特許局のご協力に基づいて公開された国際出願

世界知的所有権機関 国際事務局

国際出願日 2011年8月11日 (11.08.2011)

国際特許分類：C12N 15/09 (2006.01) C12P 13/04 (2006.01)
C12N 1/20 (2006.01) C12R 1/00 (2006.01)

国際出願番号：WO2011/096554 A1

国際公開日：2011年2月7日 (07.02.2011)

国際公開の言語：日本語

優先権データ：特願2010-025000 2010年2月8日 (08.02.2010) JP

出願人（米国を除く全ての指定国について）：株式会社AJINOMOTO CO. INC. (JP)

出願番号：1048315 東京都中央区大倉1丁目1番1号 (JP)

発明の名称：変異型rspsA遺伝子及びL-アミノ酸の製造法

発明者：発明者：[省略]

Title: MANUFACTURING METHOD FOR MUTANT rspsA GENE AND L-AMINO ACID

発明の名称：変異型 rspsA 遺伝子及び L-アミノ酸の製造法

요약：脂肪酸、又はグリセロール等のアルコールを原料として、腸内細菌科に属する細菌を用いて効率よくL-アミノ酸を製造する方法を提供する。L-アミノ酸を製造する方法を提供する。210位のアスパラギン酸残基が他のアミノ酸残基で置換される変異を有する変異型rspsAタンパク質を保持し、かつL-アミノ酸生産能を有する腸内細菌科に属する細菌を、脂肪酸及びアルコールから選ばれる炭素源を含む培地で培養し、該培地からL-アミノ酸を採取することにより、L-アミノ酸を製造する。

ADStract: Disclosed is a method for manufacturing all L-amino acid using a fatty acid or an alcohol such as glycerol as a raw material and efficiently using bacteria belonging to the Enterobacteriaceae. The L-amino acid is manufactured by cultivating bacteria belonging to the Enterobacteriaceae in a medium containing a carbon source chosen from a fatty acid or an alcohol, said bacteria having a mutant RspsA protein which has a mutation wherein an aspartic acid residue at position 210 is substituted with another amino acid residue, and which can produce an L-amino acid, and collecting the L-amino acid from the medium.

PCT
| (BF, BJ, CF, NE, SN, TD, TG) CI, CM, G\(\), GN, GQ, GW, ML, 皿 | 規則 13 の 2 の 2.4(d)(i) 及び 48.2(a)(viii) | 添付公開書類: 国際調査報告 (条約第 21 条(3)) | 明細書の別個の部分として表した配列リスト (規則 5.2(a)) |
明細書
発明の名称：変異型 rpsA 遺伝子及び L アミノ酸の製造法
技術分野
[0001] 本発明は、細菌を用いた L アミノ酸の製造法に関し、特に脂肪酸、又は
グリセロール等のアルコールを原料とする L アミノ酸の製造法、及び該方法
に用いる細菌、並びに該細菌の構築に用いる遺伝子に関する。L アミノ酸
は、動物飼料用の添加物、健康食品の成分、又はアミノ酸輸液等として、
産業上有用である。
背景技術
[0002] 発酵法による L アミノ酸の工業生産においては、炭素源として糖類、す
なわち、グルコース、フルクトース、スクロース、廃糖蜜、澱粉加水分解物
等が使用されている。また、炭素源として脂肪酸（特許文献 1）やグリセロ
ール（特許文献 2）を用いた L アミノ酸の製造法が開示されている。
[0003] 腸内細菌科に属するエッシエリヒア属細菌については、適応的進化を、特定
の条件における植え継ぎ培養を行なうことによって誘発する方法が知られて
いる（非特許文献 1 等）。また、適応的進化を誘発された細菌染色体中の、
該進化に対応する変異は、非特許文献 2 に記載された GGS 法（非特許文献 2）
などの方法によって探索、同定することが可能である。
[0004] RpsA タンパク質はリボソームタンパク質 s1 とも呼ばれ、エッシエリヒア - コ
リでは生育に不可欠なタンパク質である（非特許文献 3）。RpsA タンパク質
はリボソームの 30S サブユニットを構成する最大のタンパク質であり、30S サ
ブユニット中の 16S rRNA と mRNA の SD 配列との結合を制御していることが知られ
ている（非特許文献 4）。
[0005] しかしながら、脂肪酸や、グリセロール等のアルコールの資化能や、それ
らの炭素源からの L アミノ酸の生産能についての適応的進化に関する解析
はなされておらず、細菌の RpsA タンパク質の変異と L アミノ酸生産性との
関連についても報告されていない。
先行技術文献

特許文献

[0006] 特許文献1:国際公開パンフレット第2009/142286号
特許文献2:米国特許出願公開第2009093029号
非特許文献

非特許文献4:Komarova A.V. et al., 2002, RNA, 8(9):1137-1147

発明の概要

発明が解決しようとする課題

[0008] 本発明は、炭素源、特に脂肪酸、又はグリセロール等のアルコールを原料として、腸内細菌科に属する細菌を用いて効率よくL-アミノ酸を製造する方法、及び該方法に用いる細菌、並びに該細菌の構築に用いる遺伝子を提供することを課題とする。

課題を解決するための手段

[0009] 本発明者は、上記課題を解決するために鋭意研究を行った結果、特定の変異を有するRpsAタンパク質を保持する細菌が、脂肪酸や、グリセロールのようなアルコールを含む培地で効率よくL-アミノ酸を生産することを見出し、本発明を完成するに至った。

すなわち、本発明は以下のとおりである。

[0010] (1) L-アミノ酸生産能を有する腸内細菌科に属する細菌を、脂肪酸及びアルコールから選ばれる炭素源を含む培地で培養し、該培地からL-アミノ酸を採取する、L-アミノ酸の製造法であって、

前記細菌は、配列番号15又は16のアミノ酸配列を一部に有し、かつ、配列番号15の5位または配列番号16の5位のアスパラギン酸残基が他の
アミノ酸残基で置換される変異を有する変異型 R p s A タンパク質を保持することを特徴とする、方法。

（2）前記細菌がエシエリヒア属、エンテロバクター属、又はパンテア属に属する細菌である、前記方法。

（3）前記細菌がエシエリヒア・コリ、パンテア・アナナティス、又はエンテロバクタ_・アエロゲネスである、前記方法。

（4）前記変異型 R p s A タンパク質が腸内細菌科に属する細菌由来である、前記方法。

（5）前記変異型 R p s A タンパク質がエシエリヒア・コリ、パンテア－アナナティス、又はエンテロバクタ_・アエロゲネス由来である、前記方法。

（6）前記他のアミノ酸残基がチロシン残基である、前記方法。

（7）前記変異型 R p s A タンパク質が、前記変異を有する以外は、配列番号 17 のアミノ酸配列を有するタンパク質又はその保存的バリアントである、前記方法。

（8）前記変異型 R p s A タンパク質を保持する細菌が、前記変異を有さない R p s A タンパク質を発現しないことを特徴とする、前記方法。

（9）前記変異型 R p s A タンパク質を保持する細菌が、該変異型 R p s A タンパク質をコードする変異型 r p s A 遺伝子で、染色体上の r p s A 遺伝子が置換されたことを特徴とする、前記方法。

（10）前記炭素源が脂肪酸である、前記方法。

（11）前記脂肪酸がオレイン酸である、前記方法。

（12）前記脂肪酸が油脂由来の脂肪酸の混合物である、前記方法。

（13）前記炭素源がアルコールである、前記方法。

（14）前記アルコールがグリセロールである、前記方法。

（15）前記アルコールがエタノールである、前記方法。

（16）前記炭素源が油脂を加水分解することによって得られる脂肪酸とグリセロールの混合物である、前記方法。
（17）配列番号15又は16のアミノ酸配列を一部に有し、かつ、配列番号15の5位または配列番号16の5位のアスパラギン酸残基が他のアミノ酸残基で置換される変異を有する変異型RpsAタンパク質を保持する、腸内細菌科に属する細菌。

（18）Lアミノ酸生産機能を有する前記細菌。

（19）前記細菌がエシエリヒア属、エンテロバクター属、又はパンテオア属に属する、前記細菌。

（20）前記細菌がエシエリヒア・コリ、パンテオア・アナナティス、又はエンテロバクタ・エロゲネスである、前記細菌。

（21）前記他のアミノ酸残基がチロシン残基である、前記細菌。

（22）前記変異型RpsAタンパク質が、前記変異を有する以外は、配列番号17のアミノ酸配列を有するタンパク質又はその保存的バリアントである、前記細菌。

（23）配列番号17のアミノ酸配列を有するタンパク質又はその保存的バリアントであって、かつ、210位のアスパラギン酸残基が他のアミノ酸残基で置換されたアミノ酸配列を有するタンパク質をコードするDNA。

（24）前記他のアミノ酸残基がチロシン残基である、前記DNA。

（25）前記タンパク質は、210位のアスパラギン酸残基が他のアミノ酸残基で置換された以外は配列番号2、配列番号12、又は配列番号14のアミノ酸配列を有する、前記DNA。

（26）前記タンパク質は、腸内細菌科に属する細菌に保持させたときに、脂肪酸及びアルコールから選ばれる炭素源を含む培地での生育を改善する機能を有する、前記DNA。

発明の効果

【0011】本発明により、脂肪酸、又はグリセロール等のアルコールを原料として、腸内細菌科に属する細菌を用いて効率よく、L－リジン等のL－アミノ酸を製造することができる。

図面の簡単な説明
[0012]図1]炭素源としてオレイン酸のみを使用した試験管培養におけるMG1655株及びFitnessl株の生育を示す図。「OD」は波長600nmで測定した培地の濁度を示す（以下の図でも同様）。

[図2]炭素源としてオレイン酸のみを使用したフラスコ培養におけるMG1655株及びFitnessl株の生育を示す図。

[図3]MG1655株及びFitnessl株を、オレイン酸のみを炭素源としてフラスコ培養したときの、オレイン酸の消費を示す図。

[図4]炭素源としてオレイン酸のみを使用した試験管培養におけるMG1655、Fitnessl、MG1655Ayca1:att-Gm、及びMG1655Ayca1:att-Cm、rpsA(D210Y)の各株の生育を示す図。

[図5]炭素源としてグルコースのみを使用した試験管培養におけるMG1655、Fitnessl、MG1655Ayca1:att-Gm、及びMG1655Ayca1:att-Cm、rpsA(D210Y)の各株の生育を示す図。

[図6]エシェリヒア・コリMG1655株（配列番号2）、バントエア・アナナティスAJ13355株（配列番号12）、及びエンテロバクター・アエロゲネスAJ110637株（配列番号14）のRpsAタンパク質のアミノ酸配列のアラインメントを示す図。最下段の「」は完全に一致したアミノ酸を「」は強い類似性のあるグループに属しているアミノ酸を、「」は弱い類似性のあるグループに属しているアミノ酸を、空白は類似性のないアミノ酸をそれぞれ表す。アミノ酸の類似性についての強さの基準は、アミノ酸置換行列PAM250 MATRIX(David w. Mount Bioinformatics Sequence and Genome Analysis)を用いて、アミノ酸間のスコアが0.5より大きいか、0.5以下かで分けている。

発明を実施するための形態

[0013]以下、本発明を詳細に説明する。

本発明の方法は、L-アミノ酸生産能を有する腸内細菌科に属する細菌を、脂肪酸及びアルコールから選ばれる炭素源を含む培地で培養し、該培地からL-アミノ酸を採取する、L-アミノ酸の製造法である。本発明においては、特定の変異を有するrpsA遺伝子（以下、「本発明のDNA」と記載すること
ある。)を保持する細菌を用いる。
以下、本発明のDNA、該DNAを保持する細菌、及び同細菌を用いたL_アミノ酸の製造法について説明する。

[0014] 本発明のDNA

本発明のDNAは、配列番号15又は16のアミノ酸配列を一部に有し、かつ配列番号15の5位または配列番号16の5位のアスパラギン酸残基が他のアミノ酸残基で置換される変異を保有する変異型RpsAタンパク質をコードするDNAである。配列番号15又は16のアミノ酸配列は、RNAに結合する機能ドメインの一部であり、E.coliのS1タンパク質で6回繰り返されるS1RNA binding domainと定義された領域のうち、N末端から3番目に出てくるモチーフの一部である。S1RNA binding domainはCell Volume 88, Issue 2, 24 January 1997, Pages 235-242に記載されている。

[0015] RpsAタンパク質は、細菌における30Sリボソームサブユニットを構成する最大のタンパク質であり、配列番号15または16の保存配列を有している。

本発明における変異型RpsAタンパク質とは、保存配列として有する配列番号15、配列番号16に記載の配列中、5位のアスパラギン酸が他のアミノ酸に置換されたタンパク質を意味し、本変異を有さないRpsAタンパク質（以下野生型RpsAタンパク質」と記載することがある。）とは区別される。

[0016] 野生型RpsAタンパク質としては、配列番号15または16の保存配列を有していればいずれでもよいが、これらの配列を有し、かつRpsAタンパク質としての機能が損なわれない限り、そのホモログや人為的変異体等、保存的変異を有するタンパク質であってもよい。RpsAタンパク質の機能としては、腸内細菌科に属する細菌に保持させたとき、又はその量を上昇させたときに、脂肪酸及びアルコールから選ばれる炭素源を含む培地での生育を改善する機能が挙げられる。野生型RpsAタンパク質としては、腸内細菌科に属する細菌、コリネ型細菌等のRpsAタンパク質が挙げられる。腸内細菌科に属する細菌については後述する。

[0017] 野生型RpsAタンパク質としては、具体的には、エシエリヒア・コリ、パン
トエア・アナナティス、エンテロバクター・アエログネスのRpsAタンパク質をコードする遺伝子が利用できる。

[0018]エシエリヒア・コリのRpsAタンパク質は、GenBank Accession No. NP_415431に登録されており、そのアミノ酸配列を配列番号2に示す。また、該タンパク質をコードするrpsA遺伝子の塩基配列を配列番号1に示す。

[0019]バントエア・アナナティスAJ13355株、及びエンテロバクター・アエログネスAJ110637株のRpsAタンパク質のアミノ酸配列を、それぞれ配列番号1及び14に示す。また、これらのタンパク質をコードする各々のrpsA遺伝子の塩基配列を、配列番号11及び13に示す。

[0020]上記エシエリヒア・コリ、バントエア・アナナティス、及びエンテロバクター・アエログネスの各々の野生型RpsAタンパク質は、配列番号17の保存配列を有している。各RpsAタンパク質のアミノ酸配列のアラインメント（GLUSTALW1）multiple sequence alignmentで作成）を図6に示す。配列番号17の保存配列を有するRpsAタンパク質は、野生型RpsAタンパク質の好ましい1形式である。

[0021]また、野生型RpsAタンパク質は、RpsAタンパク質としての機能が損なわれない限り、上記アミノ酸配列を有するものの他、それらのホモログや人為的改変体等、又は保存的変異を有するタンパク質であってもよい。このようなホモログ、人為的改変体、又は保存的変異を有するタンパク質を、保存的バリアントと記載する。

[0022]RpsAタンパク質の保存的バリアントは、例えば配列番号2、12、14、又は17のアミノ酸配列において、1若しくは数個の位置での1若しくは数個のアミノ酸の置換、欠失、挿入又は付加等を含む配列を有するタンパク質であってもよい。

