
United States Patent (19)
Yuasa et al.

54 METHOD FOR GENERATING A PROGRAM
COMPRISED OF SUCH A PORTION OF A
SERIES OF OPERATOR-NPUTTED
COMMANDS AS WILL PRODUCE AN
OPERATOR-SELECTED ONE OFA
NUMBER OF RESULTS

(75. Inventors: Hiroko Yuasa, Hachioki; Masaaki
Iwasaki, Tachikawa, both of Japan

73) Assignee: Hitachi, Ltd., Tokyo, Japan

21 Appl. No.: 629,377
22 Filed: Dec. 18, 1990
30 Foreign Application Priority Data
Dec. 22, 1989 JP Japan 1-333600
Aug. 10, 1990 JP Japan 2-210347

51) Int. Cl... G06F 15/60
52 U.S. C. 395/700; 395/140;

395/159; 395/155
58) Field of Search 371/19; 395/600, 650,

395/700, 159,375, 140, 155

56 References Cited
U.S. PATENT DOCUMENTS

4,730,315 3/1988 Saito et al.
4,872,167 10/1989 Maezawa et al.
5,005,119 4/1991 Rumbaugh et al. ...
5,051,898 9/1991 Wright et al. ...
5,117,496 5/1992 Stearns et al. 395/700
5,151,984 9/1992 Newman et al. 395/500
5,175,848 12/1992 Dysart et al. 395/600

FOREIGN PATENT DOCUMENTS

63-131229 6/1988 Japan.

... 371/19
371/19

a 395/650

395/600

TOP-EVELOOP

100

AUTOMAlc
PROGRAM ROUTINE

GRAPCAL INUROUINE

object display ROUTINE

GRAPHCA display
ROUINE

S-EXPRESSION

disc. GENERATE ROUTINE

GRAPHICAL display
ROUTINE

executoNPRoceSSING

O OBEC REATIONSHIP
SORAGE PROCESSING

US005448736A

11 Patent Number:
45 Date of Patent:

5,448,736
Sep. 5, 1995

OTHER PUBLICATIONS

Guy L. Steele, Jr., "Common Lisp'', pp. 324-325. (Pro
vided in English)
Keiji Kojima, et al., "LIVE-Integrating Visual and
Textual Programming Paradigms', Proceedings of
IEEE Workshop on Visual Languages, pp. 80-85. (Pro
vided in English).
I. Yoshimoto, et al., “Interactive Iconic Programming
Facility in Hi-Visual”, Proceedings of IEEE Workshop
in Visual Languages, 1986, pp. 34-41. (Provided in
English). -

Primary Examiner-Ken S. Kim
Attorney, Agent, or Firm-Fay, Sharpe, Beall, Fagan,
Minnich & McKee

57 ABSTRACT
In a computer system, a plurality of commands selected
by an operator are sequentially inputted to specify re
spective processing to be executed and respective data
to be used in the processing. Each of the inputted com
mands is executed before an input of a command subse
quent thereto to output data resultant from an execution
of the command. In the input operation, several com
mands are supplied to specify, as data to be respectively
used by the plural commands, resultant data attained by
the execution of commands inputted prior thereto.
From the plural input commands are extracted a series
of several commands employed to generate at least one
resultant data associated with the plural commands and
selected by the operator. Based on the extracted com
mand series, there is generated a program executing
processing to be achieved by the command series or
processing equivalent thereto.

24 Claims, 55 Drawing Sheets

103

107

103

108

104.

U.S. Patent Sep. 5, 1995 Sheet 1 of 55 5,448,736

TOP-LEVEL OOP F. G. 1
100

(Fig.2)

(Fig.6)

ROUTINE
(Fig.7)

105 <3D YES
(Fig.8) No C END)
109

YES

NO

S-EXPRESSION 107
EXECUTION PROCESSING

OBJECT GENERATE ROUTINE 103

(Fig.6)

I/O OBJEC RELATIONSHIP 108
STORAGE PROCESSING

GRAPHICAL DISPLAY 104
ROUTINE

(Fig.7)

AUTOMATIC
PROGRAM ROUTINE

U.S. Patent Sep. 5, 1995 Sheet 2 of 55 5,448,736

GRAPHICAL INPUT ROUTINE F. G. 2
102

(Fig.3a AND 3B)
1602

(Fig.5)
MOUSE BUTTON OPERATION 1610 My539.2FON |

NO

COM- YES (F1 KEY DOWN sn-1603 MAND
RECALL NO

FUNCTION YES
DIRECTIONC-1

RELEASE CHARACTER SELEC
TION RANGE AND RESTORE

REVERSE DISPLAY TO
ORIGINAL DISPLAY

DELETE CHARACTER SELEC
TON RANGE AND DELETE A
CHARACTER ON THE LEFT OF

CARRET

ROUTINE F2 KEY DOWN ? 1604
NO

F3 KEY DOWN ? 1605
NO

1606

NO

CARRET SHIFT KEY 1607
DOWN ? RELEASE CHARACTER

SELECTION RANGE AND
SHIFT CARRE NO

YES
CR KEY DOWN ?

1608 NO

NO OTHER KEY DOWN ?
1609

ES Y

CHARACTER YES 1612
SELECTION RANGE

FOUND 2

DELETE CHARACTER
SELECTION RANGE

INSERT A CHARACTER N 1613
CARRE POSITION

U.S. Patent Sep. 5, 1995 Sheet 3 of 55 5,448,736

MOUSE BUT ON OPERATION PROCESSING ROUTINE F. G. 3a
1602

1802
YES 1803

BUTTON DOWN ? ?
NO

1806 NO STORE BUTTON
DOWN POSITION

YES (L1)
NO DOUBLE- CCK

OPERATION ? 1805
RETURN YES

RETURN STORE BUTTON UP

G) POSITION (L.2) 1808
To Fig.3b

1810
1 AND L2 N YES
LISTENER

NO

L1 AND 2 N
FINDER

1811
YES

1 AND L2 ON YES
SAME CON ?

CON CLICK
PROCESSENG
ROUTINE

1809

1 AND L2 N NO
THE VICINITY OF
EACH OTHER 2

SHIFT CARRET

CHARACTER
SELECTION
RANGE

SOUND WARNING
TONE

1814

RELEASE SELECTED CON
AND RESTORE CON

FROM REVERSE DISPLAY
TO ORIGINAL DISPLAY

RETURN

U.S. Patent Sep. 5, 1995 Sheet 4 of 55 5,448,736

F. G. 3b

FROM Fig.3a

CON CLICK
PROCESSING
ROUTINE

RELEASE CHARACTER
SELECTION RANGE AND

RESTORE REVERSE
DISPLAY TO ORIGINA

DISPLAY

RELEASE SELECTED CON AND
RESTORE ICON FROM REVERSE
DISPLAY TO ORIGINAL DISPLAY

RETURN

U.S. Patent Sep. 5, 1995 Sheet 5 of 55 5,448,736

CON CLICK PROCESSING ROUTINE F G 4.
1825

SET CON AT CURSOR POSITION 1902
TO SELECTED STATE

DISPLAY SELECTED CON
IN REVERSE DISPLAY 1903

MODE

1905

DELETE CHARACTER
SELECTION RANGE

1907 input TYPE OF OBJECT FOR output 1908
SELECTED CON ?

NSERT CON BODY NSERT DENT FER OF
IN CARRET POSITION SELECTED CON IN

CARRE POSITION

SET INSERTION PORT TO CHARACTER SELECTION
RANGE 1909

DISPLAY CHARACTER SELECTION RANGE EN 1910
REVERSE MODE

RETURN

CHARACTER SELECTION
1904 RANGE FOUND 2

U.S. Patent Sep. 5, 1995 Sheet 6 of 55 5,448,736

COMMAND RECALL FUNCTON
F. G. 5

ROUTINE

1610

CHARACTER SELECTION YES
RANGE FOUND 2

DELETE CHARACTER 1702
1701 SELECTION RANGE

1703

Y 1708
ES

1704 N9
DISPLAY PREVIOUS

COMMAND

DISPLAY SUCCEEDING
COMMAND

DISPLAY DENTFER FOR
VALUE OF SUCCEEDNG

COMMAND 1710

DISPLAYDENT FER
FOR VALUE OF

1705 PREVIOUS
COMMAND

1707

SET INSERTON PART TO ET AL CHARACTER
CHARACTER SELECTION STRINGS IN ISTENER TO 1711

CHARACTER SELECTION RANGE RANGE

DISPLAY CHARACTER
SELECTION RANGE IN 1712

REVERSE MODE

RETURN

U.S. Patent Sep. 5, 1995 Sheet 7 of 55 5,448,736

F. G. 6
OBJECT GENERATING ROUTINE

103

STAR

NCREMENT MAXIMUM DENTFER 2002

CREATE NEW DENTIFER N-2003

DENTIFIER SLOT (- NEW DENTFER 2004

TYPE SLOT (- TYPE 2005

BODY SLOT C
POINTER TO S-EXPRESSION 2006

RETURN

U.S. Patent Sep. 5, 1995 Sheet 8 of 55 5,448,736

F. G. 7
GRAPHICAL DISPLAY ROUTINE

104

2102 DISPLAY TEM IN TALKER

DISPLAY CON

DISPLAY LINK

RETURN

2103

2104

F. G. 8

AUTOMATIC PROGRAM GENERATING ROUTINE
109

22O2 (Fig.9) EXECUTE S-EXPRESSION COMPOSING
FUNCTION

EXECUTE LOOP DEVELOPNG FUNCTION

RETURN

2203 (Fig.10)

U.S. Patent Sep. 5, 1995 Sheet 9 of 55 5,448,736

F. G. 9
2202

S-EXPRESSION
COMPOSING FUNCTION

OBJECT HAS ROOT 2

OBJECT BODY S LST 2

SET ARGUMENT OR
BODY AS RESULT

WITH ROOT OBJECT SET
AS ARGUMENT, RECUR

SVELY CALL S-EXPRESSION
COMPOSING FUNCTION

SET THE WALUE AS
RESULT

(mapcar S-expression composing
function body) 2304

APPLY RECURSVELY S
EXPRESSON COMPOSING
FUNCTION TO ELEMENTS

OF LIST

OBAN LS OF
VALUES OF ELEMENTS

SET THE LIST AS

RESULT

RETURN

U.S. Patent Sep. 5, 1995 Sheet 10 of 55 5,448,736

2203 F. G. 10

FUNCTION

PATTERN OF (FUNC (example FORM))
FOUND IN S-EXPRESSION ?

WITH FORM SET AS
ARGUMENT, RECURSIVELY
CALL LOOP DEVELOPNG

FUNCTION

SET S-EXPRESSIONAS
RESULT

FORM' = RESULT OF LOOP DEVELOPMENT
OF FORM

SUBSTITUTE PATTERN OF (FUNC
(example FORM)) FOR (mapcar

FUNC FORM') TO SET
RESULTANT S-EXPRESSION AS

RESULT

RETURN

F. G. 11
2600

2601

2602

2603

2604

IDENTIFIER SLOT

TYPE SLOT

BODY SOT

ROOT SLOT

U.S. Patent Sep. 5, 1995 Sheet 11 of 55 5,448,736

F. G. 12

COMPUTER SYSTEM

300

301 -/
TALKER FINDER

302 305

304 303 LISTENER

311 312 313 314

U.S. Patent Sep. 5, 1995 Sheet 12 of 55 5,448,736

G 1 (+ 128 256)

(+ 128 256) GD 1
G 2 384

U.S. Patent Sep. 5, 1995 Sheet 13 of 55 5,448,736

F. G. 16

GP 1 (+ 128 256)
G 2 384

(+ 128 256)
384

G 1
O2

306

G 1 (+ 128 256)
G 2 384

306

U.S. Patent Sep. 5, 1995 Sheet 14 of 55 5,448,736

F. G. 19

G 1 (+ 128 256)
G 2 384

G 1 (+1.28 256)
G2 384

(+ 128 256) G 1
G2 384

U.S. Patent Sep. 5, 1995 Sheet 15 of 55 5,448,736

G 1 (+ 128 256)
G 2 384
G3 (*G2 256)

U.S. Patent Sep. 5, 1995 Sheet 16 of 55 5,448,736

F G 24 DATA BASE EMPLOYEE LIST 2500

2501 2502 2503 2504

IWASAK MALE 30 SALES-DIVISION
GENERA

YUASA FEMALE 25 AFFAIRS
DIVISION

2505

2505

FUNCTION
NAME ARGUMENT FUNCTION VALUE

OBTAN VALUE FROM
rare ESSF NAME COLUMN OF

EMPLOYEE RECORD

P OBAN VALUE FROM
Ef AGE COUMN OF

EMPLOYEE RECORD

OBTAN VALUE FROM division FM OYEE RSSNMR
CORD EMPLOYEE RECORD

DETERMINE WHETHER
EMPLOYEE OR NOT EMPLOYEE

RECORD S
ASSOCATED WITH
MALE EMPLOYEE

DETERMINE WHETHER
EMPLOYEE OR NOT EMPLOYEE

RECORD S OR NL
RECORD ASSOCATED WITH

FEMALE EMPLOYEE

SET DATABASE TO LIST REPRE
Connect DATABASE SENATION

APPLY FUNCTION TO
1; FUNCTION ELEMENTS OF ST TO

2; LIST

T OR NL
RECORD

FEMALE-P

GENERATE LIST OF LIST
ELEMENTS EACH
OTHER THAN NL

U.S. Patent Sep. 5, 1995 Sheet 17 of 55 5,448,736

F. G. 26

303

302 F. G. 27 305

G100 (connect employee-list) G100

G100 (connect employee-list)
G101 ((iwasaki male 30 sales-division)

(yuasa female 25 general
affaires-division)

Sheet 18 of 55 5,448,736 Sep. 5, 1995 U.S. Patent

(

Sheet 19 of 55 5,448,736 Sep. 5, 1995 U.S. Patent

(

5,448,736 Sheet 20 of 55 Sep. 5, 1995 U.S. Patent

(• • • • • (• • • • •

5,448,736 Sheet 22 of 55 Sep. 5, 1995 U.S. Patent

(

808

5,448,736 U.S. Patent

5,448,736 Sheet 30 of 55 Sep. 5, 1995 U.S. Patent

(60] ©) a[duuexa) 01 Lõ)

(

448,736

(

U.S. Patent

5,448,736 Sheet 33 of 55 Sep. 5, 1995 U.S. Patent

(601 @)

5) | H

448,736 5 Sheet 34 of 55 Sep. 5, 1995 U.S. Patent

808

(60] ©)

Sheet 35 of 55 5,448,736 Sep. 5, 1995 Patent U.S.

