wo 2009/126771 A2 IO 00O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 1d Intellectual P t t) e
(19) World Intelectual Peoperty Organization. /g3 | I AN OB O A
International Bureau W Uy
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
15 October 2009 (15.10.2009) PCT WO 2009/126771 A2
(51) International Patent Classification: Beaverton, OR 97007 (US). MORRIS, Charles
GO6F 15/16 (2006.01) GO6F 21/00 (2006.01) [US/US]; 1463 Corte De Rosa, San Jose, CA 95120 (US).
GO6F 17/30 (2006.01) WANIGASEKARA-MOHOTTI, Don, Harschadath
; 2362 Boh: Dri ta Cl A 95050
(21) International Application Number: EgS;US]’ ohannon Drive, Santa Clara, CA 9
PCT/US2009/040007 ’
. -) (74) Agents: PALERMO, Christopher et al.; Hickman Paler-
(22) International Filing Date: 9 April 2009 (09.04.2009 mo Truong & Becker Llp, 2055 Gateway Place, Suite
pri (09.04.2009) 550, San Jose, CA 95110 (US).
(25) Filing Language: English (81) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of national protection available). AE, AG, AL, AM,
o AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(30) Priority Data: . CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
12/100,302 9 ApI’ll 2008 (09.04.2008) us EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(71) Applicant (for all designated States except US): OM- HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
NEON, INC. [US/US]; 965 Stewart Drive, Sunnyvale, KZ, LA, LG, LK, LR, LS, LT, LU, LY, MA, MD, ME,
CA 94085 (US). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
(72) Inventors; and SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
(75) Inventors/Applicants (for US only): HOWE, John [US/ UG, US, UZ, VC, VN, ZA, ZM, ZW.

US]; 13590 Old Tree Way, Saratoga, CA 97070 (US).
MITARU, Alexander [US/US]; 10715 Sw 153rd Place,

84)

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: DIRECTED PLACEMENT OF DATA IN A REDUNDANT DATA STORAGE SYSTEM

Class 1

Data
30 Server 11
Dato
Seryer 12

Dato
Server 13

Data
Server 14
Data
Server 15
Data
Server 16
Data
Server 17
Data
Server 18
Data
Server 19
Data
Server 14
Data
Server 1B
Data
Server 1C

Data
client
202

15 22

31

10 20

Name space
manager
104

21 10

11 Class
maonager
106

Class
data bose

Server
manager
108 110

Metadata Server 1

FiG. 2

(57) Abstract: A data processing apparatus, comprising a
metadata store storing information about files that are
stored in a distributed data storage system, and comprising
a class database; one or more processing units; logic con-
figured for receiving and storing in the class database a
definition of a class of data storage servers comprising one
or more subclasses each comprising one or more server
selection criteria; associating the class with one or more
directories of the data storage system; in response to a
data client storing a data file in a directory, binding the
class to the data file, determining and storing a set of iden-
tifiers of one or more data storage servers in the system
that match the server selection criteria, and providing the
set of identifiers to the data client.

WO 20097126771 A2 I 0000 0T 0O A

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Published:

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR),
OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,

MR, NE, SN, TD, TG).

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

WO 2009/126771 PCT/US2009/040007

DIRECTED PLACEMENT OF DATA IN A REDUNDANT DATA STORAGE SYSTEM

WO 2009/126771 PCT/US2009/040007

DIRECTED PLACEMENT OF DATA IN A REDUNDANT DATA STORAGE SYSTEM

TECHNICAL FIELD

[0001] The present disclosure generally relates to computer data storage.

BACKGROUND
[0002] The approaches described in this section could be pursued, but are not necessarily
approaches that have been previously conceived or pursued. Therefore, unless otherwise
indicated herein, the approaches described in this section are not prior art to the claims in this
application and are not admitted to be prior art by inclusion in this section.
[0003] In adistributed data storage system, where particular data is stored may affect data
retrieval time, especially in systems that deliver real-time data such as video data. US Patent
Publication 2007-0214183-A1 describes a distributed data storage system that can place
redundant data images by globally optimizing the availability selection criteria over all
servers. Distributed data storage also may be implemented using RAID (Redundant Array of
Inexpensive Drives), NAS (Network Attached Storage), and SAN (Storage Area Network).
Examples of distributed filesystems include the HP Lustre File System, SGI Clustered
Extensible File System (CXFS), Veritas File System (VxES), Google File System (GFS),
Omneon Extended File System (EFS), Oracle Cluster File System (OCFS), and the Hadoop
Distributed File System (HDFS). Distributed hardware systems include Isilon, Panasas, Avid
ISIS.

BRIEF DESCRIPTION OF THE DRAWINGS
[0004] In the drawings:
[0005] FIG. 1 shows a system manager client of a metadata server of a distributed storage
system and a sequence of steps that may be taken, in one embodiment, to add a new server
class attribute and define a new class.
[0006] FIG. 2 shows a data client of a distributed storage system and an example
sequence of steps taken to write data to a file in a specific class.
[0007] FIG. 3 shows a system manager client of a metadata server of a distributed storage
system and an example sequence of steps taken to update an existing class.
[0008] FIG. 4 shows a system manager client re-associating a file to a new or different

class.

WO 2009/126771 PCT/US2009/040007

[0009] FIG. 5A illustrates logical relationships of a file, class, subclasses, and data
servers.

[0010] FIG. 5B illustrates an example server property database.

