</tr>
<tr>
<td>ガーリックパウダー</td>
<td>1.00</td>
</tr>
<tr>
<td>ホワイトペッパー</td>
<td>0.20</td>
</tr>
<tr>
<td>食塩</td>
<td>16.50</td>
</tr>
<tr>
<td>デキストリン</td>
<td>40.80</td>
</tr>
<tr>
<td>合計</td>
<td>100.00</td>
</tr>
</tbody>
</table>

よく訓練されたパネル13人に試飲評価させ、先味の強さ、コクの強さ、呈味の強さについて採点させた。

[0153]（官能評価基準）

先味の強さは、Blankを3点とし、Blankとの比較で、次のように採点した。
1 ;先味がとても弱い、2 ;先味が弱い、4 ;先味が強く、5 ;先味がとても強い。

コクの強さは、Blankを3点とし、Blankとの比較で、次のように採点した。
1 ;コクがとても弱い、2 ;コクが弱い、4 ;コクが強く、5 ;コクがとても強い。

呈味の強さは、Blankを3点とし、Blankとの比較で、次のように採点した。
1 ;呈味がとても弱い、2 ;呈味が弱い、4 ;呈味が強く、5 ;呈味がとても強い。

[0155] 結果を下表に示す。

[0156]

[0157]
試作酵母エキスの添加により、先味が著しく増強され、かつコクが増し、呈味も強化された。

実施例14：尿素量の検討
サッカロマイセス・セレビージェースc21株を培養し、取得した酵母を用いて調製した酵母懸濁液を有機酸生成処理した。この検討では、培養時に供給する尿素の量が有機酸生成処理における成分変化にどのように影響するか検証した。

実験条件を下表に示す。

<table>
<thead>
<tr>
<th></th>
<th>先味の強さ</th>
<th>コクの強さ</th>
<th>呈味の強さ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.6</td>
<td>4.3</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>3.8</td>
<td>4.2</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>4.6</td>
<td>4.7</td>
</tr>
<tr>
<td>4</td>
<td>3.2</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>5</td>
<td>3.8</td>
<td>3.6</td>
<td>3.8</td>
</tr>
<tr>
<td>6</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>7</td>
<td>3.0</td>
<td>3.1</td>
<td>2.9</td>
</tr>
<tr>
<td>8</td>
<td>3.8</td>
<td>3.7</td>
<td>3.9</td>
</tr>
</tbody>
</table>
[表 14-1]

<table>
<thead>
<tr>
<th>工程</th>
<th>詳細条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>前培養</td>
<td>培地：YPD液体培地</td>
</tr>
<tr>
<td></td>
<td>溫度：30℃</td>
</tr>
<tr>
<td></td>
<td>ロータリー回転速度 200rpm</td>
</tr>
<tr>
<td></td>
<td>培養時間：24時間</td>
</tr>
<tr>
<td>↓</td>
<td>同時培養</td>
</tr>
<tr>
<td></td>
<td>培地：尿素 20g 又は13g又は11g 又は9.5g、リン酸 1.5ml、硫酸マグネシウム7水酸和物 0.3g、酵母エキス 1.2g、蒸留水で1.15Lにメスアップした。</td>
</tr>
<tr>
<td></td>
<td>植菌量：酵母懸濁液50ml（乾燥酵母重量 5g）</td>
</tr>
<tr>
<td></td>
<td>温度：32℃</td>
</tr>
<tr>
<td></td>
<td>通気：1.7L/分</td>
</tr>
<tr>
<td></td>
<td>拮撹数：650rpm</td>
</tr>
<tr>
<td></td>
<td>培養終了時KLα：50倍 1</td>
</tr>
<tr>
<td></td>
<td>pH制御：下限4.5(15% 炭酸ナトリウム水溶液を添加することにより調整し%)</td>
</tr>
<tr>
<td></td>
<td>流加培地：糖蜜（糖度43%） 容量500ml</td>
</tr>
<tr>
<td></td>
<td>培養時間：15时间</td>
</tr>
<tr>
<td>↓</td>
<td>集菌・洗浄（→有機酸生成処理用菌体取得）</td>
</tr>
<tr>
<td></td>
<td>植菌：あり（スターラーにて）</td>
</tr>
</tbody>
</table>

結果を下表に示す。

[0160]

[0161]
<table>
<thead>
<tr>
<th>培養終了時菌体内窒素</th>
<th>7.8%</th>
<th>7.6</th>
<th>7.0</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>培養時尿素量</td>
<td>20g</td>
<td>13g</td>
<td>11g</td>
<td>9.5g</td>
</tr>
<tr>
<td>時間</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>リン酸</td>
<td>1.16</td>
<td>1.60</td>
<td>1.20</td>
<td>1.63</td>
</tr>
<tr>
<td>クエン酸</td>
<td>0.68</td>
<td>0.33</td>
<td>0.65</td>
<td>0.21</td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>0.15</td>
<td>0.10</td>
<td>0.16</td>
<td>0.13</td>
</tr>
<tr>
<td>コハク酸</td>
<td>0.89</td>
<td>2.43</td>
<td>1.04</td>
<td>2.66</td>
</tr>
<tr>
<td>乳酸</td>
<td>0.10</td>
<td>0.25</td>
<td>0.13</td>
<td>0.44</td>
</tr>
<tr>
<td>酢酸</td>
<td>0.05</td>
<td>0.46</td>
<td>0.04</td>
<td>0.42</td>
</tr>
<tr>
<td>ビログルタミン酸</td>
<td>0.55</td>
<td>0.41</td>
<td>0.52</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Asp 0.08 0.07 0.05 0.07 0.06 0.03 0.07 0.01
Thr 0.96 0.51 0.81 0.37 0.38 0.33 0.15 0.22
Ser 0.13 0.11 0.12 0.10 0.17 0.12 0.19 0.16
Glu 5.71 6.39 5.18 5.96 3.83 3.53 2.90 2.49
Gly 0.14 0.21 0.12 0.20 0.11 0.18 0.09 0.14
Ala 1.25 1.31 1.09 1.18 0.49 0.58 0.38 0.56
Cys 0.22 0.24 0.24 0.27 0.21 0.27 0.26 0.36
Val -0.16 0.27 0.17 0.31 0.17 0.26 0.17 0.26
Met 0.00 0.08 0.00 0.04 0.01 0.02 0.01 0.03
Ile 0.19 0.26 0.18 0.20 0.16 0.17 0.18 0.17
Leu 0.07 0.11 0.07 0.10 0.08 0.10 0.10 0.10
Tyr 0.05 0.07 0.05 0.05 0.06 0.08 0.06 0.06
Phe 0.07 0.08 0.07 0.06 0.07 0.07 0.07 0.06
Lys 0.08 0.10 0.08 0.10 0.10 0.08 0.10 0.07
His 0.06 0.07 0.06 0.08 0.06 0.07 0.06 0.07
Arg 0.35 0.34 0.38 0.30 0.32 0.27 0.25 0.22
Pro 0.41 0.41 0.46 0.49 0.25 0.26 0.17 0.17
total 9.93 10.63 9.13 9.88 6.53 6.42 5.21 5.15

[0162] 培養時に供給する尿素を減らすことにより、有機酸生成処理前のコハク酸が増
加し、併せて有機酸生成処理におけるコハク酸増加も促進された。他方、グルタミン酸は低尿素条件で培養すると培養終了時の量が低下し、かつ有機酸生成処理でも増加が抑制又は減少した。また、培養終了時の菌体内窒素量は、供給窒素量に依存して低下し、この結果から、培養時に供給する窒素を削減することで、菌体内の窒素が低下し、糖や脂肪酸などの炭素化合物からアミノ酸などの窒素化合物への変換が進まず、結果としてグルタミン酸の低下とコハク酸の増加が起きたと推測される。

[0163] [実施例15：菌体内窒素量の検討]
サッカロマイセス・セレビジエンスC21株を用いて酵母を培養し、取得した酵母を用いて調製した酵母懸濁液を有機酸生成処理した。この検討では、有機酸生成処理にてコハク酸を最大にする上で最適な培養終了時の菌体内窒素の量を、尿素の量を変化させることで検討した。

[0164] 実験条件は、本培養の培地の窒素量を11gまたは9gに変更した以外は、実施例14と同じとした。

[0165] 結果を下表に示す。

[0166]
表15

(％/乾燥酵母重 量)

<table>
<thead>
<tr>
<th>培養終了時菌体内窒素</th>
<th>6.8</th>
<th>5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>培養時尿素量</td>
<td>11 g</td>
<td>9 g</td>
</tr>
<tr>
<td>時間</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>リン酸</td>
<td>1.07</td>
<td>1.37</td>
</tr>
<tr>
<td>クエン酸</td>
<td>1.19</td>
<td>0.88</td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>0.25</td>
<td>0.16</td>
</tr>
<tr>
<td>コハク酸</td>
<td>1.11</td>
<td>2.50</td>
</tr>
<tr>
<td>乳酸</td>
<td>0.15</td>
<td>1.01</td>
</tr>
<tr>
<td>谷酸</td>
<td>0.04</td>
<td>0.31</td>
</tr>
<tr>
<td>ビログルタミン酸</td>
<td>0.16</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Asp | 0.19 | 0.05 | 0.03 | 0.20 | 0.03 | 0.05 |
Thr | 0.37 | 0.39 | 0.29 | 0.21 | 0.23 | 0.23 |
Ser | 0.26 | 0.17 | 0.14 | 0.20 | 0.13 | 0.13 |
Glu | 5.34 | 4.90 | 4.31 | 2.89 | 2.45 | 2.18 |
Gly | 0.14 | 0.23 | 0.22 | 0.07 | 0.17 | 0.18 |
Ala | 0.68 | 0.81 | 0.72 | 0.61 | 0.74 | 0.64 |
Cys | 0.28 | 0.37 | 0.36 | 0.24 | 0.34 | 0.40 |
Val | 0.19 | 0.32 | 0.31 | 0.24 | 0.32 | 0.29 |
Met | 0.01 | 0.03 | 0.06 | 0.03 | 0.07 | 0.07 |
Ile | 0.20 | 0.22 | 0.19 | 0.20 | 0.21 | 0.17 |
Leu | 0.12 | 0.15 | 0.14 | 0.14 | 0.16 | 0.14 |
Tyr | 0.10 | 0.09 | 0.11 | 0.14 | 0.12 | 0.11 |
Phe | 0.11 | 0.08 | 0.12 | 0.11 | 0.13 | 0.11 |
Lys | 0.13 | 0.13 | 0.10 | 0.22 | 0.18 | 0.11 |
His | 0.07 | 0.09 | 0.09 | 0.06 | 0.07 | 0.07 |
Arg | 0.41 | 0.41 | 0.30 | 0.23 | 0.24 | 0.20 |
Pro | 0.33 | 0.36 | 0.35 | 0.16 | 0.18 | 0.21 |
total | 8.93 | 8.8 | 7.84 | 5.95 | 5.77 | 5.29 |

[0167] 尿素供給量を増減し、培養終了時の菌体内窒素量を、6.8％と5.5％とした。
結果、6.8％の方が、有意にコハク酸が増加した。かつ、グルタミン酸も6.8％
の方方が高かった。追加実施例1の結果と合わせて、コハク酸増加に最適な培
養終了時の菌体内窒素量は、6.0% 〜7.0% であることが分かった。

[0168] [実施例16: 有機酸生成処理時間の検討]

供給する尿素の量を減らし、養培終了時の菌体内窒素量を6.0〜7.0%とした酵母は、有機酸生成処理でコハク酸を産生する量が多く、5時間の有機酸生成では、コハク酸生成が止まっていないと推測された。そこで、有機酸生成処理を長時間することで、さらに多くのコハク酸を得られないか検証した。

[0169] 実験条件は、本培養の培地の窒素量を11gに、有機酸生成処理の時間を28時間とした以外は、実施例14と同じとした。

[0170] 結果を下表に示す。

[0171] [表16]

<table>
<thead>
<tr>
<th>(%) / 乾燥酵母重量</th>
<th>6.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>培養時尿素量</td>
<td>11g</td>
</tr>
<tr>
<td>有機酸生成処理時間</td>
<td>0</td>
</tr>
<tr>
<td>リン酸</td>
<td>1.14</td>
</tr>
<tr>
<td>クエン酸</td>
<td>1.29</td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>0.32</td>
</tr>
<tr>
<td>コハク酸</td>
<td>0.98</td>
</tr>
<tr>
<td>乳酸</td>
<td>0.11</td>
</tr>
<tr>
<td>酵酸</td>
<td>0.02</td>
</tr>
<tr>
<td>ピログルタミン酸</td>
<td>0.08</td>
</tr>
</tbody>
</table>

[0172] 7時間目以降は、コハク酸の増加速度が低下した。7時間以上とすることで、コハク酸値は殆ど増加せず、他方、バクテリアの増加が起こる可能性が高まるため、7時間〜9時間程度が有機酸生成処理の最適時間と考えた。

[0173] [実施例17: 酵母エキスの調製]

培養終了時の菌体当たりの窒素量が6.0〜7.0%となるように供給窒素量を調整して培養した酵母を用い、有機酸生成処理を行い酵母エキスを調製した。

[0174] 実験条件を下表に示す。
<table>
<thead>
<tr>
<th>工程</th>
<th>詳細条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>前培養</td>
<td>培地：YPD 培地</td>
</tr>
<tr>
<td></td>
<td>温度：30℃</td>
</tr>
<tr>
<td></td>
<td>ロータリー回転速度 200rpm</td>
</tr>
<tr>
<td></td>
<td>培養時間：24 時間</td>
</tr>
<tr>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>本培養</td>
<td>培地：尿素 11g、リン酸 1.5mL、硫酸マグネシウム 7 水和物 0.3g、酵母エキス 1.2g、蒸留水で 1.15L にメスアップした。</td>
</tr>
<tr>
<td></td>
<td>植菌量：酵母懸濁液 50ml（乾燥酵母重量 5g）</td>
</tr>
<tr>
<td></td>
<td>温度：32℃</td>
</tr>
<tr>
<td></td>
<td>濃気：1.7L/分</td>
</tr>
<tr>
<td></td>
<td>搅拌数：650rpm</td>
</tr>
<tr>
<td></td>
<td>培養終了時 KLa：500hr-1</td>
</tr>
<tr>
<td></td>
<td>pH 副御：下限 4.5(15%炭酸ナトリウム水溶液を添加することにより調整した。)</td>
</tr>
<tr>
<td></td>
<td>添加培地：糖蜜（糖度 43%） 容量 500ml</td>
</tr>
<tr>
<td></td>
<td>培養時間：15 時間</td>
</tr>
<tr>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>集菌・洗浄</td>
<td>透心分離（→有機酸生成処理用菌体取扱）</td>
</tr>
<tr>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>有機酸生成処理</td>
<td>温度：48℃</td>
</tr>
<tr>
<td></td>
<td>時間：7 時間</td>
</tr>
<tr>
<td></td>
<td>pH 副御：pH6.8 一定</td>
</tr>
<tr>
<td></td>
<td>搅拌：あり（スターラーバーにて）</td>
</tr>
<tr>
<td></td>
<td>乾燥酵母重量（固形分）：15%</td>
</tr>
<tr>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>熱水抽出処理</td>
<td>温度：85℃</td>
</tr>
<tr>
<td></td>
<td>時間：30 分</td>
</tr>
<tr>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>不溶性成分除去</td>
<td>透心分離</td>
</tr>
</tbody>
</table>

[01 75] [表 17-1]

[01 76] 結果を下表に示す。

[01 77]
[表17-2]
酵母懸濁液

(%/乾燥酵母重量)

| 培養終了時菌体内窒素 | 6.6 |

(%/乾燥酵母重量)

<table>
<thead>
<tr>
<th>培養時尿素量</th>
<th>11g</th>
<th>酵母エキス (%/乾燥酵母エキス重量)</th>
</tr>
</thead>
<tbody>
<tr>
<td>有機酸生成処理時間</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>リン酸</td>
<td>1.07</td>
<td>1.44</td>
</tr>
<tr>
<td>クエン酸</td>
<td>1.44</td>
<td>1.14</td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>0.36</td>
<td>0.27</td>
</tr>
<tr>
<td>ノハク酸</td>
<td>0.77</td>
<td>2.76</td>
</tr>
<tr>
<td>乳酸</td>
<td>0.08</td>
<td>0.47</td>
</tr>
<tr>
<td>酵酸</td>
<td>0.02</td>
<td>0.30</td>
</tr>
<tr>
<td>ピログルタミン酸</td>
<td>0.11</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Asp | 0.09 | 0.02 | 0.02 | 0.05 |
Thr | 0.23 | 0.17 | 0.15 | 0.16 |
Ser | 0.23 | 0.15 | 0.13 | 0.13 |
Glu | 3.39 | 3.17 | 3.13 | 3.19 |
Gly | 0.11 | 0.18 | 0.19 | 0.21 |
Ala | 0.31 | 0.47 | 0.49 | 0.51 |
Cys | 0.21 | 0.27 | 0.29 | 0.29 |
Val | 0.14 | 0.24 | 0.24 | 0.25 |
Met | 0.05 | 0.04 | 0.03 | 0.00 |
Ile | 0.38 | 0.33 | 0.28 | 0.31 |
Leu | 0.07 | 0.07 | 0.06 | 0.07 |
Tyr | 0.03 | 0.02 | 0.04 | 0.04 |
Phe | 0.05 | 0.03 | 0.05 | 0.04 |
Lys | 0.09 | 0.06 | 0.05 | 0.05 |
His | 0.04 | 0.05 | 0.05 | 0.05 |
Arg | 0.24 | 0.22 | 0.20 | 0.18 |
Pro | 0.22 | 0.25 | 0.26 | 0.28 |
total | 5.88 | 5.74 | 5.66 | 5.78 |

[0178] 培養時の供給窒素量を減らし、培養終了時の窒素量を低下させたことで、
酵母エキス中のコハク酸が有意に増加した。

[0179] [実施例18 :ベンチスケールでの検討]
これまで実験室スケールで製法検討してきたが、実生産に向けベンチスケールでの製法検討を行った。
サッカロマイセス・セレビジエSC21株を用いて酵母を培養し、取得した酵母を用いて調製した酵母懸濁液を有機酸生成処理した。ついて、濾過、濃縮処理を施し、酵母エキスを調製した。
実験条件を下表に示す。

[0180] < 酵母懸濁液 >
(1) 初次培養
以下の通り、試作用の培養に利用する酵母SC21を調製した。
(1) 5Lのプラスコ4本に、1.5LYPD培地を分注した。
(2) 上記YPD培地に対し、オートクレープ処理(121℃、15分間)を行った。
(3) サッカロマイセス・セレビジエSC21株を、オートクレープ処理したYPD培地に植菌し、以下の条件で培養した。
培養温度 30℃
振とう 200 rpm（ロータリー）
培養時間 24時間

[0181] 2次培養
以下の組成の初発培地を120℃20分加熱滅菌により調製した。
（初発培地）
グルコース 5kg
リン酸 270 ml
硫酸マグネシウム7水和物 585g
酵母エキス 2.7kg
逆浸透膜処理水 85L

[0182] (培養条件）
植菌量 1次培養液6L
培養温度 32℃
通気 200L/min
撹拌 なし
培養開始時pH 6.0（水酸化ナトリウム添加により調製）
培養時間 16時間

3次培養
以下の組成の初発培地を120°C 20分加熱滅菌により調製した。
（初発培地）
尿素 1.2kg
リン酸 160ml
硫酸マグネシウム7水和物 30g
酵母エキス 2.7kg
逆浸透膜処理水 220L

4次培養
（培養条件）
植菌量 2次培養液90L
培養温度 32℃
通気 1.2KL/min
撹拌 400rpm
pH制御 下限4.5（15%炭酸ナトリウムを添加することにより調整した。）
流加培地 糖蜜（糖度43%） 容量80L（生育阻害が起こらない条件で、適量ずつ添加した。）
培養時間 16時間

4次培養
以下の組成の初発培地を120°C 20分加熱滅菌により調製した。
（初発培地）
尿素 23kg
リン酸 3.2L
硫酸マグネシウム7水和物 585g
酵母エキス 2.1kg
逆浸透膜処理水 2200L

[0186] (培養条件)
植菌量 2次培養液310L
培養濃度 32 ℃
通気 5KL/min
攪拌 400 rpm
pH制御 下限4.5 (15%炭酸ナトリウムを添加することにより調整した。)
流加培地 糖蜜（糖度43%）容量100L（生育阻害が起こらない条件で、適量ずつ添加した。）
培養時間 16時間

[0187] 上記、4次培養後、ノズルセパレーターで酵母を分離し、清浄水で洗浄後酵母菌体の懸濁液を調製した。得られた酵母懸濁液を、次の本培養に用いた。

[0188] <本培養>
（初発培地組成）
尿素 43kg
リン酸 6.5L
硫酸マグネシウム7水和物 1kg
酵母エキス 4.2kg
逆浸透（RO水を加え2600Lとした

[0189] (培養条件)
酵母懸濁液 80L
培養濃度 32 ℃
通気 5KL/min
攪拌 400 rpm
KLa 培養終了時350〜450 hr-1
pH制御 下限4.5（15%炭酸ナトリウムを添加することにより調整した。）
流加培地 糖蜜（糖度43%）容量1000L（生育阻害が起こらない条件で、適量
ずつ添加した。

培養 時間 15時間)

[0190] <有機酸生成処理条件>

培養液から回収された酵母菌体を洗浄後、乾燥酵母重量が170g/L となるように水を添加して酵母懸濁液を得て、以下の条件で有機酸生成処理を実施した。

温度 46℃

pH 制御 （pH 6.2 〜 6.8）

時間 試作 1 および試作 4 は6時間、試作 3 は9時間

酵母懸濁液が泡立たない程度に摂拌した。

尚、乾燥酵母重量は、予め風乾重量を測ったアルミ皿に、酵母懸濁液を5g秤量し、105℃、6時間乾燥機内で乾燥し、乾燥後の重量を測定することで算出した。

[0191] <熱水処理条件>

酵母懸濁液を以下の条件で熱水抽出し、その後、遠心分離機で不溶性成分を分離した。

温度 85℃

時間 30分

摂拌 容器内側に酵母懸濁液が焦げ付かない程度の速度で摂拌

[0192] <濾過条件>

不溶性成分を除いて得られた酵母エキスを、精密濾過膜にて濾過した。

濾過膜 microza USW543（旭化成ケミカルズ製）

[0193] <濃縮条件>

濾過処理を施した酵母エキスを減圧濃縮機で濃縮した。

内部温度 50℃

濃縮終了時固形分 43.9％

[0194] 結果を下表に示した。なお表中、「処理」は有機酸生成処理を指す。また「エキス」は有機酸生成処理後、熱水処理、濾過処理、および濃縮処理を経
て最終的に得られた酵母エキスを指す。表中、培養終了時菌体内窒素の値は乾燥酵母重量当たりの百分率（%/乾燥酵母重量）である。処理前および処理後の成分量の値は乾燥酵母重量当たりの百分率（%/乾燥酵母重量）であり、エキスの成分量の値は、乾燥酵母エキス当たりの百分率（%乾燥酵母エキス）である。

[0195]【表18】

<table>
<thead>
<tr>
<th>試作1</th>
<th>試作2</th>
<th>試作3</th>
<th>試作4</th>
</tr>
</thead>
<tbody>
<tr>
<td>培養終了時菌体内窒素</td>
<td>8.1</td>
<td>7.8</td>
<td>8.3</td>
</tr>
<tr>
<td>处理前</td>
<td>处理後</td>
<td>エキス</td>
<td>处理前</td>
</tr>
<tr>
<td>Asp</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Thr</td>
<td>1.1</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Ser</td>
<td>0.2</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Glu</td>
<td>4.2</td>
<td>5.4</td>
<td>19.2</td>
</tr>
<tr>
<td>Gly</td>
<td>0.2</td>
<td>0.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Ala</td>
<td>0.8</td>
<td>0.9</td>
<td>3.1</td>
</tr>
<tr>
<td>Cys</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Val</td>
<td>0.2</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>Met</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Ile</td>
<td>0.2</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Leu</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Tyr</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Phe</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Lys</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>His</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Arg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.1</td>
</tr>
<tr>
<td>Pro</td>
<td>0.7</td>
<td>0.1</td>
<td>2.2</td>
</tr>
<tr>
<td>total</td>
<td>8.7</td>
<td>8.8</td>
<td>31.1</td>
</tr>
</tbody>
</table>

これまでの実験室スケールでの検討と同じように有機酸生成処理によりペクチン酸が増加した。
[0197] [参考例:自己消化処理との比較]

サッカロマイセス・セレビジェSC21株を集菌し、洗浄した。菌体乾燥重量の50〜60%の蒸留水を添加し、酵母懸濁液を調製した。トールビーカー3本に、酵母懸濁液を160gずつ分注した。下表に示した3条件で、有機酸生成処理または自己消化処理（条件1または条件2）を行い、経時にサンプリングを行って、沈殿容量（PV: Packed volume）を測定した。なお、有機酸処理の方法は実施例9に従い、自己消化処理の条件1、2は、前掲特許文献9（WO2012/067106）の実施例2の方法にしたがい、自己消化処理の際の温度を40℃または52℃、pH非制御で保持することにより行った。

[0198] 沈殿容量（PV）は、次のように測定した:

スピッツ管に、酵母懸濁液10mLを入れ、3,000 rpmで15分間遠心分離した。PVを確認した。PVは、スピッツ管の目盛を読み、10mLを100として数値で表した。例えばPV 70は、7.0 mlの沈殿が見られたことを指す。

[0199] 結果を下表に示した。有機酸生成処理では、PVの低下が起きず、菌体が維持され、少なくとも自己消化による構造分解が起きていないと推測された。他方、自己消化処理ではPVが低下しており、酵母内の酵素の反応による酵母菌体の構造分解が起きていると推測された。

[0200] [表19]

<table>
<thead>
<tr>
<th></th>
<th>条件</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>温度</td>
<td>pH調整</td>
</tr>
<tr>
<td>有機酸生成処理</td>
<td>47</td>
<td>6.8</td>
</tr>
<tr>
<td>自己消化処理（条件1）</td>
<td>40</td>
<td>無</td>
</tr>
<tr>
<td>自己消化処理（条件2）</td>
<td>52</td>
<td>無</td>
</tr>
</tbody>
</table>

[0201] このことから、前掲特許文献9（WO2012/067106）の条件では菌体構造が崩壊し、特定の酵素群が遊離した形で存在し、反応しているものと思われる。一方、本発明の有機酸生成処理では、酵母の構造分解が起きない条件でコハク酸を産生しており、保持された酵母菌体の構造内に残存する各代謝系に関連する酵素群が保持された状態で存在しているものと思われる。そのため、
特許文献9の方法では、それぞれの酵素が無秩序に機能するために、特定の有用成分（例えば、コハク酸）を得るためには、かなり特殊な条件（酸素移動容量係数が少ない条件）などにしないと、得ることがなかったのに対し、本発明では本来の酵母菌株が持つ秩序を保持した状態で酵素群が残存しているために、比較的、温和な条件で特定の有用成分を増殖でき、その場合に本来であれば壊れやすい別の有用成分（たとえばグルタミン酸などの有用アミノ酸）を残存させることができる条件を確立したものと思われる。そのため、従来の自己消化処理工程とは異なる工程であると考えられる。

産業上の利用可能性

[0202]本発明は、食品製造の分野等で有用である。本発明により、有機酸を高い濃度で含有する酵母エキスの製造方法が提供される。また本発明の好ましい態度により、コハク酸およびグルタミン酸の双方を高い濃度で含有する酵母エキスの製造方法が提供され、得られたコハク酸およびグルタミン酸を高い濃度で含有する酵母エキスは、コハク酸およびグルタミン酸の相乗作用により、食品における魚介の風味を向上することができ、また呈味を強化することができる。本発明により手供される酵母エキスの製造方法により、コハク酸を高い濃度で含有する酵母エキスの商業的な生産が可能となる。
請求の範囲

[請求項1] 培養された酵母の懸濁液を、有機酸生成上有力な条件で保持することにより、酵母の有機酸含有量を高める、有機酸生成処理工程；および
有機酸生成処理工程を経た酵母から、熱水で酵母エキスを抽出する、熱水抽出工程を含む、酵母エキスの製造方法。

[請求項2] 熱水抽出工程において、56℃以上の熱水で酵母エキスを抽出する、請求項1に記載の製造方法。

[請求項3] 有機酸生成上有力な条件が、酵母の懸濁液を2〜30時間保持することを含む、請求項1または2に記載の製造方法。

[請求項4] 有機酸生成上有力な条件が、酵母の懸濁液を40〜55℃、pH4.0〜7.5に保持することを含む、請求項1〜3のいずれか1項に記載の製造方法。

[請求項5] 有機酸生成処理工程で処理される培養された酵母が、酸素移動容量定数（KLa）が300nRT以上となる条件で培養されたものである、請求項1〜4のいずれか1項に記載の製造方法。

[請求項6] 有機酸生成処理工程で処理される培養された酵母として、乾燥酵母重量の窒素量が8.5%以下の酵母を用いる、請求項1〜5のいずれか1項
に記載の製造方法。

[請求項7] 有機酸が、乳酸、乳酸、および酵酸からなる群より選択されるいずれかである、請求項1〜6のいずれか1項に記載の製造方法。

[請求項8] 有機酸生成上有力な条件が、酵母のグルタミン酸含有量を高めるものでもある、請求項1〜7のいずれか1項に記載の製造方法。

[請求項9] 酵母が、サッカロマイセス属またはキャンディダ属に属する、請求項1〜8のいずれか1項に記載の製造方法。

[請求項10] 酵母が、高グルタミン酸生産性である、請求項1〜9のいずれか1項に記載の製造方法。
請求項1〜9のいずれか1項に記載の製造方法により製造された酵母エキスであって、酵母が、サッカロマイセス属に属し、乾燥酵母エキス重量当たリコハク酸を5.0重量%以上、およびグルタミン酸を10.0重量%以上含む酵母エキスを、魚介を原料に含む食品に添加し、魚介風味または呈味の改善された食品を得る工程を含む、食品の製造方法。
[図2]

魚介風味の好ましさ
(1)本試作酵母エキス
(2)市販酵母エキスA
(3)市販酵母エキスB
(4)市販酵母エキスC
(5)市販酵母エキスD
(6)市販酵母エキスE
(7)市販酵母エキスF
(8)酵母エキス模擬液

呈味の強さ
(1)本試作酵母エキス
(2)市販酵母エキスA
(3)市販酵母エキスB
(4)市販酵母エキスC
(5)市販酵母エキスD
(6)市販酵母エキスE
(7)市販酵母エキスF
(8)酵母エキス模擬液
A. CLASSIFICATION OF SUBJECT MATTER
C12P1/02 (2006.01), A23L2 7/10 (2016.01), A23L2 7/2 (2016.01), A23L2 7/15 (2016.01), A23L2 7/20 (2016.01), A23L3 1/15 (2016.01), C12P7/46 (2006.01), C12P7/5 (2006.01), C12P7/56 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
C12P1/02, A23L2 7/10, A23L2 7/20, A23L3 1/15, A23L3 3/10, C12P7/46, C12P7/54, C12P7/56

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyu Shinan Koho 1922-1996
Kokai Jitsuyu Shinan Koho 1971-2016
Toroku Jitsuyu Shinan Koho 1994-2016

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
JST Plus / JMEDPlus / JST 7580 (JDream! II), CPlus (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2012/057106 A1 (Asahi Group Holdings Ltd.), 24 May 2012 (24.05.2012), paragraphs 0047 to 0050: example Family: none</td>
<td>1, 2, 7, 9</td>
</tr>
<tr>
<td>Y</td>
<td>JP 4398213 B2 (Japan Tobacco Inc.), 13 January 2010 (13.01.2010), paragraphs 0013, 0029, 0042, 0044: example 1 to 4 & CN 1602738 A</td>
<td>11, 15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Date of completion of the international search: 27 May 2016 (27.05.16)

Name and mailing address of the ISA/
Japan Patent Office, 3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Authorized officer:

Telephone No.

International application No.
PCT / JP2 016/063165

Date of mailing of the international search report: 07 June 2016 (07.06.16)
A. 発明の属する分野の分類（国際特許分類（IPC））

B. —調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国实用新型公報 1922-1
日本国公開実用新型公報 1971-2
日本国实用新型公録 1996-1
日本国登録実用新型公報 1994-2

国際調査で使用した電子データベース（データベースの名前、調査に使用した用語）

JSTPlus/JMEDPlus/JST7580 (JDream II)
CAplus (STN)

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>引用文献名及一概の箇所及び公録の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>W0 2012/067106 A1 (アサヒグループホールディングズ株式会社)</td>
<td>1, 2, 7-9</td>
</tr>
<tr>
<td>Y</td>
<td>2012, 05, 24, 段落 [0047] - [0050], 実施例</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>(ファミリーなし)</td>
<td>3-6</td>
</tr>
<tr>
<td>Y</td>
<td>[0029], [0042], [0044], 実施例 1-4</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>& CN 1602738 A</td>
<td>3-6</td>
</tr>
</tbody>
</table>

C8口頭による開示・使用、展示等に及ぶする文献

 علم 'ファミリーに関する文献

*引用文献のカテゴリ

A 特に関連のある文献でなく、一般的な技術水準を示すものの

B 特に関連のある文献で、当該発明の別出願及び特許であるが、国際出願日の前に公表されたもの

M 特に関連のある文献で、当該発明の別出願及び特許であるが、国際出願日の前に公表されたもの

L 特に関連のある文献で、当該発明の別出願及び特許であるが、国際出願日の前に公表されたもの

δ 口頭による開示・使用、展示等に及ぶする文献

P 特に関連のある文献で、かつ優先権の主張の基礎となる出願

の日後公表された文献

F 特に関連のある文献で、当該発明の別出願及び特許であるが、国際出願日の前に公表されたもの

X 特に関連のある文献で、当該発明の別出願及び特許であるが、国際出願日の前に公表されたもの

Y 特に関連のある文献で、当該発明の別出願及び特許の前出願及び特許であるが、国際出願日の前に公表されたもの

δ 口頭による開示・使用、展示等に及ぶする文献