岩石柱法碱活性全自测设备

本实用新型属于建筑材料检测技术领域，具体涉及一种岩石柱法碱活性全自测设备。它包括控制台、废液收集箱、恒湿箱、水箱和恒温装置。所述恒湿箱内设有试样盒和位移测量装置。所述控制台连接位移测量装置。所述水箱连接试样盒。所述试样盒连接废液收集箱，所述试样盒内部设有用于固定岩石柱试样的固定装置。本实用新型将位移测量装置与自动化控制系统相结合应用于岩石柱法碱活性试验，通过位移测量装置自动采集试样长度变化数据，并配合温度控制系统及液位控制系统，完全实现了岩石柱法碱活性试验的全自动化，降低了工作强度，提高了测量精度及工作效率，结构简单，成本可控，易于推广，能够实现良好的经济效益。
1. 一种岩石柱法碱活性自测试装置，其特征在于：包括控制台(1)、废液收集箱(7)、恒温箱(11)、水箱和恒温装置，所述恒温箱(11)内部设有试样盒(15)和用于检测岩石柱试样长度的位移测量装置(16)，位移测量装置获得的长度信号传递给控制台，所述水箱通过管道与试样盒(15)相连，所述试样盒(15)通过管道与连接相连，所述试样盒(15)内部设有用于固定岩石柱试样的固定装置。

2. 根据权利要求1所述的岩石柱法碱活性自测试装置，其特征在于：所述水箱包括蒸馏水水箱(3)和碱溶液水箱(4)，所述蒸馏水水箱(3)和碱溶液水箱(4)分别通过管道(13)与选样盒(15)相连，所述管路(13)上装有调节控制阀(14)，所述调节控制阀(14)的开启、闭合状态由控制台(1)控制。

3. 根据权利要求1所述的岩石柱法碱活性自测试装置，其特征在于：所述恒温箱(11)内还设有温度传感器(12)和传感器升降支架(17)，所述温度传感器(12)电连接控制台，将感受到的温度传感器信号输出至控制台(1)，所述温度传感器为接触式温度传感器，所述位移测量装置(16)通过紧固螺栓固定于传感器升降支架(17)上。

4. 根据权利要求3所述的岩石柱法碱活性自测试装置，其特征在于：所述位移测量装置(16)与岩石柱试样之间设有位移传导杆(20)，所述位移测量装置的探头指向位移传导杆(20)，所述位移测量装置为直线位移传感器或数显千分表。

5. 根据权利要求1所述的岩石柱法碱活性自测试装置，其特征在于：所述固定装置包括两个横向布置的试样定位板(21)，两个试样定位板(21)竖向对应位置分别设有用于放置岩石柱试样的插孔，所述底部的试样定位板侧壁设有插入插孔内用于紧固岩石柱试样的试样紧固件(22)。

6. 根据权利要求1所述的岩石柱法碱活性自测试装置，其特征在于：所述试样盒(15)内部还设有位移传感器(19)，所述位移传感器(19)设置两个，分别位于试样盒(15)的顶部和底部，所述位移传感器(19)电连接控制台(1)，将检测到的位移高度转换成电信号输出至控制台，所述位移传感器为浮球式位移传感器。

7. 根据权利要求1所述的岩石柱法碱活性自测试装置，其特征在于：还包括废液排出管(24)，所述试样盒(15)通过废液排出管(24)与废液收集箱(7)连接，所述废液排出管(24)上安装有废液控制阀(23)，所述废液控制阀(23)的开启、闭合状态由控制台(1)控制。

8. 根据权利要求1所述的岩石柱法碱活性自测试装置，其特征在于：所述恒温箱和试样盒的材质为金属材料或有机玻璃。

9. 根据权利要求1所述的岩石柱法碱活性自测试装置，其特征在于：所述恒温装置包括热交换机(5)和压缩机(6)，所述热交换机(5)电连接压缩机(6)，所述热交换机(5)设置于恒温箱(11)内，所述压缩机(6)通过接口连线电连接控制台(1)。

10. 根据权利要求1所述的岩石柱法碱活性自测试装置，其特征在于：所述控制台(1)包括显示器(2)、输入调节装置(9)和输出端口(10)。
岩石柱法碱活性全自动测试装置

技术领域

0001 本实用新型属于建筑材料检测技术领域，具体涉及一种岩石柱法碱活性全自动测试装置。

背景技术

0002 岩石柱法碱活性试验是目前鉴定碳酸盐骨料潜在碱活性的主要试验方法，是目前岩石骨料检测中常见的试验类型。现有岩石法碱活性试验是按碳酸盐岩的节理，具体测量过程为：取互相垂直的3个圆柱体岩石柱式样，尺寸为φ9×35mm，放入1mol/L的NaOH溶液中，在20℃下浸泡，通过测长仪定期测其长度变化，若浸泡84d试验膨胀率在0.10%以上时，判断该岩石具有潜在碱活性危害。由于整个测量过程均为人工测量，没有特定测量装置，故存在两方面问题：①试验切割时无法保证切面绝对平行，且人工测量过程需要反复取出试样，难以保证每次测量点一致；②数据采集过程完全靠人工完成，试验自动化程度低，难以对试验条件进行精准控制，不仅误差较大，而且工作效率低。