[0011] FIG. 6 illustrates a computer system upon which an embodiment may be

implemented.

DETAILED DESCRIPTION

[0012] In the following description, for the purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the present invention. It
will be apparent, however, to one skilled in the art that the present invention may be practiced
without these specific details. In other instances, well-known structures and devices are
shown in block diagram form in order to avoid unnecessarily obscuring the present invention.
[0013] Embodiments are described herein according to the following outline:

1.0 General Overview

2.0 Structural and Functional Overview

3.0 Implementation Mechanisms—Hardware Overview

4.0 Extensions and Alternatives
[0014] 1.0 GENERAL OVERVIEW
[0015] Inanembodiment, a data processing apparatus comprises a metadata store storing
information about files that are stored in a distributed data storage system, and comprising a
class database; one or more processing units; logic configured for receiving and storing in the
class database a definition of a class of data storage servers comprising one or more
subclasses each comprising one or more server selection criteria; associating the class with
one or more directories of the data storage system; in response to a data client storing a data
file in a directory, binding the class to the data file, determining and storing a set of
identifiers of one or more data storage servers in the system that match the server selection
criteria, and providing the set of identifiers to the data client.
[0016] In other embodiments, the invention encompasses a computer-implemented
method and a computer-readable medium configured to carry out the foregoing steps.
[0017] In an embodiment, a replication framework is provided to control the placement
and migration of file data within a distributed storage system. Control over data placement is
useful to leverage differences in servers in a heterogeneous server cluster supporting a

distributed file system. Control over data placement also allows files to expand within

WO 2009/126771 PCT/US2009/040007

specific server partitions. Control over data placement also can help localize file repair
within a redundant data fabric.

[0018] Although certain embodiments are described in the context of storing data files, the
techniques in this disclosure also can be applied to the placement of distributed applications
among intelligent storage elements of a distributed storage system.

[0019] 2.0 STRUCTURAL AND FUNCTIONAL OVERVIEW

[0020] FIG. 1 shows a system manager client 102 of a metadata server 1 of a distributed
storage system and a sequence of steps that may be taken, in one embodiment, to add a new
server class attribute and define a new class. In an embodiment, files are associated with
classes of specific servers. The association of files to server classes provides a means for
controlling the placement of data images within the cluster to specific server partitions. In an
embodiment, a class is a set of servers that satisfy a set of server properties. For example, a
class could be defined as all of the high performance servers within a cluster that are also
connected to the highest bandwidth network switches. Any number of properties having any
degree of complexity may define a class.

[0021] FIG. 5A illustrates logical relationships of a file, class, subclasses, and data
servers. A file 502 is associated by stored information in the metadata server 1 with a class
504. The class 504 is defined by one or more subclasses S05A, S05N. Any number of
subclasses may be used. Collectively the class 504 and its subclasses S05A, 505N define a
set 506 of servers that match the class. A client of the system of FIG. 1 can define the
structure of FIG. 5A, and consequently the client can influence where the file 502 is stored by
restricting storage to servers that are in the set 506 as determined by the class 504 and its
subclasses.

[0022] In an embodiment, each class 504 is represented by a name and a class identifier.
Each subclass is represented by server selection criteria, such as a database view command
string, a list of servers currently matching the criteria and equivalent to set 506, and an
optional representation count that can be used to determine a replication factor for data
images mapped to the class, and a logical class identifier. The name, server selection criteria,
and class identifier are shared as global state values among redundant metadata servers. For
example, the metadata servers described in the system of US Patent Publication 2007-
0214183-A1 may be used. Alternatively, an embodiment may use the Omneon MediaGrid
storage system, commercially available from Omneon, Inc., Sunnyvale, California.

[0023] Classes may overlap. In an embodiment, a “share/no-share” property of a class

indicates whether the class may overlap with others.

WO 2009/126771 PCT/US2009/040007

[0024] In an embodiment, a server property database 110 is maintained on each metadata
server 1 in a distributed storage system. In the database 110, rows represent servers that are
class members, and columns represent server properties. FIG. 5B illustrates an example
server property database 110 in which column 510 identifiers servers, each of which is
associated with a row, and columns 512, 514, 516, 518, 520 store properties of the server for
the associated row. Any number of rows and columns may be represented in database 110.
During startup, the database 110 is initialized by storing read-only system level properties for
each available server in the columns 514, 516, 518, 520. Example system-level properties
include serial number, network topology location, processor speed, and number of processor
cores, as seen in FIG. 5B, but any properties may be used.

[0025] In an embodiment, the database 110 applies a sequence of commands, which are
journaled on the metadata server, to make the database current and consistent with databases
on other metadata servers controlling the server cluster. A transient list of abstract read/write
server properties (e.g., server owner, repair priority) may be assigned to servers over time.
[0026] In an embodiment, all data of the file 502 is mapped to one class 504. The
metadata stored in metadata server 1 for each replicated data image of a file contains the
logical class identifier, thereby binding the location of file data to a particular class of servers.
The metadata may be stored in local data storage of the metadata server 1, which is replicated
to and synchronized with metadata data storage in all other metadata servers in the system. If
a server change results in a repair to the data storage fabric, data is moved to other servers so
that all file data remains in servers of the class to which the data is bound. As classes are
redefined, or as files are moved between classes, the set of servers housing each data image
for a file is reformed relative to the class. All such data movement is done local to the
cluster, and does not require data movement between a client utility and the cluster servers.
[0027] In an embodiment, a nonzero representation count in a subclass S05A indicates the
minimum number of servers from that subclass that must be represented in a replica set.
Thus, a request to store data may indicate, using a nonzero representation count for a subclass
505A, an enforced replication factor for any file 502 mapped to that subclass S05A.