[0023]「1若しくは数個」とは、アミノ酸残基のタンパク質の立体構造における位置やアミノ酸残基の種類によっても異なるが、具体的には好ましくは1〜20個、より好ましくは1〜10個、さらに好ましくは1〜5個を意味する。また、保存的変異の代表的なものは、保存的置換である。保存的置換とは、置換部位
が芳香族アミノ酸である場合には、Phe 、Trp、Tyr 間で、置換部位が疎水性アミノ酸である場合には、Leu 、Ile、Val 間で、極性アミノ酸である場合には、Lys 、Arg 、His 間で、酸性アミノ酸である場合には、Asp 、Glu間で、ヒドロキシル基を持つアミノ酸である場合には、Ser 、Thr間でお互いに置換する変異である。保存的置換とみなされる置換としては、具体的には、AlaからSer又はThrへの置換、Arg よりGin、His又はLysへの置換、AsnからGlu、Gln、Lys、His又はAspへの置換、AspからAsn、Glu又はGlnへの置換、GysからSer又はAlaへの置換、GlyからIleへの置換、Lys、His 又はArgへの置換、GlyからGlu、Asn、Gln、Lys又はAspへの置換、GlyからProへの置換、GlyからGlyへの置換、Lys、Gln、Arg又はTyrへの置換、IleからLeu、Met、Val又はArg、Pheへの置換、LeuからIle、Met、Val又はPheへの置換、LysからAsn、Glu、Gln、His又はArgへの置換、MetからIle、Leu、Val又はPheへの置換、PheからTrp、Tyr、Met、Ile又はLeuへの置換、SerからThr又はAlaへの置換、ThrからSer又はAlaへの置換、TrpからPhe又はTyrへの置換、TyrからHis、Phe又はTrpへの置換え、及び、IleからMet、Ile又はLeuへの置換えが挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加、または逆位等には、遺伝子が由来する微生物の個体差、種の違いに基づく場合などの天然に生じる変異（mutant 又はvariant）によって生じるものも含まれる。このようなタンパク質は、例えば、部位特異的変異法によって、コードされるタンパク質の特定の部位のアミノ酸残基が置換、欠失、挿入または付加を含むように野生型RpsA 遺伝子の塩基配列を変改することによって取得することができる。

[0024] さらに、上記のような保存的変異を有するRpsAタンパク質は、アミノ酸配列全体に対して、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、より好ましくは98%以上、特に好ましくは99%以上の相同期性を有し、かつ、野生型RpsAタンパク質と同等の機能を有するタンパク質であってもよい。尚、本明細書において、「相同期性」 (homo logy) は、「同一性」 (ident ility) を指すことがある。
野生型rpsA 遺伝子は、上記のようなアミノ酸配列をコードするものであれば、エシエリヒア・コリ、パンテオア・アナナティス、及びエンテロバクター・アエログネス等のrpsA 遺伝子に限らず、任意のコドンをそれと等価のコドンに置換したものであってもよい。

また、野生型rpsA 遺伝子は、配列番号1、11、又は13の相補配列又はその相補配列から調製され得るプローブとストリングエンジェントな条件下でハイプリダイズし、配列番号2、12又は14のアミノ酸配列を有するRpsAタンパク質と同等の機能を有するタンパク質をコードするDNAであってもよい。ここで、「ストリングエンジェントな条件」とは、いわゆる特異的なハイプリッドが形成され、非特異的なハイプリッドが形成されない条件をいう。一例を示せば、相同性が高しDNA同士、例えば97以上、好ましくは99以上、より好ましくは95以上、より好ましくは97以上、より好ましくは98以上、特に好ましくは99以上の相同性を有するDNA同士がハイプリダイズし、それより相同性が低しDNA同士がハイプリダイズしない条件、あるいは通常のサザンハイプリダイゼーションの洗いの条件である60℃、1 x SSG、0.1% SDS、好ましくは、60℃、0.1 x SSG、0.1% SDS、さらに好ましくは、68℃、0.1 x SSG、0.1% SDSに相当する塩濃度、温度で、1回、より好ましくは2 〜 3回洗浄する条件が挙げられる。

プローブとしては、rpsA 遺伝子の相補配列の一部を用いることもできる。そのようなプローブは、公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとし、これらの塩基配列を含むDNA断片を録型とするPGRによって作製することができる。例えば、プローブとして、300 bp程度の長さのDNA断片を用いる場合には、ハイプリダイゼーションの洗いの条件は、50℃、2 x SSG、0.1% SDSが挙げられる。

上記したRpsAタンパク質の保存的リアント及びそれをコードするRpsA遺伝子に関する記載は、後述のL_アミノ酸生成菌について記載した他の遺伝子についても同様に適用される。

上記変異型RpsAタンパク質をコードするDNA（変異型rpsA 遺伝子）とも記
載する。）は、実施例に記載したように、エシエリヒア・コリをオレイン酸
ナトリウム等の脂肪酸を炭素源とする培地で継代培養を繰返し、脂肪酸の資
化能が向上した株からrpsA遺伝子を単離することによって取得することがで
きるが、本発明により変異点が明らかになったので、化学合成、又は野生型r
psA遺伝子に210位のアスパラギン酸残基が他のアミノ酸残基で置換されるよ
うな変異を導入することによって、取得することができる。変異の導入は、
変異を含むDNA断片で野生型rpsA遺伝子の相当する部分を置換えるか（カ
セット変異導入法）、部位特異的変異法、クロスオーバーPGR法等によって行
うことができる。

例えば、腸内細菌科に属する細菌、例えばMG1655株等の野生型エシエリヒ
ア・コリのゲノムDNAを錠型とし、配列番号5および6に示す合成オリゴヌク
レオチドをプライマーとするPGRによって、210位のアスパラギン酸残基がチ
ロシン残基で置換される変異（以下、「210Y変異」とも記載する。）を持つ
rpsA遺伝子断片を取得することができる。前記プライマーのチロシン残基に
相当する位置を他のアミノ酸残基のコードに変更することによって、210位の
アスパラギン酸残基を他のアミノ酸残基に置換することができる。

尚、「210位のアスパラギン酸残基」とは、配列番号2における210位に相
当するアスパラギン酸残基を意味する。すなわち、「210位」とは相対的な位
置を示すものであって、例えば、210位よりもN末端側のアミノ酸残基が欠
失している場合は、N末端から209番目（開始コードによってコードされるメ
チニオン残基を含む）のアミノ酸残基は「210位」である。また、210位より
もN末端側にアミノ酸残基挿入されている場合は、N末端から211番目のア
ミノ酸残基が「210位」である。配列番号2のRpsAタンパク質は、配列番号1
5又は16のアミノ酸配列を一部に有し、配列番号2のアミノ酸配列において
210位のアスパラギン酸残基は、配列番号15の5位または配列番号1
6の5位のアスパラギン酸残基に相当する。

＜2＞本発明の細菌

本発明に用いる細菌は、L-アミノ酸生産能を有する腸内細菌科に属する
細菌であって、かつ、変異型 rpsA 遺伝子を保持する細菌である。

L_アミノ酸生産能とは、本発明に用いる細菌（以下、「本発明の細菌」ともいう）を培地中で培養したときに、Lーアミノ酸を生成し、培地中または菌体内に蓄積する能力をいう。L_アミノ酸の生産能を有する細菌としては、基本的に L_アミノ酸の生産能を有するものであってもよいが、後述の細菌を、変異法や組換え DNA 技術を利用して、L_アミノ酸の生産能を有するように変更したものであってもよい。

Lーアミノ酸の種類は特に制限されないが、Lーリジン、Lーオルニチン、Lーアルギニン、Lーヒステジン、Lーシトルリン等の塩基性アミノ酸、Lーイソロイシン、Lーアラニン、Lーパリン、Lーロイシン、Lーグリシン等の脂肪族アミノ酸、Lースレオニン、Lーセリン等のヒドロキシモノアミノカルボン酸であるアミノ酸、Lープロリン等の環式アミノ酸、Lフエニルアラニン、Lーチロシン、Lートリプトファン等の芳香族アミノ酸、Lーシスティン、Lーシスチン、Lーメチオニン等の含硫アミノ酸、Lーグルタミン酸、Lーアスパラギン酸等の酸性アミノ酸、Lーグルタミン、Lーアスパラギン等の側鎖にアミド基を持つアミノ酸が挙げられる。本発明の微生物は 2 種類以上のアミノ酸の生産能を有するものであってもよい。

本発明において Lーアミノ酸とは、フリーラジカルの Lーアミノ酸と Lーアミノ酸塩、たとえば硫酸塩、塩酸塩、炭酸塩を含む。

本発明の細菌を得るために用いる腸内細菌科に属する細菌としては、特に限定されないが、エシュリア（Escherichia）、エンテロバクター（Enterobacter）、エルビニア（Erwinia）、クレプシエラ（Klebsiella）、パントエア（Pantoea）、フォトラブダス（photorhabdus）、プロビデンシア（Providencia）、サルモネラ（Salmonella）、セラチア（Serratia）、シゲラ（Shigella）、モルガネラ（Morganeilla）、イエルシニア（Yersinia）等の属に属する細菌を含む。特に、NCBI（National Center for Biotechnology Information）のデータベース（http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347）で用いられている分類法により腸内細菌科に分類されている細菌が好ましい。

これらの菌株は、例えばアメリカン・タイプ・カルチャー・コレクション（住所P.O. Box 1549 Manassas, VA 20108, United States of America）より登録を受けすることが出来る。すなわち各菌株に対応する登録番号を付与されており、この登録番号を利用して分類を受けすることが出来る。各菌株に対応する登録番号は、アメリカン・タイプ・カルチャー・コレクションのカタログに記載されている。以下に記載する他のATCC菌株も同様である。

パンドウア属に属する細菌とは、当該細菌が微生物学の専門家に知られている分類により、パンドウア属に分類されていることを意味する。なお、アグロメランス（*E. agg lomerans*）のある種のものは、最近の16S rRNAの塩基配列解析等に基づき、パンドウア・アグロメランス（*P. agg lomerans*）、パンドウア・アナナティス（*P. ananatis*）、パンドウア・ステウェルディィ（*P. stewartii*）その他に再分類された（Int. J. Syst. Bacteriol. 43, 162-173 (1993)）。本発明において、パンドウア属に属する細菌には、このようにパンドウア属に再分類された細菌も含まれる。

パンドウア・アナナティスとしては、パンドウア・アナナティスAJ13355株（FERM BP-6614）、AJ13356株（FERM BP-6615）、AJ13601株（FERM BP-7207）及びそれらの誘導体を用いることができる。これらの株は、分離された当時はエンテロバクター・アグロメランスと同定され、エンテロバクター・アグロメランスとして寄託されたが、上記のとおり、16S rRNAの塩基配列解析
などにより、パンテア・アナナティスに再分類されている。

エンテロバクター属細菌とは、特に制限されないが、当該細菌が微生物学の専門家に知られている分類により、エンテロバクター属に分類されていることを意味する。例えば、エンテロバクター・アグロメンス（Enterobacter agglomerans）・エンテロバクター・アエロゲネス（Enterobacter aerogens）等が挙げられる。具体的には欧州特許出願公開EP952221号に示された菌株を使用することが出来る。エンテロバクター属の代表的な株としては、エンテロバクター・アグロメンスATGG1 2287株やエンテロバクター・アエロゲネスATGG1 3048株、エンテロバクター・アエロゲネスNBRG1 2010（栄養要要求性変異株、アナログ耐性株、又は代謝制御変異株は、従来との同定処理、すなわちX線や紫外線または付与の菌で、当該細菌を増殖させたもの）ンガストラックを有する栄養要求性変異株、アナログ耐性株、又は代謝制御変異株は、親株又は野生株を通常の変異処理、すなわちX線や紫外線に曝されてもよい。

以下、腸内細菌科に属するL-アミノ酸生産菌、及びL-アミノ酸生産能の付与又は増強

L-アミノ酸生産能を付与するには、栄養要求性変異株、L-アミノ酸のアナログ耐性株又は代謝制御変異株の取得や、L-アミノ酸の生合成系酵素の発現が増強された組換え株の創製等、従来、コリネ型細菌又はエシエリヒア属細菌等のアミノ酸生産菌の育種に採用されてきた方法を適用することが出来る（アミノ酸発酵、株）学会出版センター、1986年5月30日初版発行、第77〜100頁参照）。ここで、L-アミノ酸生産菌の育種において、付与される栄養要求性、アナログ耐性、代謝制御変異等の性質は、単独であってもよく、2種又は3種以上であってもよい。また、発現が増強されるL-アミノ酸生合成系酵素も、単独であってもよく、2種又は3種以上であってもよい。さらに、栄養要求性、アナログ耐性、代謝制御変異等の性質の付与と、生合成系酵素の増強が組み合わされてもよい。

L-アミノ酸生産能を有する栄養要求性変異株、アナログ耐性株、又は代謝制御変異株は、親株又は野生株を通常の変異処理、すなわちX線や紫外線

[0040]
の照射、または N_メチル_ N'—ニトロ_ N—ニトロソグアジン等の変異剂処理などによって処理し、得られた変異株の中から、栄養要求性、アナログ耐性、又は代謝制御変異を示し、かつ L_アミノ酸生産能を有するものを選択することによって得ることができる。

また、L_アミノ酸生産能の付与又は増強は、遺伝子組換えによって、酵素活性を増強することによっても行うことが出来る。酵素活性の増強は、例えば、L_アミノ酸の生合成に関与する酵素をコードする遺伝子の発現が増強するように細菌を変異することにより行うことができる。遺伝子の発現を増強することは、遺伝子を含むDNA断片を、適当なプラスマド、例えば微生物内でプラスマドの複製増殖機能を司る遺伝子を少なくとも含むプラスマドベクターに導入した増幅プラスマドを導入すること、または、これらの遺伝子を染色体上で接合、転移等により多コピー化すること、またこれらの遺伝子のプロモーター領域に変異を導入することにより達成することもできる（国際公開パンフレットW095/34672号参照）。

上記増幅プラスマドまたは染色体上に目的遺伝子を導入する場合、これら遺伝子を発現させるためのプロモーターは腸内細菌科に属する細菌において機能するものであればいかなるプロモーターであってもよく、用いる遺伝子自身のプロモーターであってもよいし、改変したものであってもよい。コリネ型細菌で強力に機能するプロモーターを適宜選択することや、プロモーターの—35，—10領域をコンセンサス配列に近づけることによっても遺伝子の発現量の調節が可能である。以上のような、酵素遺伝子の発現を増強する方法は、W000/1 8935号パンフレット、欧州特許出願公開1010755号明細書等に記載されている。

以下、細菌にL_アミノ酸生産能を付与する方法、及びL_アミノ酸生産能が付与された細菌について例示する。

L—リジン生産菌

エシェリヒア・コリのL—リジン生産菌の例としては、L—リジンアナログに耐性を有する変異株が挙げられる。L—リジンアナログはエシェリヒア
- コリの生育を阻害するが、この阻害は、L-リジンが培地に共存するときには完全にまたは部分的に解除される。L-リジンアナログの例としては、オキサリジン、リジンヒドロキサメート、S-(2-アミノエチル)-L-シスチニン (AEG)、α-メチルリジン、ひークロカプロラクタムなどが挙げられるが、これらに限定されない。これらのリジンアナログに対して耐性を有する変異株は、エスキリヒア・コリを通常の人工変異処理に付すことによって得ることが可能である。L-リジンの生産有用な細菌株の具体例としては、E. coli AJ1 1442 (FERM BP-1543, NRRL B-12185; 米国特許第4,346,170号参照)及びE. coli VL61 1が挙げられる。これらの微生物では、アスパルトキナーゼのL-リジンによるフィードバック阻害が解除されている。

0048

WG196株は、E. coliのL-リジン生産菌として使用できる。この菌株は、E. coli K-2に由来するW3110株から取得された株で、352位のスレオニンをイソロイシンに置換することによりL-リジンによるフィードバック阻害が解除されたアスパルトキナーゼ111をコードする変異型lysG遺伝子（米国特許第5,661,012号）でW3110株の染色体上の野生型lysG遺伝子を置き換えた後、AEG耐性を付与することにより育種された（米国特許第5,827,698号）。同株は、Escherichia coli AJ1 3069と命名され、1994年12月6日、工業技術院生命工学工業技術研究所（現独立行政法人産業技術総合研究所）特許生物寄託センター、〒305-8566 日本国茨城県つくば市東1丁目1番地1中央第6）に受託番号FERM P-1 4690として寄託され、1995年9月29日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-5252が付与されている（米国特許第5,827,698号）。