U.S. Patent Sep. 5, 1995 Sheet 36 of 55 5,448,736

F. G. 47

(connect employee-list)

2703

(filter #' (lambda (e)
(> (age e) 20))

G 101)

(ivasaki male 30 sales-division)
(yuasa female 25 sales-division)
w)

(iwasaki male 30 sales-division)
(yuasa female 25 sales-division)

)

U.S. Patent Sep. 5, 1995 Sheet 37 of 55 5,448,736

F. G. 48

(name (example (filter #' male-P
(filter #' (lambda (e) (< (age e) 30))

(filter #' (lambda (e) (> (age e) 20))
(connect employee-list))))))

F. G. 49

(filter #' male-P
(filter #' (lambda (e) (< (age e) 30))

(filter #' (lambda (e) (> (age e) 20))
(connect employee-list))))

U.S. Patent Sep. 5, 1995 Sheet 38 of 55 5,448,736

F. G. 50

(mapcar #' name
(filter #' male-P

(filter #' (lambda (e) (< (age e) 30))
(filter #' (lambda (e) (> (age e) 20))

(connect employee-list)))))

F. G. 51

(mapcar #' name
(filter #' (lambda (e) (eq (division e) sales-division))

(filter #' male-P -

(filter #' (lambda (e) (< (age e) 30))
(filter #' (lambda (e) (> (age e) 20))

(connect employee-list))))))

U.S. Patent Sep. 5, 1995 Sheet 39 of 55 5,448,736

F. G. 52
S-EXPRESSON

COMPOSING FUNCTION

OBJECT 2

SPECIFIED END POINT 2

OBJECT WITH ROOT 2

2303
YES

OBJECT BODY S LST 2

OBJECT SET AS
ARGUMENT

RECURSVELY CAL S

SET ARGUMENT OR SET THE WALUE AS
BODY AS RESULT 2306 2304 RESULT

FE ESSION COMPOSING

2307

R
NSN WITH ROOT

(mapcar S-expression composing
function body)

RECURSIVELY APPLY S
EXPRESSION COMPOSING
FUNCTION TO EEMENTS

OF LIS

ARRANGE ELEMENT
VALUES IN IST

2310 SET LS AS RESULT

RETURN

SE OBJECT
DENT FER AS

RESUL

U.S. Patent Sep. 5, 1995 Sheet 41 of 55 5,448,736

F. G. 54

(name (example (filter #' (lambda (e) (eq (division e) 'sales-division))
(filter #' male-P G 107)))

F. G. 55

(mapcar #' name
(filter #' (lambda (e) (eq (division e) 'sales-division))

(filter #' male-P G107))) .

U.S. Patent Sep. 5, 1995 Sheet 42 of 55 5,448,736

F G. 56
S-EXPRESSION

COMPOSING FUNCTION

CHANGE POINT OF
SPECIFIED TRACE ROUTE 2

OBJECT HAVING ROOT 2

RECURSVELY CALL S
OBJECT BODY S LST 2 EXPRESSION COMPOSING

FUNCTION WITH ROOT
OBJECT SE AS
ARGUMENT

RSVELY CALL S
EXPRESSION COMPOSING
FUNCTION WITH CHANGE
DESENATION OBJECT AS

ARGUMENT .

SET ARGUMENT OR
BODY AS RESULT

(mapcar S-expression composing
function body)

RECURSVELY APPLY S
EXPRESSION COMPOSING
FUNCTION TO ELEMENTS

OF LIST

ARRANGE ELEMENT
VALUES IN LIST

SET LS AS RESULT

RETURN

SET THE VALUE AS

RESULT

5,448,736 Sheet 43 of 55 Sep. 5, 1995 U.S. Patent

(

Sheet 44 of 55 5,448,736 Sep. 5, 1995 U.S. Patent

U.S. Patent Sep. 5, 1995 Sheet 45 of 55 5,448,736

F. G.59

(name
(example

(filter #' (lambda (e) (eq (division e) 'sales-division))
(filter #' female-P

(filter #' (lambda (e) (< (age e) 30))
(filter #' (lambda (e) (> (age e) 20))

(connect employee-list))))))

F. G. 60

(mapcar #' name
(filter #' (lambda (e) (eq (division e) 'sales-division))

(filter #' female-P
(filter #' (lambda (e) (< (age e) 30)) .

(filter #' (lambda (e) (> (age e) 20))
(connect employee-list))))))

F. G. 61

AUTOMATIC PROGRAM GENERATING
ROUTINE

3200

3300 EXECUTE S-EXPRESSION
COMPOSING FUNCTION

PARAMETRIZATION INDICATED 2

3201

EXECUTE LOOP DEVELOPNG
FUNCTION

RETURN

ADD FUNCTION DEFINING
PART

3202

U.S. Patent Sep. 5, 1995 Sheet 46 of 55 5,448,736

F. G. 62
S-EXPRESSION

COMPOSING FUNCTION

OBJECT 2

OBJECT FOR
PARAMETRIZATION ?

OBJECT HAVING ROOT 2

2303
YES

OBJECT BODY S LST 2

OBJECT SE AS
ARGUMENT

RECURSVELY CAL S

SET ARGUMENT OR SET THE VALUE AS
BODY AS RESULT 2306 2304 RESULT

EXPRESSION COMPOSING

2307

FUNCTION WITH ROOT

(mapcar s-expression composing
function body)

RECURSIVELY APPLY S
EXPRESSION COMPOSING
FUNCION TO ELEMENTS

OF LIST

ARRANGE ELEMENT
VALUES IN LIST

SET IS AS RESULT

RETURN

SET ASSOCATED
PARAMETER NAME

AS RESULT

5,448,736 Sheet 47 of 55 Sep. 5, 1995 U.S. Patent

(((((

(((puopau alduexa) Bueu)
(spuo.201) \s?? un??p) 18 lõ)

U.S. Patent Sep. 5, 1995 Sheet 48 of 55 5,448,736

F. G. 64

(name (example records)

F. G. 65

(defun test (records) (name (example records)))

F G. 66

(defun test (records) (mapcar #' name records)

U.S. Patent Sep. 5, 1995 Sheet 49 of 55 5,448,736

F. G. 67
AUTOMATIC PROGRAM
GENERATION ROUTINE

3400

ARGUMENT is LIST

EXECUTE S-EXPRESSION
COMPOSING FUNCTION

2202

EXECUTE LOOP
DEVELOPNG FUNCTION

RETURN

EXECUTE MULTIVALUE S
EXPRESSION COMPOSING

FUNCTION

3500

2203

MULTIVALUE S-EXPRESSION
COMPOSING FUNCTION

APPLY S-EXPRESSION COMPOSING
FUNCTION TO EACH ARGUMENT 35O1

ARRANGE EXECUTION RESULTS IN LIST 3502

INSERT " VALUES." AS FIRST
ELEMENT OF LIST

SET LS AS VALUE

RETURN

3503

3504

5,448,736 Sheet 50 of 55 Sep. 5, 1995 U.S. Patent

U.S. Patent Sep. 5, 1995 Sheet 51 of 55 5,448,736

F. G. 70

(length
(filter #' (lambda (e) (eq (division e) 'sales-division))

(filter #' male-P
(filter #' (lambda (e) (< (age e) 30))

(filter #' (lambda (e) (> (age e) 20))
(connect employee-list))))))

F. G. 71

(name
(example

(filter #' (lambda (e) (eq (division e) 'sales-division))
(filter #' male-P

(filter #' (lambda (e) (< (age e) 30))
(filter #' (lambda (e) (> (age e) 20))

(connect employee-list)))))))

U.S. Patent Sep. 5, 1995 Sheet 52 of 55 5,448,736

F. G. 72

(values
(length (filter #' (lambda (e) (eq (division e) 'sales-division))

(filter #' male-P
(filter #' (lambda (e) (< (age e) 30))

(filter #' (lambda (e) (> (age e) 20))
(connect empolyee-list))))))

(name
(example

(filter #' (lambda (e) (eq (division e) 'sales-division))
(filter #' male-P

(filter #' (lambda (e) (< (age e) 30))
(filter #' (lambda (e) (> (age e) 20))

(connect employee-list))))))))

F. G. 73

(values
(length (filter #' (lambda (e) (eq (division e) 'sales-division))

(filter #' male-P
(filter #' (lambda (e) (< (age e) 30))

(filter #' (lambda (e) (> (age e) 20))
(connect empolyee-list))))))

(mapcar #' name
(filter #' (lambda (e) (eq (division e) 'sales-division))

(filter #' male-P
(filter #' (lambda (e) (< (age e) 30))

(filter #' (lambda (e) (> (age e) 20))
(connect employee-list))))))))

U.S. Patent Sep. 5, 1995 Sheet 53 of 55 5,448,736

F. G. 74
AUTOMATIC PROGRAM
GENERATING ROUTINE

3600

EXECUTE S-EXPRESSION
COMPOSING FUNCTION 2202

EXECUTE LOOP DEVELOPNG FUNCTION 2203

OPTIMIZATION ROUTINE 3900

RETURN

F. G. 75
AUTOMATIC PROGRAM
GENERATING ROUTINE

3700

3300 EXECUTE S-EXPRESSION
COMPOSING FUNCTION

PARAMETRIZATION INDICATED YYE

32O1 ADDFUNCINDEFINING

32O2
EXECUTE LOOP

DEVELOPNG FUNCTION

OPTIMIZATION ROUTINE

RETURN

3900

U.S. Patent Sep. 5, 1995 sheets of s 5,448,736

F. G. 76
AUTOMATIC PROGRAM
GENERATING ROUTINE

3800

ARGUMEN = LST 2

EXECUTE S-EXPRESSION
COMPOSING FUNCTION

2202

EXECUTE LOOP DEVELOPNG
FUNCTON

OPTIMIZATION ROUTINE

RETURN

EXECUTE MULTIVALUE S
EXPRESSION COMPOSING

FUNCTION

3500

2203

3900

F. G. 77

(let (data (filter #' (lambda (e) (eq (division e) 'sales-division))
(filter #' male-P

(filter #' (lambda (e) (< (age e) 30))
(filter #' (lambda (e) (> (age e) 20))

(connect employee-list)))))))
(values (length data)

(mapcar #' name data)))

5,448,736 Sheet 55 of 55 Sep. 5, 1995 U.S. Patent

F. G. 78

2600A

rus up or m m

(+ 128 256)

2600C

G2 256) (k

384

5,448,736
1

METHOD FOR GENERATING A PROGRAM
COMPRISED OF SUCH A PORTION OF A SERIES
OF OPERATOR-INPUTTED COMMANDSAS

WLL PRODUCEAN OPERATOR-SELECTED ONE
OF A NUMBER OF RESULTS

BACKGROUND OF THE INVENTION

The present invention relates to an interaction pro
cessing method and a program generating method, and
in particular, to an interaction processing method capa
ble of improving operability or usability of a computer
and to a program generating method of automatically
generating a program based on an interaction history.

Heretofore, there has been known an interaction
processing scheme having a command recall function.
For example, as described in pages 324 and 325 of the

"Common Lisp'' written by Guy L. Steel Jr, an interac
tion processing routine of the Lisp (called a top-level
loop) memorizes a previous command inputted from a
key-in device and a result of an execution of the com
mand, so that if the operator inputs
(eval --),
the command executed immediately therebefore can be
executed again. Moreover, when the operator inputs
(eval -- +),
the second next command preceding the input opera
tion can be re-executed.

Furthermore, a similar command recall function is
also supported by interaction processing routines (inter
action shells) in general-purpose operating systems such
as the Unix and the MS-DOS.
On the other hand, software programs "Mac

roMaker' or “Tempo II' for the personal computer
Macintosh includes command recall functions devel
oped from the command recall functions above.
The command recall function thus developed is used

in either one of a recording mode and a reproduction
mode. In the recording mode, a sequence of key and/or
mouse operations conducted by the operator are re
corded; whereas, in the reproduction mode, the re
corded key and/or mouse operations are reproduced.
The recorded key and/or mouse operations are called

macros. The macros may be edited and stored in a stor
age e.g. on a disk so as to be arbitrarily read therefrom
for the reproduction thereof.
That is, the macros function as a program and hence

the developed command recall function may be re
garded as a function to produce a program through an
interaction processing.
According to a processing procedure generation pro

cessing method described in JP-A-63-131229 (1988), an

10

15

25

30

35

45

SO

interaction processing interpreter keeps a history of 5s
operations such as commands supplied from a user such
that when the user thereafter specifies a necessary por
tion of the operation history, the specified portion is
extracted to be processed for a generation of a process
ing procedure.

In accordance with a program language LIVE de
scribed in pages 9 to 17 of the "Digests of the 30th
Programming Symposium', IEEE of Japan, January
1989 and in pages 80 to 85 of the "Proceedings of IEEE
workshop on Visual Languages', 1989, there is pro
vided a programming by example (PBE) function in
which voice inputs are also memorized, in addition to
the key inputs and mouse operations, so that the memo

2
rized items are processed to create a program for an
execution thereof.

Moreover, according to a programming environment
HI-VISUAL described in pages 34 to 41 of the “Pro
ceedings of IEEE Workshop on Visual Languages,
1986 and in pages 139 to 146 of the "Digests of the
Software Engineering Symposium', 58-18, February
1988, there is disposed a PBE function employing icons.
The HI-VISUAL displays icons representing pro

grams and data items as parts or components of the
program. When the operator selects and arranges icons
associated with a program and data and then defines
connective relationships between the icons, the HI
VISUAL creates the objective program. Furthermore,
in the program generation process, a result of an execu
tion of each part of the program is displayed by using
icons. Referencing the displayed execution result, the
operator can interactively produce a program.
That is, when program generation is started, the icons

selected by the operator and the connective relation
ships therebetween are recorded along a flow of data.
When the recording operation is completed, the ac
quired icons and the connective relationships are pro
cessed to create a program. During the program genera
tion, the connective relationships between the icons
may be edited.

However, the command recall functions in the Com
mon Lisp, Unix, and MS-DOS, the modified command
recall functions developed in the Macro Maker and
Tempo II, and the PBE functions in the LIVE and
HI-VISUAL are attended with the following problems.

(1) When many commands and values are supplied, it
is impossible thereafter to directly specify an arbi
trary one thereof.

In consequence, the operator cannot easily obtain an
intermediate item from a sequence of commands gener
ated through an interaction processing so as to use the
attained item for the subsequent operation; moreover,
there exists a difficulty in a re-execution of the operation
from an intermediate point.

(2) Consequently, during a sequence of operations, an
operation error cannot be left uncorrected, which
imposes an extensive strain and carefulness on the
operator.

The operations are entirely recorded, namely, any
operation errors are also stored. As described in the
article (1), it is difficult to use an intermediate item in the
sequence of commands and to reexecute the operation
beginning from an intermediate point. In consequence,
the operator is required to be careful not to conduct any
operation error, which increases mental stress on the
operator.
Although a portion of the operation error may be

deleted or modified by editing the program, the editing
operation is onerous as described in an article (4) below.

(3) A trial and error procedure cannot be employed at
an intermediate point of the operation, which is
inconvenient for the operator.

For the same reason as for the article (2), a trial and
error process cannot be inserted between steps of a
sequence of operations. Consequently, even in a case
where the trial and error is necessary because an output
from the computer at an execution of a command is
unpredictable, it is necessary to first achieve a trial and
error process to confirm that a desired result is attain
able such that a sequence of commands are again input
ted beginning from the first command to generate a
program.