[0028] Subclasses 505A, 505N may affect data replication in a redundant data fabric as
follows. When a class 504 consists of subclasses 505A, 505N all having a zero
representation count, then the replication factor for data images mapped to that class is
obtained from an inherited file property, such as replication factor 508 of namespace
properties 509 as seen in FIG. SA. Otherwise, the effective data image replication factor is
the sum of all subclass representation counts; moreover, in this latter case, any subclass with

a zero representation count is ignored during sequence generation and data fabric repair.

-5-

WO 2009/126771 PCT/US2009/040007

Furthermore, the replication factor for a file can be individually modified only when the sum
of all subclass representation counts of the associated class is zero.

[0029] The metadata servers use a message-based control path for communications to
intelligent storage elements to collect dynamic storage availability statistics. The metadata
servers calculate the availability of the data fabric with respect to each class.

[0030] As aresult, clients of the storage system can specify where the data for a file is to
be located within a potentially huge cluster of commodity servers by binding the file to a
class identifier. Thus, using embodiments, control of placement of replicated data images in
a redundant data fabric is provided on a per-file basis. This additional control enables users
to further optimize access of data in distributed file system according to dynamic business
needs.

[0031] With embodiments, clients of a distributed file system have control over how data
is placed and maintained. Previous approaches using metadata servers generally have placed
redundant data images on data servers by globally optimizing the availability selection
criteria over all servers. With the embodiments herein, data placement and the use of
optimized availability selection criteria can be applied locally to specific sets of servers. By
binding each data image to a class, files can be placed on specific sets of servers as the files
are written, or as the data fabric is repaired.

[0032] Some previous approaches have partitioned servers into static groups, typically
aligned along power distribution boundaries, and replication has sought to distribute images
globally by striding them over groups. The present approach complements static group
striding methods. In particular, when classes overlay multiple groups, distribution is biased
so that images are distributed over all groups in the overlay.

[0033] Using the techniques herein, client control of data placement enables a wide
variety new uses for such a file system, including hierarchical data management and data
access staging. For example, a video file in a class consisting of a few large capacity servers
may be reassigned to a class consisting of many high performing servers configured only
with RAM disks, just prior to performing transcoding or just prior to playing the file in a
video network.

[0034] Embodiments also enable the development of intelligent cluster manager
applications to monitor and control a cluster on a class basis without having to copy data in
and out of the cluster. For example, a manager application can monitor file class assignments
and re-assign files that have not been accessed recently to classes in order to maintain a
specific amount of free space in frequently accessed classes. The manager application also

could reassign additional servers to non overlapping classes that are nearly full.

-6-

WO 2009/126771 PCT/US2009/040007

[0035] 2.1 ADDING A SERVER CLASS ATTRIBUTE AND DEFINING A CLASS
[0036] FIG. 1 further shows a sequence of steps that may be taken, in one embodiment, to
add a new server class attribute and define a new class.
[0037] In an embodiment, a system manager 102 is coupled to a metadata server 1. The
system manager 102 is a client of the metadata server 1. In various embodiments, there may
be any number of metadata servers. For example, the architecture of US Patent Publication
2007-0214183-A1 may be used. Each metadata server 1 may be implemented using a
general purpose computer system as shown in FIG. 6 in which the memory or local data
storage stores program instructions or other software elements that implement the functions
described herein. For example, metadata server 1 may comprise logic that implements a
name space manager 104, class manager 106, server manager 108, and class database 110.
[0038] First the client makes a remote procedure request (10) to assign a class attribute to
a set of servers. For example, the commands
attribute = “owner=demo”
servers = {serverl-server30}
assign the owner attribute to “demo” to servers identified using identifier values serverl
through server30. The class manager 106 journals state data, and updates the class database
110. The attribute and server set are passed to other metadata servers (16). For example, the
techniques to share data on a redundant metadata server ring described in U.S. Pat. No.
6,665,675 B1 may be used.
[0039] System manager 102 as client makes a remote procedure request (20) to define a
new class by specifying the class name and set of subclass strings. For example, system
manager 102 sends the following request:
name = “fastServerClass”
subclassl = (processorSpeed=3GHz &&
“owner = demo” &&
“location=labRoom 1)(representationCount=2)
subclass2 = (processorSpeed=3GHz &&
“owner = demo” &&
“location=labRoom?2)(representationCount=2)
[0040] The example request indicates that servers associated with a class named
“fastServerClass™ comprise all 3GHz servers in labl and lab2 that have been allocated for the
owner “demo”. In response to the request, class manager 106 uses the subclass criteria to
identify a set of servers that satisfy the attribute criteria. Class manager 106 then sends the

server set to the server manager 108 at (26). Subclasses may identify any desired criteria,

7-

WO 2009/126771 PCT/US2009/040007

such as processor speed, number of CPUs or CPU cores, the speed of a switch to which a
server is coupled, location, read latency, write latency, etc.

[0041] The representation count values may be different in different subclasses. Thus,
while the representation count is “2” in both subclasses of the example above, other
embodiments may use different counts in different subclasses. Use of representation counts
enables clients to indirectly specify, for example, that a file must have high availability. For
example, high representation count values will result in storing the file with a high replication
factor, so that the file can be delivered to more clients concurrently.