实用新型内容

0003 本实用新型的目的就是为了解决上述背景技术存在的不足，提供一种测量精度高、工作效率高的岩石柱法碱活性全自动测试装置。

0004 本实用新型采用的技术方案是：一种岩石柱法碱活性全自动测试装置，包括控制台、废液收集箱、恒温箱、水箱和恒温装置，所述恒温箱内设有试样盒用于检测岩石柱试样长度的位移测量装置，位移测量装置获得的长度信号传递给控制台，所述水箱通过管道与试样盒相连，所述试样盒通过管道与连接相连，所述试样盒内部设有用于固定岩石柱试样的固定装置。

0005 进一步地，所述水箱包括蒸馏水水箱和碱溶液水箱，所述蒸馏水水箱和碱溶液水箱分别通过注入管道与试样盒相连，所述注入管道上安装有调节控制阀，所述调节控制阀门连接控制台，调节控制阀门的开启、闭合状态由控制台控制。

0006 进一步地，所述恒温箱内还设有温度传感器和传感器升降支架，所述温度传感器电连接控制台，将感受到的温度传感器信号输出至控制台，所述位温度传感器为接触式温度传感器；所述位移测量装置通过紧固螺栓固定于传感器升降支架上。

0007 进一步地，所述位移测量装置与岩石柱试样之间设有位移传感器，所述位移测量装置的探头指向位移传感器，所述位移测量装置为直线位移传感器或数字千分表。

0008 进一步地，所述固定装置包括上下两个横向布置的试样定位板，两个试样定位板竖向对应位置分别设有用于插放岩石柱试样的插孔，所述底部的试样定位板侧壁设有插入插孔内用于紧固岩石柱试样的试样紧固环。

0009 进一步地，所述试样盒内部还设有液位传感器，所述液位传感器设置两个，分别位于试样盒内的顶部和底部，所述液位传感器电连接控制台，将检测的液位高度转换成电信号输出至控制台，所述液位传感器为浮球式液位传感器。
[0010] 进一步地，还包括废液排出管，所述试样盒通过废液排出管与废液收集箱连接，所述废液排出管上安装有废液控制阀，所述废液控制阀连接控制台，废液控制阀的开启、闭合状态由控制台控制。

[0011] 进一步地，所述恒温箱和试样盒的材质为金属材料或有机玻璃。

[0012] 进一步地，所述恒温装置包括热交换机和压缩机，所述热交换机电连接压缩机，所述热交换机设置于恒温箱内，所述压缩机通过接口连线电连接控制台。恒温装置保证恒温箱内温度恒定，提高测试精度。

[0013] 更进一步地，所述控制台包括显示器、输入调节装置和输出端口。

[0014] 本实用新型通过位移检测装置自动采集试样长度变化数据，使得试验结果不受因试验两端不完全平行对试验结果造成的影响，同时避免了人工测量时因测量点不一致所产生的误差，提高了测量精度，同时避免了传统方法在采集数据时需将试件从溶液中取出擦干表面进行测量的麻烦，实现了对温度的精准控制，且采集数据与试件养护同时进行，提高了工作效率。

[0015] 本实用新型将位移检测装置与自动化控制系统相结合应用于岩石柱法碱活性试验，通过位移检测装置自动采集试样长度变化数据，并配合温度控制系统及液位控制系统，完全实现了岩石柱法碱活性试验的全自动化，降低了工作强度，提高了测量精度及工作效率，结构简单，成本可控，易于推广，能够实现良好的经济效益。

附图说明


具体实施方式

[0018] 下面结合附图和具体实施例对本实用新型作进一步的详细说明，便于清楚地了解本实用新型，但它们不对本实用新型构成限定。

[0019] 如图 1 所示，本实用新型包括控制台 1、废液收集箱 7、恒温箱 11、水箱和恒温装置，所述恒温箱 11 内部设有位移测量装置 16 和试样盒 15，所述控制台 1 与位移测量装置 16 电连接，位移测量装置 16 获得的长度信号传递给控制台 1，所述水箱通过管道与试样盒 15 相连，所述试样盒 15 通过管道与废液收集箱 7 相连，所述若干岩石柱试样 8 均通过试样盒内部的固定装置固定于所述试样盒 15 中与位移测量装置 16 连接。恒温箱 11 和试样盒 15 材质为金属材料或有机玻璃，价格低廉，成本可控。