5,448,736
3

(4) The system does not memorize a chaining rela
tionship indicating a command execution sequence
e.g. for a preceding command, the system cannot
determine a command which uses the result of an
execution of the preceding command.

A series of commands supplied by the operator are
related with each other through chaining relationships
therebetween. Even if the series of commands are se
quentially recorded, the chaining relationships between
the commands are not attained. Namely, the result of a
command execution is not necessarily employed in an
execution of a command immediately following the
previous command.

Consequently, the operator is required to follow the
chaining relationships therebetween.

(5) The operator cannot trace a sequence of com
mands thus chained.

For a command, it is desired in some cases to trace
backward the commands executed before the com
mand. However, for the reason of the article (4), the
computer is not supplied with the command chaining
relationships and hence cannot trace the command se
quence in the reverse direction.

Moreover, the processing procedure generation pro
cessing method described in JP-A-63-131229 is attended
with the following difficulties.

(6) The operator is required to specify a necessary
portion of the interaction history thus memorized.

In order to create a procedure for achieving a compli
cated processing, the operator must sequentially select
actually necessary items such as commands from a large
amount of items of the operation history, which is trou
blesome for the operator.

SUMMARY OF THE INVENTON

It is therefore an object of the present invention to
provide a program generating method in which a com
mand not used in a program to be generated may be
inputted and may be executed.
Another object of the present invention is to provide

a method of generating a program in which an operator
may input commands in a trial-and-error fashion.

Still another object of the present invention is to
provide a method of generating a program in which an
operator may use a portion of a group of commands,
which have been inputted to the system without an
intention of generating a program, to create a program
producing a desired result.

Further another object of the present invention is to
provide a method of supporting an operator to input
commands.

In order to achieve the objects above, according to
the present invention, there is provided a program gen
erating method including the following steps of:

(a) sequentially inputting a plurality of commands
selected by an operator to respectively specify
processing to be executed and data to be used in the
processing;

(b) executing each input command prior to an input
of a command subsequent thereto and for output
ting data resultant from the execution of the com
mand,

said step (a) including a step of inputting several com
mands specifying, as data for each command of the
processing, data resultant from said step (b) executed on
a command preceding said each command;

(c) extracting from the plural input commands a se
quence of several commands employed to generate

10

15

20

25

30

35

45

50

55

65

4.
at least a resultant data item selected by the opera
tor from resultant data items respectively attained
from the step

(b) executed on the plural input commands; and
(d) generating based on the extracted command se

quence a program executing processing to be
achieved by the command sequence or executing
processing equivalent thereto.

Furthermore, according to the present invention,
there is provided a program generating method com
prising the following steps of:

(a) displaying, in response to an input of a command
specifying data different from data resultant from
an execution of a command subsequent thereto, the
subsequent command being selected from the plu
ral commands supplied from an operator to respec
tively designate processing to be executed and data
to be used in the processing,
(1) an icon of a first kind representing the com

mand;
(2) an icon of a second kind denoting the different

data;
(3) a graphic image of a first type interrelating the

icon of the first kind and the icon of the second
type with each other;

(4) an icon of a third kind representing data resul
tant from an execution of the command; and

(5) a graphic image associating the icon of the third
kind with the icon of the first kind representing
the command; and

(b) displaying, in response to an input of a command
by the operator to specify data resultant from an
execution of one of the plural commands, the one
command being preceding the command,
(6) an icon of a first kind representing the com

mand;
(7) a graphic image of a first type associating the

icon of the first kind with an icon of a second
kind already displayed to represent data resul
tant from an execution of the preceding com
mand;

(8) an icon of a third kind representing data resul
tant from an execution of the command; and

(9) a graphic image of a second type associating the
icon of the third kind with the icon of the first
kind representing the command.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart showing the operation of a
top-level loop of the Lisp in an embodiment related to
an interaction processing method and a program gener
ating method according to the present invention;

FIG. 2 is a flowchart showing the operation of a
graphic input routine according to the present inven
tion;
FIGS. 3a and 3b are together flowcharts of a mouse

button operation processing routine according to the
present invention;

FIG. 4 is a flowchart of an icon click processing
routine according to the present invention;
FIG. 5 is a flowchart of a command recall function

routine according to the present invention;
FIG. 6 is a flowchart of an object generating routine

according to the present invention;
FIG. 7 is a flowchart of an graphical display routine

according to the present invention;
FIG. 8 is a flowchart of an automatic program gener

ating routine according to the present invention;

5,448,736
5

FIG. 9 is a flowchart of an S-expression composing
function according to the present invention;

FIG. 10 is a flowchart of a loop development func
tion according to the present invention;

FIG. 11 is a diagram showing the structure of an
object according to the present invention;
FIG. 12 is a perspective view showing the constitu

tion of a computer system in which the present inven
tion is implemented;
FIGS. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, and 23 are

schematic diagrams each showing screens in specific
examples of an interaction job;

FIG. 24 is a diagram illustratively showing a data
base;
FIG. 25 is a diagram showing examples of functions;
FIGS. 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,38,

39, 40, 41, 42, 43,44, 45, and 46 are schematic diagrams
each showing screens in other specific examples of an
interaction job;
FIG. 47 is a schematic diagram showing a generated

object;
FIGS. 48, 49, 50, and 51 are diagrams each showing

examples of the S-expression;
FIG. 52 is a flowchart of another example of the

S-expression composing function according to the pres
ent invention;

FIG. 53 is a diagram illustratively showing screen in
a concrete example of an interaction job using the S
expression composing function of FIG. 52;
FIGS. 54 and 55 are schematic diagrams each show

ing examples of the S-expression in a case where the
S-expression composing function of FIG. 52 is em
ployed;
FIG. 56 is a flowchart of further another example of

the S-expression composing function according to the
present invention;
FIGS. 57 and 58 are diagrams each showing screens

in specific examples of an interaction job when the
S-expression composing function of FIG. 56 is used;
FIGS. 59 and 60 are diagrams each showing examples

of the S-expression in a case where the S-expression
composing function of FIG. 56 is adopted;

FIG. 61 is a flowchart of an alternative example of
the automatic program generating routine according to
the present invention;
FIG. 62 is a flowchart of another S-expression com

posing function according to the present invention;
FIG. 63 is a diagram showing screen examples in a

concrete example of an interaction processing in which
the automatic program generating routine of FIG. 61
and the S-expression composing function of FIG. 62 are
employed;
FIGS. 64, 65, and 66 are diagrams each showing

S-expression in a case where the automatic program
generating routine of FIG. 61 and the S-expression
composing function of FIG. 62 are employed;
FIG. 67 is a flowchart of another example of the

automatic program generating routine according to the
present invention;
FIG. 68 is a flowchart of a multi value S-expression

composing function according to the present invention;
FIG. 69 is a diagram showing screens in concrete

examples of an interaction processing in which the auto
matic program generating routine of FIG. 67, the S
expression composing function of FIG.9, and the multi
value S-expression composing function of FIG. 68 are
employed;

10

15

20

25

35

40

45

50

55

65

6
FIGS. 70, 71, 72, and 73 are diagrams each showing

S-expression in a case where the automatic program
generating routine of FIG. 67 and the multivalue S
expression composing function of FIG. 68 are em
ployed;

FIGS. 74, 75, and 76 are flowcharts of another exam
ple of the automatic program generating routine ac
cording to the present invention;
FIG. 77 is a diagram showing the S-expression in a

case where the automatic program generating routine
of FIG. 76, the S-expression composing function of
FIG. 9, and the multivalue S-expression composing
function of FIG. 68 are employed; and
FIG. 78 is a diagram showing examples of objects

created in association with a sequence of commands
described in conjunction with FIGS. 13 to 23.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Referring now to the drawings, description will be
given of an embodiment according to the present inven
tion. It is however to be understood that the present
invention is not restricted by the embodiment.
An interaction processing method and a program

generating method in the embodiment according to the
present invention is incorporated in a top-level loop of
the Lisp.

In the Lisp, a command is called an S-expression.
Moreover, an execution of a command is expressed as
an evaluation of an S-expression and a result of an exe
cution of a command is called a value. In addition, a
function and a command are interpreted as synonimous
words; furthermore, an argument of a function and an
operand of a command are regarded as synonimous
words. In the following description, for simplicity of
explanation, the argument and the operand are referred
to as data. This specification will be described in confor
mity with the representation and notation adopted in he
Lisp.
(1) System configuration
The Lisp associated with the present invention is

executed by a computer system 300 of FIG. 12.
The computer system 300 includes a computer main

body 319 integrally including a microprocessor and a
memory (which are not shown), a nonvolatile second
ary storage 320, a display 301, a keyboard 310, and a
mouse 317.
The display 301 has a screen wherein there are dis

played a listener 303 which is a window exclusively
used to input an S-expression, a talker 302 which is a
window for sequentially presenting therein S-expres
sions inputted in the listener 303 and values attained by
evaluating the S-expressions, and a finder 305 which is
a window for displaying therein the inputted S-expres
sions and the evaluation values of the S-expressions in
the form of icons. .
The listener 303 is used to display therein a carret 304,

which can be moved by carret shift key 316 in the key
board 310 or by the mouse 317.

Moreover, there is presented on the display 301 a
mouse cursor 306 moving in association with a mouse
operation.
The keyboard 310 includes an F1 key 311, an F2 key

312, an F3 key 313, a BS key 314, a CR key 315, the
carret shift key 316, etc.
FIG. 1 shows a top-level loop 100 of the Lisp accord

ing to the present invention.

5,448,736
7

A graphical input routine 102 processes inputs Sup
plied from the keyboard 310 and the mouse 317. This
routine further supports a command recall function to
be conducted with the F1 key 311, the F2 key 312, and
the mouse 317. Details thereabout will be later de
scribed by referring to FIGS. 2 to 5.
An object generating routine 103 functions as foll

lows. When information supplied from the operator is a
command, namely, an S-expression or when the S
expression is evaluated in an S-expression execution
processing, this routine 103 generates an object for the
S-expression, a value as an evaluation result thereof, or
a program created by an automatic program generating
routine 109, which will be described later, thereby stor
ing the object in a memory. Details will be later de
scribed by reference to FIG. 6.

In this embodiment, an object is created for an S
expression representing a command, an S-expression
resultant from an execution thereof, or a program pro
duced by the embodiment. The object has a general
structure as indicated by reference numeral 2600 of
FIG. 11, which includes four constituent elements of an
identifier slot 2601, a type slot 2602, a body slot 2603,
and a route slot 2604.
A graphical display routine 104 clears the items pres

ented in the listener 303 and displays in the talker 302
contents of the objects created by the object generating
routine 103. Moreover, this routine 104 presents in the
finder 305 icons corresponding to the objects. In addi
tion, when an object thus displayed is related to an
S-expression using other data, the graphical display
routine 104 displays in the finder 305 a line segment
(called a link) connecting an icon beforehand displayed
for the data to the new icon presented. Furthermore,
when an object displayed is associated with a value
resultant from an execution of an S-expression, a link is
similarly presented to connect an icon beforehand dis
played for the S-expression to the new icon presented.
These links visualize mutual relationships between the
objects. Details thereabout will be later described by
referring to FIG. 7.
A judge step 105 checks to determine whether or not

the input information is a command QUIT. If this is the
case, the Lisp processing is terminated. A step 106
checks to decide whether or not the input information is
a command BUC. If this is the case, control is passed to
the automatic program generating routine 109.
A step 107 is operative, when the input command is

an S-expression other than QUIT and BUC, to execute
the S-expression.
The automatic program generating routine 109 traces

in a backward direction relationships between a plural
ity of objects loaded in the memory to acquire a se
quence or series of commands resultant from an execu
tion of the information specified by the operator,
thereby producing a program from the command series.
Details thereabout will be described later by reference
to FIGS. 8 to 10.

In a processing step 108 of storing input/output ob
ject relationships, when the object generating routine
103 generates an object for a value of an S-expression
executed by the S-expression execution processing step
107, a pointer (an address in the memory) of the S
expression to the object beforehand memorized is
stored in a route slot of the object generated for the
value of the S-expression. As a result, relationships
between the objects are memorized.
(2) Outline of processing

O

15

20

25

30

35

45

50

55

65

8
Next, description will be given of the operation of the

top-level loop 100 of the Lisp in a specific example of an
arithmetic operation "add 128 to 256 and then multiply
a result of the addition by 256'.

First, from the keyboard 310, the operator sequen
tially inputs characters as
(-128 256).
The graphical input routine 102 then presents as an echo
of the input the characters in the listener 303 as shown
in FIG. 13.
When the CR key 315 is depressed, the character

string displayed in the listener 303 is transferred as an
S-expression to the object generating routine 103,
which creates an object 2600A (FIG.78) with an identi
fier G1 to be stored in the memory.
The graphical display routine 104 clears, as shown in

FIG. 14, the items in the listener 303 to present in the
talker 302 contents of the generated object 2600A,
namely, the identifier G1 and the main part of the S
expression (-128 256). Moreover, this routine 104 cre
ates an icon including an ellipse associated with the
object and the identifier G1 therein (the icon is referred
to as an icon G1 herebelow), thereby displaying the
icon G1 in the finder 305. Since only one icon exists in
the finder, the operation to display a link is not required.

Since the input S-expression is neither QUIT nor
BUC, the step 107 executes the S-expression to obtain a
value '384'.
The value “384” is passed to the object generating

routine 103, which produces an object 2600B with an
identifier G2 representing the value "384'.

Subsequently, the I/O object relationship processing
108 loads a route slot of the object 2600B related to the
value “384' with an address in the memory assigned to
the object 2600A of the S-expression (+128 256).
The graphical display routine 104 displays, as shown

in FIG. 15, the contents of the generated object 2600B
including the identifier G2 and the value “384” in the
talker 302. For the object 2600B, an icon G2 is then
created to be presented in the finder 305. Thereafter, a
link 701 is displayed to connect the icon G1 to the icon
G2 in the finder 305. In this figure, the link 701 is desig
nated with a broken line, which indicates relationship
between an S-expression and a value thereof. A link of
this type is called a generation link.

Subsequently, if the operator inputs an S-expression
(* 384256)
from the keyboard 310, an objective value may be ob
tained. However, in the Lisp according to the present
invention, in place “384' can be supplied. Namely, the
operator may input
(* G2 256)
from the keyboard 310. Moreover, the mouse 317 may
be adopted to supply the S-expression as follows.
That is, as shown in FIG. 16, the operator uses the

mouse 317 to move the mouse cursor 306 onto the icon
G21 so as to click a button 318 twice. In response
thereto, the graphical input routine 102 acquires the
S-expression of the object 2600A related to the icon G1
and then presents the S-expression in the listener.
Namely,
(-128 256)
is displayed.

Next, as shown in FIG. 17, the operator moves the
mouse cursor 306 onto the left-most end of the charac
terstring “128’ in the lister 303. Keeping the button 318
depressed, the operator shifts the mouse 317 toward the
right to trace the character string "128”. The graphical

5,448,736
input routine 102 responsively presents the character
string “128’ in a reverse display mode as shown in FIG.
18. The reverse display portion is called a character
selection range.