[0042] Inresponse, the server manager 108 assigns a new class identifier for the servers
and shares this identifier with all other server manager instances of other metadata servers 1
among the redundant metadata servers 112 at (27). The server manager 108 returns the class
identifier to the class manager at (22).

[0043] In response, the class manager 106 updates the class database 110 at (28) and
returns the class identifier to the system manager 102 at (29). Because the representation
count values are “2,” all subsequent file data associated with the class identifier will be
replicated twice among the 3GHz servers owned by “demo” in labl and twice among the
3GHz servers owned by “demo” in lab2.

[0044] 22 WRITING DATA TO A FILE IN A CLASS

[0045] In an embodiment, when a file is to be stored and the file has an association to a
class, availability selection criteria is used to locate the best available servers in the class to
house the data for the file. When the members of a class change, or when the association of a
file is changed to a different class, all data for the affected files are re-replicated using only
that part of the cluster that contains servers in the class.

[0046] FIG. 2 shows a data client of a distributed storage system and an example
sequence of steps that may be performed to write data to a file in a specific class.

[0047] Since servers supporting a massively distributed file system may simultaneously
host parallel applications, the methods described herein can be used to control placement of
applications executing within the cluster. Thus, the term “file” as used herein includes data
files, application files including executables, and all other data that can be stored in a storage
system.

[0048] In an embodiment, a data client 202 is coupled to the metadata server 1 and
creates a file in a directory (10). The name space manager 104 assigns a class identifier for
the directory to the file as an inherited property. The name space manager 104 sends a path

name and class identifier to the class manager to bind the file to the class for subsequent

WO 2009/126771 PCT/US2009/040007

reverse lookup files by class (11). The name space manager 104 returns a handle to the client
(15).

[0049] The data client 202, which is unaware of any class definition, requests the network
addresses of a set of servers to write to (20). The name space manager 104 requests (21) the
server manager 108 for the “optimal” servers in the class for writes. Based on best
availability criteria applied locally to the server members in the class, the server manager 108
returns the addresses and the replication factor to the client (22). The replication factor is
determined by summing the representation counts for all subclasses.

[0050] Continuing the example above, at (30) the data client 202 sends data to a first data
server 13 with instructions for storing and forwarding onto the other servers in the sequence.
In response, the first data server 13, a second data server 15, and a third data server 18 each
perform copy/forward operations, resulting in storing and forwarding data three more times
(31, 32, 33).

[0051] 2.3 UPDATING A CLASS

[0052] FIG. 3 shows a system manager client of a metadata server of a distributed storage
system and an example sequence of steps taken to update an existing class. In FIG. 3, a
system manager 102 is coupled to metadata server 1 as in FIG. 1. FIG. 3 also illustrates a
first class comprising data servers 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, and a second
or updated class comprising different data servers 21, 22, 23, 24, 25, 26, 27, 28, 29, 2A, 2B,
2C, 2D, 2E.

[0053] For example, assume that a user desires to teplace “lab1” with “lab3” in the
representation of “fastServerClass™ set forth above.

[0054] The system manager 102 acting as client makes a remote procedure request to
update the subclass database string (10). In response, class manager 106 updates the class
database locally, and updates other metadata servers 1 among the redundant metadata servers
112 (FIG. 1) with the new database string. In response, the server manager instances on all
the metadata servers associate a new server set for the specific class as in FIG. 1.

[0055] The name space manager 104 performs a reverse lookup and reads the list of paths
associated with the specific class. For each data chunk of each file, the name space manager
104 requests the server manager 108 to re-replicate the associated data images for the updated
class (15). For each data chunk, the server manager 108 calculates the best available server
set in the updated class and requests each server holding a specific data image (20, 30, 40, 50)
to move the data in parallel to the optimally available server set for the updated class (21, 31,
41, 51).

WO 2009/126771 PCT/US2009/040007

[0056] If the updated class reflects a higher replication factor than before, then data
movement from one to multiple servers is implied, and is performed. Because the server
manager 108 maintains a broad view of server availability, some of the servers holding the
original data image may be too busy to move data. In this case, the movement is done with a
subset of servers (e.g., data server 13 and 17). As data movement completes, the server
manager 108 updates the location of the data images on the metadata server 1. The data
client 202 (FIG. 2) may receive an asynchronous event notification, or may poll the metadata
server 1 to determine whether data movement is complete (60).

[0057] Inan embodiment, data movement is contingent on available space in the updated
class. If the servers in the updated class do not have available space, the metadata server will
retry failed replications as the space dynamic parameters collected from each server in the
class change over time.

[0058] 2.4 ASSOCIATING A FILE TO A DIFFERENT CLASS

[0059] FIG. 4 shows a system manager client re-associating a file to a new or different
class. A file may be re-associated with a new class or a different class for several reasons.
For example, as the number of read accesses for a video file increases, the value of that file
within a data storage cluster increases. By reassigning a frequently requested file to a class
consisting of servers with fast central processing units and network interfaces, the cluster is
able to service read requests so that the video is played out on more clients. If that class also
has a higher representation count, then more copies of the file are distributed and maintained
within the cluster, which also makes the file more available for clients reading it.