0049

L-リジン生産菌又是それと誘導するための親株の例としては、L-リジン生合成系酵素をコードする遺伝子の1種以上の発現が増大している株も挙げられる。かかる遺伝子の例としては、ジヒドロジビリコリン酸シンターゼ遺伝子 (dapA)、アスパルトキナーゼ遺伝子 (lysG)、ジヒドロジビリコリン酸レダクターゼ遺伝子 (dapB)、ジアミノピメリン酸テカルボキシラーゼ遺伝子 (lysA)、ジアミノピメリン酸ヒドログナーゼ遺伝子 (ddh)（米国特許第6,040,160
号）、フォスフォエノールピルビン酸カルボキシラーゼ遺伝子（ppc）、アスパルテートセミアルデヒドヒドロゲナーゼ遺伝子（asd）及びアスパルターゼ遺伝子（aspA）（EP 1253195 A）が挙げられるが、これらに限定されない。また、親株は、エネルギー効率に関与する遺伝子（cyo）（EP 1170376 A）、ニコチンアミドヌクレオチドトランスヒドロゲナーゼ遺伝子をコードする遺伝子（pntAB）（米国特許第5,830,716号）、L-リジン排出活性を有するタンパク質をコードするybJ遺伝子（W02005/073390）、グルタミン酸デヒドロゲナーゼをコードする遺伝子（gdhA）（Gene23：199-209（1983））、または、これらの任意の組み合わせの遺伝子の発現レベルが増大していてもよい。なお、カツコ内は、これらの遺伝子の略記号である。

[0050] エシエリヒア・コリ由来の野生型ジヒドロジピコリン酸合成酵素はL-リジンによるフィードバック阻害を受けることが知られており、エシエリヒア・コリ由来の野生型アスパルトキナーゼはL-リジンによる発現抑制及びフィードバック阻害を受けることが知られている。したがって、dapA遺伝子及びlysG遺伝子を用いる場合、これらの遺伝子は、L-リジンによるフィードバック阻害を受けない変異型遺伝子であることが好ましい。

[0051] L-リジンによるフィードバック阻害を受けない変異型ジヒドロジピコリン酸合成酵素をコードするDNAとしては、118位のヒスチジン残基がチロシン残基に置換された配列を有するタンパク質をコードするDNAが挙げられる。また、L-リジンによるフィードバック阻害を受けない変異型アスパルトキナーゼをコードするDNAとしては、352位のスレオニン残基がイソロイシン残基に置換、323位のグリシン残基がアスパラギン残基に置換、318位のメチオニン残基がイソロイシンに置換された配列を有するAKI11をコードするDNAが挙げられる（これらの変異体については米国特許第5661012号及び第6040160号明細書参照）。変異型DNAはPCRなどによる部位特異的変異法により取得することができる。

[0052] なお、変異型変異型ジヒドロジピコリン酸合成酵素をコードする変異型dapA及び変異型アスパルトキナーゼをコードする変異型lysGを含むプラスミドと
して、広宿主域プラスミドRSFD80、pGAB1、pGABD2が知られている（米国特許第6040160号明細書）。RSFD80で形質転換されたEcherichia coli JM109株（米国特許第6040160号明細書）は、AJ12396と命名され、同株は1993年10月28日に通産省工業技術院生命工学工業技術研究所（現、独立行政法人産業技術総合研究所特許生物寄託センター）に受託番号FERM P-13936として寄託され、1994年11月1日にブダペスト条約に基づく国際寄託に移管され、FERM BP-4859の受託番号のもとで寄託されている。RSFD80は、AJ12396株から、公知の方法によって取得することができる。

[0053] L－リジン生産菌又はそれを誘導するための親株の例としては、L－リジンの生合成経路から分岐してL－リジン以外の化合物を生成する反応を触媒する酵素の活性が低下または欠損している株も挙げられる。L－リジンの生合成経路から分岐してL－リジン以外の化合物を生成する反応を触媒する酵素の例としては、ホモセリンデヒドロゲナーゼ、リジンデカルボキシラーゼ（米国特許第5,827,698号）、及び、リゴ酸酵素（US2005/010175）が挙げられる。ここで、リジンデカルボキシラーゼ活性を低下または欠損させるためには、リジンデカルボキシラーゼをコードするcadA遺伝子とIdcG遺伝子の両方の発現を低下させることができる。 国際公開第W02006/038695号バンフレット

[0054] cadA遺伝子とIdcG遺伝子が破壊された菌株としては、Echerichia coli W96LC（W96cadAIdcG）（US5,827,698、US2006010191）が挙げられる。W966LG株は、AJ110692と命名され、2008年10月7日に独立行政法人産業技術総合研究所特許生物寄託センター（干305-8566日本国茨城県つくば市東1丁目1番地1中央第6）に国際寄託され、受託番号FERM BP-11027が付与されている。

[0055] L－スレオニン生産菌

L－スレオニン生産菌又はそれを誘導するための親株の例としては、E.coli TDH-6/pVlC40（VKPM B-3996）（米国特許第5,175,107号、米国特許第5,705,371号）、E.coli 472T23/pYN7（ATCC 98081）（米国特許第5,631,157号）、E
coli NRRL-21593 (米国特許第5,939,307号)、E. coli FERM BP-3756 (米国特許第5,474,918号)、E. coli FERM BP-3519及びFERM BP-3520 (米国特許第5,376,538号)、E. coli MG442 (Gusyatiner et al. in Genetika (in Russian), 14, 947-956 (1978))、E. coli VL643及びVL2055 (EP 1149911 A) などが挙げられるが、これらに限定されない。

[0056] TDH-6株はthrG遺伝子を欠損し、スクロース資化性であり、また、そのilvA遺伝子がリーク (leaky) 変異を有する。この株はまた、rhtA遺伝子に、高濃度のレオニンまたはホモセリンに対する耐性を付与する変異を有する。B-3996株は、RSF1010由来ベクターに、変異thrA遺伝子を含むthrA*BGオペロンを挿入したプラスミドVL1G40を保持する。この変異thrA遺伝子は、レオニンによるフィードバック阻害が実質的に解除されたアスパルトキナーゼホモセリンデヒドロゲナーゼ1をコードする。B-3996株は、1987年11月19日、オーシャン・サイエンティフィック・センタ_・オブ・アンチビオティクス (Nagatinskaya Street 3-A, 117105 Moscow, Russia) に、受託番号RIA 1867で寄託されている。この株は、また、1987年4月7日、ルシリアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) に、受託番号B-3996で寄託されている。

[0057] E. coli VKPM B-5318 (EP 0593792B) も、レオニン生産菌又はそれを誘導するための親株として使用できる。B-5318株は、イソロイシン非要求性であり、プラスミドKLVG40中のレオニンオペロンの制御領域が、温度感受性ラムダファージG1リプレッサー及びPRプロモーターにより置換されている。VKPM B-5318は、1990年5月3日、ルシリアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) に、受託番号VKPM B-5318で寄託されている。

[0058] 好ましくは、本発明に用いる細菌は、さらに、下記の遺伝子の1種以上の発現が増大するように変異されたものである。

—レオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリ
リンデヒドロゲナーゼIをコードする変異thrA遺伝子
—ホモセリンキナーゼをコードするthrB遺伝子
—スレオニンシンターゼをコードするthrG遺伝子
—推定トランスメンブランタンパク質をコードするrhtA遺伝子
—アスパルテート～β－セミアルデヒドデヒドロゲナーゼをコードするasd遺伝子
—アスパルテートアミノトランスフェラーゼ（アスパルテートトランスアミナーゼ）をコードするaspG遺伝子

【0060】スレオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異thrA遺伝子、ならびに、thrB遺伝子及びthrG遺伝子は、スレオニン生産株E. coli VKPM B-3996に存在する周知のプラスミドpVIG40から一つのオペロンとして取得できる。プラスミドpVIG40の詳細は、米国特許第5,705,371号に記載されている。

【0061】rhtA遺伝子は、グルタミン輸送系の要素をコードするglnHPQオペロンに近
E. coli染色体の18分に存在する。rhtA遺伝子は、ORF1 (ybIF遺伝子、ヌクレオチド番号764-1651、GenBank accession number AAA218541、gi:440181)と同一であり、pexB遺伝子とompX遺伝子との間に位置する。ORF1によりコードされるタンパク質を発現するユニットは、rhtA遺伝子と呼ばれている (rht:ホモセリン及びスレオニンの耐性)。また、rhtA23変異が、ATG開始コードンに対して1位のG→A置換であることが判明している (ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjunction with Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP1013765 A)。

また、E. coliのアスパルテートアミノトランスフェラーゼをコードするaspG遺伝子も既に明らかにされており (ヌクレオチド番号983742-984932、GenBank accession number NC_000913.1、gi:16128895)、PGRにより得ることができる。他の微生物のaspG遺伝子も同様に得ることができる。

L-システィン生産菌

L-システィン生産菌又はそれを誘導するための親株の例としては、フィードバック阻害耐性のセリンアセチルトランスフェラーゼをコードする異なるcysEアレルで形質転換されたE. coli JM15 (米国特許第6,218,168号、ロシア特許出願第2003121601号)、細胞に毒性の物質を排出するために適したタンパク質をコードする過剰発現遺伝子を有するE. coli W3110 (米国特許第5,972,663号)、システィンデスクリフォヒドローゼ活性が低下したE. coli株 (JP1115571A2)、cysB遺伝子によりコードされる正のシスティンレギュレータの転写制御の発現を呈するcysB遺伝子の誘導が行われる。
御因子の活性が上昇したE. coli W3110 (W001 27307A1) などの菌株が挙げられるが、これらに限定されない。

L—ロイシン生産菌

L—ロイシン生産菌又はそれを誘導するための親株の例としては、ロイシン耐性のE. coli株（例えば、57株（VKPM B-7386、米国特許第6,124,121号））またはβ—2—チオニルアラニン、3—ヒドロキシロイシン、4—アザロイシン、5,5,5—トリフルオロロイシンなどのロイシンアナログ耐性のE. coli株（特公昭62-34397号及び特開平8-70879号）、W096/06926に記載された遺伝子工学的方法で得られたE. coli株、E. coli H-9068（特開平8-70879号）など株が挙げられるが、これらに限定されない。

本発明に用いる細菌は、L—ロイシン生合成に関与する遺伝子の1種以上の発現が増大されることにより改良されていてもよい。このような遺伝子の例としては、好ましくはL—ロイシンによるフィードバック阻害が解除されたイソプロピルマレートシンターゼをコードする変異型leuA遺伝子（米国特許第6,403,342号）に代表される、leuABGDオペロンの遺伝子が挙げられる。さらに、本発明に用いる細菌は、細菌の細胞からL—アミノ酸を排出するタンパク質をコードする遺伝子の1種以上の発現が增大されることにより改良されていてもよい。このような遺伝子の例としては、b2682 遺伝子及びb2683 遺伝子（ygaZH 遺伝子）（EP 1239041 A2）が挙げられる。

L—ヒスチジン生産菌

L—ヒスチジン生産菌又はそれを誘導するための親株の例としては、E. coli 24株（VKPM B-5945、RU2003677）、E. coli 80株（VKPM B-7270、RU2119536）、E. coli NRRL B-12116—B12121（米国特許第4,388,405号）、E. coli H-9342（FERM BP-6675）及びH-9343（FERM BP-6676）（米国特許第6,344,347号）、E. coli H-9341（FERM BP-6674）（EP1085087）、E. coli A180/pFM201（米国特許第6,258,554号）など株が挙げられるが、これらに限定されない。

L—ヒスチジン生産菌又はそれを誘導するための親株の例としては、L—ヒスチジン生合成系酵素をコードする遺伝子の1種以上の発現が増大した株
も挙げられる。かかる遺伝子の例としては、ATPフォスフォリボシルトランスフェラーゼ遺伝子（hisG）、フォスフォリボシルAMPサイクロピドロラーゼ遺伝子（hisl）、フォスフォリボシル-ATPビロフォスフォヒドロラーゼ遺伝子（hisl）、フォスフォリボシルフォルミミノ_5-アミノイミダゾールカルボキサミドリボタイドイソメラーゼ遺伝子（hisA）、アミトランスフェラーゼ遺伝子（hisH）、ヒスチジノールフォスフェイトアミノトランスフェラーゼ遺伝子（hisG）、ヒスチジノールフォスファターゼ遺伝子（hisB）、ヒスチジノールデヒドログナーゼ遺伝子（hisD）などが挙げられる。

[0069] hi3G及びhi38HA「へこコ」ドされたL—ヒスチジン生合成系酵素はL—ヒスチジンにより阻害されることが知られており、従って、L—ヒスチジン生合成能は、ATPフォスフォリボシルトランスフェラーゼ遺伝子（hisG）にフィードバック阻害への耐性を付与する変異を導入することにより効率的に増大させることができる（ロシア特許第2003677号及び第2119536号）。

[0070] L—ヒスチジン生合成能を有する株の具体例としては、L—ヒスチジン生合成系酵素をコードするDNAを保持するベクターを導入したE.coli FERM-P 5038及び5048（特開昭56-005099号）、アミノ酸輸送の遺伝子を導入したE.coli 株 EP1016710A）、スルファジェニン、DL-1,2,4_トリアゾール_3-アラニン及びストレプトマイシンに対する耐性を付与したE.coli 80株（VKPM B-7270、ロシア特許第2119536号）などの菌株が挙げられる。

[0071] L—グルタミン酸生産菌

L—グルタミン酸生産菌又はそれを誘導するための親株の例としては、E.coli VL334thrC+（EP 1172433）などの菌株が挙げられるが、これらに限定されない。E.coli VL334（VKPM B-1641）は、thrG遺伝子及びilvA遺伝子に変異を有するL—イソロイシン及びL—スレオニン要求性株である（米国特許第4,278,765号）。thrG遺伝子の野生型アレルは、野生型E.coli K12株（VKPM B-7）の細胞で増殖したバクテリオファージP1を用いる一般的形質導入法により導入された。この結果、L—イソロイシン要求性のL—グルタミン酸生産菌VL334thrC+（VKPM B-8961）が得られた。
L-グルタミン酸生産菌又はそれを誘導するための親株の例としては、L-グルタミン酸合成系酵素をコードする遺伝子の1種以上の発現が増大した株が挙げられるが、これらに限定されない。かかる遺伝子の例としては、グルタメートデヒドロゲナーゼ（gdhA）、グルタミンシンテラーゼ（glnA）、グルタメートシシンテラーザ（argHAB）、イソソトラオートデヒドロゲナーゼ（lacZ）等が挙げられる。フォスフォエノールピルベートカルボシラーーゼ（pco）、ピルベートデヒドロゲナーゼ（aceEF、lpdA）、ピルベートキナーゼ（pykA、pyKF）、フォスフォエノールピルベートシンテラーゼ（ppsA）、エノラーゼ（eno）、フォスフォグリセロシムターゼ（pgmA、pgml）、フォスフォグリセレートキナーゼ（pgk）、グリセルアルデヒド3-フォスファターゼ（gapA）、トリオースフォスファターゼ（tpiA）、フルクトースピスフォスファートアルドラーゼ（fbp）、フォスフォルクトキナーゼ（pfkA、pfkB）、グルコースフォスファートイソメラーゼ（pgi）などが挙げられる。

シトレートシンテラーゼ遺伝子、フォスフォエノールピルベートカルボシラーーゼ遺伝子、及び／またはグルタメートデヒドロゲナーゼ遺伝子の発現が増大するように変換された株の例としては、EP1078989A、EP955368A及びEP952221Aに開示されたものが挙げられる。

L-グルタミン酸生産菌又はそれを誘導するための親株の例としては、L-グルタミン酸の生合成経路から分歧してL-グルタミン酸以外の化合物の合成を触媒する酵素の活性が低下または欠損している株も挙げられる。このような酵素の例としては、イソソトラオートリアーゼ（aceA）、α-ケトグルタレートデヒドロゲナーゼ（sucA）、フォスフォトランスアセチラーゼ（pta）、アセテートキナーゼ（ack）、アセトピロビノン酸シンテラーゼ（i1vG）、アセトラクトエートシンテラーゼ（i1vi）、フォルメートアセチルトランスフェラーゼ（pf1）、ラクトエートデヒドロゲナーゼ（ldh）、グルタメートトデカルボキシラーゼ（gadAB）、γ-グルタミル転移酵素（ggt）、γ-グルタミルシスチン合成酵素（gshA）、γ-グルタミン酸プロテシン合成酵素（ycjK）などが挙げられる。α-ケトグル
タレートデヒドログナーゼ活性が欠損した、または、α-ケトグルタルタレートデヒドログナーゼ活性が低下したエシュリヒア・コリ及び、それらの取得方法は米国特許第5,378,616号及び第5,573,945号に記載されている。