Subsequently, the operator shifts the mouse cursor
306 onto the icon G2 as shown in FIG. 19 and then
clicks the button 318 two times.
As a result, as shown in FIG. 20, the graphical input

routine 102 replaces the character string “128’ in the
character selection range with the identifier 'G2' of 10
the icon G2 undergone the double-click operation.
The operator then moves the carret 304 up to the

right of the plus sign "+” by the carret shift key 316;
thereafter the operator depresses the BS key 314 and
then a key associated with the character '. In re
sponse thereto, as shown in FIG. 21, the plus sign "+”
is substituted for the asterisk "*" by the graphical input
routine 102.
When the CR key is depressed, the character string

being presented in the listener 303 is passed as an S
expression to the object generating routine 103, which
in turn creates an object 2600C with an identifier G3.
As shown in FIG. 22, the graphical display routine

104 clears the listener 303 and then displays in the talker
302 the contents of the generated object 2600C (i.e. the
identifier G3 and the main portion of the S-expression
(* G2256). Moreover, an icon G3 is produced for the
object 2600C so as to be displayed in the finder 305. In
addition, a link 702 is presented in the finder 305 to link
the icon G2 with the icon G3. The link 702 is denoted
with a solid line, which indicates relationship between
an S-expression and data to be referenced by the S
expression. A link of this kind is called a reference link.
The inputted S-expression is neither a command

QUIT nor a command BUC and hence is executed in
the step 107, which generates a value "98304'.
The value "98304' is transferred to the object gener

ating routine 103 resultantly producing an object 2600D
with an identifier G4.

Next, the I/O object relation storage processing 108
is executed to load the object 2600D of the value
"98304' with a relationship of the S-expression (* G2
256) to the object 2600D.
As shown in FIG. 23, the graphical display routine

104 displays in the talker 302 the contents of the pro
duced object 2600D (the identifier G4 and the value
"98304''). Moreover, an icon G4 is created for the ob
ject 2600D to be presented in the finder 305. Further
more, a generation link 703 is presented in the finder 305
to connect the icon G3 to the icon G4. The link 703 is
drawn with a broken line to indicate a relationship be
tween an S-expression and a value thereof.

In this regard, in place of the double-click operation
of the icon G1 by the mouse cursor 306, the F1 key 311

15

20

25

30

35

45

50

may be depressed twice to obtain the S-expression of 55
the object 2600A associated with the icon G1, which
will be described later.
As can be understood from the specific example

above, the S-expressions and the values can be specified
with the identifiers and the icons, which considerably
improves the operability of the system. Moreover, since
the interrelationships between the displayed items are
visualized by the icons and the links therebetween, the
operator can clearly recognize necessary information
such as a processing flow.

Next, description will be given in detail of the respec
tive routines of the top-level loop 100 of FIG. 1.
(3) Graphic input routine 102

65

10
As shown in FIG. 2, this routine 102 first calls a

mouse button operation processing routine 1602.
The mouse button operation processing routine

passes control to processing shown in FIGS. 3a and 3b.
The processing of FIG. 3a judges to determine

whether or not a mouse button is in a button-up state
(step 1802).

If this is the case, the down position L1 is memorized
(step 1803) and control returns to the routine of FIG. 2.

If the mouse button is other than the button-down
state, the routine of FIG. 3a checks to determine
whether or not the mouse button is in a button-up state
(step 1805).

If this is the case, the button-up position L2 is memo
rized (step 1808) and then the routine judges to decide
whether or not both the button-down position L1 and
the button-up position L2 are found in the listener 303
(judgement step 1809).

If this is the case, the processing checks to determine
whether or not these positions L1 and L2 are in a region
where these positions L1 and L2 are in the neighbor
hood of each other (step 1810).

If this is the case, the carret 304 of the listener 303 is
moved to the button-down position L1 (step 1811) and
then control returns to the routine 1602 of FIG. 2.

If these positions are not in the vicinity of each other,
the characters between the button-down position L1
and the button-up position L2 are set to be in the char
acter selection range (step 1812) and then processing
returns to the routine 1602 of FIG. 2.
When neither the button-down position L1 nor the

button-up position L2 is found in the listener 303, the
routine checks to determine whether or not both of
these positions L1 and L2 are found in the finder 305
(step 1813).

If these positions are missing in the finder 305, a
warning tone is sounded (step 1814) and then control
returns to the routine 1602 of FIG. 2.
When these positions are found in the finder 305, the

routine judges to decide whether or not these positions
L1 and L2 are on an identical icon (step 1815).

If this is the case, an icon click processing routine
1825 is called, which will be described later in detail by
reference to FIG. 4.

Returning from the icon click processing routine
1825, control transfers to the routine 1602 of FIG. 2.
The icon undergone the click operation is called a se
lected icon.

If these positions L1 and L2 are on different icons, an
existing selected icon is released to restore the reverse
display of the icon to the original display (step 1816)
and then control returns to the routine 1602 of FIG. 2.
When the step 1805 results in other than the button

up state, a check is made to determine whether or not a
double-click operation is achieved (step 1806).

For other than the double-click operation, control is
passed to the routine 1602 of FIG. 2.

In a case of the double-click operation, control jums
to the processing of FIG. 3b to determine whether or
not the mouse cursor 306 is at a position within the
listener 303 (step 1820).

If this is the case, the carret 304 is moved to the posi
tion of the mouse cursor 306 (step 1821) and then con
trol returns to the routine 1602 of FIG. 2.

If the mouse cursor 306 is outside the listener 303, a
check is made to determine whether or not the position
of the mouse cursor 306 is in the finder 305 (step 1822).

5,448,736
11

If the mouse cursor 306 is outside the finder 305, a
warning tone is sounded (step 1823) and then control
returns to the routine 1602 of FIG. 2.

If the mouse cursor 306 is in the finder 305, a check is
made to decide whether or not the position of the
mouse cursor 306 is on an icon (step 1824).
When the mouse cursor 306 is not on an icon, an

exsisting selected icon is released so as to restore the
reverse display state thereof to the original display state
(step 1827) and then control returns to the routine 1602
of FIG. 2.
When the mouse cursor 306 is on an icon, the icon

click processing routine 1825 is called.
After control returns from the icon click processing

routine 1825, the routine of FIG. 3b releases the charac
ter selection range in the listener 303 to restore the
reverse display to the original state (step 1826). More
over, the state of an existing selected icon is released to
restore the reverse display to the original display (pro
cessing 1827) and then the processing returns to the
routine 1602 of FIG. 2.
In the icon clock processing routine 1825, as shown in

FIG. 4, an icon associated with the position of the
mouse cursor 306 is set as a selected icon (step 1902) to
display the icon in the reverse mode (step 1903).

Thereafter, a check is conducted to decide whether
or not the listener 303 contains a character selection
range (step 1904).

If this is the case, the range is released (step 1905).
Otherwise, the routine checks the type of the object

2600 corresponding to the selected icon (step 1906).
When the type of the object 2600 is input, the body

(S-expression, value) of the object 2600 related to the
selected icon is loaded in a position of the carret 304 of
the listener 303 (step 1907).
When the type of the object 2600 is output, an identi

fier of the object 2600 related to the selected icon is
loaded in a position of the carret 304 of the listener 303
(step 1908).

Subsequently, the inserted portion is set to the char
acter selection range (step 1909) to display the range in
the reverse mode (step 1910) and then the processing
returns to the routine of FIG. 3b.

In FIG. 2, when control is returned from the process
ing of FIG. 3a and/or FIG. 3b to the mouse button
operation routine 1602, key check steps (1603 to 1609)
are conducted to determine which one of the keys of the
keyboard 310 is depressed, namely, among the F1 key
311, F2 key 312, F3 key 313, BSkey 314, carretshift key
316, CR key 315, etc.
For a depression of the F1 key 311 (step 1603), a

value of one is set to a parameter DIRECTION (step
1614) and then the command recall function routine
1610 is called. At a depression of the F2 key (step 1604),
a value of minus one is loaded in the parameter DIREC
TION (step 1615) to call the command recall function
routine 1610. Thereafter, control is returned from the
routine to the graphical input routine 102. Details about
the routine 1610 will be later described in detail by
reference to FIG. 5.
When it is found that the F3 key is depressed (step

1605), an existing character selection range is released
to restore the reverse display state to the original dis
play state (step 1616) and then control is returned there
from to the graphical input routine 102.
For a depression of the BS key 314 (step 1606), an

existing character selection range is released and a char
acter on the left of the carret 304 is deleted (step thereaf

O

15

20

25

30

35

45

50

55

65

12
ter, control is passed to the first part of the graphical
input routine 102.
At a depression of the carret shift key 316 (step 1607),

an existing character selection range is released and the
carret 304 is moved toward a specified direction (step
1618); thereafter, control returns to the graphical input
routine 102.
For a depression of the CR key 316 (step 1608), con

trol returns to the top-level loop 100 of FIG. 1.
When a character key other than those above is de

pressed (step 1609), the routine judges to determine
whether or not a character selection range is found (step

If this is the case, the character selection range is
deleted (step 1612).

Otherwise, a character is inserted in the position of
the carret 304 to update the carret position (step 1613)
and then control returns to the graphical input routine
102.

Consequently, the graphical input routine 102 is re
petedly executed until the CR key depression is de
tected.
As shown in FIG. 5, the command recall function

routine 1610 checks to decide whether or not a charac
ter selection range exists (step 1701).

If this is the case, the range is deleted (step 1702).
Otherwise, the routine checks to determine whether

or not the listener 303 is empty (step 1703).
If the listener 303 is empty, a check is made to decide

whether or not the value of DIRECTION is positive
(step 1708).

If the value is positive, a command just before the
current command is displayed in the listener 303. That
is, if the F1 key 31 is depressed for the first time after the
preceding object 2600 is created, the routine traces the
objects in the backward direction beginning from the
last object 2600 to obtain the last command (i.e. the
command first found in the backward trace), thereby
displaying the command in the listener 303. Otherwise,
the number of previous depressions of the key is
counted to achieve the backward trace operation so as
to obtain a command first inputted. The obtained com
mand is then displayed in the listener 303 (step 1710).

If the value of DIRECTION is negative, a command
just succeeding the current command is presented in the
listener 303. Namely, when the F2 key 312 is depressed
m times aftern depressions of the F1 key 311, the result
is identical to that obtained from an operation of (n-m)
depressions of the F1 key 311 (step 1709).
The step 1711 sets all character strings of the listener

303 to the character selection range.
In the step 1703, if the listener 303 is not empty, a

check is carried out to decide whether or not the value
of DIRECTION is positive (step 1704).

If this is the case, an identifier of the value of a com
mand just before the current command is presented in
the position of the carret 304. That is, if the F1 key 31
is depressed for the first time after the preceding object
2600 is generated, the routine traces the objects in the
backward direction beginning from the last object 2600
to obtain an identifier of an execution result of the last
command so as to display the identifier in the position of
the carret 304. Otherwise, the number of preceding
depressions of the key is counted to achieve the trace
operation so as to obtain a command first inputted. An
identifier of an execution result of the attained com
mand is then displayed in the position of the carret 304
(step 1706).

5,448,736
13

If the value of DIRECTION is negative, an identifier
of the value of a command just following the current
command is presented in the position of the carret 304.
Namely, when the F2 key 312 is depressed m times after
n depressions of F1 key 311, an identifier of an execu
tion result of a command attained when the F1 key 311
is depressed (n-m) times is displayed in the position of
the carret 304 (step 1705).
The step 1707 sets the character represented in the

position of the carret 304 to the character selection
range.
The step 1712 displays the character selection range

in the reverse display mode and then transfers control to
the routine 102 of FIG. 2.
(4) Object generating routine 103

In this step 103, as shown in FIG. 6, the maximum
identifier number of the existing identifiers is incre
mented by one to assign the resultant value as a new
identifier number. An at mark G) is added to the new
identifier number to generate a new identifier (steps
2002 and 2003). The new identifier is set to the identifier
slot 2601 of the object 2600 (step 2004). Moreover, a
check is conducted to determine whether the type of
the S-expression is input or output. The attained type is
loaded in the type slot 2602 of the object 2600 (step
2005). In addition, a pointer indicating the S-expression
proper is stored in the body slot 2603 of the object 2600
(step 2006).

In this connection, when the object 2600 is stored in
the storage 320, the identifier may be represented by an
address in the storage 320. For example, when magnetic
disk units and/or optical disk units are employed, for an
object stored therein, the identifier thereof may be des
ignated with disk information, namely, a combination of
a track number, a sector number, and a byte position
assigned to the first position of a disk area where the
object 2600 is recorded.
(5) Graphical display routine 104
As shown in FIG. 7, this routine 104 clears the dis

play items of the listener 303 and presents the contents
of the object 2600 in the talker 302 (step 2102). Further
more, an icon is created in association with the object
2600 to be displayed in the finder 305 (step 2103).
Thereafter, a link is generated to be displayed in the
finder 305 (step 2104) and then control returns to the
routine 102 of FIG. 2.
(6) Automatic program generating routine 109

This routine 109 executes, as shown in FIG. 8, an
S-expression composing function 2202 by using as an
argument the value specified by the command BUC.
The resultant value is then used as an argument in an
execution of a loop developing function 2203. Control is
then passed together with the execution result to the
routine 102 of FIG. 2.
The S-expression composing function 2202 first

checks to decide whether or not the argument is an
object 2600 as shown in FIG. 9 (step 2301).

If this is not the case, the argument is assumed to be
a result (step 2306) and then control is passed to the
routine 109 of FIG. 8.

If the argument is an object 2600, a check is made to
decide whether or not the object 2600 has a root object
(step 2302).

If this is the case, using the root object as an argu
ment, the routine recursively calls the S-expression
composing function 2202 (step 2303). On receiving a
value returned from the function 2202, the routine

10

15

20

25

30

35

45

50

55

65

14
passes control together with the value as the result to
the routine 109 of FIG. 8.

If the root object is missing, a check is conducted to
determine whether or not the body of the object 2600 is
a list (step 2305).

If this is the case, the S-expression composing func
tion 2202 is recursively applied to each element of the
list (step 2308) to create a list including values returned
from the function 2202 (step 2309). The routine passes
control together with the list as the result (step 2310) to
the routine 109 of FIG. 8.