[0060] Reassigning the file to a new class can be performed as the file is being accessed.
For purposes of this disclosure, the terms “re-associating” and “reassigning” are equivalent.
[0061] In an embodiment, system manager client 102 makes a remote procedure request
to the namespace manager 104 to update the file attributes containing a new class identifier
(10). The name space manager validates the new class with the class manager (11, 12).
[0062] For each data chunk associated with the file, the name space manager informs the
server manager to reassign the data chunk to the new class identifier (15). For each data
chunk, the server manager calculates the best available server set in the new class and
requests each server holding a specific data image (20, 40) in the old class with an implied
replication factor of 2, to move the data (in parallel) to an optimally available server set for
the new class (21, 22, 41, 42) with a higher implied replication factor of 4, as shown just

above Data Server 21.

-10-

WO 2009/126771 PCT/US2009/040007

[0063] 3.0 IMPLEMENTATION MECHANISMS -- HARDWARE OVERVIEW
[0064] FIG. 6 is a block diagram that illustrates a computer system 600 upon which an
embodiment of the invention may be implemented. Computer system 600 includes a bus 602
or other communication mechanism for communicating information, and a processor 604
coupled with bus 602 for processing information. Computer system 600 also includes a main
memory 606, such as a random access memory (RAM) or other dynamic storage device,
coupled to bus 602 for storing information and instructions to be executed by processor 604.
Main memory 606 also may be used for storing temporary variables or other intermediate
information during execution of instructions to be executed by processor 604. Computer
system 600 further includes a read only memory (ROM) 608 or other static storage device
coupled to bus 602 for storing static information and instructions for processor 604. A
storage device 610, such as a magnetic disk or optical disk, is provided and coupled to bus
602 for storing information and instructions.

[0065] Computer system 600 may be coupled via bus 602 to a display 612, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device 614,
including alphanumeric and other keys, is coupled to bus 602 for communicating information
and command selections to processor 604. Another type of user input device is cursor control
616, such as a mouse, a trackball, or cursor direction keys for communicating direction
information and command selections to processor 604 and for controlling cursor movement
on display 612. This input device typically has two degrees of freedom in two axes, a first
axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane.
[0066] The invention is related to the use of computer system 600 for implementing the
techniques described herein. According to one embodiment of the invention, those
techniques are performed by computer system 600 in response to processor 604 executing
one or more sequences of one or more instructions contained in main memory 606. Such
instructions may be read into main memory 606 from another machine-readable medium,
such as storage device 610. Execution of the sequences of instructions contained in main
memory 606 causes processor 604 to perform the process steps described herein. In
alternative embodiments, hard-wired circuitry may be used in place of or in combination with
software instructions to implement the invention. Thus, embodiments of the invention are
not limited to any specific combination of hardware circuitry and software.

[0067] The term “machine-readable medium” as used herein refers to any medium that
participates in providing data that causes a machine to operation in a specific fashion. In an
embodiment implemented using computer system 600, various machine-readable media are

involved, for example, in providing instructions to processor 604 for execution. Such a

-11-

WO 2009/126771 PCT/US2009/040007

medium may take many forms, including but not limited to storage media and transmission
media. Storage media includes both non-volatile media and volatile media. Non-volatile
media includes, for example, optical or magnetic disks, such as storage device 610. Volatile
media includes dynamic memory, such as main memory 606. Transmission media includes
coaxial cables, copper wire and fiber optics, including the wires that comprise bus 602.
Transmission media can also take the form of acoustic or light waves, such as those generated
during radio-wave and infra-red data communications. All such media must be tangible to
enable the instructions carried by the media to be detected by a physical mechanism that
reads the instructions into a machine.

[0068] Common forms of machine-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a
carrier wave as described hereinafter, or any other medium from which a computer can read.
[0069] Various forms of machine-readable media may be involved in carrying one or
more sequences of one or more instructions to processor 604 for execution. For example, the
instructions may initially be carried on a magnetic disk of a remote computer. The remote
computer can load the instructions into its dynamic memory and send the instructions over a
telephone line using a modem. A modem local to computer system 600 can receive the data
on the telephone line and use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in the infra-red signal and
appropriate circuitry can place the data on bus 602. Bus 602 carries the data to main memory
606, from which processor 604 retrieves and executes the instructions. The instructions
received by main memory 606 may optionally be stored on storage device 610 either before
or after execution by processor 604.

[0070] Computer system 600 also includes a communication interface 618 coupled to bus
602. Communication interface 618 provides a two-way data communication coupling to a
network link 620 that is connected to a local network 622. For example, communication
interface 618 may be an integrated services digital network (ISDN) card or a modem to
provide a data communication connection to a corresponding type of telephone line. As
another example, communication interface 618 may be a local area network (LAN) card to
provide a data communication connection to a compatible LAN. Wireless links may also be
implemented. In any such implementation, communication interface 618 sends and receives
electrical, electromagnetic or optical signals that carry digital data streams representing

various types of information.

-12-

WO 2009/126771 PCT/US2009/040007

[0071] Network link 620 typically provides data communication through one or more
networks to other data devices. For example, network link 620 may provide a connection
through local network 622 to a host computer 624 or to data equipment operated by an
Internet Service Provider (ISP) 626. ISP 626 in turn provides data communication services
through the world wide packet data communication network now commonly referred to as
the “Internet” 628. Local network 622 and Internet 628 both use electrical, electromagnetic
or optical signals that carry digital data streams. The signals through the various networks
and the signals on network link 620 and through communication interface 618, which carry
the digital data to and from computer system 600, are exemplary forms of carrier waves
transporting the information.