[0075]具体例としては下記のものが挙げられる。
E. coli W3110sucA:Kmr
E. coli AJ1 2624 (FERM BP-3853)
E. coli AJ1 2628 (FERM BP-3854)
E. coli AJ1 2949 (FERM BP-4881)

[0076]E. coli W3110sucA:Kmrは、E. coli W3110のα-ケトグルタルタレートデヒドログナーゼ遺伝子（以下、「SucA遺伝子」ともいう）を破壊することにより得られた株である。この株は、α-ケトグルタルタレートデヒドログナーゼを完全に欠損している。

[0077]L-グルタミン酸生成菌の他の例としては、アスパラギン酸代謝拮抗物質に耐性を有するエシュリヒア・コリが挙げられる。このような株は、α-ケトグルタルタレートデヒドログナーゼを欠損していないものも、例えば、E. coli AJ1 3199 (FERM BP-5807)（米国特許第5,908,768号）、さらにL-グルタミン酸分解能が低下したFFRM P-1 2379（米国特許第5,393,671号）及びAJ1 3138（FERM BP-5565）（米国特許第6,110,714号）などの菌株が挙げられる。

[0078]バンテア・アナナティスのL-グルタミン酸生成菌の例としては、バンテア・アナナティスAJ1 3355株が挙げられる。同株は、静岡県磐田市の土壌から、低pHでL-グルタミン酸及び炭素源を含む培地で増殖できる株として分離された株である。バンテア・アナナティスAJ1 3355は、1998年2月19日に、独立行政法人産業技術総合研究所特許生物寄託センター（住所〒305-8566日本国茨城県つくば市東1丁目1番地1中央6）に、受託番号FERM P-1 6644として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6614が付与されている。尚、同株は、分離された当時はエンテロバクタ・アグロメランス（Enterobacter agglomerans）と同定され、エンテロバクタ・アグロメランスAJ1 3355として寄託された
が、近年16S rRNAの塩基配列解析などにより、パンツァエ・アナナティス（Pantoea ananatis）に再分類されている。

また、パンツァエ・アナナティスのL-グルタミン酸生産菌として、δ-ケトングルタレートトランスデヒドロゲナーゼ（δ-KGDH）活性が欠損した、または、δ-KGDH活性が低下したパンツァエ属に属する細菌が挙げられる。このような株としては、AJ13355株のδ-KGDH-ε1サブユニット遺伝子（suC）を欠損させたAJ13355（米国特許第6,331,419号）、及びAJ13355株から粘液質低生産変異株として選択されたSG1株由来の3uc遺伝子欠損株である30173ucA（米国特許第6,596,517号）がある。AJ13356は、1998年2月19日、工業技術院生命工学工業技術研究所（現、独立行政法人産業技術総合研究所）特許生物寄託センター、千305-8566日本国茨城県つくば市東1丁目1番地1中央第6）に受託番号FERM BP-16645として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託により移管され、受託番号FERM BP-6616が付与されている。AJ13355及びAJ13356は、上記寄託機関にEnterobacter agg.lomeransとして寄託されているが、本明細書では、Pantoea ananatisとして記載する。また、SG17suC株は、プライベートナンバーAJ417株が付与され、2004年2月26日に産業技術総合研究所特許生物寄託センターに受託番号FERM BP-08646として寄託されている。

さらに、パンツァエ・アナナティスのL-グルタミン酸生産菌として、SG17suC/RSFGPG+pSTVB株、AJ13601株、NP106株、及びNA1株が挙げられる。SC17suC/RSFGPG+pSTVB株は、SG17suC株に、エジリヒア・コリ由来のクエン酸シンターゼ遺伝子（gはA）、ホスホエノールピルピル酸カルボキシラーゼ遺伝子（ppc）、およびグルタメートトランスデヒドロゲナーゼ遺伝子（gdhA）を含むプラスミドRSFGPG、並びに、ブレピバクテリウム・ラクトフアーメンタム由来のクエン酸シンターゼ遺伝子（gはA）を含むプラスミドKpSTVBを導入して得た株である。AJ13601株は、このSG17suC/RSFGPG+pSTVB株から低pH下で高濃度のL-グルタミン酸に耐性を示す株として選択された株である。また、NP106株は、実施例に記載したように、AJ13601株からプラスミドRSFGPG+pSTVBを脱落させた株である。AJ13601株は、1999年8月18日に、独立行政法人産
[0081] L-フエニルアラニン生産菌

[0082] L-トリプトフォアン生産菌

L-トリプトフォアン生産菌又はそれを誘導するための親株の例としては、部分的に不活化されたトリプトフォニル-tRNAシンテーゼをコードする変異型trpS 遺伝子を保持するE. coli JP4735/pMU3028 (DSM10122)及びJP6015/pMU91 (DSM10123)（米国特許第5,756,345号）、セリンによるフィードバック阻害を受けないフォスフォグリセリレートトヒドロゲナーゼをコードするserAアレル及びトリプトフォアンによるフィードバック阻害を受けないアントラニレートシンターゼをコードするtrpEアレルを有するE. coli SV164 (pGH5)（米国特許第6,180,373号）、トリプトフォアナーゼが欠損したE. coli AGX17 (pGX44)（NRRL B-12263）及びAGX6 (pGX50) aroP（NRRL B-12264）（米国特許第4,371,

L—トリプトフアン生産菌又はそれを誘導するための親株の例としては、アントラニレーントシンターゼ (trpE)、フォスフォグリセレートデヒドロゲナーゼ (serA)、及び、トリプトフアンシンターゼ (trpAB)から選ばれる酵素の活性の一種以上が増大した株も挙げられる。アントラニレーントシンターゼ及びフォスフォグリセレートデヒドロゲナーゼは共にL—トリプトフアン及びL—セリンによるフィー ドバック阻害を受けるので、フィー ドバック阻害を解除する変異をこれらの酵素に導入してもよい。このような変異を有する株の具体例としては、脱感作型アントラニレーントシンターゼを保持するE. coli SV164、及び、フィードバック阻害が解除されたフォスフォグリセレートデヒドロゲナーゼをコードする変異serA遺伝子を含むプラスミドpGH5 (WO 94/08031)をE. coli SV164に導入することにより得られた形質転換株が挙げられる。

L—トリプトフアン生産菌又はそれを誘導するための親株の例としては、阻害解除型アントラニレーントシンターゼをコードする遺伝子を含むトリプトフアンオペロンが導入された株（特開昭57-71397号、特開昭62-244382号、米国特許第4,371,614号）も挙げられる。さらに、トリプトフアンオペロン中のトリプトフアンシンターゼをコードする遺伝子 (trpBA)の発現を増大させることによりL—トリプトフアン生産能を付与してもよい。トリプトフアンシンターゼは、それぞれtrpA及びtrpB遺伝子によりコードされるβ及びβサブユニットからなる。さらに、マレートシンターゼ (aceB)、イソシトレートトリアーゼ (aceA)、およびイソシトレートデヒドロゲナーゼキナーゼ/フォスファターゼ (aceK)からなるオペロン (aceオペロン)の発現を増大させることによりL—トリプトフアン生産能を改良してもよい（WO2005/103275）。

"614号)、フォスフォエノールピルピル酸生産能が増大したE. coli AGX17/pGX50, pACKG4-pps (WO9708333, 米国特許第6,319,696号)などの菌株が挙げられるが、これらに限定されない。yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシエリヒア・コリのL—トリプトフアン生産菌も使用できる（米国特許出願公開2003/0148473 A1及び2003/0157667 A1）。"
【0085】L_プロリン生産菌

L_プロリン生産菌又はそれを誘導するための親株の例としては、ilvA遺伝子が欠損し、L_プロリンを生産できるE. coli 702 ilvA (VKPM B-801 2) (EP 1172433) などの菌株が挙げられるが、これらに限定されない。

【0086】本発明に用いる細菌は、L_プロリン生合成に関与する遺伝子の一種以上の発現を増大することにより改良してもよい。L_プロリン生産菌に好ましい遺伝子の例としては、L_プロリンによるフィードバック阻害が解除されたグルタメートキナーゼをコードするproB遺伝子（ドイツ特許第3127361号）が挙げられる。さらに、本発明に用いる細菌は、細菌の細胞からL_アミノ酸を排出するタンパク質をコードする遺伝子の一種以上の発現が増大することにより改良してもよい。このような遺伝子としては、b2682 遺伝子及びb2683 遺伝子 (ygaZH 遺伝子) EP1 239041 A2) が挙げられる。

【0087】L_プロリン生産能を有するエジエリヒア・コリの例としては、NRRL B-12403 及びNRRL B-12404（英国内許第2075056号）、VKPM B-801 2（ロシア特許出願2000124295）、ドイツ特許第3127361号に記載のプラスミド変異体、Bloom F.R. et al (The 15th Miami winter symposium, 1983, p.34) に記載のプラスミド変異体などのE. coli 株が挙げられる。

【0088】L_アルギニン生産菌

【0089】L_アルギニン生産菌又はそれを誘導するための親株の例としては、L_アルギニン生合成系酵素をコードする遺伝子の一種以上の発現が増大した株も挙げられる。かかる遺伝子の例としては、N_アセチルグルタミルフォスフェートレダクターゼ遺伝子 (argG)、オルニチンアセチルトランスフェラーゼ
遺伝子 (argJ)、N-アセチルグルタミートキナーゼ遺伝子 (argB)、アセチルオルニチントランスアミナーゼ遺伝子 (argD)、オルニチンカルバモイルトランスフェラーゼ遺伝子 (argF)、アルギノコハク酸シンテーザー遺伝子 (argG)、アルギノコハク酸リアーゼ遺伝子 (argH)、カルバモイルフォスファーゼトシンテーザー遺伝子 (carAB) が挙げられる。

L-パリン生産菌

L-パリン生産菌又はそれを誘導するための親株の例としては、iIvGMEDAオペロンを適応発現するように変異された株 (米国特許第5,998,178号)が挙げられるが、これらに限定されない。アテニュエーションに必要なiIvGMEDAオペロンの領域を除去し、生産されるL-パリンによりオペロンの発現が減衰しないようにすることが好ましい。さらに、オペロンのiIvA遺伝子が破壊され、スレオニンシアミナーゼ活性が減少することが好ましい。

L-パリン生産菌又はそれを誘導するための親株の例としては、アミノアシルtRNAシンテーザーの変異を有する変異株 (米国特許第5,658,786号)も挙げられる。例えば、イソロイシンtRNAシンテーザーをコードするileS遺伝子に変異を有するE.coli VL1970が使用できる。E.coli VL1970は、1988年6月24日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号VKPM B-441で寄託されている。

さらに、生育にリポ酸を要求する、及びまたは、H+-ATPaseを欠失している変異株 (WO96/06926)を親株として用いることができる。

L-イソロイシン生産菌

L-イソロイシン生産菌又はそれを誘導するための親株の例としては、6-ジメチルアミノブリン耐性を有する変異株 (特開平5-304969号)、チアイソロイシン、イソロイシンヒドロキサメートなどのイソロイシンアナログに耐性を有する変異株、さらにDL-エチオン及びまたはアルギニンヒドロキサメートに耐性を有する変異株 (特開平5-1 30882号)が挙げられるが、これらに限定されない。さらに、スレオニンシアミナーゼ、アセトヒドロキシ酸シ
インターフェージなどのL_イソロイシン生合成に関与するタンパク質をコードする遺伝子で形質転換された組換え株もまた親株として使用できる（特開平2-458号，FR 0356739，及び米国特許第5,998,178号）。

[0093] L—アスパラギン生産菌

[0094] 本発明の細菌は、脂肪酸、又はグリセロール等のアルコールを資化する能力が高められしていてもよい。

脂肪酸資化能は、例えば、fadR遺伝子の発現を弱化させること、もしくは同遺伝子を欠損させること、fad L fadJ、fad S fadE、fadD、fadB、又はfad A遺伝子等の脂肪酸資化に関与する遺伝子の発現を増強することにより、高めることができる（WO2009/1 42286）。

[0095] グリセロール資化能は、glpR遺伝子（EP1715056）の発現を弱化するが、glpA、glpB、glpG、gdpD、glpE、glpF、glpG、glpK、glpO、glpT、tpiA、glpD、dhaK、dhaL、dhaM、dhaR、fsa及びtal遺伝子等のグリセロール代謝遺伝子（EP1715055A）の発現を増強すること、又は、グリセロール代謝遺伝子（gld）及びハイドロキシシア・トンキナーゼ（fsa）及びtal遺伝子、フルクトース—6—リン酸アルドラーゼ（fsaB）の発現を強化すること（WO2008/1 0081）によって、高めることができる。

[0096] 本発明に用いる細菌は、エタノール資化性を有する細菌であり、元来エタノールの資化性を有する細菌、エタノールの資化性を付与された組換え株、又はエタノールの資化性が高まった変異株でもよい。

[0097] エシエリヒア・コリに関しては、嫌気条件でエタノールを生成する酵素として、以下の方応を可逆的に触媒するールデヒドラーゼ活性を有するAdhEの存在が知られている。エシ
エリヒア・コリのAdhEをコードするadhE遺伝子の配列は、HYPERLINK "mailto:W02009031 565@" W02009/031 565、米国特許出願公開第2009068712号に開示されている。

[0098] アセチル-GoA + NADH + H+ → アセトアルデヒド + NAD+ + CoA
アセトアルデヒド + NADH + H+ → エタノール + NAD+

[0100] エリヒア・コリは、アルコールデヒドロゲナーゼをコードする遺伝子の上流のプロモーターを好気的に機能するプロモーターに置換することによっ て、好気条件でアルコールデヒドロゲナーゼが発現し、好気的にエタノールを資化できるようになる（W02008/01 0565号パンフレット）。好気条件で機能する非天然型プロモーターとしては、好気条件で或る特定レベルを超えてadhE遺伝子を発現することができる任意のプロモーターを用いることができる。好気条件は、振動、通気及び攪拌等の方法によって酸素が供給される細菌の培養に通常用いられるものであり得る。具体的には、好気条件で遺伝子を発現することが知られている任意のプロモーターを用いることができる。例えば、解糖、ペントースリン酸経路、TCAサイクル、アミノ酸生成経路等に関与する遺伝子のプロモーターを用いることができる。さらに、λファ
ーデのPtac プロモーター、lac プロモーター、trp プロモーター、trc プロモーター、PR プロモーター、又はPL プロモーターは全て、好気条件で機能する強いプロモーターであることが知られており、これらを用いることが好ましい。

[01 01] 前記のような変異を有するAdhE 変異体として具体的には、エシエリビア・コリのAdhE の568 位のグルタミン酸残基がグルタミン酸及びアスパラギン酸以外のアミノ酸残基、例えばリジンで置換された変異体 (ε1u568Lys 、E568K) がある（国際公開パンフレットWO2008/01 0565号公報）。

[01 02] さらに、前記AdhE 変異体は、以下の追加的変異を含んでいてもよい。
A）560 位のグルタミン酸残基の他アミノ酸残基、例えばリジン残基への置換
B）566 位のフェニルアラニン残基の他アミノ酸残基、例えばパリン残基への置換、
C）22 位のグルタミン酸残基、236 位のメチオニン残基、461 位のチロシン残基、554 位のイソロイシン残基、及び786 位のアラニン残基の他アミノ酸残基、例えばそれぞれグリシン残基、パリン残基、システィン残基、セリン残基、及びパリン残基への置換、又は
D）前記変異の組み合わせ。