If the object 2600 is not a list, control is passed to
gether with the object 2600 proper as the result (step
2306) to the routine 109 of FIG. 8.
On receiving as an argument the S-expression result

ing from the S-expression composing function 2202, the
loop developing function 2203 checks to determine
whether or not the received S-expression contains a
pattern of
(FUNC(example FORM))
as shown in FIG. 10 (step 2402). In this expression,
example denotes a function which has a list as an argu
ment to attain one of the elements of the list in a random
fashion.
When the pattern is missing, control is passed to

gether with the S-expression as the result (step 2403) to
the routine 109 of FIG. 8.
When the pattern is found, the loop developing func

tion 2203 is recursively called by using FORM as an
argument (step 2404) to set a result obtained from the
function 2203 to FORM (step 2405). Next, in the S
expression, a pattern of
(FUNC(example FORM))
is substituted for
(mapcar FUNC FORM)
to generate a new S-expression. Control is passed to
gether with the S-expression as the result (step 2406) to
the routine 109 of FIG. 8.
(7) Detailed description of processing based on a con
crete example

Next, referring to a specific example of a retrieval
operation of a database, the operations of the respective
routines will be described.
In this example, the retrieval is conductive through a

database "list of employees' 2500 to produce a table
containing names of about 50 male employees having an
age more than 20 and less than 30.
The database "employee-list” 2500 includes, as

shown in FIG. 24, many employee records 2505 each
comprising a name column 2501, a sex column 2502, an
age column 2503, and a division column 2504. In the
description below, an employee record is represented in
a form of a list including contents of the respective
columns in the order as follows.
(Iwasaki male 30 sales division)
FIG. 25 shows functions employed in this retrieval.
Functions name, age, and division are each evaluated

by use of the employee record 2505 as an argument to
attain items for contents of the columns 2501, 2503, and
2504 respectively associated with the function names.
A function male-p is processed with the employee

record 2505 as an argument to return T if the content of
the sex column 2505 indicates male. Otherwise, NIL is
returned.
A function connect is evaluated with a database name

as an argument to set a database associated therewith to
an accessible state.

5,448,736
15

A function filter is processed with a function as a first
argument and with a list as a second argument such that
the function of the first argument is applied to each
elements of the list of the second argument, thereby
returning a list of elements of which the value is other
than NIL.
The retrieval operation procedures are as follows.
Procedure (a): The database "employee-list' is set to
the accessible state.

Procedure (b): A retrieval is conducted through the
database to acquire employee records to employees
having an age exceeding 20.

Procedure (c): A retrieval is achieved through the
records resultant from the procedure (b) to attain
employee records of employees having an age less
than 30.

Procedure (d): A retrieval is accomplished through
the records resultant from the procedure (c) to
obtain employee records of male employees.

Procedure (e): An employee record is selected from
the records resultant from the procedure (d) in a
randon fashion.

Procedure (f): The name column is extracted from the
employee record selected in the procedure (e).

Procedure (g): A program associated with the proce
dures (a) to (f) is executed to acquire about 50
2S

First, as shown in FIG. 26, the operator inputs from
the keyboard 310 as S-expression
(connect employee-list)
in the listener 303. The input data items of the S-expres
sion are processed through the step 1609 and the steps
1611 to 1613 of the graphical input routine 102 shown in
FIG. 2.
When the CR key 315 is depressed, control returns

from the graphical input routine 102 to the top-level
loop 100 of FIG. 1 to be passed to the object generating
routine 103.
The object generating routine 103 creates an object

2701 of FIG. 47 through the processing steps 2002 to
2006 of FIG. 6.
The object 2701 includes an identifier slot loaded

with an identifier G.100, a type slot containing input,
and a body slot loaded with a pointer indicating a stor
age area of the S-expression in the memory.

Next, the graphical display routine 104 executes the
steps 2102 to 2104 of FIG. 7 to display items as shown
in FIG. 27. That is, the S-expression with an identifier
G1 is presented in the talker 302 and an icon G100 is
displayed in the finder 305. Since the root slot of the
object 2701 is empty, the link display is not required.

Subsequently, the S-expression execution processing
107 evaluates
(connect employee-list)
to attain the following values to be returned.

(Iwasaki male 30 sales-division)
(Yuasa female 25 general-affaires-division)
(. . .))

The object generating routine 103 creates from the
contents of the employee record list an object 2702 of
FIG. 47.
In this object 2702, the identifier, type, and body slots

respectively contain an identifier G101, output, and a
pointer to the employee record list.

10

15

20

25

30

35

45

50

55

65

16
Next, the input/output object relationship storage

processing 108 loads the root slot of the object with a
pointer to a storage area of the object 2701.
The graphical display routine 104 then displays in the

talker 302, as shown in FIG. 28, the employee record
list with the identifier G101 according to the object
2702. (However, when the contents of the employee-list
exceeds the capacity of data to be presented in a display
operation, only the leading portion thereof is pres
ented.) In addition, the icon G101 is displayed in the
finder 305; thereafter, a link 3201 is presented therein.

Subsequently, the operator inputs from the keyboard
310, as shown in FIG. 29, an S-expression as

(filter #'(lambda (e) (>(age e) 20)
G101)

In this situation, in order to specify the object G101
for the argument of the function filter, the F1 key 311 of
the keyboard 310 may be depressed once or the double
click operation may be conducted for the icon CD101.

Based on the S-expression above the object generat
ing routine 103 produces an object 2703 of FIG. 47.
The graphical display routine 104 displays in the

talker 302, as shown in FIG. 30, the S-expression with
an identifier G102. Moreover, the icon G102 is pres
ented in the finder 305 and then based on the identifier
G101 contained in the S-expression, a link 3401 is cre
ated to be displayed therein.

Subsequently, the S-expression execution processing
107 evaluates the S-expression to attain the following
values to be returned.

(Iwasaki male 30 sales-division)
(Yuasa female 25 general-affaires-division)
(...)

The object generating routine 103 creates from the
values above an object 2704 of FIG. 47.
The I/O object relationship storage processing 108

loads the root slot of the object 2704 with a pointer to
the object 2703.
The graphical display routine 104 displays according

to the object 2704 a value in the talker 302 and then
presents an icon G103 and a link 3501 in the finder 305
as shown in FIG. 31.
Although the operator may ordinarily conduct an

input operation as follows for the original purpose of
the retrieval.

(filter #'(lambda (e) (<(age e) 30)
G101),

for convenience of description of the automatic pro
gram generating routine 109, the operator inputs an
S-expression as follows (step 102).
(buc G103)

In response thereto, an object having an identifier
G104 is created (step 103), the S-expression is presented
in the talker 302, and the icon G104 and a link (3701 of
FIG. 33) are displayed in the finder 305 (step 104).

Since the S-expression contains a function buc, con
trol branches from the step 106 of FIG. 1 to the pro
gran generating routine 109.

5,448,736
17

In this routine, as shown in FIG. 8, the S-expression
composing function 2202 is executed by using as an
argument the object 2704 specified by the identifier
G103.

In the S-expression composing function 2202, as
shown in FIG. 9, since the argument is the object 2704
and the object 2704 has the root object 2703, control
proceeds through the steps 2301 and 2302 to arrive the
step 2303, thereby recursively calling the S-expression
composing function 2202 with the root object 2703 set
as an argument.

Thereafter, since the argument is the object 2703 not
having a root object and the body is a list, control passes
through the steps 2301, 2302, and 2305 to enter the step
2308 so as to recursively call the S-expression compos
ing function with each element of the list set as an argu

ent.

In this situation, in the list

(filter #'(lambda (e) (>(age e) 20))
G101),

the elements preceding G101 are not objects; in conse
quence, the processing branches from the step 2301 to
the step 2306, thereby returning the elements as a result.
The element G101 is the object 2702 having the root

object 2701; consequently, control passes through the
steps 2301 and 2302 to arrive the step 2303 so as to
recursively call the S-expression composing function
2202 by using the root object 2701 as an argument.

In this operation, since the argument is the object
2701 not having a root object and the body is a list,
control proceeds through the steps 2301, 2302, and to
enter the step 2308 in which with each element of the
list set as an argument, the S-expression composing
function 2202 is recursively called.

In this situation, since neither one of the elements of
the list
(connect employee-list)
is an object, control branches from the step 2301 to the
step 2306, which returns the elements as a result.

In the step 2309, the returned result is used to form a
list.

Finally, the is obtained a result as follows.

(filter #'(lambda (e) (>(age e) 20)
(connect employee-list))

The loop-developing function 2203 achieves the pro
cessing of FIG. 10 with the S-expression set as an argu
ment; however, the S-expression does not contain
(FUNC (example FORM))
and hence control transfers from the step 2402 to the
step 2403 to return the S-expression as a result. Thereaf
ter, control returns to the routine of FIG. 8 to branch
therefrom to the routine of FIG. 1.
The object generating routine 103 processes the S

expression to create an object having an identifier
G105.
The I/O object relationship storage processing 108

loads the root slot of the object having the identifier
G105 with a pointer to the object having the identifier
G104.
The graphical display routine 104 displays, as shown

in FIG.33, the S-expression with the identifier G2105 in

O

15

25

30

35

40

45

50

55

65

18
the talker 302 and presents the icon G105 and a link
3702 in the finder 305.
The icon here has a contour selected to designate a

property of the object.
Next, in order to achieve the original object of the

retrieval, the operator inputs the following S-expression
as shown in FIG. 34.

(filter #'(lambda (e) (<(age e) 30))
G103)

In response thereto, the object generating routine 103
produces an object with an identifier GR106.
The graphical display routine 104 displays the S

expression with the identifier G106 in the talker 302 and
presents the icon G106 and a link (3901 of FIG. 35) in
the finder 305.

Next, the S-expression execution processing 107 is
executed to evaluate the S-expression so as to attain the
following result to be returned.

(Yuasa female 25 general-affairs-division)
(Mori male 24 development-division)

. .)

From the values above, the object generating routine
103 creates an object with an identifier G107.
The I/O object relationship storage processing 108

stores a pointer to the object having the identifier G106
in the root slot of the object having the identifier G107.

Based on the object assigned with the identifier
G107, the graphical display routine 104 displays, as
shown in FIG. 35, the values in the talker 302 and pres
ents the icon G107 and a link 3902 in the finder 305.

Subsequently, the operator inputs an S-expression as
shown in FIG. 36
(filter #'male-p G107).
For this input, the object generating routine produces

an object with an identifier G108.
The graphical display routine 104 displays the S

expression with an identifier for the object having the
identifier G.108 in the talker 302 and presents the icon
G106 and a link (4101 of FIG. 37) in the finder 305.

Thereafter, the S-expression execution processing
107 is conducted to evaluate the S-expression so as to
obtain resultant values to be returned as follows.
(Mori male 24 development-division)
(Takamoto male 25 sales-division)
. . .)
The object generating routine 103 processes these

values to generate an object assigned with an identifier
G109.
The I/O object relationship storage processing 108

stores a pointer to the object having the identifier G.108
in the root slot of the object having the identifier GR109.
Based on the object assigned with the identifier

G109, the graphical display routine 104 displays, as
shown in FIG. 37, the values in the talker 302 and pres
ents the icon G109 and a link 4102 in the finder 305.

Subsequently, for the original purpose of the re
trieval, the operator should input for the object having
the identifier GD109 an S-expression (in this connection,
to attain a list of about 50 employees, the number of
resultant employees to be displayed need be further
controlled depending on cases)
(name G102)

5,448,736
19

however, for convenience of explanation of the loop
developing function 2203, an S-expression
(example G109)
is inputted (step 102) as shown in FIG. 38.

In response thereto, the object generating routine 103
creates an object with an identifier G110.

For the object assigned with the identifier G2110, the
graphical display routine 104 displays an S-expression
with an identifier associated therewith in the talker 302
and presents the icon G110 and a link (link 4301 of FIG.
39) in the finder 305.

Subsequently, the S-expression execution processing
107 is executed to evaluate the S-expression so as to
attain resultant values to be returned as follows. (Mori
male 24 development-division)
The object generating routine 103 generates based on

these values an object with an identifier GR111.
The I/O object relationship storage processing 108

stores a pointer to the object having the identifier G110
in the root slot of the object having the identifier G111.

Based on the object assigned with the identifier
G110, the graphical display routine 104 displays, as
shown in FIG. 39, the values in the talker 302 and pres
ents the icon G110 and a link 4302 in the finder 305.

Next, as shown in FIG. 40, the operator inputs an
S-expression (name G111).

In response to the input, the object generating routine
102 creates an object assigned with an identifier G112.
For the object with the identifier8112, the graphical

display routine 104 displays an S-expression with an
identifier associated therewith in the talker 302 and then
presents the icon G112 and a link (link 4501 of FIG. 41)
in the finder 305.

Subsequently, the S-expression execution processing
107 evaluates the S-expression to attain a resultant value
to be returned as follows. Mori
The object generating routine 103 generates based on

the value an object with an identifier G113.
The I/O object relationship storage processing 108

stores a pointer to the object having the identifier G112
in the root slot of the object assigned with the identifier
G113.

Based on the object with the identifier G113, the
graphical display routine 104 displays, as shown in FIG.
40, the result in the talker 302 and presents the icon
G113 and a link 4502 in the finder 305.

Subsequently, in order to generate a program, the
operator inputs an S-expression
(buc G113)
as shown in FIG. 42.

In response to the input, the object generating routine
102 produces an object with an identifier GR114.
The graphical display routine 104 displays, for the

object assigned with the identifier G114, an S-expres
sion with an identifier associated therewith in the talker
302 and then presents an icon G114 and a link (4701 of
FIG. 43) in the finder 305.

Next, the automatic program generating routine 109
is called.

In the automatic program generating routine 109, the
S-expression composing function 2202 supplies an S
expression of FIG. 48 as follows

(name (example (filter #'male-p
(filter #'(lambda(e) (<(age e) 30)
(filter #'(lambda(e) (>(age e) 20)

5

10

15

25

30

35

40

45

50

55

60

65

20
-continued

(connect employee-list)))))).

In the loop developing function 2203, because of
presence of a pattern
(FUNC (example FORM)),
control proceeds from the step 2402 to the step 2404 to
recursively call the loop developing function with
FORM set as an argument.

In other words, with the following S-expression of
FIG. 49 set as an argument,

(name (example (filter i'male-p
(filter #'Olambda(e) (<(age e) 30)
(filter #'Olambda(e) (>(age e) 20)

(connect employee-list))))

the loop developing function 2203 is recursively called.
However, the pattern above is missing in the S-expres
sion and hence control passes from the step 2402 to the
step 2403, thereby returning the S-expression as a result.

In the step 2405, the S-expression attained as the
result is substituted for FORM'.

Thereafter, the step 2406 creates an S-expression of
FIG. 50

(mapcar #'name (filter #'male-p
(filter #'Olambda(e) (<(age e) 30)
(filter #'Olambda(e) (>(age e) 20)

(connect employee-list)))))

so as to return the S-expression as a result.
Based on the result, the object generating routine 103

produces an object with an identifier G115.
The I/O object relationship storage processing 108

loads the root slot of the object having the identifier
G115 with a pointer to the object with the identifier
G114.
As shown in FIG. 43, the graphical display routine

104 displays, for the object with the identifier G115, the
values in the talker 302 and then presents an icon G115
and a link 4702 in the finder 305.
The S-expression with the identifier G115 thus at

tained is a program developing a function equivalent to
the function of the sequence of procedures adopted to
produce the object with the identifier GD113.

Subsequently, in order to achieve the inherent pur
pose of the retrieval operation, a check is first made to
determine the number of elements contained in the
object with the identifier G109. Namely, the operator
inputs an S-expression
(length G109).
As a result, an object with an identifier GD116 is cre

ated, a graphical display is conducted in association
with the operation, and then a resultant S-expression is
evaluated to attain a value 1872.

Based on the result, an object with an identifier G117
is produced, an I/O object relationship is stored in rela
tion to the operation, and a graphical display is carried
out to present the result.

In a situation where an employee list of about 50
employees is to be obtained, the value above is to be
reduced.
To cope with this situation, the processing range of

employees is limited to the sales division. The operator
consequently inputs an S-expression

5,448,736
21

(filter #'(lambda (e) (eq (division e) 'sales-division))
G109).

As a result, an object with an identifier G118 is cre
ated, a graphical display is achieved for the operation,
and then the S-expression is evaluated to obtain values
as follows.

(Takagi male 25 sales-division)
(Niki male 26 sales-division)

..)

Namely, the system generates an object with an iden
tifier GR119, stores I/O object relationships related to
the operation, and accomplishes a graphical display for
the result.

In order to determine the number of elements in
cluded in the object with the identifier GR119, the opera
tor inputs an S-expression
(length G119).

For this input, an object with an identifier G120 is
created, a graphical display is achieved for the opera
tion, and then the S-expression is evaluated to obtain a
value
48.

This results in a generation of an object with an iden
tifier G119, a storage of I/O object relationships related
to the operation, and a graphical display for the result.
The value 48 is suitable for an operation to produce

an employee list of about 50 employees and hence the
operator inputs an S-expression
(example G119).
In response to the input, an object with an identifier

G122 is created, a graphical display is achieved for the
operation, and then the S-expression is evaluated to
obtain values
(Niki male 26 sales-division)
As a result, the system generates an object with an

identifier G123, stores I/O object relationships related
to the operation, and accomplishes a graphical display
for the result.

Subsequently, the operator inputs an S-expression
(name GD123).

In response thereto, an object assigned with an identi
fier GR124 is produced, a graphical display is achieved in
association with the operation, and the S-expression is
evaluated to attain a value
Niki.

Thereafter, the system creates an object with an iden
tifier G125, memorizes input/output object relation
ships thereof, and conducts a graphical display of the
result. FIG. 44 shows a display screen presenting the
state above.

Next, in order to generate a program having a func
tion equivalent to the procedures above, the operator
inputs an S-expression
(buc G125)

Resultantly, an object with an identifier G126 is pro
duced to be displayed on the screen.
Using as an argument the object having the identifier

G125, the system calls the automatic program generat
ing routine 109.
This routine 109 then returns an S-expression of FIG.

51 as a result.

5

O

15

25

30

35

45

50

55

65

22

(mapcar # Oc name
(filter #'(lambda (e) (eq (division e) 'sales-division))
(filter #'male-p
(filter #'(lambda (e) (<(age e) 30))
(filter #'(lambda (e) (>(agee) 20))

(connect employee-list))))))

As a result, an object with an identifier G127 is gen
erated, input/output object relationships thereof are
memorized, and a graphical display is accomplished in
association therewith. FIG. 46 shows a screen display
state in this situation.

Namely, the S-expression with the identifier G127 is
a program having a function equivalent to the sequence
of procedures employed to produce the object G125.

In this regard, in the automatic program generating
routine 109, the S-expression composing function 2202
is processed along chaining relationships between ob
jects as follows.
G1250 G124 G123se G122--G119-e-Q118-G1

09e G108--G107PG106 -G103->G102--G101-se
G100, where E and -> stand for a generation rela

tionship and a reference relationship, respectively.
The objects G110, G111, G112, and G113 are miss

ing in the chaining relationships between these objects.
Namely, it will be understood that even if operations
unnecessary for a program have been achieved, such
operations are not reflected onto the program generated
as a result.

In addition, the embodiment 1 has been described in
conjunction with a case where each time an input or
output is accomplished, an input command, data refer
enced by the input command, and relationships associ
ated with a result of an execution of the command are
memorized. However, also in an interaction processing
method in which only an input command and a result of
an execution thereof are memorized, namely, the rela
tionships are not stored in a memory, the automatic
program generating method according to the present
invention may possibly be implemented by analyzing at
an automatic program generation the input command,
the data referenced by the input command, and the
result of an execution of the command based on the
memorized input command and execution result.

Embodiment 2

In the program generating method of the embodi
ment 1, when an arbitrary one of the memorized execu
tion results is specified, an entire sequence of command
strings employed to produce the specified result are
processed to automatically create a program. Descrip
tion will now be given of an embodiment 2 in which
based on a portion of the sequence of command strings,
a program can be generated.
According to the automatic program generating

method of the embodiment 2, in the automatic program
generating routine 109 shown FIG. 8 of the embodi
ment 1, the S-expression composing function 2202 of
FIG. 9 is substituted for an S-expression composing
function 3000 of FIG. 52.

In the operation to trace the chaining relationships
between objects in the S-expression composing function
2202 of the embodiment 1, an object which does not
have a root object and which does not reference other
object is regarded as an end point of the chaining rela
tionships. Namely, the chained objects are traced in a
recursive manner until such an end point object is de

5,448,736
23

tected. In contrast therewith, according to the S-expres
sion composing function 3000 of the embodiment 2,
when an operator specifies an end point of the chaining
relationships, the trace operation through the chained
objects is stopped at the specified object. If such an end
point is not specified, this function 3000 achieves the
same processing as the S-expression composing function
22O2.

Referring now to FIG. 52, a description will be given
of the processing of the S-expression composing func
tion 3000.
The operator specifies an end point in advance. A

plurality of objects may be arbitrarily specified as end
points. In the embodiment 2, a list of end points are set
as a global variable "end-point-list'.

In the operation of the S-expression composing func
tion 3000, like in the S-expression composing function
2202, a check is first made to determine whether or not
the argument is an object 2600 (step 2301). If this is not
the case, the argument is directly set as a result (step
2306) and then control is returned to the routine 109 of
FIG. 8.

If the argument is an object 2600, the end point list is
referenced to decide whether or not the object is an end
point designated by the operator (step 3001). If this is
the case, an identifier of the object is set as a result (step
3002) and then control is transferred to the routine 109
of FIG. 8; otherwise, the processing is continued in the
similar manner as for the S-expression composing func
tion 2202.

Description will next be given in detail of the opera
tions of the respective routines when a program is cre
ated by using the S-expression composing function
based on a specific example of a retrieval operation
through the database of the embodiment 1. For exam
ple, let us assume here that from the sequence of com
mand series which produce the result G125 of the se
quence of database retrieval operations of the embodi
ment 1, the commands associated with retrievals
achieved under the conditions of the age range through
the procedures (a) to (c) are removed to attain a se
quence of remaining command series so as to generate a
program from the resultant command sequence. FIG.
53 shows a result of the operations above successively
conducted after the retrieval of the embodiment 1,
which is presented in the screen including the talker
302, the listener 303, and the finder 305.
As shown in FIG. 53, in order to specify the result of

the procedure (c) as an end point, the operator first
inputs an S-expression
(seta end-point-list (G107)).
In response thereto, an object G128 is produced to be
displayed on the screen. Moreover, the S-expression is
executed to create an object G129 from a result of the
execution.

For a program generation, the operator next inputs an
S-expression
(buc G125).
This results in an object G130 generated and displayed
on the screen.

In the execution of the S-expression, the automatic
program generating routine 109 is called such that with
the object specified by the identifier G125 set as an
argument, the S-expression composing function 3000 is
called. In the processing steps of the S-expression com
posing function 3000, the argument is an object which is
other than the specified end point G107 and which has
a root object. Consequently, control passes through the

10

15

20

25

30

35

45

50

55

65

24
steps 2301,3001, and, 2302 to enter the step 2303 to call
the S-expression composing function in a recursive
manner. Thereafter, according to the flowchart of FIG.
52, the processing is achieved in a similar fashion.
Meanwhile, with the object specified by the identifier

G107 set as an argument, the S-expression composing
function is called. In this situation, since the argument is
an object which is an end point registered to the end
point list, the processing proceeds through the steps
2301 and 3001 to enter the step 3002, thereby returning
the identifier G107 as a result.

After the sequence of recusive call operations of the
S-expression composing function above, there is finally
attained as a result an S-expression of FIG. 54 as foll
lows.

(name (example
(filter #'(lambda (e)

(eq (division e) 'sales-division))
(filter #'male-p G107)))

Thereafter, like in the case of the embodiment 1, with
the S-expression set as an argument, the loop develop
ing function 2203 is recursively called. The loop devel
oping function 2203 is recursively called. The loop
developing function 2203 returns an S-expression of
FIG. as a result

(mapcar #'name,
(filter #'(lambda (e)

(eq (division e) 'sales-division)
(filter #"male-p G107)).

This S-expression represents a value attained by exe
cuting the S-expression associated with the object
G2130. Based on the value, an object #131 is generated
to be displayed on the screen.
The obtained S-expression does not use the process

ing constituting a portion of the S-expression shown in
FIG. 53 which retrieves the database “Employee-list”
to acquire employee records of the employees having
an age not less than 20 and not more than 30. Namely,
the result G107 attained from the execution of the pro
cessing above is employed in the S-expression.
As described above, according to the automatic pro

gram generating method using the S-expression com
posing function 3000, in a case where an automatic
program generation is accomplished by specifying an
arbitrary execution result, when the sequence of com
mand series producing the result includes a command
achieving quite a heavy or long processing, the execu
tion result of the command need only be specified as an
end point of the chaining relationships. As a result,
there can be automatically created a program in which
the command is not executed again, namely, in which
the command execution result is referenced.

In this connection, the embodiment 2 has been de
scribed in conjunction with an example in which an end
point is set as a global variable to be referenced so as to
make a check for determining whether or not the end
point is identical to that specified by the operator. How
ever, the end point may be specified as an argument of
a BUC command.

Embodiment 3

In the program created in accordance with the auto
matic program generating method of the embodiment 1,

5,448,736
25

the sequence of command series previously executed
are reproduced in the original form. In contrast there
with, according to the embodiment 3, an intermediate
portion of a sequence of command series may possibly
be replaced with other command series to create a pro
gram of command series previously executed.
The automatic program generating method of the

embodiment 3 is configured as follows. Namely, in the
automatic program generating routine 109 of FIG. 8
associated with the embodiment 1, the S-expression
composing function 2202 of FIG. 9 is substituted for an
S-expression composing function 3100 of FIG. 56.
The S-expression composing function 3100 of the

embodiment 3 is processed as follows. In a case where
the operator specifies a change point and a change desti
nation for a trace route of the chaining relationships,
when control reaches an object designated as the
change point of the trace route, an actual chaining rela
tionship related to the point is ignored. Namely, a chain
ing relationship is regarded to be established to an ob
ject denoted as the change destination of the trace
route, thereby continuing the trace operation of the
chaining relationships. When the operator does not
specify such items above, the processing is accom
plished in the similar manner as for the S-expression
composing function 2202.
The automatic program generating method to be

realized by adopting the S-expression composing func
tion will now be described according to a specific exam
ple of a retrieval executed on the database of the em
bodiment 1.

In the retrieval of the embodiment 1, there is pro
duces a program in which the database "Employee-list”
is accessed to generate a list containing names of male
employees belonging to the sales division and having an
age not less than 20 and not more than 30. After this
point, when producing a program to gather names of
female employees of the sales division under the same
age condition, the processing is different from the oper
ation procedure of the embodiment 1 only with respect
to the procedure (d) retrieving the male employees. In
this case, according to the automatic program generat
ing method of the embodiment 1, the operations after
the procedure (d) are required to be entirely conducted
again. In accordance with the automatic program gen
erating method of the embodiment 3 utilizing the S
expression composing function, the objective program
can be created as follows without re-inputting and with
out re-executing the commands previously executed.

First, records of female employees are retrieved from
the records resultant from the procedure (c) (i.e. em
ployees records of employees having an age not less
than 20 and not more than 30). Namely, the following
processing is executed.

Procedure (d"): Retrieve records of female employees
from the results attained by the procedure (c) of the
embodiment 1.

Subsequently, the execution results respectively of
the procedures (d) and (d") are respectively specified as
a change point of the trace route and a change destina
tion of the trace route, thereby finally generating the
program.

Utilizing the flowchart of FIG. 56, the processing of
the S-expression composing function 3100 will be de
scribed.
The operator beforehand designates a set of a change

point and a change destination of the trace route in the
chaining relationships. An arbitrary number of such sets

10

15

25

30

35

50

55

60

65

26
may be specified. The designated items are registered to
a gloval variable "change-point-list'.
The S-expression composing function 3100 first

makes a check, like the S-expression composing func
tion 2202, to determine whether or not the argument is
an object 2600 (step 2301). If this is not the case, the
argument is set as a result (step 2306) and then control
returns to the routine 109 of FIG. 8.

If the argument is an object 2600, the change-point
list is referenced to decide whether or not the object is
a change point of the trace route specified by the opera
tor (step 3101). If this is the case, an object of the change
destination set in the change-point-list is used as an
argument to recursively call the S-expression compos
ing function 3100. Otherwise, the processing is contin
ued in the same fashion as for the S-expression compos
ing function 2202.

Description will now be given of the operations of
the respective routines used to create a program em
ploying the S-expression composing function 3100.
More concretely, the operations will be described by
referring to a specific example creating a program
which accesses the database "employee-list” to attain a
list of names of female employees of the sales division
having an age not less than 20 and more than 30.

In this operation, as described in conjunction with the
embodiment 1, there is first generated a program which
accesses the database "employee-list' to attain a list of
names of male employees of the sales division having an
age not less than 20 and more than 30 so as to thereafter
generate a program which collects names of female
employees of the sales division satisfying the same age
condition. When the operation above is accomplished
after the retrieval of the embodiment 1, the system dis
plays screen images of the talker 302, the listener 303,
and the finder 305 as shown in FIGS. 57 and 58.
As can be seen from FIG. 57, in order to execute the

procedure (d"), the operator first inputs an S-expression
(filter G'female-p G107).
In response thereto, an object G128 is created to be
presented on the display screen. Moreover, the S
expression is executed to attain a value, which is pro
cessed to produce and display an object G129 on the
SCee.

Next, in order to generate a program with the result
of the procedure (d") in place of the result of the proce
dure (d), the operator inputs an S-expression
(setq change-point-list (GD109 G129))),
thereby establishing the change-point-list. Based on the
input items of the S-expression and values resultant
from an execution of the S-expression, objects GD130
and G131 are created to be presented on the screen.

Thereafter, for a program generation, the operator
inputs an S-expression
(buc G125). Resultantly, an object G132 is produced

to be presented on the display.
In the execution of the S-expression, the automatic

program generating routine 109 is called such that the
routine 109 in turn calls the S-expression composing
function 3100 with the object specified by the identifier
G125 set as an argument. In the S-expression compos
ing function 3100, since the argument is an object which
is not the specified change point G107 and which has a
root object, control passes through the steps 2301, 3101,
and 2302 to reach the step 2303 so as to recursively call
the S-expression composing function 3100. After this
step, the processing is accomplished in a similar manner
described in conjunction with the flowchart of FIG. 56.

27
Meanwhile, the object designated by the identifier

G109 is set as an argument to call the S-expression
composing function.

In this operation, since the argument is an object
which is a specified change point, control proceeds 5
through the steps 2301 and 3101 to enter the step 3102
so as to reference the change-point-list, thereby examin
ing an object of the change destination. In this case, the
change destination is an object designated by the identi
fier G129 and hence the object is set as an argument to
recursively call the S-expression function 3100.
As above, through a sequence of recursive calls of the

S-expression composing function, a final result is at
tained and returned as follows (FIG. 59).

10

15

(name
(example
(filter

#'(lambda (e) (eq (division e) 'sales-division))
(filter #'female-p

(filter
#'(lambda (e) (<(age e) 30)
(filter
#'(lambda (e) (>(age e) 20))
(connect employee-list)))))))

20

25
Thereafter, like in the embodiment 1, the S-expres

sion is set as an argument to call the loop developing
function 2203 in a recursive fashion. In response to this
operation, the loop developing function 2203 returns as
a result an S-expression (FIG. 60) 30

(mapcar #'name
(filter

#'(lambda (e) (eq (division e) 'sales-division)
(filter #'female-p

(filter
#'(lambda (e) (<(age e) 30))
(filter
#'Olambda (e) (>(age e) 20))
(connect employee-list)))))).

35

40

The attained S-expression represents a value resultant
from an execution of the S-expression of the object
G132. Based on the value, an object G133 is created to
be presented on the screen.
As above, according to the automatic program gener- 45

ating method employing the S-expression composing
function 3100, in a case where an automatic program
generation is to be achieved by specifying an arbitrary
one of the execution results, an intermediate portion of
a sequence of command series generating the result may 50
be replaced with another sequence of command series
separately prepared, thereby obtaining the objective
program.

In this regard, in the example of the embodiment 3,
the sets of objects associated with change points and
change destinations of the trace route are set to a global
variable such that the global variable is referenced to
create a program. However, the sets of objects may be
denoted as arguments of a BUC command for the pro
gram generation.

55

Embodiment 4

As described in conjunction with the embodiment 3,
a program produced according to the automatic pro
gram generating method of the embodiment 1 repro
duces with a high fidelity the sequence of command
series previously executed. A description will now be
given of an embodiment 4 according to the present

65

5,448,736
28

invention in which results of preceding executions are
represented in the form of parameters to produce a
program in a generalized fashion.
The automatic program generating method of the

embodiment 4 is configured as follows. Namely, the
automatic program generating routine 109 of the em- .
bodiment 1 is substituted for an automatic program
generating routine 3200 of FIG. 61 and the S-expression
composing function 2202 is replaced with an S-expres
sion composing function 3300 of FIG. 62.

In an execution of the S-expression composing func
tion3200 of the embodiment 4, when an object specified
for parameterization by the operator is detected, the
trace of the chaining relationships is terminated. When
the operator does not specify such an object to be pa
rameterized, the processing is achieved in a similar
manner as for the S-expression composing function
2202.

Referring now to FIGS. 61 an 62, a description will
be given of the operations of the automatic program
generating routine 3200 and the S-expression compos
ing function 3300.
The operator first inputs a set of a function name of a

function to be created, an object to be parameterized,
and a parameter adopted for the parameterization. An
arbitrary number of such sets may be specified. In the
embodiment 4, a list of the sets is registered to a global
variable "parameterization-list'.
As can be seen from FIG. 61, the automatic program

generating routine 3200 first calls the S-expression com
posing function 3300, which will be described later.
Subsequently, a check is made to determine whether or
not the operator has specified a parameterization re
quest (step 3201). If this is the case, a portion defining a
specified function name and a function associated with
the parameter name is added to an S-expression pro
duced by the S-expression composing function (step
3202), thereby applying the loop developing function
2203 to the resultant S-expression. If the parameteriza
tion is not specified, the loop developing function 2203
is directly applied to the S-expression created by the
S-expression composing function 3300. With an execu
tion result of the loop developing function 2203, control
returns to the top-level routine 100.
The S expression composing function 3300 first

checks, like the S-expression composing function 2202
as shown in FIG. 62, to determine whether or not the
argument is an object 2600 (step 2301). If this is not the
case, the argument is directly adopted as a result (step
2306) and then control is transferred to the routine 3200
of FIG. 61.

If the argument is an object 2600, the parameteriza
tion list is referenced to decide whether or not the ob
ject is specified to be parameterized (step 3301). If the
object is an end point, an identifier assigned thereto is
set as a result (step 3302) and control is passed to the
routine 3200 of FIG. 61. If the object is not to be param
eterized, the processing is continued in a similar fashion
as for the S-expression composing function 2202.

Referring next to a concrete example of the retrieval
on the database of the embodiment 1, description will be
given of the operations of the respective routines used
in a program generation employing the automatic pro
gram generating routine 3200 and the S-expression
composing function 3300. For example, let us assume
that a result of an execution of the procedure (d) of the
embodiment 1, namely, a set of employee records thus

5,448,736
29

retrieved is to be parameterized and that a program is
created to extract contents of name columns from a set
of arbitrary employee records selected from the re
trieved records. When this operation is accomplished
after the retrieval of the embodiment 1, the system pres
ents display items in the talker 302, the listener 303, and
the finder 305 of the screen as shown in FIG. 63.

First, for a specification to parameterize the result of
the procedure (d) based on a parameter name "records'
so as to generate a function with a function name "test”,
the operator inputs an S-expression

(setq parameterization-list
'(test G109 record)).

In response to the input, an object G128 is created to be
displayed on the screen. Moreover, the S-expression is
executed to attain a value, which is then processed to
generate an object G129 to be presented on the display.

In order to create a program, the operator next inputs
an S-expression
(buc G125).
Resultantly, an object GR130 is generated to be dis
played on the screen.

In the execution of the S-expression, the automatic
program generating routine 3200 is called such that the
routine 3200 then sets an object specified by the identi
fier GR125 as an argument to call the S-expression com
posing function 3300. When this function 3300 is ex
equted, since the argument is an object which is not the
object G109 specified for the parameterization and
which has a root object, control passes through the
steps 2301, 3301, and 2302 to enter the step 2303,
thereby recursively calling the S-expression composing
function. Thereafter, the processing is accomplished in
a similar fashion according to the flowchart of FIG. 63.
Meanwhile, an object denoted by the identifier G109

is set as an argument to call the S-expression composing
function. In this operation, the argument is an object to
be specified for the parameterization. Consequently,
control proceeds through the steps 2301 and 3301 to
reach the step 3302 so as to return as a resultant value
the parameter name "records'.
When the sequence of recursive calls of the S-expres

sion composing function are thus executed, there is
finally attained an S-expression of FIG. 64 as a result
(name (example records).
Control returns to the routine 3200 of FIG. 61 together
with the result.

In the automatic program generating routine 3200,
since the parameterization is designated, control trans
fers via the step 3201 to the step 3202 to generate an
S-expression to which the function defining portion is
added as follows.
(defun test (records)
(name (example records).

Thereafter, like in the embodiment 1, the attained
S-expression is set as an argument to call the loop devel
oping function 2203 in a recursive manner. As a result of
an execution of the function 2203, an S-expression

(defun test (records)
(mapcar #'name records)

is returned.
The S-expression represents a value attained as a

result of an execution of the S-expression of the object

10

15

25

30

35

45

50

55

60

65

30
G130. Based on the resultant value, an object G131 is
produced to be presented on the screen.
The S-expression functions as a general-purpose pro

gram in which the parameterization is achieved on a
result of the processing as a portion of the S-expression
created in the embodiment 1 (FIG. 53), namely, a result
of the retrieval collecting from the database "employee
list' the employee records of male employees of the
sales division having an age between 20 and 30, thereby
generating a general purpose-program applicable to a
set of arbitrary employee records selected from the
collected records.
As above, according to the automatic program gener

ating method adopting the automatic program generat
ing routine 3200 and the S-expression composing func
tion 3300, in a case where an arbitrary one of the execu
tion results is specified for an automatic program gener
ation, the operator need only specify an object parame
terizing an execution result of a sequence of command
series producing the result to automatically create a
general-purpose program for which data can be speci
fied at an execution thereof.

In this regard, in the example of the embodiment 4, a
set of three items including a function name to be gener
ated, an object for the parameterization, and a parame
ter name is registered to a global variable such that the
global variable is reference to produce a program.
However, the end point may also be specified as an
argument of a BUC command.

Moreover, although the operator specifies the param
eter name in the example of the embodiment 4, the
automatic program generating routine may automati
cally create the parameter name for the parameteriza
tlOn.

Embodiment 5

In the program generating method of the embodi
ment 1, the operator designates an arbitrary one of the
execution results to extract a command series generat
ing the execution result. In this method, for an execu
tion result produced by a command in the extracted
command series, other commands referencing the exe
cution result are not extracted as constituents of the
command series. However, the operator desires de
pending on cases to output, for example, as an interme
diate result another execution result not employed
when the specified execution result is created. Descrip
tion will be here given of the embodiment based on an
embodiment 5 in which the operator arbitrarily speci
fies a plurality of execution results to automatically
generate a program equivalent to sequences of com
mand series respectively producing the respective exe
cution results.

In the embodiment 5, the automatic program generat
ing routine 109 of the embodiment 1 is replaced with an
automatic program generating routine 3400 of FIG. 67.

Referring now to FIG. 67, description will be given
of the processing of the automatic program generating
routine 3400.

First, a check is made to determine whether or not
the operator specifies a plurality of execution results
when inputting a BUC command, namely, whether or
not the BUC command contains an argument repre
sented as a list (step 3401). If only one execution result
is specified, the execution result is set as an argument,
like in the embodiment 1, to execute the S-expression
composing function 2202. For a specification of two or

5,448,736
31

more execution results, these results are set as argu
ments to achieve a multi-value S expression composing
function 3500 of FIG. 68, which will be described later.
A result of an execution of the S-expression composing
function or the multi-value S-expression composing
function is then set as an argument to execute the loop
developing function 2203. Control returns to the top
level routine 100 together with a result of an execution
of the function 2203.

In the multi-value S-expression composing function
3500 of FIG. 68, the S-expression composing function
2202 is executed for the respective arguments (step
3501). The execution results are arranged in a list (step
3502) and then “values' is inserted as a first element of

O

the list, thereby creating an S-expression returning as a 15
result the multiple value (step 3503). Control returns to
the routine 3400 of FIG. 67 together with an S-expres
sion representing the value thus attained.

Referring now to a specific example of the retrieval
through the database of the embodiment 1, a description
will be given of the operations of the respective routines
employed for an automatic program generation in
which a plurality of execution results are specified for
the program generation using the automatic program
generating routine 3400.

In the embodiment 1, a program is created by specify
ing the result G125 attained by extracting contents of
name columns of the employee records retrieved in a
sequence of operations conducted on the database "em
ployee-list'. Let us assume here that the number of
employee records retrieved and a list including names
of the employees are to be obtained. For this purpose, a
program is created by specifying two execution results
including the number GR121 of the retrieved employee
records and the result GD125 attained by extracting the
contents of the name columns. When this operation is
accomplished after the retrieval of the embodiment 1,
the system presents items in the talker 302, the listener
303, and the finder 305 of the screen as shown in FIG.
69.
The operator inputs an S-expression containing a list

of the two execution results
(buc (GD121 G125)).
in response thereto, an object G128 is created to be
displayed on the screen.

In an execution of the S-expression, the automatic
program generating routine 3400 is called. Since the
argument is a list, control passes through the step 3401
and then the list is set as an argument to call the multi
value S-expression composing function 3500. This func
tion 3500 sets as arguments the objects respectively
related to the identifiers G121 and G125 so as to in turn
call the S-expression composing function 2202. When
the function 2202 is applied to the object G121, there is
attained an S-expression as follows (FIG. 70).

(length
(filter
#"Olambda (e) (eq (division e) 'sales-division)

(filter G'male-P
(filter #'(lambda (e) (<(age e) 30)

(filter
#'Olambda (e) (>(age e) 20)
(connect employee-list))))))

Applying the S-expression composing function to the
object G125, an S-expression of FIG. 71 is obtained.

20

25

30

35

45

50

55

65

32

(name
(example

(filter
if'(lambda (e) (eq (division e) 'sales-division)
(filter #'male-p

(filter i'Olambda (e) (<(age e) 30)
(filter
#'(lambda (e) (>(age e) 20)
(connect employee-list)))))))

These S-expressions are arranged in a list and then a
function “values' is set as a first element thereof,
thereby generating an S-expression returning as a result
the multiple values (FIG. 72).

(values
(length

(filter
#'(lambda (e) (eq (division e) 'sales-division)
(filter i'male-p

(filter #'(lambda (e) (<(age e) 30))
(filter
#'(lambda (e) (>(age e) 20)
(connect employee-list))))))

(name
(example

(filter
#'(lambda (e) (eq (division e) 'sales-division)
(filter #'male-p

(filter
#(lambda (e) (<(age e) 30)

(filter
#'Olambda (e) (>(age e) 20)
(connect employee-list))))))))

The loop developing function 2201 is then applied to
the obtain S-expression returning as a result multiple
values, thereby generating an S-expression as shown in
FIG. 73.

(values
(length

(filter
#'(lambda (e) (eq (division e) 'sales-division)
(filter #'male-p
(filter

#'Olambda (e) (<(age e) 30)
(filter
#(lambda (e) (>(age e) 20))
(connect employee-list))))))

(mapcar iname
(filter

#(lambda (e) (eq (division e) 'sales-division)
(filter #'male-p
(filter
#"Olambda (e) (<(age e) 30))

(filter
#'Olambda (e) (>(age e) 20)
(connect employee-list)))))))

This S-expression represents a value attained by exe
cuting the S-expression of the object G128. Based on
the value, an object G129 is generated to be presented
on the display screen.
The embodiment 5 has been described in conjunction

with a specific example in which an execution result and
an intermediate result of a command series producing
the execution result are specified to generate a program
returning as a result multiple values. However, a plural
ity of execution results of command series indepen
dently executed may be specified to create a program
returning as a result the respective values.

5,448,736
33

Moreover, in the automatic program generating
method of the embodiment 1, in a process generating an
execution result produced by a command series and
specified by the operator, even when there exists a
command which is derived from or is initiated in associ
ation with the command series and which references an
execution result of a command included in the com
mand series, the derived command is not incorporated
in the created program. Consequently, the attained
program does not produce the execution result of the
derived command. This is also the case of the embodi
ment 5. However, if the operator does not specify that
the execution result of the derivative command is not to
be outputted, the derivative command series may also
be additionally extracted to be included in the resultant
program. For this purpose, the automatic program gen
erating routine of the embodiment 5 need only be modi
fied such that if the operator does not specify that the
execution result of the derivative command is not to be
outputted, the derivative command series is automati
cally added to the execution results specified by the
operator so as to thereafter call the multi-value S
expression composing function. Furthermore, it may
also be possible that when the operator specifies that the
derivative execution result is to be outputted, the deriv
ative execution result is automatically added to the
execution results specified by the operator, thereby
calling the multi-value S-expression composing func
tion.

Incidentally, the embodiments 1 to 5 have been de
scribed in conjunction with a case where the interaction
processing method and the program generation method
according to the present invention are incorporated in
the top-level routine of the Lisp. However, these meth
ods may be naturally incorporated in an interaction
processing routine of a computer system employed in a
general interactive configuration.

In the automatic program generating routines of the
embodiments 1 to 5, when an execution result of a com
mand series previously executed is used two times or
more, there is produced a program containing the same
S-expression in positions thereof where the execution
result is referenced. As shown in FIGS. 74 to 76, after
the loop developing function of each of the automatic
program generating routines is called, check may be
achieved to determine a portion of the S-expression
achieving a shared processing so as to incorporate a
shared optimization routine 3900 in the program. The
optimization routine will be implemented according to
technology adopted in a compiler or the like.

For example, in the embodiment 5, based on the auto
matic program generating routine 3800 of FIG. 76 in
which the optimization routine is incorporated, the
S-expression of FIG. 73 can be optimized to attain an
S-expression of FIG. 77.

(let (data
(filter
#'(lambda (e) (eq (division e) 'sales-division)
(filter #'male-p
(filter
#'(lambda 9e) (<(age e) 30)
(filter
#'(lambda (e) (>(age e) 20)
(connect employee-list)))))))

(values (length data)
(mapcar #'name data)))

15

20

25

30

35

40

45

50

55

65

34
In addition, each of the embodiments 2 to 5 has been

implemented by including a function to the embodiment
1; however, two or more different functions may be
simultaneosully combined therewith. Moreover, in the
embodiments 2 to 4, the global variable is established by
inputting an S-expression; however, there may be used
a menu, a dialogue box, or the like for an interface in
which the global variable is to be established.
As can be seen from the description above, in accor

dance with the present invention, the following various
modes of carrying out the invention may be employed
in a single mode or in a combined mode thereof.

(1) Items such as commands previously inputted by
the operator can be specified thereafter as com
mands or operands in a subsequent operation by
use of identifiers, icons, function keys, or the like.

(2) The commands and other items are presented in
the form of graphic images on the screen; more
over, mutual relationships between the displayed
items are indicated as line segments connecting the
graphic images on the screen. This helps the opera
tor easily recognize relationships between the com
mands.

(3) When the operator inputs an execution result, a
program is automatically generated in association
with a sequence of command series generating the
execution result.

(4) The system automatically generates a program
which does not include unnecessary items of opera
tion errors and of the trial-and-error procedure. In
consequence, the editing operation is unneces
sitated.

(6) By obtaining a concrete execution result through
an interactive processing in a trial-and-error fash
ion, there can be created a general-purpose pro
gram expanded for general uses.

We claim:
1. A method of generating a program comprising

steps executed by a computer, the steps including:
(a) sequentially inputting a plurality of commands

selected by an operator, said commands specifying
respective processing to be executed and respec
tive data to be used in the processing;

(b) executing each said inputted command before an
input of a command subsequent thereto to output
data resultant from an execution of said each com
mand,

said step (a) including a step of inputting several com
mands specifying resultant data attained by said
step (b) through execution of commands inputted
prior to said several commands as data to be re
spectively used by said plural commands;

(c) storing information representing each of the input
ted commands in such a manner that information
representing a succeeding command which uses
result data obtained as a result of execution of a
preceding command is chained to information rep
resenting said preceding command;

(d) activating a program generation routine to select,
based upon said information stored for each of the
inputted commands, from said plural input com
mands a series of several commands employed to
generate at least one of a plurality of resultant data
associated with said plural commands, said at least
one resultant data being selected by the operator,
wherein said routine selects the series of several
commands by information each representing a
command chained to information representing a

5,448,736
35

command which has produced said result data
selected by the operator, thereby selecting part of
said plural input commands which have plural
information chained to each other; and

(e) generating, based on said information stored for
each command of the selected command series, a
program executing processing to be achieved by
said command series or processing equivalent
thereto.

2. A program generating method according to claim
1, wherein said step (d) includes a step of selecting a
portion from said plural commands inputted,

said portion beginning from a first command using a
data item selected by the operator from a group of
data used by said plural input commands or begin
ning from a second command selected by the oper
ator from said plural commands and ending with a
command generating the selected resultant data.

3. A program generating method according to claim
1, wherein said information representing each command
inputted includes first information representing process
ing of said each command and second information rep
resenting data resultant from execution of said each
command.

4. A program generating method according to claim
3, wherein said storing step includes steps of:

storing said first information representing processing
of said each command, in response to inputting of
said each command;

changing, in response to said each command informa
tion representing said each command to informa
tion representing a command preceding to said
each command, in case said each command uses
resultant data of said preceding command, and

storing the second information after execution of said
each command.

5. A program generating method according to claim
3, wherein said first information representing process
ing of said each command is chained to said second
information denoting data resultant from execution of
said each command.

6. A program generating method according to claim
5, wherein said information representing each of said
commands inputted further includes third information
representing identity thereof as a command, said first
information of said command being chained to said
third information,

said first information being chained via said third
information of said command to said second infor
mation of said preceding command,

said second information of said each command being
chained via said fourth information thereof to said
first information thereof.

7. A program generating method according to claim
6, wherein said storing step (c) includes a step of:
being responsive to inputting of one of said plural
commands, said one command using data resultant
from execution of a command preceding thereto, to
store said first and third information of said one
command, said first information being chained to
said third information, said third information being
chained to said second information of said preced
ing command,

said step being responsive to execution of each of said
plural commands to store said second information
of said each command, said second information
being chained to said third information thereof.

O

5

25

30

35

40

45

50

55

65

36
8. A method according to claim 1, wherein said se

lecting step includes steps of:
selecting said series of several commands from said

plural input commands so that said series of several
commands start from a command using another
resultant data selected by an operator as data to be
changed to a variable and said series of several
commands includes commands which succeed to
said command using said another data and has been
employed to generate the one resultant data se
lected by the operator; and

generating, based upon the selected series of several
commands, a program which executes processing
achieved by said selected series of several con
mands or processing equivalent to the processing,
on said variable.

9. A program generating method according to claim
1, wherein said step (b) includes a step of adding to data
resultant from an execution of each said command an
identifier discriminating said data from other data resul
tant from executions of other commands, thereby out
putting the resultant data,

said step included in said step (a) of specifying the
resultant data for said preceding command includ
ing a step of specifying an identifier assigned to the
resultant data for said preceding command.

10. A program generating method according to claim
1, wherein said step (b) includes a step of displaying
each of said plural input commands and resultant data
attained for each said command following a command
preceding thereto,

said step included in said step (a) of inputting com
mands specifying resultant data resultant from pre
ceding commands including a step of specifying
display positions of resultant data for said preced
ing commands.

11. A program generating method according to claim
1, wherein said step (d) further includes a step of select
ing another series of commands included in said plural
input commands, said another series of commands being
branched from said selected series of several com
mands, said another series of commands including com
mands not included in said selected series of the several
commands but using an execution result of one com
mand included in said selected series of several com
mands,

wherein said step (e) further includes generating,
based upon said information stored for each com
mand of the selected series of several commands
and the selected another series of several con
mands, a program executing processing to be
achieved by said selected series of commands and
said selected another series of commands or pro
cessing equivalent thereto.

12. A program generating method according to claim
1, wherein said step (d) includes selecting from said
plural input commands a series of several commands
employed to generate a plurality of resultant data se
lected by the operator from the plurality of resultant
data respectively associated with said plural input com
mands.

13. A program generating method according to claim
1, further including the following steps of:

(c) inputting, after the step (c) and before the step (d),
information to specify a series of commands se
lected by the operator, for changes thereof, among
the plurality of commands inputted; and

5,448,736
37

(c") inputting another series of commands selected by
the operator, said another series of commands
being ones to replace said series of commands se
lected for changes thereof,

said step (d) including a step operative to select said
another series of commands, in place of said series
of commands selected for changes thereof, as a
portion of said series of several commands when
the series of commands selected for changes
thereof have been used to generate the selected
resultant data.

14. A program generating method according to claim
13, wherein:

information representing a command using data dif
ferent from data resultant from execution of a com
mand preceding thereto includes information rep
resenting processing of said command, the different
data and execution result data of said command;

information representing a command using data resul
tant from execution of a command preceding
thereto includes information representing process
ing of said command and execution result data of
said command and being chained to information
representing the preceding command,

said step (d) including a step of tracing the series of
several commands based on the stored information
representing each of said plural commands input
ted, said commands being ones which have infor
mation representing said commands belonging to a
chain to which information representing a com
mand that has produced the selected resultant data
belongs,

said step continuing the tracing in such a manner that
when a first command used as an end of the series
of commands selected for changes thereof is de
tected during the tracing, the tracing is continued
from a second command adopted as an end of said
another series of commands, in place of the first
command used as the end of the series of com
mands to be changed.

15. A program generating method according to claim
1, wherein said step (e) includes a step of producing a
program portion as part of said program to be gener
ated, when the selected series of commands include a
first command producing a group of data a second suc
ceeding command selecting one constituent data from
the group of data generated by the first command and a
group of further succeeding commands achieving pro
cessing on said selected one constituent data, said pro
gram portion executing the processing achieved by the
group of commands or processing equivalent thereto,
on each of said group of data generated by said first
command.

16. A program generating method according to claim
1, further comprising the following steps of:

(e) displaying an icon of a first kind in response to
inputting of each command by the step (a) plural
commands, said command using data different
from data resultant from an execution the icon of
the first kind representing said each command;

(f) displaying an icon of a second kind in response to
the executing of said each command, the icon of
the second kind representing resultant data of exe
cution of said each command;

(g) selecting by an operator an icon of the third kind
representing resultant data for which the program
should be produced.

10

15

25

30

35

45

50

55

60

65

38
17. A program generating method according to claim

16, further comprising the following steps of:
(h) displaying a graphic image of a first type interre

lating the icon of the first kind representing said
each command to an icon of the second kind repre
senting resultant data of a command preceding to
said each command in response to the inputting of
said each command, said resultant data being used
by said each command;

(i) displaying a graphic image of a second type inter
relating the icon of the second kind representing
resultant data of said each command to the icon of
the first kind representing said each command in
response to the executing of said each command.

18. A program generating method according to claim
17, wherein the graphic image of the first type is differ
ent from the graphic image of the second type.

19. A program generating method according to claim
18, wherein the graphic images of the first and second
types are respectively represented with straight lines
having line types different from each other.

20. The program generating method according to
claim 1, wherein said extracting step includes the step of
extracting from a series of several commands from said
plural input commands beginning from a command
using another resultant data selected from respective
resultant data of said plural input commands, said an
other selected data being changed to a variable and
being employed to generated the one resultant data,
thereby generating based on the extracted command
series a program executing on the variable processing
achieved by said extracted command series or process
ing equivalent thereto.

21. A method for generating a program, comprising
steps executed by a computer system which includes a
processing unit, a display device and an input apparatus,
the steps including:

sequentially inputting plural commands, each of the
commands including a first character string indica
tive of processing to be executed and a second
character string indicative of data which should
receive the processing or an identifier of the data;

displaying an icon of a first kind representing each of
the commands, in response to inputting of said each
command and before inputting of a succeeding
command of said each command;

executing said each command before inputting of the
succeeding command;

automatically generating a data identifier to be given
to data resultant from execution of said each com
mand, in response to said executing of said each
command;

displaying, in response to said executing of said each
command, an icon of a second kind representing a
result data of execution of said each command and
a character string representing the generated iden
tifier;

displaying, in response to said executing of said each
command, a graphic image of a first type interrelat
ing said icon of the first kind and said icon of the
second kind displayed for said each command;

displaying, in response to said inputting of said each
command, a graphic image of a second type inter
relating said icon of the first kind representing said
each command to an icon of the second kind which
is already displayed for one of the commands pre
ceding to said each command and represents data
resultant from execution of said preceding com

5,448,736
39

mand, in case said each command specifies, as a
data identifier of data to be processed by said each
command, a data identifier already displayed for
the resultant data of said preceding command;

storing information representing each of the com- 5
mands inputted in such a manner that information
representing a succeeding command which uses
result data obtained as a result of execution of a
preceding command is chained to information rep
resenting said preceding command; 10

activating a program generation routine to select,
from said plural commands inputted and based
upon said information stored for said plural com
mands inputted, a series of several commands em
ployed to generate one of a plurality of resultant 15
data produced by said plural commands inputted,
in response to an operator's selection of an icon
representing said one resultant data, wherein said
routine selects the series of several commands by
information each representing a command chained 20
to information representing a command which has
produced said result data selected by the operator,
thereby selecting part of said plural input com
mands which have plural information chained to
each other; and 25

generating, based upon said selected series of com
mands, a program which executes processing exe
cuted by said selected series of commands or equiv
alent thereto.

22. A method according to claim 21, wherein said 30
storing step includes storing information of said plural
commands inputted in such a manner that information
of a succeeding command which uses a resultant data of
a preceding command is chained to information repre
senting said preceding information, 35

wherein said selecting step includes steps of selecting
said series of commands by tracing the information
stored for each of said plural commands inputted
from information representing one of said plural
commands inputted which has produced said se- 40
lected resultant data.

23. A method according to claim 1, wherein said
storing step includes storing information of said plural
commands inputted in such a manner that information
of a succeeding command which uses a resultant data of 45
a preceding command is chained to information repre
senting said preceding information,

SO

55

65

40
wherein said selecting step includes steps of selecting

said series of commands by tracing the information
stored for each of said plural commands inputted
from information representing one of said plural
commands inputted which has produced said se
lected resultant data.

24. A program generating method comprising steps
executed by a computer, the steps including:

(a) sequentially inputting a plurality of commands
selected by an operator, said commands specifying
respective processing to be executed and respec
tive data to be used in the processing;

(b) executing each said inputted command before an
input of a command subsequent thereto to output
data resultant from an execution of said each com
mand,

said step (a) including a step of inputting several com
mands specifying resultant data attained by said
step (b) through execution of commands inputted
prior to said several commands as data to be re
spectively used by said plural commands;

(c) storing information representing each of the input
ted commands;

(d) activating a program generation routine to select,
based upon said information stored for each of the
inputted commands, from said plural input com
mands a series of several commands employed to
generate at least one of a plurality of resultant data
associated with said plural commands, said at least
one resultant data being selected by the operator
thereby selecting part of said plural input com
mands which have plural information chained to
each other,

said program generation routine (i) judging to deter
mine whether or not data utilized by each said
command is data resultant from a command pre
ceding thereto based upon information stored for
each inputted command, and (ii) selecting said part
of said plural input commands, based on a result of
said judge step conducted on each of said plural
commands; and

(e) generating, based on said information stored for
each command of the selected command series, a
program executing processing to be achieved by
said command series or processing equivalent
thereto.

k ak k k sk

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENT NO. : 5,448,736
DATED ; September 5, 1995

INVENTOR(S) : Hiroko Yuasa et al.

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
Corrected as shown below:

Claim lé, Column 37, lines 58 and 59, after "the step (a)"
delete "plural Commands, said command using data different
from data resultant from an execution." -

Signed and Sealed this
Fifth Day of December, 1995

BRUCE LEEMAN

Attesting Officer Commissioner of Patents and Trademarks