[0072] Computer system 600 can send messages and receive data, including program
code, through the network(s), network link 620 and communication interface 618. In the
Internet example, a server 630 might transmit a requested code for an application program
through Internet 628, ISP 626, local network 622 and communication interface 618.

[0073] The received code may be executed by processor 604 as it is received, and/or
stored in storage device 610, or other non-volatile storage for later execution. In this manner,
computer system 600 may obtain application code in the form of a carrier wave.

[0074] 4.0 EXTENSIONS AND ALTERNATIVES

[0075] In the foregoing specification, embodiments of the invention have been described
with reference to numerous specific details that may vary from implementation to
implementation. Thus, the sole and exclusive indicator of what is the invention, and is
intended by the applicants to be the invention, is the set of claims that issue from this
application, in the specific form in which such claims issue, including any subsequent
correction. Any definitions expressly set forth herein for terms contained in such claims shall
govern the meaning of such terms as used in the claims. Hence, no limitation, element,
property, feature, advantage or attribute that is not expressly recited in a claim should limit
the scope of such claim in any way. The specification and drawings are, accordingly, to be

regarded in an illustrative rather than a restrictive sense.

-13-

WO 2009/126771 PCT/US2009/040007

CLAIMS

What is claimed is;

L. A data processing apparatus, comprising:
a metadata store storing information about files that are stored in a distributed data
storage system, and comprising a class database;
one Or more processing units;
logic coupled to the processing unit(s) and to the metadata store and comprising
stored sequences of instructions which, when executed by the processing
unit(s), cause:
receiving and storing in the class database a definition of a class of data
storage servers comprising one or more subclasses each comprising
one or mote server selection criteria;
associating the class with one or more directories of the data storage system;
in response to a data client storing a data file in a directory, binding the class
to the data file, determining and storing a set of identifiers of one or
more data storage servers in the system that match the server selection

criteria, and providing the set of identifiers to the data client.

2. The apparatus of claim 1, further comprising sequences of instructions which, when
executed by the processing unit(s), cause receiving a representation count in the definition of
the one or more subclasses, determining a replication factor for the data file based on a sum
of the representation counts, and storing a plurality of replicas of the data file in the data

storage servers according to the replication factor.

3. The apparatus of claim 1, further comprising sequences of instructions which, when
executed by the processing unit(s), cause receiving a representation count of zero in the
definition of the one or more subclasses, determining a replication factor for the data file
based on a replication factor property of the data file that is inherited from a directory in
which the data file was created, and storing a plurality of replicas of the data file in the data

storage servers according to the replication factor.

4. The apparatus of claim 1, further comprising sequences of instructions which, when

executed by the processing unit(s), cause determining and storing the set of identifiers based

-14-

WO 2009/126771 PCT/US2009/040007

further on one or more best availability criteria that are applied only to the data storage

servers in the system that match the server selection criteria.

5. The apparatus of claim 1, wherein the server selection criteria comprise processor

speed, owner and location.

6. The apparatus of claim 1, further comprising sequences of instructions which, when
executed by the processing unit(s), cause automatically storing the data file only on one or

more first data storage servers that are identified in the set of identifiers.

7. The apparatus of claim 6, further comprising sequences of instructions which, when
executed by the processing unit(s), cause:
receiving an updated definition of one or more of the subclasses comprising one or
more updated server selection criteria,;
based on the updated definition, determining and storing an updated set of identifiers
of one or more different data storage servers in the system that match the
updated server selection criteria;
causing automatically storing the data file only on one or more second data storage

servers that are identified in the updated set of identifiers.

3. The apparatus of claim 1, further comprising sequences of instructions which, when
executed by the processing unit(s), cause:
receiving a representation count in the definition of the one or more subclasses,
determining a first replication factor for the data file based on a sum of the
representation counts, and storing a plurality of replicas of the data file in the
data storage servers according to the first replication factor;
receiving an updated definition of one or more of the subclasses comprising one or
more updated server selection criteria;
based on the updated definition, determining and storing an updated set of identifiers
of one or more different data storage servers in the system that match the
updated server selection criteria, and determining a second replication factor
for the data file based on a sum of the representation counts in the updated

definition;

-15-

WO 2009/126771 PCT/US2009/040007

storing the data file only on one or more second data storage servers that are identified
in the updated set of identifiers, in a plurality of replicas according to the

second replication factor.

9. The apparatus of claim 1, further comprising sequences of instructions which, when
executed by the processing unit(s), cause:
receiving an updated file attribute for the data file that comprises an updated class
identifier;
determining and storing an updated set of identifiers of one or more different data
storage servers in the system that match the server selection criteria of the one
or more subclasses of the class of the updated class identifier;
storing the data file only on one or more second data storage servers that are identified

in the updated set of identifiers.

10. The apparatus of claim 9, further comprising sequences of instructions which, when
executed by the processing unit(s), cause:
determining a replication factor for the data file based on a sum of representation
counts of the one or more subclasses of the updated class identifier;
storing the data file only on the second data storage servers that are identified in the
updated set of identifiers, in a plurality of replicas according to the replication

factor.