[01 03] 好気的にエタノールを資化できる」とは、エタノールを単一炭素源とする最少液体培地もしくは固体培地にて、好気条件で生育可能であることを意味する。好気条件は前記と同様で、振蕩、通気及び撹拌等の方法によって酸素が供給される細菌の培養に通常用いられるものであり得る。また、「好気的にエタノールを資化できる」とは、AdhE タンパク質のレベルに関して、Glark 及びGronan (J. Bacteriol. 141:177-183 (1980)) の方法によって測定された無細胞抽出物におけるアルコールディヒドロゲナーゼ活性は、タンパク質1 mg 当たり1.5 ユニット以上、好ましくは5 ユニット以上、及びより好ましくは10 ユニット以上であることを意味する。

[01 04] また、本発明の細菌は、ビルピン酸シンターゼ、または、ビルピン酸:
A D P+オキシドレダクターゼの活性が増大するように改変された菌株であるともよい。「ピルビン酸シンターゼ、または、ピルビン酸 :N A D P+オキシドレダクターゼの活性が増大する」とは、ピルビン酸シンターゼ、または、ピルビン酸 :N A D P+オキシドレダクターゼの活性が、非改変株、例えば野生株や親株と比較して増大していることを意味する。尚、「ピルビン酸シンターゼ、または、ピルビン酸 :N A D P+オキシドレダクターゼの活性が増大する」とは、微生物が元来ピルビン酸シンターゼまたはピルビン酸 :N A D P+オキシドレダクターゼ活性を有していない場合に、当該微生物にピルビン酸シンターゼ、または、ピルビン酸 :N A D P+オキシドレダクターゼの活性を付与することを含む。

[0105] 本発明における「ピルビン酸シンターゼ」とは、アセチル-GoAとCo₂からピルビン酸を生成する下記の反応を、電子供与体存在下、例えばフェレドキシンあるいはフラボドキシン存在下で可逆的に触媒する酵素（EG 1.2.7.1）を意味する。ピルビン酸シンターゼは、PSと略称されることもあり、ピルビン酸オキシドレダクターゼ、ピルビン酸フェレドキシンオキシドレダクター、またはピルビン酸フラボドキシンオキシドレダクターと命名されている場合もある。電子供与体としては、フェレドキシンまたはフラボドキシンを用いることが出来る。

[0106] 還元型フェレドキシン + アセチル-GoA + Co₂ → 酸化型フェレドキシン + ピルビン酸 + CoA

あたりのメチルビオロゲンを還元する活性として定義される。親株が
ビルピン酸シナーゼ活性を有している場合、親株と比較して、好ましくは1
.5倍以上、より好ましくは2倍以上、さらに好ましくは3倍以上酵素活性が上
昇していることが望ましい。また親株がビルピン酸シナーゼ活性を有して
いない場合には、ビルピン酸シナーゼ遺伝子を導入することにより、ビル
ピン酸シナーゼが生成されていればよいが、酵素活性が測定できる程度に
強化されていることが好ましく、好ましくは0.001 U/mg（菌体タンパク質）以
上、より好ましくは0.005U/mg以上、さらに好ましくは0.1U/mg以上が望まし
し。ビルピン酸シナーゼは、酸素に対して感受性であり、一般的に活性発
現や測定は困難であることも多い（Bucke I. w. and Golding, B. T. 2006. An
n. Rev. of Microbiol. 60: 27-49）。したがって、酵素活性の測定に際して
は、反応容器中の酸素濃度を低下させて酵素反応を行うことが好ましい。

[01 09] ビルピン酸シナーゼをコードする遺伝子は、クロロビリウム・テビダム（Chlo
erobium tepidum）、/ ニ ド ク ジ エ ノ キ タ こ う モ フ ラ イ ラ ス (Hydrogen
obacter thermophilus) 等、還元的TCAサイクルを持つ細菌のビルピン酸
シナーゼ遺伝子を利用することが可能である。また、エシェリヒア・コリ
（Escherichia coli）をはじめとする、腸内細菌群に属する細菌由来のビル
ピン酸シナーゼ遺伝子を利用することも可能である。さらに、ビルピン酸
シナーゼをコードする遺伝子は、メタノコッカス・マリバールディス（Metha
nococcus maripaludis）、メタノカレートコッカス・シャナスチ（Methanoca
cococcus jannaschii）、メタノサーソモバクター・サーマトトロフィカス（Met
hanothermobacter thermautotrophicus）などの独立栄養性メタン生成・占細菌
（autotrophic methanogens）のビルピン酸シナーゼ遺伝子を利用すること
が可能である。

[01 09] < 2 _ 2 > 腸内細菌科に属する細菌に変異型RpsAタンパク質を保持させる方
法
本発明の細菌は、上述したようなL—アミノ酸生産能を有する腸内細菌科
に属する細菌を、210位のアスパラギン酸残基が他のアミノ酸残基で置換され
変異を有するRpsAタンパク質（以下、「変異型RpsAタンパク質」と記載することがある。）を保持するように変異することによって取得できる。また、本発明の細菌は、変異型RpsAタンパク質を保持するように変異された細菌に、L-アミノ酸生産能を付与することによっても、取得できる。

腸内細菌科に属する細菌に変異型RpsAタンパク質を保持させるには、変異型RpsAタンパク質をコードする変異型rpsA遺伝子を腸内細菌科に属する細菌に導入するか、染色体上の野生型rpsA遺伝子に210位のアスパラギン酸残基が他のアミノ酸残基で置換されるような変異を導入すればよい。

変異型rpsA遺伝子を腸内細菌科に属する細菌に導入するには、例えば、変異型rpsA遺伝子を含むベクターとして腸内細菌科に属する細菌を形質転換すればよい。また、変異型RpsA遺伝子を、レペットティティブDNA、転移因子の端部に存在するインバーテッド・リピート、又はトランスポソン等を用いて腸内細菌科に属する細菌の染色体上に存在させてもよい。

前記ベクターとしては、pUG19、pUG18、pHSG299、pHSG399、pHSG398、RSF1010、pBR322、pAGYG184、pMW18、pMW219等プラスミドベクター、λ1059、λBF101、M13mp9等のファージベクターが挙げられる。またトランスポソンとしては、Mu、Tn10、Tn5等が挙げられる。

変異型rpsA遺伝子を発現させるためのプロモーター等の発現調節配列は、rpsA遺伝子固有のものであってもよいし、他遺伝子由来のプロモーター又は人工プロモーターであってもよい。そのようなプロモーターとしては、lacプロモーター、trpプロモーター、trcプロモーター、lacプロモーター、ラムダファージのPRプロモーター、PLプロモーター、PL_tacプロモーター、tetプロモーター等が挙げられる。

本発明の細菌は、野生型RpsAタンパク質を保持しないことが好ましい。このような細菌は、野生型RpsA遺伝子が発現しないように染色体上のrpsA遺伝子を変異すること、例えばrps遺伝子を破壊することによって取得することができる。また、染色体上のrpsA遺伝子を変異型rpsA遺伝子で置換することによって、野生型RpsAタンパク質を保持せず、かつ、変異型RpsAタンパク質を

[0114] 本発明の細菌は、上記RpsAタンパク質をコードする遺伝子を染色体上に保持していればいずれでもよいが、細胞内に2コピー、あるいは3コピー以上有していてもよい。またrpsA遺伝子は破壊や欠失が難しいこともあるので、一旦変異型遺伝子を細胞内に導入してから野生型rpsA遺伝子と変異型遺伝子を置き換えることが望ましい。

[0115] <3> レーアミノ酸の製造法

本発明の細菌を、脂肪酸及びアルコールから選ばれる炭素源を含む培地で培養し、各培地からレーアミノ酸を採取することにより、レーアミノ酸を製造することができる。炭素源としては、脂肪酸及びアルコールの一方を含んでいてもよく、これからの両方を含んでいてもよい。

[0116] 脂肪酸とは、一般式CₙH₂ₙO₃OH (n+1、m+1は、それぞれ、脂肪酸に含まれる炭素数、水素数を表す）で表わすことができる長鎖炭化水素の1個のカルボン酸を指す。一般的に炭素数が12以上のものを長鎖脂肪酸と呼ぶことが多い。脂肪酸は、その炭素数と不飽和度によって様々な種類が存在する。また、脂肪酸は、油脂の構成成分であり、油脂の種類によって脂肪酸の組成も異なる。
ミリスチン酸 \((\text{C}_{15}\text{H}_{27}\text{COOH})\) は炭素数14の飽和脂肪酸であり、ヤシ油、バーム油に含まれる。パルミチン酸 \((\text{C}_{16}\text{H}_{33}\text{COOH})\) は炭素数16の飽和脂肪酸であり、植物油脂油に多く含まれる。ステアリン酸 \((\text{C}_{17}\text{H}_{35}\text{COOH})\) は炭素数18の飽和脂肪酸であり、動物性脂肪・植物性油に多く含まれる。オレイン酸 \((\text{C}_{18}\text{H}_{33}\text{COOH})\) は炭素数18の一価の不飽和脂肪酸であり、動物性脂肪や植物油に多く含まれる。リノール酸 \((\text{C}_{18}\text{H}_{32}\text{COOH})\) は炭素数18で9位と12位にシス型二重結合を2つ持っている多価不飽和脂肪酸である。脂肪酸としては、上記の長鎖脂肪酸の混合物を用いることも出来る。脂肪酸の混合物を炭素源として用いる場合、脂肪酸の混合比率は、本発明の方法に使用する細菌が炭素源として消化できる濃度比率でありずれでもかまわない。油脂の加水分解物から、グリセロールを除いた脂肪酸の混合物を利用することも可能である。

アルコールとしては、グリセロール、エタノール、ブタノール、プロパノール、脂肪族アルコール、芳香族アルコール等が挙げられる。

グリセロールは、正式名称Propane_1,2,3-triolである物質を指す。グリセロールは、純粋なグリセロールであってもよいが、粗グリセロールであってもよい。粗グリセロールは、工業的生産される不純物を含むグリセロールをいう。粗グリセロールは、油脂を高温、高圧下で水と接触させ軽水に溶解することによって、あるいは、バイオディーゼル燃料生産のためのエステル酸化反応によって、工業的に生産される。バイオディーゼル燃料とは、油脂とメタノールからエステル交換反応により生成する脂肪酸メチルエステルのことであり、この反応の副生物として粗グリセロールが生成する（Fukuda, H., Kondo, A., and Noda, H. 2001, J. Bioeng. 22, 405—416を参照のこと）。バイオディーゼル燃料生産プロセスでは、エステル交換にアルカリ触媒法が用いられることが多く、中和時酸を加えるため、水と不純物を含んだ純度70～95重量％程度の粗グリセロールが生成する。バイオディーゼル燃料生産において生産される粗グリセロールは、水に加えて、残存メタノールと触媒であるNaOH等のアルカリとその中和に用いられるH_2SO_4等の酸
との塩を不純物として含んでいる。メーカーや製法により差ははあるが、このような塩類は数パーセントに達する。ここでナトリウム、カリウム、塩化物イオン、硫酸イオン等の、アルカリやその中和に用いられた酸に由来するイオン類は、粗グリセロールの重量に対し、2~7%、好ましくは3~6%、さらに好ましくは4~5.8%含まれていることが好ましい。メタノールは、不純物として含まれていなくてもよいが、望ましくは0.01%以下含まれていてることが好ましい。

[0118] さらに、粗グリセロール中には、微量の金属、有機酸、リン、脂肪酸などが含まれることがある。含まれる有機酸としては、巻酸、酢酸等が挙げられ、不純物として含まれていなくてもよいが、好ましくは0.01%以下含まれていることが好ましい。粗グリセロールに含まれる微量の金属としては、微生物の生育に必要な微量金属が好ましく、例えばマグネシウム、鉄、カルシウム、マンガン、銅、亜鉛等が挙げられる。マグネシウム、鉄、カルシウムは、粗グリセロールの重量に対し、合計で0.00001～0.1%、好ましくは0.0005～0.1%、より好ましくは0.004～0.05%、さらに好ましくは0.007～0.01%含まれていることが好ましい。マンガン、銅、亜鉛としては、合計で0.000005～0.01%、より好ましくは0.000007～0.005%、さらに好ましくは0.00001～0.001%含まれていることが好ましい。

[0119] 粗グリセロールのグリセロールの純度としては10%以上であればよく、好ましくは50%以上であり、さらに好ましくは70%以上、特に好ましくは80%以上である。不純物の含有量が上記の範囲を満たす限り、グリセロールの純度は90%以上であってもよい。

粗グリセロールを用いる場合は、グリセロールの純度に応じて、グリセロールの量として上記濃度となるように粗グリセロールを培地に添加すればよい。また、グリセロール及び粗グリセロールの両方を培地に添加してもよい。

[0120] 炭素源は、油脂の加水分解物であってもよい。油脂の加水分解物は、一般的に、脂肪酸及びグリセロールを含む混合物として得られる。脂肪酸及び／
又はグリセロールを含む限り、油脂の加水分解物を含む培地は、脂肪酸又はアルコールを含む培地「脂肪酸又はアルコールを含む限り、油脂の加水分解物を含む培地」に相当する。

油脂は、脂肪酸とグリセロールのエステルであり、トリグリセリド（triglyceride）とも呼ばれる。油脂としては、加水分解反応が可能であれば、常温で液体のものを指す脂肪油（oil）、固体のものを指す脂肪（fat）など、どのようなものも使用することが出来る。また、動物由来（魚類を含む）油脂と植物由来油脂のすべてが使用可能であり、1種または2種以上を組み合わせて使用することも出来る。原料として用いる油脂は、純粋な油脂であってもよいし、油脂以外の物質を含む混合物であってもよい。例えば、油脂が植物由来のものである場合は、油脂を含む植物抽出物又はその画分物が挙げられる。

[0121] 動物油脂としては、バター、豚脂、牛脂、羊脂、クジラ油、イワシ油、ニシン油等をあげることができる。植物油脂としては、バーム油、オリーブ油、菜種油、大豆油、米糠油、クルミ油、ゴマ油、ビーナッツ油等が挙げられる。これらに限定されるものではない。バーム油はアブラヤシの果実からとれる油で、近年バイオディーゼル（biodiesel）燃料としての利用が盛んになり、生産量が高まっている。アブラヤシ（oil palm）は、ヤシ科アブラヤシ属（Elaeis）に分類される植物の総称である。粗バーム油（crude palm oil）は、一般的に圧搾工場で生産される未精製のバーム油を指し、粗バーム油として取引が行われている。また、微細藻類にも油脂を蓄積するものが知られており（Chisti, Y. 2007. Biotechnol. Adv. 25: 294-306）、藻体から抽出することも可能である。藻体内には油脂以外にも糖類、タンパク質、アミノ酸などの有機物が含まれているが、これらを含む混合物を加水分解して炭素源として用いても構わない。

[0122] 油脂としては、加水分解により生じる脂肪酸種が、本発明の方法に使用する細菌が炭素源として資化できるものであり、それらの含量がより高い油脂が望ましい。L-アミノ酸生産能を有する細菌が資化できる長鎖の脂肪酸種としては、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレ
イン酸などが挙げられる。

[01 25] 培地に加える脂肪酸、または油脂の加水分解物に含まれる脂肪酸は、水中でミセル化するナトリウムやカリウムなどとのアルカリ金属塩として用いることが望ましい。しかしながら、脂肪酸のナトリウム塩やカリウム塩の溶解度も発酵原料として用いるのには十分ではない場合がある。そこで、レーアミノ酸生産能を有する細菌が炭素源として脂肪酸をより効率よく資化できるようにするためには、乳化を行う等、均一化を促進する工程を加えることが好ましい。例えば乳化方法として、乳化促進剤や界面活性剤を加える等が考え
される。ここで乳化促進剤としては、リン脂質やステロールが挙げられる。
また界面活性剤としては、非イオン界面活性剤では、ポリ（オキシエチレン
ソルビタンモノオレイン酸エステル（Tween 80）などのポリオキシエチレ
ンソルビタン脂肪酸エステル、n-オクチルβ-D-グルコシドなどのアルキルグ
ルコシド、ジオキシステアリン酸エステルなどのジオキシ脂肪酸エステル、ポリ
グリセリンステアリン酸エステルなどのポリグリセリン脂肪酸エステル等が
挙げられる。両性イオン界面活性剤としては、アルキルベタインであるN,N-
ジメチル-N-テトラシルグリシンベタインなどが挙げられる。これ以外にも、ト
ライトンX-100（ Triton X-100）、ポリオキシエチレン（20）セチルエーテル（
Brij-58）、ノニルフェノールエトキシレート（Tegitol NP-40）等の一般的
に生物学の分野で用いられる界面活性剤が利用可能である。

[01 26] さらに、脂肪酸の乳化や均一化を促進するための操作も有効である。この
操作は、脂肪酸の乳化や均一化を促進する操作であれば、どのような操作で
も構わない。具体的には、ホモジナイザ処理、ホモミキサー処理、超音波
処理、高圧処理、高温処理などが挙げられるが、ホモジナイザ処理、超音波
処理およびこれらの組合せがより好ましい。

[01 27] 上記界面活性剤による処理と、ホモジナイザ処理及び／または超音波処
理を組み合わせることが特に好ましく、これらの処理は、脂肪酸がより安定
なアルカリ条件下で行われることが望ましい。アルカリ条件としては、pH9以
上が望ましく、pH10以上がより望ましい。

[01 28] 本発明の方法で使用する培地に含まれる、脂肪酸、又はアルコールの量は
、本発明の方法に使用する細菌が炭素源として資化できる限り特に制限され
ないが、培地中に単独の炭素源として添加する場合、1 Ow/v％以下、好まし
くは5w/v％以下、さらに好ましくは2 w/v％以下含まれることが好ましい。ま
た、培地中に単独の炭素源として添加する場合、0 2 w/v％以上、好ましく
は0 5w/v％以上、さらに好ましくは1 Ow/v％以上含まれていることが望
ましい。

[01 29] さらに、本発明の方法に使用する培地には、脂肪酸、又はアルコールに加
え、他の炭素源を添加してもよい。好ましいのは、グルコース、フルクトース、スクロース、ラクトース、ガラクトース、炭質蜜、澱粉加水分解物やバイオマスの加水分解により得られた糖液などの糖類、フマル酸、クエン酸、コハク酸等の有機酸類である。なお他の炭素源を用いる場合には、炭素源中の脂肪酸、又はアルコールの比率が10重量％以上、好ましくは30重量％以上、より好ましくは50重量％以上であることが好ましい。

また、流加培地に単独の炭素源として添加する場合、流加後の培地中の濃度が5w/v％以下、好ましくは2w/v％以下、さらに好ましくは1w/v％以下となるように流加培地に含まれることが好ましい。また、流加培地に単独の炭素源として添加する場合、0.01w/v％以上、好ましくは0.02w/v％以上、さらに好ましくは0.05w/v％以上の量にて制御することが好ましい。

なお、本発明において、脂肪酸又はアルコールは、培養の全工程において一定濃度含まれてもよいし、流加培地のみあるいは初発培地のみに添加されていてもよく、その他の炭素源が充足していても、一定時間脂肪酸及び／又はアルコールが不足している期間があってもよい。一定時間とは、例えば発酵全体の時間のうち10％、20％、最大で30％の時間で脂肪酸及び／又はアルコールが不足していてもよい。このように一時的に脂肪酸及び／又はアルコールの濃度が0になることがあっても、脂肪酸又はアルコールを含む培地での培養期間が存在する場合は、本発明の脂肪酸又はアルコールを含む培地で培養する」との文言に含まれる。

培地中に添加する炭素源以外の成分としては、窒素源、無機イオン及び必要に応じその他の有機成分を用いることができる。本発明の培地中に含まれる窒素源としては、アンモニア、硫酸アンモニアム、炭酸アンモニアム、塩化アンモニアム、リン酸アンモニアム、酢酸アンモニアム、ウレア等のアンモニア塩または硝酸塩等を使用することができ、pH調整に用いられるアンモニアガス、アンモニア水も窒素源として利用できる。また、ベプトン、酵母エキス、肉エキス、麦芽エキス、コンスティーブリカー、大豆加水分解物等も窒素源として利用出来る。培地中にこれらの窒素源が1種のみ含まれ
ていてもよいし、2種以上含まれていてもよい。

本発明の培地には、炭素源、窒素源の他にリン酸源、硫黄源が含まれてい
ることが好ましい。リン酸源としては、リン酸2水素カリウム、リン酸水素
2カリウム、ビロリン酸などのリン酸ポリマー等が利用出来る。また、硫黄
源としては、硫黄原子を含んでいるものであれもいずれでもよいが、硫酸塩、チ
オ硫酸塩、亜硫酸塩等の硫酸塩、システイン、システチン、グルタチオン等の
含硫アミノ酸が望ましく、なかでも硫黄アンモニウムが望ましい。

また、培地には、上記成分の他に、増殖促進因子（増殖促進効果を持つ栄
養素）が含まれてもよい。増殖促進因子としては、微量金属類、アミノ
酸、ビタミン、核酸、更にこれらのものを含有するペプトン、カゼイン、酵
母エキス、大豆たん白分解物等が使用できる。微量金属類としては、鉄、
マンガン、マグネシウム、カルシウム等が挙げられ、ビタミンとしては、ビ
タミンB1、ビタミンB2、ビタミンB6、ニコチン酸、ニコチン酸アミド、ビタ
ミンB12等が挙げられる。

また、生育にアミノ酸などを要求する栄養要求性変異株を使用する場合に
は、培地に要求される栄養素を補填することが好ましい。L-リジン生産菌は
、後述のようにL-リジン生合成経路が強化されており、L-リジン分解能が
弱化されているものが多いので、L-スレオニン、L-ホモセリン、L-イソロ
イシン、L-メチオニンから選ばれる1種又は2種以上を添加することが望ま
しい。

上記のような窒素源、リン酸源、硫黄源、増殖促進因子、アミノ酸等の成
分は、初発培地に含まれていてもよいし、流加培地に含まれていてもよい。
また、初発培地と流加培地で同じ成分を用いてもよいし、流加培地の成分を
初発培地の成分と変更してもよい。また、初発培地と流加培地中各成分の濃
度が同じであってもよく、異なっていてもよい。さらには、流加培地の流加
が多段階で行われる場合、各々の流加培地の組成は同じであってもよく、異
なっていてもよい。

培養は、発酵温度20〜45℃、特に好ましくは33〜42℃で通気培養
を行うことが好ましい。ここで、酸素濃度は、例えば5〜50%に、望ましくは10%程度に調節する。また、pHを5〜9に制御し、通気培養を行うことが好ましい。培養中にpHが下がる場合には、例えば、炭酸カルシウムを加えるか、アンモニアガス、アンモニア水等のアルカリで中和することができる。このような条件下で、好ましくは10時間〜120時間程度培養することにより、培養液中に著量のL-アミノ酸が蓄積される。

本発明においては、L-アミノ酸蓄積を一定以上に保つために、細菌の培養を種培養と本培養とに分けて行ってもよく、種培養をフラスコ等を用いた振盪培養、又は回分培養で行い、本培養を流加培養、又は連続培養で行ってもよく、種培養、本培養ともに回分培養で行ってもよい。

流加培養あるいは、連続培養を行う際には、一時的に脂肪酸もしくはアルコール、またはその他の炭素源の流加を停止するように間欠的に流加培地を流加してもよい。例えば、1回当たりの流加の継続時間が、複数回の流加の合計時間の30%以下、望ましくは20%以下、特に望ましくは10%以下となるよう、流加培地の供給を一時的に停止することができる。流加培地を間欠的に流加させる場合には、流加培地を一定時間添加し、2回目以降の添加はある添加期に先行する添加停止期において発酵培地中の炭素源が枯渇するときのpH上昇または溶存酸素濃度の上昇がコンピューターで検出されるときに開始するように制御を行い、培養槽内の基質濃度を常に自動的に低レベルに維持してもよい（特許5,912,113号 明細書）。

流加培養に用いられる流加培地は、脂肪酸又はアルコールとその他の炭素源及び増殖促進効果を持つ栄養素（増殖促進因子）を含む培地が好ましく、発酵培地中の脂肪酸濃度が一定以下になるように制御してもよい。

流加培地に加えるその他の炭素源としては、グルコース、スクロース、フルクトースが好ましく、増殖促進因子としては、窒素源、リン酸、アミノ酸等が好ましい。窒素源としては、アンモニア、硫酸アンモニウム、炭酸アンモニウム、塩化アンモニウム、リン酸アンモニウム、酢酸アンモニウム、ウレア等のアンモニウム塩または硝酸塩等を使用することができる。またリン
酸源としては、リン酸2水素カリウム、リン酸水素2カリウムが使用でき、アミノ酸としては、栄養要求性変異株を使用する場合には要求される栄養素を補填することが好ましい。また、流加培地は1種でもよく、2種以上の培地を混合してもよい。2種以上の流加培地を用いる場合、それらの培地は混合して1つのフィード缶により流加させてもよいし、複数のフィード缶で流加させてもよい。

[0141] 本発明で連続培養法を用いる場合には、引き抜きは流加と同時に行ってもよいし、一部引き抜いたあとで流加を行ってもよい。また培養液をL-アミノ酸と細胞を含んだまま引き抜いて、細胞だけ発酵槽に戻す菌体を再利用する連続培養法でもよい（フランス特許2669935号明細書参照）。連続的あるいは間欠的に栄養源を流加する方法は流加培養と同様の方法が用いられる。

[0142] 菌体を再利用する連続培養法とは、予定したアミノ酸濃度に達したときに、発酵培地を間欠的にあるいは連続して引き抜き、L-アミノ酸のみを取り出し、菌体を含む過残留物を発酵槽中に再循環させた方法であり、例えばフランス特許2669935号明細書を参照して実施することができる。

[0143] ここで、培養液を間欠的に引き抜く場合には、予定したL-アミノ酸濃度に到達したときに、L-アミノ酸を一部引き抜いて、新たに培地を流加して培養を行うとよい。また、添加する培地の量は、最終的に引き抜く前の培養液量と同量になるように設定することが好ましい。ここで同量とは、引き抜く前の培養液量に対し93〜107％の程度の量を意味する。

[0144] 培養液を連続的に引き抜く場合には、栄養培地を流加させると同時に、ある量は流加させたあとに引き抜きを開始することが望ましく、例えば引き抜き開始時間を流加を始めから5時間以内、望ましくは3時間以内、さらに望ましくは1時間以内である。また引き抜く培養液量は、流加させる量と同量であるのが好ましい。

[0145] また、L-リジン等の塩基性アミノ酸を製造する際には、培養中のpHが6.5〜9.0、培養終了時の培地のpHが7.2〜9.0となるように制御し、培地中の重炭酸イオン及び/又は炭酸イオンが少なくとも20mM以
上存する培養期があるようにし、前記重炭酸イオン及び／又は炭酸イオンを塩基性アミノ酸のカウンタイオンとする方法で発酵し、目的の塩基性アミノ酸を回収する方法で製造を行ってもよい（特開2002-65287 、US2002-0025564A、EP181367A）。

[0146] 塩基性アミノ酸を生産する能力を有する微生物を培地中で好気培養する際に、炭酸イオンもしくは重炭酸イオン又はこれらの両方を、塩基性アミノ酸の主なカウンタイオンとして利用することができる。塩基性アミノ酸のカウンタイオンとして必要な量の重炭酸イオン及び／又は炭酸イオンを培地中に存在させる方法としては、培養中の培地のPHが6.5〜9.0、好まあしくは6.5〜8.0、培養終了時の培地のPHが7.2〜9.0となるように制御し、さらに、発酵中の発酵槽内圧力が正となるように制御するか、又は、炭酸ガスもしくは炭酸ガスを含む混合ガスを培地中に供給することが知られている（特開2002-65287 、米国特許出願公開第20020025564号、EP1813677A）。

[0147] 本発明においては、発酵中の発酵槽内の圧力が正となるように制御すること、及び、炭酸ガスもしくは炭酸ガスを含む混合ガスを培地中に供給することの両方を行ってもよい。いずれの場合も、培地中の重炭酸イオン及び／又は炭酸イオンが、好まあしくは20mM以上、より好まあしくは30mM以上、特に好まあしくは40mM以上存在する培養期があるようにすることが好ましい。発酵槽内圧力、炭酸ガス又は炭酸ガスを含む混合ガスの供給量、又は制限された給気量は、例えば培地中の重炭酸イオン又は炭酸イオンを測定することや、pHやアンモニア濃度を測定することによって、決定することができる。

[0148] 上記態様においては、培養中の培地のpHが6.0〜9.0、好まあしくは6.5〜8.0、培養終了時の培地のpHが7.2〜9.0となるように制御する。上記態様によれば、従来の方法に比べて、カウンタイオンとして必要な量の重炭酸イオン及び／又は炭酸イオンを培地中に存在させるための培地のpHを低く抑えることが可能となる。アンモニアでpHを制御する場合、pHを高めるためにアンモニアが供給され、塩基性アミノ酸のN源となり得
る。培地に含まれる塩基性アミノ酸以外のカチオンとしては、培地成分由来のベ、ナ、モグ、カなどが挙げられる。これらは、好ましくは総カチオンの50%以下であることが好ましい。

また、発酵槽内の発酵槽内圧力が正となるようにするには、例えば、給気圧を排気圧より高くすればよい。発酵槽内圧力を正にすることによって、発酵により生成する炭酸ガスが培養液に溶解し、重炭酸イオンは炭酸イオンを生じ、これらは塩基性アミノ酸のカウンタイオンとなり得る。発酵槽内圧力として具体的には、ゲージ圧（大気圧に対する差圧）で、0.05〜0.2 MPa、好ましくは0.05〜0.15 MPa、さらに好ましくは0.〜0.3 MPaが挙げられる。また、培養液に炭酸ガス、又は炭酸ガスを含む混合ガスを供給することによって、培養液に炭酸ガスを溶解させてもよい。さらには、培養液に炭酸ガス又は炭酸ガスを含む混合ガスを供給しつつ、発酵槽内圧力が正となるように調節してもよい。

発酵槽内圧力を正に調節するには、例えば、給気圧を排気圧よりも高くするように設定すればよい。また、培養液に炭酸ガスを供給する場合は、例えば、純炭酸ガス、又は炭酸ガスを5体積%以上含む混合ガスを吹き入れるよ。

尚、培地に重炭酸イオン及び/又は炭酸イオンを溶解させる上記の方法は、単独でもよいし、複数を組み合わせてもよい。

従来法では、通常、生成する塩基性アミノ酸のカウンタイオンとすべく、十分量の硫酸アンモニウムや塩化アンモニウムが、又、栄養成分として蛋白等の硫酸分解物もしくは塩酸分解物が培地に添加され、これらから与えられる硫酸イオン、塩化物イオンが培地に含まれる。従って、弱酸性である炭酸イオン濃度は培養中極めて低く、ppm单位である。上記態様では、これら硫酸イオン、塩化物イオンを減少、微生物が発酵中に放出する炭酸ガスを上記発酵環境にて培地中に溶解させ、カウンタイオンとしてことに特徴がある。したがって、上記態様においては、硫酸イオンや塩化物イオンを生育に必要な量以上培地中に添加する必要はない。好ましくは、培養当初は硫酸アンモ
ニウム等を培地に適当量フィードし、培養途中でフィードを止める。あるいは、培地中の炭酸イオン又は重炭酸イオンの溶存量とのバランスを保ちつつ、硫酸アンモニウム等をフィードしてはよし。また、塩基性アミノ酸の窒素源として、アンモニアを培地にフィードしてもよい。アンモニアは、単独で、又は他の気体とともに培地中に供給することができる。

培地に含まれる重炭酸イオン及び／又は炭酸イオン以外の他のアニオンの濃度は、微生物の生育に必要な量であれば、低いことが好ましい。このようなアニオンには、塩化物イオン、硫酸イオン、リン酸イオン、イオン化した有機酸、及び水酸化物イオン等が挙げられる。これらの他のイオンのモル濃度の合計は、好ましくは通常は900mM以下、より好ましくは700mM以下、特に好ましくは500mM以下、さらに好ましくは300mM以下、特に好ましくは200mM以下である。

上記態様においては、硫酸イオン、及び／又は、塩化物イオンの使用量を削減することが目的の一つであり、培地中に含まれる硫酸イオンもしくは塩化物イオン、又はこれらの合計、通常、700mM以下、好ましくは500mM以下、特に好ましくは300mM以下、さらに好ましくは200mM以下、特に好ましくは100mM以下である。

通常は、塩基性アミノ酸のカウンタイオン源として培地に硫酸アンモニウムを添加すると、硫酸イオンによって培養液中の炭酸ガスが放出してしまう。それに対して、上記態様においては、過剰量の硫酸アンモニウムを培地に添加する必要がないので、炭酸ガスを発酵液中に容易に溶解させることができる。

また、上記態様においては、「塩基性アミノ酸の生産を阻害しない」程度に培地中の総アンモニア濃度を制御することが好ましい。そのような条件としては、例えば、最適な条件において塩基性アミノ酸を生産する場合の収率及び／又は生産性に比べて、好ましくは50％以上、より好ましくは70％以上、特に好ましくは90％以上の収率及び／又は生産性が得られる条件が含まれる。具体的には、培地中の総アンモニア濃度としては、好ましくは3
0.0 mM以下、より好ましくは250 mM、特に好ましくは200 mM以下の濃度が挙げられる。アンモニアの解離度はpHが高くなると低下する。解離していないアンモニアは、アンモニウムイオンよりも菌に対して毒性が強し。そのため、総アンモニア濃度の上限は、培養液のpHにも依存する。すなわち、培養液のpHが高いほど、許容される総アンモニア濃度は低くなる。したがって、前記「塩基性アミノ酸の生産を阻害しない」総アンモニア濃度は、pH毎に設定することが好ましい。しかし、培養中の最も高いpHにおいて許容される総アンモニア濃度範囲を、培養期間を通じての総アンモニア濃度の上限値範囲としてもよい。

一方、微生物の生育及び塩基性物質の生産に必要な窒素源としての総アンモニア濃度としては、培養中にアンモニアが枯渇した状態が続ければ、窒素源が不足することによる微生物による目的物質の生産性の低下が起こらない限り特に制限されず、適宜設定することができる。例えば、培養中にアンモニア濃度を経時的に測定し、培地中のアンモニアが枯渇したら少量のアンモニアを培地中に添加してもよい。アンモニアを添加したときの濃度としては、特に制限されないが、例えば、総アンモニア濃度として好ましくは1 mM以上、より好ましくは10 mM以上、特に好ましくは20 mM以上の濃度が挙げられる。

尚、回収されるLアミノ酸は、Lアミノ酸以外に細菌菌体、培地成分、水分、及び細菌の代謝副産物を含んでいてもよい。採取されたLアミノ酸の純度は、50%以上、好ましくは85%以上、特に好ましくは95%以上である。

[0160]また、L_アミノ酸が培地中に析出す場合は、遠心分離又は処理等により回収することができる。また、培地中に析出したL_アミノ酸は、培地中に溶解しているL_アミノ酸を析析した後に、併せて単離してもよい。

実施例

[0161]以下、実施例により本発明をさらに具体的に説明する。

実施例 1）脂肪酸の資化性が向上した菌株の取得

エシュリヒアコリの野生株K12株由来のMG1655（ATCC47076）を親株として、脂肪酸資化性の向上した菌株の取得を試みた。MG1655は、アメリカン-タイプ・カルチャー・コレクション（住所：12301 Park lawn Drive, Rockville, Maryland 20852P. 0. Box 1549, Manassas, VA 20108, United States of America）より入手することができる。

[0162]MG1655株を、M9オレイン酸ナトリウム寒天培地（MG1を用いてpH7.0に調製）上で24時間静置培養した。生育した細胞を撹拌し、0.85% NaGl水溶液に混じけて、M9オレイン酸ナトリウム試験管用液体培地5mLを入れたL字試験管に、波長600nmの濁度が0.00625となるように植菌した。恒温振とう培養装置TN-2612（アドバンテック社製）を用いて、37°C、70rpmの条件で20時間培養を行った。24時間後、M9オレイン酸ナトリウム試験管用液体培地5mLを入れたL字試験管に培養液10リットルを植え置きした。同様に植え置き培養を24時間2回繰り返し、計445時間培養を行った後、M9オレイン酸ナトリウム寒天培地上で24時間静置培養してシングルコロニーを採取し、Fitnessl株と命名した。

[0163]上記Fitnessl株を、M9オレイン酸ナトリウム試験管用液体培地5mLにて終0D₆₀₀がおよそ0.6となるまで37°Cにて培養した後、培養液と等量の40%グリセロール溶液を加えて攪拌した後、適当量ずつ分注し、_80°Cで保存した。これをFitnessl株のグリセロールストックと呼ぶ。

上記培地の組成を以下に示す。濃度単位は全て終濃度を示す。

[0164]M9オレイン酸ナトリウム寒天培地組成)
オレイン酸ナトリウム（純正化学社製） 2g/L
Tween 80°（ナカライテスク社製） 0.5%(v/v)
Na₂HP₀₄ 6g/L
KH₂PO₄ 3g/L
NaCI 0.5g/L
NH₄Cl 1g/L
MgSO₄·7H₂O 0.246g/L
チアミン 0.5mg/L
寒天 15g/L

*)：ポリ（オキシエチレン）ソルビタンモノオレイン酸エステル

实施例2）脂肪酸の資化性が向上した微生物の培養

Fitness 1株のグリセロールストックを、M9オレイン酸ナトリウム寒天培地（HG1を用いてpH7.0に調製）上で24時間静置培養した。生育した細胞を懸濁取り、0.85%NaGl水溶液にけん濃して、M9オレイン酸ナトリウム試験管用液体培地5mLを入れたL字試験管に、波長600nmの濃度が0.005となるように植菌して恒温振とう培養装置TN-26 12（アドバンテック社製）を用いて温度37°C、70rpmの条件で20時間培養したところ、同様の方法で培養したMG1655と比較して有意な生育の向上を示した（図1）。

また、Fitness 1株のグリセロールストックを、M9オレイン酸ナトリウム寒天培地（HG1を用いてpH7.0に調製）上で24時間静置培養した。生育した細胞を懸濁取り、0.85%NaGl水溶液にけん濃して、M9オレイン酸ナトリウム試験管用液体培地5mLを入れたL字試験管に、波長600nmの濃度が0.005となるように植菌して恒温振とう培養装置TN-26 12（アドバンテック社製）を用いて温度37°C、70rpmの条件で20時間培養したところ、同様の方法で培養したMG1655と比較して有意な生育の向上を示した（図1）。
天培地（HGI を用いて pH7.0 に調製）上で 24 時間静置培養し、寒天培地上の細胞を搔き取り、0.85% NaGI 水溶液にけん濁して、M9 特級オレイン酸フラスコ用液体培地 20mL を入れた 500mL 坂ロフラスコに、波長 600nm の濁度が 0.01 となるように植菌した。レシプロ型培養装置で攪拌速度 200rpm、37℃ の条件で 47 時間培養した。培養途中の培地を採取し、等量の 10% Tween80 水溶液と混合した後、波長 600nm の濁度と、培養液中のオレイン酸濃度を Hashimoto ら（Hashimoto, K. et al. 1996. Biosci. Biotechnol. Biochem. 70: 22-30）に記載の方法でガスクロマトグラフィー分析により、測定した。その結果、Fitnessl 株は同様の方法で培養した MG1655 と比較して、有意な生育の向上と脂肪酸消費速度の向上を示した（図 2、図 3）。

上記培地の組成を以下に示す。濃度単位は全て終濃度を示す。

[0168] M9 特級オレイン酸フラスコ用液体培地組成

オレイン酸（ナカライテスク社製特級） 2g/L
Tween 80（ナカライテスク社製） 0.5% (v/v)
Na₃HP0₄ 6g/L
KH₂PO₄ 3g/L
NaGI 0.5g/L
NH₄Cl 1g/L
MgSO₄·7H₂O 0.246g/L
チアミン 0.5mg/L

[01 69] 実施例 3) Fitnessl 株が持つ変異の同定

Herrington ら（Herrington, C. D. et al., 2006, Nat. Genet., 38:1406-1412）に記載された GGS 法を用いて、Fitnessl 株が持つ染色体上の変異点を探索した。その結果、Fitnessl 株では、MG1655 株の rpsA 遺伝子の塩基配列（配列番号 1）における 628 位の G が T に変異していることが明らかとなった。

[0170] この変異によって、MG1655 株の rpsA 遺伝子によってコードされる RpsA タンパク質のアミノ酸配列（配列番号 2）において、210 位のアスパラギン酸残基がチロシン残基に置換されていることが明らかとなった。この変異を RpsA (D
変異と命名した。
Fitnessl 株が持つ変異型 rpsA 遺伝子の塩基配列及び同遺伝子がコードする変異型 RpsA のアミノ酸配列を、配列番号 3 及び 4 に示す。

種々の生物の rpsA 遺伝子ホモログのアミノ酸配列の 210 位近傍の配列を比較したところ、210 位のアスパラギン酸残基は原核生物から真核生物に至るまで種間で保存性が高いことが判明した。rpsA 遺伝子はエッシェリヒア・コリなど腸内細菌群では必須遺伝子とされており、このような遺伝子の保存性の高いアミノ酸残基の適応的変異が大きな生育の改善をもたらすことを予測することとは困難であった。また、変異型 RpsA を保持することによる効果は、腸内細菌群のみならず、幅広い属種でも期待される。

実施例 4）エッシェリヒア・コリへの RpsA（D210Y）変異の導入

野生型 rpsA 遺伝子を持つエッシェリヒア・コリ菌株に、RpsA（D210Y）変異を導入した。

Fitnessl △ yea に att_Gm 株から、常法に従い P1 ライセートを取得し、MG1 65 5 に形質導入を行なって、RpsA（D210Y）変異を染色体上に持つ MG1 655 yca に att_Gm、rpsA（D210Y）株を構築した。また、Fitnessl △ yea に att_Gm 株の構築
に用いたものを同じpMW18（attL_Gm_attR）（特開2005—58227号公報（特許文献2）に記載）を錶型とし、配列番号7及び8合成オリゴヌクレオチドをプライマーに用いてPCRを行い、同様のλ-red法でMG1655の染色体上のyea1遺伝子を欠損した菌株であるMG1655Aycaにatt-Gm株を構築した。実施例1と同様にして、同株のグリセロールストックを作製した。

【実施例5】脂肪酸を炭素源とする培地での、RpsA（D210Y）変異による生育向上効果

MG1655Ayca1：att-Cm、RpsA（D210Y）株のグリセロールストックを、M9オレイン酸ナトリウム寒天培地（HGIを用いてpH7.0に調製）上で24時間静置培養した。生育した細胞を撃き取り、0.85%NaGI水溶液にけん溝して、M9オレイン酸ナトリウム試験管用液体培地5mLを入れたL字試験管に波長600nmの濁度が0.005になるように植菌した。恒温振とう培養装置TN-2612（アドバンテック社製）を用いて37℃、70rpmの条件で20時間培養した。その結果、同様の方法で培養したMG1655またはMG1655Ayca1：att-Gm株と比較して有意な生育の向上を示した（図4）。

【実施例6】グリセロールを炭素源とする培地での、RpsA（D210Y）変異の生育向上効果

MG1655Ayca1：att-Cm、RpsA（D210Y）株のグリセロールストックを、M9オレイン酸ナトリウム寒天培地（HGIを用いてpH7.0に調製）上で24時間静置培養した。生育した細胞を撃き取り、0.85%NaGI水溶液にけん溝して、M9グリセロール試験管用液体培地5mLを入れたL字試験管に波長600nmの濁度が0.005になるように植菌した。恒温振とう培養装置TN-2612（アドバンテック社製）を用いて37℃、70rpmの条件で20時間培養した。その結果、同様の方法で培養した
MG1655 または MG1655 yea に att-Gm 株と比較して有意な生育の向上を示した（図 5）。

上記培地の組成を以下に示す。濃度単位は全て終濃度を示す。

[0177]（MG1655 試験管用液体培地組成）

<table>
<thead>
<tr>
<th>成分</th>
<th>濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>グリセロール（純正化学製特級）</td>
<td>1g/L</td>
</tr>
<tr>
<td>Tween 80（ナカライテスク社製）</td>
<td>0.5%(V/V)</td>
</tr>
<tr>
<td>Na₂HP₂O₆</td>
<td>6g/L</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>3g/L</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.5g/L</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>1g/L</td>
</tr>
<tr>
<td>MgSO₄・7H₂O</td>
<td>0.246g/L</td>
</tr>
<tr>
<td>チアミン</td>
<td>0.5mg/L</td>
</tr>
</tbody>
</table>

[0178]実施例 7）リジン産生菌 WG1 96LG/pGABD2 への RpsA (D21 0Y) 変異の導入

遺伝子と、プレビパクテリウム・ラクトフアーメンタム由来ジアミノビルメリン酸デヒドロゲナーゼをコードする
ddh 遺伝子を含んでいる（米国特許第 6040
160 号明細書）。

実施例 1 と同様にして、グリセロール ストックを作製した。

実施例 8）RpsA (D210Y) 変異を導入した L_ リジン生産菌の脂肪酸または
グリセロールを炭素源とする L_ リジン生産能の評価

実施例 7 で得られた Wg1 96LG A yca I : att-Cm， rpsA (D210Y)/pGABD2 株のグリ
セロールストックを融解し、その 100 _ Lを、20 mg/L のストレプトマイシンを
含む L プレートに均一に塗布し、37°C にて 24 時間静置培養した。プレートのおよ
ば 1/4 量の菌体を、0.5mL の生理食塩水にけん満し、分光光度計 U-2000 (日
立社製) で波長 600nm の波長を測定した。得られた菌を含むけん満液を、500
mL 容バッフル付三角フラスコの、20 mg/L のストレプトマイシンを含む発酵培
地（下記に示す）の 40 mL に、波長 600nm の波長が 0.2 になる波長で接種し、ロ
ータリー振とう培養装置 InnOva 4430 (New Brunswick Scientific 社製) で回
転数 200rpm、37°C において 48 時間培養した。

本培養における炭素源としては、オレイン酸ナトリウム、またはグリセロールを用
い、乳化促進剤としてTween 80 を終濃度 0.5% (v/v) となるように添
加したものを用いた。総炭素源量は 10g/L とした。エシエリアヒア・コリガ Tweep
n80 を資化できないことは、M9 最小培地に Tween80 を添加した培地を用いて別
途確認した。

上記の条件で、48 時間培養を行い、培地中に蓄積した L_ リジンの量をパ
イオテックアナライザー AS3 10 (サクラ精機社製) を用いて測定した。また、
培地中に添加した炭素源を全て消費したことを、オレイン酸についてはガス
クロマトグラフ GG_201 4 (Shimadzu 社製)、グリセロールについてはバイオテッ
クアナライザー BF-5 (王子計測機器) を用いて確認した。さらに、培養終了直
後に Tween80 溶液を終濃度 1.0% (v/v) となるように添加して、適宜希釈して
分光光度計U-2000（日立社製）で波長600nmの濁度を測定することにより、培養終了時の菌体量を測定した。

WG196LG/pGABD2株およびWG196LGAycAL:att_GmAcb/pGABD2株についても、同様の培養を行った。

本培養に用いたオリエン酸を炭素源とする発酵培地の組成を以下に示す。
単位g/Lおよび%(volume/volume換算)は、全て終濃度を示す。

<table>
<thead>
<tr>
<th>グリセロール（純正化学社製 特級）</th>
<th>10 g/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tween 80</td>
<td>0.5 %</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>1 g/L</td>
</tr>
<tr>
<td>PIPES</td>
<td>20 g/L</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>16 g/L</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>0.5 g/L</td>
</tr>
<tr>
<td>FeSO₄·7H₂O</td>
<td>0.01 g/L</td>
</tr>
<tr>
<td>MnSO₄·7H₂O</td>
<td>0.082 g/L</td>
</tr>
<tr>
<td>Yeast Extract (Difco社製)</td>
<td>2 g/L</td>
</tr>
</tbody>
</table>

オリエン酸ナトリウムは、HClでpH7.5に調整し、115℃で10分オートクレープした。

Tween 80は、Naigene 0.45μmフィルター（Naigene社製）でフィルター滅菌した。

MgSO₄·7H₂Oは、115℃で10分オートクレープした。

PIPESは、NaOHでpH7.5に調整し、115℃で10分オートクレープした。

上記以外の成分は、それらを混合した後KOHでpH7.5に調整し、115℃で10分オートクレープした。

上記のように各成分を5つの区に分けて別滅菌した後、それらを混合した。

本培養に用いたグリセロールを炭素源とする発酵培地の組成を以下に示す。
単位g/Lおよび%(volume/volume換算)は、全て終濃度を示す。

グリセロール（純正化学社製特級）10g/L
ゲリセロールは、115°Cで10分オートクレーブを行なった。

TWEEN 80 は、Naile gene 0.45パルフィルター（Naile gene 社製）でフィルター滅菌した。

MgSO4 7H2O は、115°Cで10分オートクレーブした。

P1PES （pH7.5） は、10g/L、(NH4)2S04 は、16g/L、KH2P04 は、1g/L、FeS04 7H2O は、0.01g/L、MnS04 7H2O は、0.082g/L、酵母抽出液（Difco 社製）は、2g/Lである。

[01 88] 本培養の結果を表1に示す。Lys（g/L）は、プラスコに蓄積したL-リジン量を示す。RpsA（D21 0Y）変異導入株（WC1 96LCa yca I：att-Cm、rpsA（D21 0Y）/ PGABD2 株）は、対照株（WG1 96LG/pGABD2 株およびWG1 96LGa yca にatt-GmpGA BD2 株）と比較して、有意に高いL-リジン生産を示した。RpsA（D21 0Y）変異導入により、L-リジン生産能が向上することが示された。

[01 89] 表1

<table>
<thead>
<tr>
<th>反映源</th>
<th>菌株</th>
<th>OD</th>
<th>Lys (g/L)</th>
<th>収率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ゲリセロール</td>
<td>WC1 96LCypGABD2</td>
<td>5.10</td>
<td>4.07</td>
<td>39.9</td>
</tr>
<tr>
<td>ゲリセロール</td>
<td>WC1 96LC A yca I：att-Cm/pGABD2</td>
<td>5.00</td>
<td>4.05</td>
<td>39.7</td>
</tr>
<tr>
<td>ゲリセロール</td>
<td>WC1 96LC A yca I：att-Cm、rpsA（D21 0Y）/pGABD2</td>
<td>5.00</td>
<td>4.34</td>
<td>42.5</td>
</tr>
<tr>
<td>オレイン酸</td>
<td>WC1 96LCpGABD2</td>
<td>8.10</td>
<td>4.20</td>
<td>45.3</td>
</tr>
<tr>
<td>オレイン酸</td>
<td>WC1 96LC Δyca I：att-Cm/pGABD2</td>
<td>8.34</td>
<td>4.15</td>
<td>44.8</td>
</tr>
<tr>
<td>オレイン酸</td>
<td>WC1 96LC A yca I：att-Cm、rpsA（D21 0Y）/pGABD2</td>
<td>9.27</td>
<td>4.35</td>
<td>46.9</td>
</tr>
</tbody>
</table>
実施例9) WG1 96LG株へのエタノール資化性の付与

L—リジン生産菌にエタノール資化性を付与するため、変異型アルコールデヒドロゲナーゼ遺伝子（adhE*）の導入を行った。変異型アルコールデヒドロゲナーゼ遺伝子として、MG1 655 :catal-acd adhE*（W02008/01 0565 参照）由来の遺伝子を用いた。MG1 655 :catal-acd adhE*株は、クロラムフェニコール耐性遺伝子（cat）と、PL-tac プロモーターにより制御される変異型adhE遺伝子が連結したDNA断片を、エッシリン・コリMG1 655株のゲノムに挿入して得た株である。この変異型adhE遺伝子は、好気的条件下で活性を維持するアルコールデヒドロゲナーゼをコードしている。

cat 遺伝子をゲノムから除去できるようにするため、cat 遺伝子を、ラムダファージのアタッチメントサイトとテトラサイクリン耐性遺伝子を連結したDNA断片（att-tet）で置き換えた。cat 遺伝子のatt-tet 遺伝子への置き換えは、λ-red 法を用いた。cat 遺伝子をatt-tet 遺伝子で置き換えるためのプライマーとして、配列番号9及び10のプライマーを使用した。こうして、MG1 655 :catal-acd adhE*のcat 遺伝子がatt-tet 遺伝子で置き換えられたMG1 655-att-tet_PL-tac adhE*株を得た。

L—リジン生産菌にエタノール資化性を付与するため、MG1 655-att-tet-PL-tac adhE*株から常法に従いP1ライセンスを取得し、L—リジン生産菌WG1 96LG株を宿主としてP1形質導入法を用いて、WG1 96LG-att-tet-PL-tac adhE*株を得た。

次に、PL-tac プロモーター上流に導入されたatt-tet 遺伝子を除去するため、ヘルパープラスミドpMW-intx is-ts（米国特許出願公開20060114586）を使用した。pMW-intx is-tsは、λファージのインテグラーゼ（Int）をコードする遺伝子、及びエクショナーゼ(Xis)をコードする遺伝子を搭載し、温度感受性の複製能を有するプラスミドである。

上記で得られたWG1 96LG-att-tet-PL-tac adhE*株のコンピネットセルを常法に従って作製し、ヘルパープラスミドpMW-intx is-tsにて形質転換し、30℃で50 mg/Lのアンピシンを含むLB寒天培地上にて平盤培養し、アンピシン耐
性株を選択した。pMW-intx is-tsプラスミドを除去するために、形質転換株をLB寒天培地上、42°Cで培養し、得られたコロニーのアンピシリン耐性、及びテトラサイクリン耐性を試験し、アンピシリン感受性かつテトラサイクリン感受性である株を取得した。こうして、att-tet及びpMW-intx is-tsが脱落しているPL_tacadhE*導入株を取得した。この株をWG1 96LG PL_tacadhE*株と名づけた。

実施例10）wc1 96LC PL-tacadhE*株へのRpsA(D21 0Y)変異およびL—リジン生産用プラスミドPGABD2の導入
Fitnessl Aycaにatt_Gm株から、常法に従いP1ライセンート取得し、L—リジン生産菌wg1 96LG PL_tacadhE*株を宿主としてP1形質導入法を用いて、WG 196LC PL_tacadhE*Aycaにatt_Gm, rpsA (D21 0Y)株を構築した。また、同様に、MG1 655 Aycaにatt_Gm株からP1ライセンート取得し、WG1 96LC PL_tacadhE*株を宿主としてP1形質導入法を用いて、WG1 96LC PL_tacadhE*ΔyeaI : att-Cm株を構築した。

実施例11）RpsA (D21 0Y) 変異導入株のエタノールからのL—リジン生産能の評価
実施例10で得られた各株のグリセロールストックを処理し、各100μLを、20mg/Lのストレプトマイシンを含むLプレートに均一に塗布し、37°Cにて15時間培養する。得られた菌体を0.85%の食塩水中懸濁し、初発OD600=0.25となるように、太試験管（内径18mm）の、20mg/Lのストレプトマイシンを含む発酵培地の5mLに接種し、往復振とう培養装置で、攪拌120rpmの条件下、37°Cで培養する。
エタノールを炭素源とする発酵培地の組成を以下に示す。

[0198] 〔エタノール炭素源 L-リジン発酵培地組成〕
エタノール
10 ml/ L
(NH₄)₂SO₄
24 g/L
K₂HPO₄
1.0 g/L
MgSO₄·7H₂O
1.0 g/L
FeSO₄·7H₂O
0.01 g/L
MnSO₄·5H₂O
0.01 g/L
イーストエキストラクト
2.0 g/L
CaCO₃（日本薬局方）
30 g/L

上記成分を最終量が化となるように溶解し、KOHでpH5.7に調整し、115℃で10分オートクレープを行う。但し、エタノール、MgSO₄·7H₂O、及びGaO₃は別に滅菌する。エタノールはフィルターを用い滅菌する。MgSO₄·7H₂Oは蒸留水に溶解してオートクレープする。GaO₃は、180℃で2時間乾熱滅菌する。

抗生物質として、20mg/Lのストレプトマイシンを添加する。

[0199] 16時間培養後、培地中に蓄積したL-リジンの量を公知の方法（サクラ精機 バイオテックアナライザAS210）により測定する。
請求の範囲

[請求項1] L-アミノ酸生産能を有する腸内細菌科に属する細菌を、脂肪酸及びアルコールから選ばれる炭素源を含む培地で培養し、該培地からL-アミノ酸を採取する、L-アミノ酸の製造法であって、
前記細菌は、配列番号15又は16のアミノ酸配列を一部に有し、かつ、配列番号15の5位または配列番号16の5位のアスパラギン酸残基が他のアミノ酸残基で置換される変異を有する変異型RpsAタンパク質を保持することを特徴とする、方法。

[請求項2] 前記細菌がエシエリヒア属、エンテロバクター属、又はバントエア属に属する細菌である、請求項1に記載の方法。

[請求項3] 前記細菌がエシエリヒア・コリ、バントエア・アナナティス、又はエンテロバクター・アエロゲネスである、請求項1に記載の方法。

[請求項4] 前記変異型RpsAタンパク質が腸内細菌科に属する細菌由来である、請求項1又から3に記載の方法。

[請求項5] 前記変異型RpsAタンパク質がエシエリヒア・コリ、バントエア・アナナティス、又はエンテロバクター・アエロゲネス由来である、請求項1又から4に記載の方法。

[請求項6] 前記他のアミノ酸残基がチロシン残基である、請求項1又から5のいずれか一項に記載の方法。

[請求項7] 前記変異型RpsAタンパク質が、前記変異を有する以外は、配列番号17のアミノ酸配列を有するタンパク質又はその保存的バリアンートである、請求項1又から6のいずれか一項に記載の方法。

[請求項8] 前記変異型RpsAタンパク質を保持する細菌が、前記変異を有さないRpsAタンパク質を発現しないことを特徴とする、請求項1又から7のいずれか一項に記載の方法。

[請求項9] 前記変異型RpsAタンパク質を保持する細菌が、該変異型RpsAタンパク質をコードする変異型rpsA遺伝子で、染色体上のrpsA遺伝子が置換されたことを特徴とする、請求項1又から8のいずれか
一項に記載の方法。

[請求項10] 前記炭素源が脂肪酸である、請求項1〜9のいずれか一項に記載の方法。

[請求項11] 前記脂肪酸がオレイン酸である、請求項10に記載の方法。

[請求項12] 前記脂肪酸が油脂肪由来の脂肪酸の混合物である、請求項10に記載の方法。

[請求項13] 前記炭素源がアルコールである、請求項1〜9のいずれか一項に記載の方法。

[請求項14] 前記アルコールがグリセロールである、請求項13に記載の方法。

[請求項15] 前記アルコールがエタノールである、請求項13に記載の方法。

[請求項16] 前記炭素源が油脂を加水分解することによって得られる脂肪酸とグリセロールの混合物である、請求項1〜9のいずれか一項に記載の方法。

[請求項17] 配列番号15又は16のアミノ酸配列を一部に有し、かつ、配列番号15の5位または配列番号16の5位のアスパラギン酸残基が他のアミノ酸残基で置換される変異を有する変異型RpsAタンパク質を保持する、腸内細菌科に属する細菌。

[請求項18] L-アミノ酸生産能を有する請求項17に記載の細菌。

[請求項19] 前記細菌がエシエリヒア属、エンテロバクター属、又はパントエア属に属する、請求項17又は18に記載の細菌。

[請求項20] 前記細菌がエシエリヒア・コリ、パントエア・アナナティス、又はエンテロバクター・アエロゲネスである、請求項17〜19のいずれか一項に記載の細菌。

[請求項21] 前記他のアミノ酸残基がチロシン残基である、請求項17〜20のいずれか一項に記載の細菌。

[請求項22] 前記変異型RpsAタンパク質が、前記変異を有する以外は、配列番号17のアミノ酸配列を有するタンパク質又はその保存的バリアントである、請求項17〜21のいずれか一項に記載の細菌。
【請求項23】配列番号17のアミノ酸配列を有するタンパク質又はその保存的バリエントであって、かつ、210位のアスパラギン酸残基が他のアミノ酸残基で置換されたアミノ酸配列を有するタンパク質をコードするDNA。

【請求項24】前記他のアミノ酸残基がチロシン残基である、請求項23に記載のDNA。

【請求項25】前記タンパク質は、210位のアスパラギン酸残基が他のアミノ酸残基で置換された以外は配列番号2、配列番号12、又は配列番号14のアミノ酸配列を有する、請求項23又は24に記載のDNA。

【請求項26】前記タンパク質は、腸内細菌科に属する細菌に保持させたときに、脂肪酸及びアルコールから選ばれる炭素源を含む培地での生育を改善する機能を有する、請求項23〜25のいずれか一項に記載のDNA。
図5

OD
0 10 20 30

MG1655 (Glyc)
Fitness1 (Glyc)
MG1655ΔlycaI:att-Cm (Glyc)
MG1655ΔlycaI:att-Cm, rpsA(D210Y) (Glyc)
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION No.

PCT/JP2011/052469

A. CLASSIFICATION OF SUBJECT MATTER

C12N 5/09 (2006.01) i, C12N 2/20 (2006.01) i, C12P 3/04 (2006.01) i, C12R 1/19 (2006.01) n

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12N 5/09, C12N 2/20, C12P 13/04, C12R 1/19

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search

14 April 1, 2011 (14.04.11)

Date of mailing of the international search report

26 April 1, 2011 (26.04.11)

Name and mailing address of the ISA/

Japansese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
国際調査報告

国際出願番号 PCT／JP2011/052469

A. 発明の属する分野の分類（国際特許分類（IPC））
 Int.Cl. C12N15/09 (2006.01) i, C12N12/00 (2006.01) i, C12P13/04 (2006.01) i, C12R1/19 (2006.01) n

B. 調査を行った分野
 調査を行った最小限資料（国際特許分類（IPC））
 Int.Cl. C12N15/09, C12N12/00, C12P13/04, C12R1/19

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報
 1922—年
日本国公開実用新案公報
 1971—2年
日本国実用新案登録公報
 1996—年
日本国実用新案公報
 1994—2年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）
 CA/BIOSIS/ MEDLINE/ WPIDS (STN), JSTPlus/JMEDPlus/JST7580 (JDream™), UniProt/GeneSeq, PubMed

C. 関連すると認められる文献
 引用文献のカテゴリー
 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示

A

A

☑ C欄の続きにも文献が列挙されている。

☑ パテントファミリーに関する別紙を参照。

・ 引用文献のカテゴリー
 IA 特に関連のある文献ではなく、一般的技術水準を示すもの
 IE 国際出願 日前の出願 または特許であるが、国際出願日以降に公表されたもの
 E 優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献
 F1 口頭による開示、使用、展示等に言及する文献
 F2 国際出願 日前で、かつ優先権の主張の基礎となる出願

国際調査を完了した日
14. 04. 2011

国際調査報告の発送日
26. 04. 2011

国際調査機関の名称及びあて先
特許庁審査官 権限のある職員
特許庁審査官 権限のある職員
特許庁審査官 権限のある職員

郵便番号 100-8915
電話番号 03-3581-1101 内線 3448

様式 PCT／ISA／210（第2ページ）（2009年7月）
C (続き) 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>wo 2002/066651 A2 (DEGUSSA AG) 2002. 08. 29, 第6頁第9行—第18行、第13頁第34行—第14頁第16行、第28頁第29行—第30頁第12行 & US 2002/0119549 A1</td>
<td>1-26</td>
</tr>
</tbody>
</table>