[0020] 所述水箱包括蒸馏水水箱 3 和碱溶液水箱 4，所述蒸馏水水箱 3 和碱溶液水箱 4 分别通过注液管 13 与试样盒 15 相连，所述注液管 13 上安装有调节控制阀 14，所述调节控制阀 14 与控制台 1 电连接，调节控制阀 14 的开启、闭合状态由控制台 1 控制。控制台 1 根据编制好的程序控制调节控制阀 14 开启，先向试样盒 15 内注入蒸馏水，对岩石柱试样进行浸泡处理。
样 8 进行浸泡，当岩石柱试样 8 在蒸馏水中的长度变化稳定之后，自动开启调节阀排出蒸馏水，然后自动注入碱溶液进行浸泡，调节控制阀 14 由控制台 1 通过程序控制开启或闭合，简单方便。

[0021] 试样盒 15 置于恒温箱内，试样盒 15 内部设有液位传感器 19 和用于固定岩石柱试样的固定装置。所述液位传感器 19 设置两个，分别位于试样盒 15 内的顶部和底部，分别用于感应液体的注入和排出，两个液位传感器 19 均与控制台 1 电连接，将检测的液位高度转换成电信号输出至控制台 1，所述液位传感器 19 为浮球式液位传感器；所述固定装置包括上下两个横向布置的试样定位板 21，两个试样定位板 21 坚向对应位置分别设有插孔，所述底部的试样定位板侧壁设有深入插孔内用于紧固岩石柱试样的试样固定架 22，岩石柱试样 8 坚直插入插孔中，以避免岩石柱试样 8 在插孔中晃动，岩石柱试样 8 底部通过试样紧固架 22 紧固。所述试样盒 15 通过废液排出管 24 与废液收集箱 7 相连，所述废液排出管 24 上安装有废液控制阀 23，所述废液控制阀 23 与控制台 1 电连接，废液控制阀 23 的开启、闭合状态由控制台控制。

[0022] 所述恒温箱内还设有温度传感器 12 和传感器升降支架 17，所示温度传感器 12 与控制台 1 电连接，将检测到的温度传感器信号输出至控制台，实时监测恒温箱内 11 的温度，所述温度传感器 12 为接触式温度传感器。所述位移测量装置 16 通过紧固螺栓 18 固定于传感器升降支架 17 上，随传感器升降支架上升或下降。由于位移测量装置 16 的探头不能直接定在岩石柱试样 8 表面，因此需在位移测量装置 16 与岩石柱试样 8 之间设置位移传导杆 20，位移传导杆 20 起到位移变化的传导作用，位移测量装置 16 探头则指向延伸出试样盒顶部的位移传导杆 20，通过移传导杆 20 采集岩石柱试样 8 的位移膨胀值，所述位移测量装置 16 为直线位移传感器或数显千分表。

[0023] 所述恒温装置包括热交换机 5 和压缩机 6，所述热交换机 5 电连接压缩机 6，所述热交换机 5 设置于恒温箱内 11，所述压缩机 6 通过接口连线与控制台 1 电连接。恒温装置保证恒温箱内 11 内温度恒定，提高测试精度。所述控制台 1 包括显示器 2、输入调节装置 9 和输出端口 10，为整个装置的控制中枢。

[0024] 检测时，将若干岩石柱试样 8 放入试样盒 15 内的试样定位板 21 的插孔中，由试样紧固架 22 固定，岩石柱试样 8 底部紧贴试样盒 15 底部、顶部紧贴位移传导杆 20；调节传感器升降支架 17，使位移测量装置 16 的探头指向岩石柱试样 8 顶部的位移传导杆 20，控制传感器 12 的长度变化，并将数据传给控制台 1，在显示器 2 上显示；通过控制台 1 控制压缩机 6 带动热交换机 5 工作，保证恒温箱内 11 内的温度恒定，恒温箱内 11 内的温度监测由温度传感器 12 实现；人工通过控制台 1 控制调节控制阀 14 开启，先向试样盒内注入蒸馏水，对岩石柱试样 8 进行浸泡，当蒸馏水中的岩石柱试样 8 长度变化稳定后，自动开启废液调节阀 23 排出蒸馏水；然后向试样盒 15 内注入一定浓度的碱溶液，通过液位传感器 19 监测试样盒 15 内溶液高度，达到一定高度后，关闭调节控制阀 14，岩石柱试样 8 开始浸泡；浸泡一定时间后，通过位移测量装置 16 传给控制台 1 的岩石柱试样 8 的位移膨胀数据，判定岩石柱式样 8 是否具有潜在碱活性危险，测试完成后通过控制台 1 控制废液调节阀 23 开启，将检测完成后的废液通过废液排出管 24 排至废液收集箱 7 内。控制台控制调节控制阀 14 和废液调节阀 23 的开启、关闭均通过程序控制。

[0025] 本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
图 1