11. A computer-readable data storage medium comprising stored sequences of
instructions which, when executed by one or more processing unit(s), cause:
receiving and storing, in a class database in a metadata store storing information about
files that are stored in a distributed data storage system, a definition of a class
of data storage servers comprising one or more subclasses each comprising
one or more server selection criteria;
associating the class with one or more directories of the data storage system;
in response to a data client storing a data file in a directory, binding the class to the
data file, determining and storing a set of identifiers of one or more data
storage servers in the system that match the server selection criteria, and

providing the set of identifiers to the data client.

-16-

WO 2009/126771 PCT/US2009/040007

12. The storage medium of claim 10, further comprising sequences of instructions which,
when executed by the processing unit(s), cause receiving a representation count in the
definition of the one or more subclasses, determining a replication factor for the data file
based on a sum of the representation counts, and storing a plurality of replicas of the data file

in the data storage servers according to the replication factor.

13. The storage medium of claim 10, further comprising sequences of instructions which,
when executed by the processing unit(s), cause receiving a representation count of zero in the
definition of the one or more subclasses, determining a replication factor for the data file
based on a replication factor propetrty of the data file that is inherited from a directory in
which the data file was created, and storing a plurality of replicas of the data file in the data

storage servers according to the replication factor.

14. The storage medium of claim 10, further comprising sequences of instructions which,
when executed by the processing unit(s), cause determining and storing the set of identifiers
based further on one or more best availability criteria that are applied only to the data storage

servers in the system that match the server selection criteria.

15. The storage medium of claim 10, wherein the server selection criteria comprise

processor speed, owner and location.

16. The storage medium of claim 10, further comprising sequences of instructions which,
when executed by the processing unit(s), cause automatically storing the data file only on one

or more first data storage servers that are identified in the set of identifiers.

17. The storage medium of claim 10, further comprising sequences of instructions which,
when executed by the processing unit(s), cause:
receiving an updated definition of one or more of the subclasses comprising one or
more updated server selection criteria;
based on the updated definition, determining and storing an updated set of identifiers
of one or more different data storage servers in the system that match the
updated server selection criteria;
causing automatically storing the data file only on one or more second data storage

servers that are identified in the updated set of identifiers.

-17-

WO 2009/126771 PCT/US2009/040007

18. The storage medium of claim 10, further comprising sequences of instructions which,
when executed by the processing unit(s), cause:
receiving a representation count in the definition of the one or more subclasses,
determining a first replication factor for the data file based on a sum of the
representation counts, and storing a plurality of replicas of the data file in the
data storage servers according to the first replication factor;
receiving an updated definition of one or more of the subclasses comprising one or
more updated server selection criteria;
based on the updated definition, determining and storing an updated set of identifiers
of one or more different data storage servers in the system that match the
updated server selection criteria, and determining a second replication factor
for the data file based on a sum of the representation counts in the updated
definition;
storing the data file only on one or more second data storage servers that are identified
in the updated set of identifiers, in a plurality of replicas according to the

second replication factor.

19. The storage medium of claim 10, further comprising sequences of instructions which,
when executed by the processing unit(s), cause:
receiving an updated file attribute for the data file that comprises an updated class
identifier;
determining and storing an updated set of identifiers of one or more different data
storage servers in the system that match the server selection criteria of the one
or more subclasses of the class of the updated class identifier;
storing the data file only on one or more second data storage servers that are identified

in the updated set of identifiers.

20. The storage medium of claim 19, further comprising sequences of instructions which,
when executed by the processing unit(s), cause:
determining a replication factor for the data file based on a sum of representation
counts of the one or more subclasses of the updated class identifier;
storing the data file only on the second data storage servers that are identified in the
updated set of identifiers, in a plurality of replicas according to the replication

factor.

-18-

WO 2009/126771 PCT/US2009/040007

21. A computer-implemented method, comprising:

receiving and storing, in a class database in a metadata store storing information about
files that are stored in a distributed data storage system, a definition of a class
of data storage servers comprising one or more subclasses each comprising
one or more server selection criteria;

associating the class with one or more directories of the data storage system;

in response to a data client storing a data file in a directory, binding the class to the
data file, determining and storing a set of identifiers of one or more data
storage servers in the system that match the server selection criteria, and

providing the set of identifiers to the data client.

22. The method of claim 21, further comprising receiving a representation count in the
definition of the one or more subclasses, determining a replication factor for the data file
based on a sum of the representation counts, and storing a plurality of replicas of the data file

in the data storage servers according to the replication factor.

23, The method of claim 21, further comprising receiving a representation count of zero
in the definition of the one or more subclasses, determining a replication factor for the data

file based on a replication factor property of the data file that is inherited from a directory in
which the data file was created, and storing a plurality of replicas of the data file in the data

storage servers according to the replication factor.

24. The method of claim 21, further comprising determining and storing the set of
identifiers based further on one or more best availability criteria that are applied only to the

data storage servers in the system that match the server selection criteria.

25. The method of claim 21, further comprising automatically storing the data file only on

one or more first data storage servers that are identified in the set of identifiers.

26. The method of claim 25, further comprising:
receiving an updated definition of one or more of the subclasses comprising one or

more updated server selection criteria;

-19-

WO 2009/126771 PCT/US2009/040007

based on the updated definition, determining and storing an updated set of identifiers
of one or more different data storage servers in the system that match the
updated server selection criteria,;

causing automatically storing the data file only on one or more second data storage

servers that are identified in the updated set of identifiers.

The method of claim 21, further comprising:

receiving a representation count in the definition of the one or more subclasses,
determining a first replication factor for the data file based on a sum of the
representation counts, and storing a plurality of replicas of the data file in the
data storage servers according to the first replication factor;

receiving an updated definition of one or more of the subclasses comprising one or
more updated server selection criteria;

based on the updated definition, determining and storing an updated set of identifiers
of one or more different data storage servers in the system that match the
updated server selection criteria, and determining a second replication factor
for the data file based on a sum of the representation counts in the updated
definition;

storing the data file only on one or more second data storage servers that are identified
in the updated set of identifiers, in a plurality of replicas according to the

second replication factor.

The method of claim 21, further comprising:

receiving an updated file attribute for the data file that comprises an updated class
identifier;

determining and storing an updated set of identifiers of one or more different data
storage servers in the system that match the server selection criteria of the one
or more subclasses of the class of the updated class identifier;

storing the data file only on one or more second data storage servers that are identified

in the updated set of identifiers.

The method of claim 28, further comprising:
determining a replication factor for the data file based on a sum of representation

counts of the one or more subclasses of the updated class identifier;

-20-

WO 2009/126771 PCT/US2009/040007

storing the data file only on the second data storage servers that are identified in the
updated set of identifiers, in a plurality of replicas according to the replication

factor.

WO 2009/126771 PCT/US2009/040007
1/6

System
Manager
(client)
102
10 29
| / A 20
Name space 26 Class
manager manager
lo4 | 108 Redundant
16 |25,28 Metadata
Servers
112
Server Class
manager — data base
108 110
22

Metadata Server 1

FiG. 1

WO 2009/126771

2/6

Class 1

Data
Server 11

Data
Server 12

Data
client 30
202
15 22
710 20
Name space 11 Class
manager - manager
104 106
21 1 10
Y
Server Class
manager data base
108 110

Metadata Server 1

FiGa. 2

32

Data
Server 13

PCT/US2009/040007

31

Data
Server 14

Data
Server 15

Data
Server 16

Data
Server 17

Data
Server 18

33

Data
Server 19

Data
Server 1A

Data
Server 1B

Data
Server 1C

WO 2009/126771

PCT/US2009/040007
3/6
Original Updated
Class Class
Data Data
Server 11 Server 21
Data Data
Server 12 Server 22
Systen
Manager | Data Data
102 Server 13 |21 | Server 23
y 3 A
60 Data Data
Seryer 14 Server 24
10 20 30= Data Data
Server 15 |31 | Server 25
Data Data
Name space Class
manager ;27 1 J manager Seryver 16 Server 26
104 1
— e 40| Data 41 Data
15 13 Server 17 T Server 27
Data Data
Server 18 Seryer 28
\ J
Server Class Data Data
manager data base Server 19 Server 29
108 110
Data || Data
Server 1A Server 2A
50| Doata b1 Data
Server 18 | | | Server 2B
Metadata Server 1
Data Data
Seryver 1IC Server 2C
Data
Server 2D
Data
F. [G 3 Server 2E

WO 2009/126771

4/6

System
Manager
client
102
J “60
10 20
Name space | ¢4 Class
manager |+=—> manager
104 /2 106
15
Server Class |
manager data base
108 110

Metadata Server 1

FiG.

PCT/US2009/040007
Old New
Class Class

replication=2 replication=4
Data Data

Server 11 Server 21
Data Data
Server 12 Server 22
Data Data
Server 13 |21 | Server 23
| I
Data .| Data
Server 14 |22 | Server 24
Data Data
Server 15 Server 25
Data Data
Server 16 Server 26
Data 41 Data
Server 17 | | | Server 27
|
Data Data
Server 18 Server 28
Data Data
Server 19 Server 29
Data | | Data
Server 1A Server 2A
Data Data
Server 1B Server 2B
Data Data
Server 1C Server 2C
Data
Server 2D
.| Data
42 | Server ZE

PCT/US2009/040007

WO 2009/126771

5/6

suwnjod Jo
saquinu Auy

sMos jo sequnu Auy

N 484485 DJOQ

/) 494435 DJO(

G| JeAiBS DIDQ

¢ JeAsas 0o

——

J84)0 02G | $2400NdJ 8)

po3dsndd 9jG

uonobao] ¥JG

ON [DII8S 2ig J9A18S 0]G

0}

g 4eA4aS DJO(Q

G) 49A18S DID(J

/) 48A18S pJO(d

gs old

£} 49A185 DJO(J

ssojy buyojoyy sserses jo 18S 909

ssojogns |
NGOG “
|
1
J0)aD4 UoIjDIIdeY "
siohsss Buiyojop o 1sIT _"
DIIBYIIY UOIJI8[S gm\:mm.l_ |
t
|
ssopgng | |

ya09
sspj) ¥09

sa1348dodd
8o0dsswoN 60G

juno?)
UoIDJUSS9Ia3Y B0G

|

8|4 209

A

Joyusp| Sso[J AI_

Ve Old

SLID)

PCT/US2009/040007

WO 2009/126771

6/6

24

919
T041NOD
H0S&N2

1SOH
029 ‘o098
- e 700
229 f it || & 4
_ FOVAHIUNI
xm@go%z IO mzm NOILY2INAAWOO 40S53904d
dsI =
| 209
! sna
LINSTLINT m
0zq | o9 509 309
| J0IA30 ASONIN
HIAYIS | FoveoLs Hod NIVA

N2

vi9
FOIA3a
LNdNI

Zi9
AVTdSId

9 9OId

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings

