
(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2016/012.5021 A1 

Birka et al. 

US 2016O125021A1 

(43) Pub. Date: May 5, 2016 

(54) 

(71) 

(72) 

(21) 

(22) 

(51) 

EFFICIENT UPDATES IN NON-CLUSTERED 
COLUMN STORES 

Applicant: Microsoft Corporation, Redmond, WA 
(US) 

Inventors: Adrian Birka, Seattle, WA (US); 
Weiyun Huang, Seattle, WA (US); 
Vasileios Papadimos, Seattle, WA (US); 
Per-Ake Larson, Redmond, WA (US) 

Appl. No.: 14/529,540 

Filed: 

Publication Classification 

Int. C. 
G06F 7/30 

Oct. 31, 2014 

(2006.01) 

system memory 
730 

operating system 
732 

application 
platform(s) 

734 

database application 
(including data 

transfer component) 
736 

database indices 
(Columnar and row 

wise) 
738 

processor(s) 
720 

(52) U.S. Cl. 
CPC. G06F 17/30377 (2013.01); G06F 17/30156 

(2013.01); G06F 17/30303 (2013.01) 
(57) ABSTRACT 
The processing of transaction oriented data tends to be row 
oriented, while the processing of analytical operations tends 
to be column-oriented. Various systems, sometimes referred 
to as operational data warehouses, may comprise mecha 
nisms adapted for use in scenarios where both transactional 
data processing and analytical queries are to be performed 
efficiently. The operational data warehouse (ODW) may per 
form and update data efficiently by maintaining a table in 
structures comprising a column store, a delta store, a delete 
bitmap, and a delete buffer. In this environment, key values 
may be associated for each row such that the ODW may more 
efficiently seek rows. Further, rows may also be excluded 
from a column store based at least in part on a filter criterion. 
The filtering criterion may be used to filter out rows based on 
a created predicate set by a user or the system. 

removable storage 
740 

non-removable storage 
750 

input device(s) 
760 

output device(s) 
770 

communication 

connection(s) 
80 

other computing 
devices 
A90 

  



Patent Application Publication May 5, 2016 Sheet 1 of 8 US 2016/O125021 A1 

s d 

f 
U 

O 
8 

i S 

N 

  



Patent Application Publication May 5, 2016 Sheet 2 of 8 US 2016/O125021 A1 

System 100 

memory 110 

receive reduest to delete row from table 201 

attempt to locate row in delta store using 
the key value2O2 

store a record in delete buffer to indicate 
that the row is in the logically deleted State 

2O3 

identify position of the row in the column 
store and update the delete bitmap to 
indicate that the row is in the logically 

deleted State 204 

FIG. 2 

  



US 2016/O125021 A1 May 5, 2016 Sheet 3 of 8 Patent Application Publication 

  



Patent Application Publication May 5, 2016 Sheet 4 of 8 US 2016/O125021 A1 

System 100 

SCan Operation 350 

determine to access a row 360 

identify presence of information in a 
delete buffer that is indicative of a 

logically deleted State for the row 362 

identify presence of information in a 
delete bitmap that is indicative of a 

logically deleted State for the row 364 

exclude row from results of scan when 
either delete buffer or delete bitmap are 
indicative of the row being in a logically 

deleted State 366 

FIG. 3B 

  



US 2016/O125021 A1 Patent Application Publication 

  



Patent Application Publication May 5, 2016 Sheet 6 of 8 US 2016/O125021 A1 

y 
f 
ed 
f 

s s co 9 S. 

s f 

S. 

3 s 

Of 
c N 

a 



Patent Application Publication May 5, 2016 Sheet 7 of 8 US 2016/O125021 A1 

provide information indicative of access patterns for data 
in a table 

6OO 

receive information indicative of a filter criterion, the 
filter criterion based on the access patterns 

6O2 

exclude rows from a column store based at least in part 
On the filter Criterion 

604 

maintain rows excluded from the column store in an 
alternative structure 

606 

FIG. 6 

  



Patent Application Publication 

System memory 
730 

operating System 
732 

application 
platform(s) 

734 

database application 
(including data 

transfer component) 
736 

database indices 
(Columnar and row 

wise) 
738 

May 5, 2016 Sheet 8 of 8 

processor(s) 
720 

FIG. 7 

removable storage 
740 

non-removable storage 
750 

input device(s) 
760 

output device(s) 
770 

Communication 

Connection(s) 
A8O 

other computing 
devices 

US 2016/O125021 A1 

  



US 2016/O125021 A1 

EFFICIENT UPDATES IN NON-CLUSTERED 
COLUMN STORES 

BACKGROUND 

0001. The structure of database management systems that 
are efficient for processing transactional data may at times be 
in opposition to those structures efficient for processing ana 
lytical queries. As a result, there may at times bearchitectural 
distinctions between database management systems designed 
for use in processing transactional data and data warehouse 
systems designed for performing analytical queries. Various 
systems, sometimes referred to as operational data ware 
houses, may comprise mechanisms adapted for use in sce 
narios where both transactional data processing and analyti 
cal queries are to be performed. 

SUMMARY 

0002 Systems, methods, and computer program products 
related to electronic database systems are disclosed herein. 
Aspects of the mechanisms disclosed herein may be applied 
to improve update efficiency in electronic database systems. 
A system incorporating these mechanisms may store and 
retrieve data in a table stored on one or more memories. The 
table may be maintained as a plurality of structures, including 
a first, second, and third plurality of records. The first plurality 
of records may representa column store that corresponds to at 
least a subset of a column of the table and may further com 
prise a first recordindicative of a value of the column for a row 
of the table. The second plurality of records may represent 
entries in the column store that have been deleted, and may 
also represent rows that have been deleted. Entries in the 
second plurality of records may accessible based at least in 
part on a position of a corresponding entry in the column 
store. The third plurality of records may comprise informa 
tion indicative of propagation states of a Subset of rows of the 
table. Information in the third plurality of records may be 
accessible based on a key value associated with a row. The 
third plurality of records may represent a delta store, which 
may contain entries that have not yet been applied to the 
column store. 
0003. The system may further comprise one or more 
memories having computer-readable instructions stored 
thereon. The execution of these instructions by one or more 
computing devices may cause the system to receive a request 
to delete the row from the table. The instructions may further 
cause the system to determine, based at least in part on a key 
value, that the third plurality of records does not comprise 
information corresponding to the propagation state of the 
OW 

0004. The instructions may cause the system to store an 
additional record in a buffer, which may be described as a 
delete buffer. The additional record may be indicative of the 
row being in the logically deleted state, or of a record in the 
column store, corresponding to a row, being in the logically 
deleted state. The instructions may further cause the system to 
identify the position of the first record in the first plurality of 
records, and to update the second plurality of records, based 
on the position, to indicate that the row or column store record 
is in the logically deleted State. 
0005. This Summary is provided to introduce a selection 
of concepts in a simplified form that are further described 
below in the Detailed Description. This Summary is not 
intended to identify key features or essential features of the 

May 5, 2016 

claimed subject matter, nor is it intended to be used to limit 
the scope of the claimed subject matter. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0006. The foregoing Summary, as well as the following 
Detailed Description, is better understood when read in con 
junction with the appended drawings. In order to illustrate the 
present disclosure, various aspects of the disclosure are 
shown. However, the disclosure is not limited to the specific 
aspects discussed. The following figures are included: 
0007 FIG. 1 is a diagram to illustrate an aspect of a system 
efficiently updating data. 
0008 FIG. 2 is a diagram to illustrate an aspect of a 
memory that contains instructions to cause the system to 
perform efficient updates. 
0009 FIG. 3A is a diagram to illustrate an aspect of the 
system storing an additional record. 
0010 FIG. 3B is a diagram to illustrate an aspect of the 
system performing a scan of the data. 
0011 FIG. 4 is a diagram to illustrate an aspect of an 
electronic database system prior to an update operation. 
0012 FIG. 5 is a diagram to illustrate an aspect of an 
electronic database system after an update operation. 
0013 FIG. 6 is a flowchart depicting a filtering technique 
which may be employed to reduce processing costs associ 
ated with movement of data to a column store. 
0014 FIG. 7 is a block diagram of a computing environ 
ment including a computing device operable to Support 
aspects of computer-implemented methods, computer pro 
gram products, and system components as illustrated in 
FIGS 1-6. 

DETAILED DESCRIPTION OF ILLUSTRATIVE 
ASPECTS 

00.15 Various aspects of the present disclosure, such as 
various systems, methods, and computer program products 
related to electronic database systems, may be employed to 
improve update efficiency in electronic database systems, 
including those that maintaintables as a plurality of structures 
including a row-oriented data store and a column-oriented 
data store. Examples include operational data warehouse 
(“ODW) systems, which may process both transaction-ori 
ented data and analytically-oriented queries. Transaction-ori 
ented data processing may tend to be row-oriented, while 
analytically-oriented queries may tend to be row-oriented. 
0016 A system incorporating both row-oriented and col 
umn-oriented representations may, as described herein, 
incorporate additional mechanisms for processing of changes 
to a table. Similar mechanisms may be employed in conjunc 
tion with computer-implemented methods and computer pro 
gram products, such as computer-readable storage mediums 
bearing instructions for configuring one or more computing 
devices as a database management system incorporating the 
mechanisms. 
0017. In an aspect of the present disclosure, a table may be 
maintained as a plurality of structures, including a first, sec 
ond, and third plurality of records. The first plurality of 
records may represent a column store that corresponds to at 
least a Subset of a column of the table. A table may contain, in 
Some cases, a large number of rows. A column store may, for 
various reasons, comprise segments of data for a particular 
column. Various mechanisms may be employed to determine 
how data for a column is to be segmented. 



US 2016/O125021 A1 

0018. The second plurality of records may represent a 
delete bitmap. Entries in a delete bitmap may be indicative of 
rows that have been deleted, and therefore also indicative of 
entries in a column store that correspond to deleted rows. The 
entries may be accessible based at least in part on a position of 
a corresponding entry in the column store. 
0019. The third plurality of records may represent a delta 
store, which may contain information indicative of propaga 
tion states of a subset of rows of the table. Information in the 
delta store may be accessible based on a key value associated 
with a row. As used herein, a propagation state may refer to 
rows, columns, or values corresponding to the same, that have 
not yet been moved to the column store. This may, for 
example, occur when a row has been modified, for example, 
by insertion of a new row or modification of an existing value. 
An entry may be placed in the delta store to indicate that 
corresponding entries in the column store should be updated 
to reflect the changes. Entries may, however, be placed in the 
column store for other reasons. In general, a delta Store may 
be described as containing data that is virtually associated 
with a column store, but that has not yet been moved, con 
Verted, copied, or migrated to the column store. These types 
of actions may be referred to as propagating values from a 
delta store to a column store. Note that in Some cases, only a 
Subset of columns of a row may be propagated. The propa 
gation may be considered complete if all of the columns that 
are intended to be propagated to a column store have been 
propagated. Columns may be excluded from propagation. 
However, once all of the intended rows have been propagated, 
the propagation of that row may be considered complete. 
0020. The system may receive a request to delete the row 
from the table. In response to receiving the request, the sys 
tem may use a key value corresponding to the row to deter 
mine that the row is not represented in the delta store. If not 
present in the delta store, the row may be located in the 
column store. In response, the instructions may cause the 
system to store an additional record in a delete buffer. The 
additional record may be indicative of the row being in the 
logically deleted state. The instructions may further cause the 
system to identify the position of the first record in the column 
store, and to update the second plurality of records, based on 
the position, to indicate that the row is in the logically deleted 
state. Note that, depending upon context, the term “row' has 
used herein may refer to column store entries, and not neces 
sarily to a row of a table in its entirety. For example, only a 
Subset of columns of a table may be stored in column stores. 
In addition, a row of a column store may be considered 
logically deleted, in some cases, even when the correspond 
ing row in a table has not been deleted. This may occur, for 
example, when it is determined that a particular column is to 
no longer be maintained in a column store. 
0021. Further aspects of the present disclosure may com 
prise deleting the additional record from the delete buffer in 
response to updating the delete bitmap. This may be per 
formed on an atomic basis, so that a record is not deleted from 
the delete buffer unless it is also added, as part of an atomic 
transaction, to the delete bitmap. Entries in the delete map 
may further, in some aspects, correspond only to committed 
entries in a column store. 
0022. Further aspects of the present disclosure may com 
prise determining that the row has been deleted by consulting 
at least one of the delete buffer or the delete bitmap. An 
indication in either structure may indicate that a row is in a 
logically deleted State. 

May 5, 2016 

0023. In some cases, the delete bitmap may comprise a set 
representation, wherein a member of the set representation is 
accessible based at least in part on the position of the first 
record in the plurality of records. A delete bitmap might also 
comprise a set representation. 
0024. A further aspect of the present disclosure may com 
prise determining to exclude one or more rows of the table 
from a column store based at least in part on a filter criterion. 
The filter criterion may be selected based at least in part on a 
frequency of changes to the Subset of rows. In other words, the 
criteria may be selected based on the data potentially being 
subject to a created predicate as set forth by a user or the 
system itself. 
0025. A further aspect of the present disclosure may com 
prise storing a sequence number with the additional record; 
and determining that the row is in the logically deleted State 
based at least in part on the sequence number. 
0026. As used herein, the term “table' may refer to various 
organizational structures maintained on a volatile or non 
Volatile memory device and used in conjunction with the 
storage and retrieval of data. A table may refer to a collection 
of data, including primary and secondary indexes. A primary 
index may include all of the rows and columns of a table. A 
secondary index may refer to a Subset of the rows and col 
umns of a table. As used herein, however, the term “table' 
may be used to refer to any of these structures. 
0027 Database systems have traditionally stored data 
row-wise, meaning that the values for all columns of a row are 
stored together in a record. A data store storing data in a 
row-wise manner may be referred to as a row store. Data may 
also be stored column-wise, meaning that values from the 
same column of a row may be stored in a columnar array or a 
collection of columnar array segments. A data store storing 
data in a column-wise manner may be referred to as a column 
StOre. 

0028. An index stores data from one or more columns of a 
set of rows in a database table. An index can be organized as 
row store, typically implemented as a B-tree or other mecha 
nism in which data may be accessed by as a key value. An 
index may also be organized as a column store. 
0029 Column store indexes may be optimized for scans. A 
scan of a column store may be more efficient than a scan of a 
row store for various reasons, such as not having to fetch data 
for columns that are not used in the execution of the current 
query. Column stores may, in some cases, be compressed 
more efficiently than row stores due to homogeneity of data 
values in the same column. Column stores may also achieve 
better compression because the unit of compression in col 
umn stores is typically larger than what may be used in row 
StOreS. 

0030. However, column store delete and update perfor 
mance may be inefficient. First, data from the same row may 
be spread over multiple column arrays, which may, in some 
cases, make it impractical to update data in place. Second, 
column store indexes do not typically organize rows in a 
manner that Supports efficient retrieval based on key value, 
and various update or delete operations may utilize retrieval 
based on key value. Accordingly, locating an individual row 
in a column store index based on its key value may be expen 
sive. Third, data in a column store or column store segment 
may be compressed, and may typically be uncompressed in 
order to enable a seek operation. 
0031. Accordingly, finding a single row in a column store, 
either as part of a selective query or as part of deleting or 



US 2016/O125021 A1 

updating that row, can in Some cases be inefficient. The inef 
ficiency may come from the requirement of the system to do 
a full scan of the column store. A system may improve scan 
efficiency by segmentation of a column store and mainte 
nance of range information pertaining to each segment. How 
ever, a scan of a single column store may nevertheless be less 
efficient than, for example, a seek operation. 
0032. Further, column store indexes can be used effec 
tively for simultaneous usage of online transaction processing 
(“OLTP) and data warehousing despite their lack of support 
for efficient deletes and updates. Simultaneous usage of 
OLTP and data warehousing may cause data to have varying 
“temperatures.” Some rows may be “hot” meaning there is a 
high probability that they will soon be modified by the system 
workload. Other rows may be “cold,” meaning that they are 
less likely to be modified again. Cold data may be historical 
data kept for purposes Such as analysis and reporting. Aspects 
of the present disclosure may be employed to segregating data 
by temperature, such that the column store may contain 
mostly cold data. 
0033. In the following description, operational terms such 
as “update.” “delete.” “insert.” “scan.” and “seek” are used in 
the following description for the purpose of providing relative 
reference only, and are not intended to suggest any limita 
tions. Thus, these descriptions are merely general database 
operational processing terms and it is well known that other 
terms may also be used to depict similar operational meaning 
in a database system. 
0034) Referring now to FIG. 1, FIG. 1 depicts an aspect of 
a data warehouse system 100 with improved update efficiency 
and one or more memories 110 with computer-readable 
instructions stored thereon that may execute on the system 
100. The system 100 may comprise of one or more computing 
devices (not pictured). The one or more computing devices 
may be activated and may maintain at least one table 120. The 
table 120 may be stored in memories 110, which may include 
both Volatile and non-volatile memories, in various combina 
tions. Column stores 130, for example, may be maintained in 
a non-volatile memory 130 while delta store 150 may be 
maintained in Volatile memory. 
0035. The table 120 may be structured as a plurality of 
records (130, 140,150, and 160). The first plurality of records 
130 may correspond to a column of the table 120 and may 
comprise of a first record indicative of a value of the column 
for a row of the table 120. The column store 130 may store 
data in a column-wise fashion. In some instances, the column 
store 130 may be compressed. 
0036. The system may maintain the second plurality of 
records as a delete bitmap 140, which may be indicative of 
logically deleted states for some subset of rows of the table 
120, or of logically deleted states for some subset of column 
store entries. Entries in the second plurality of records may be 
accessible based at least in part on a position of the first record 
in the column store 130. A record in the delete bitmap 140 
indicates the position of a row that in the column store 130 is 
in the logically deleted state. 
0037. The system may comprise a delta store 150 that 
comprises information indicative of a propagation state of 
some subset of rows of the table 120. A propagation state may 
refer to the status of the row regarding its propagation to the 
delta store. An entry in delta store 150 may indicate that a row 
has been changed recently, e.g. by being inserted, updated, or 
deleted. The entry may further indicate that the change to the 
row is not yet reflected in column stores 130. 

May 5, 2016 

0038. The information in delta store 150 may be acces 
sible by key value 170. For a given row, this may be the same 
key value 170 used to access a corresponding entry in delete 
buffer 160. A delta store 150 may store the data in a row-wise 
fashion, and may be referred to as a row store. A delta store 
150 may comprise various structures, such as B-trees, hash 
tables, heaps, and so on. Various mechanisms for accessing 
records based on a key value may be included in delta store 
150. 

0039. Furthermore, the contents of the delta store 150 may 
be converted and stored in a column-wise fashion through in 
the column store 130. The conversion may be performed in a 
background thread. In the background thread, a tuple mover 
(not pictured) may be used to periodically perform the con 
version of data. For example, rows stored in the delta store 
150 may be converted into additional column arrays seg 
ments, the additional column array segment may be stored in 
the column store 130, and the converted rows may be 
removed from the delta store 150, thereby “emptying the 
delta store 150. The conversion of rows from row-based stor 
age at the delta store 150 to column-based storage at the 
column store 130 may be triggered by several events. For 
example, the conversion may be triggered in response to 
determining that a number of rows in the delta store 150 is 
greater than a threshold (e.g., one million rows), determining 
that a time period has elapsed, or receiving a user command 
(e.g., a database administrator command) to perform the con 
version or compression. Thus, the delta store 150 may be 
either in a compressed form or not in a compressed form. 
0040. A delete buffer 160 may comprise a repository for 
rows that have been deleted but whose deletion state has not 
been applied to either of delete bitmap 140 or column stores 
130. Like delta store 150, delete buffer 160 may be accessible 
by key value, and may comprise a tree structure, hash table, 
heap, and so on. As depicted in FIG. 1, a row in delete buffer 
160 may be accessed by the same key value 170 usable to 
access a row in delta store 150. 
0041. The system depicted by FIG.1 may receive a request 
to delete a row from table 120. If the row has been recently 
updated, and any corresponding changes not yet migrated to 
column stores 130, and entry may be present in delta store 
150. In some cases, the row might not have been recently 
modified, in which case an entry corresponding to the row 
may not be present in delta store 150. When an entry corre 
sponding to a row is not present in delta store 150, it may be 
an indication that columns for the row are present in column 
stores 130. Whether present in the delta store or not, the delete 
buffer 160 may have stored within it an additional record 
indicating that the row has been deleted. Subsequently, a 
background thread or other process may identify a position in 
delete bitmap 140 corresponding to the row, update delete 
bitmap 140 to indicate that the row has been deleted, based on 
the position in delete bitmap 140, and remove the additional 
record from delete buffer 160. 

0042. Further depicted in FIG. 1 and now referring to FIG. 
2, the one or more memories 110 may contain computer 
executable instructions stored thereon. Through the execu 
tion by the one or more computing devices, block 201 
describes that the system 100 may be directed by the instruc 
tions to receive a request to delete the row from the table 120. 
The request may also be an indication or determined by the 
user or the system itself. Accordingly, execution of the 
instructions may cause the system 100 to perform a delete 
operation based on the receipt of the request to delete a row 



US 2016/O125021 A1 

from the table 120. An aspect regarding that of the system 100 
processing the request to delete the row from the table 120 
will be further described below. Note that although the blocks 
201-204 are depicted as a sequence, in various aspects the 
operations depicted in blocks 201-204 may be altered, omit 
ted, Supplemented with additional operations, or performed 
in parallel. Accordingly, the depicted order should not be 
construed as limiting the scope of the present disclosure. 
0043 Block 202 describes that the instruction may also 
direct the system 100 to attempt to locate the row in the delta 
store 150 by using the key value 170. The delta store 150 may 
comprise a plurality of records indicative of propagation 
states of rows of the table. In addition, the presence of a record 
in the delta store may be used to avoid an immediate scan of 
the column store while processing the delete. 
0044 Block 203 describes that the instruction may further 
cause the system 100 to store a record in a delete buffer 160 
(as shown in FIG. 1). The additional record may include 
information indicating that the row or column store entry is in 
a logically deleted state. The delete buffer 160 may store the 
data in a row-wise fashion, and may be accessible based on 
key value 170. For example, the delete buffer 160 may be 
implemented in ordered fashion (e.g., as a B-tree) or unor 
dered fashion (e.g., as a heap). Entries in a delete buffer 160 
may be stored with a sequence number. The sequence number 
in the delete buffer 160 may be associated with a sequence 
number in a column store. If a row with a key value “K” and 
a sequence number “S” appears in the delete buffer, then 
every entry in a column store segment that corresponds to the 
row with key “K” and has a sequence number less than or 
equal to “S” may be in a logically deleted state. 
0045 Records maintained in the delete buffer may be ref 
erenced by system 100 in connection with transferring the 
deleted state indicated by the delete buffer 160 to the delete 
bitmap 140. The transfer of the deleted state information may 
be performed periodically. In another instance, the transfer of 
additional records may be performed as set forth by an 
instruction determined by a client of the system or the system 
itself. The instruction to transfer additional records from the 
delete buffer 160 to the delete bitmap 140 will be described in 
more detail below in FIG. 3A. 

0046 Additionally, block 204 describes that the instruc 
tions may cause the system 100 to locate or identify the 
position of the row in the column store 130 and update the 
delete bitmap 140 to indicate that the row or column store 
entry is in the logically deleted state. The update operation of 
the delete bitmap 140 may be based upon the position of the 
first record in the column store 130. The update operation of 
the delete bitmap 140 may also indicate the row of the table 
120 that is in a logically deleted state based on the transferred 
additional record from the delete buffer 160. The deleted state 
information transferred from the delete buffer 160 to the 
delete bitmap 140, provides a further indication that the row 
is in the logically deleted State, in a manner that is determin 
able based on position in the column store 130 rather than 
based on the key used to access records corresponding to the 
row in the delete buffer 160 and delta store 150. Accordingly, 
the transfer of deleted State may comprise a conversion from 
a key-based indication of deleted State to a position-based 
indication. 

0047 Thus, the combination and the utilization of the 
column store 130, the delete bitmap 140, the delta store 150, 
and the delete buffer 160 may provide the system 100 an 
environment for efficiently updating data. 

May 5, 2016 

0048 FIG. 3A depicts a block diagram of state transfer 
between a delete buffer 160 and a delete bitmap 140. As 
noted, a delete buffer 160 may be utilized to avoid scans of a 
column store which might otherwise be performed. 
0049. A delete buffer 160 may comprise a tree structure, 
hash table, heap or other structure. The delete buffer 160 may 
be accessible by a key value 170, and may further be opti 
mized for location or retrieval of records stored within delete 
buffer 160 based on the key value. In various aspects, delete 
buffer 160 may be configured for improved efficiency regard 
ing confirmation of the presence of a record corresponding to 
key value 170. For example, a tree may be constructed based 
on key values as indices, and in an ordered fashion in which 
keys are stored so that key values associated with descendant 
nodes may be inferred from those of their parents—thus 
reducing traversal costs. 
0050 Adelete bitmap 140 may comprise an array or other 
set representation in which members of the set may be 
accessed based on position. The position may correspond to a 
position of a record in a column store. For example, the N" 
record of a column segment might correspond to the N' row 
of a table, and might further correspond to the N'bit position 
in delete bitmap 140. The N' position in delete bitmap 140 
might be referred to, for demonstrative purposes, as delete 
bitmap entry 141. When set, it may indicate that the N" record 
of the column segment corresponds to a deleted row. Note, 
however, that this example is intended to be illustrative of a 
principle of operation of delete bitmap 140, and should not be 
viewed as limiting the scope of the present disclosure. Various 
mechanisms may be employed to provide set representations 
addressable by position, such as sparse matrices, hash tables, 
and so forth. In various aspects, a delete bitmap 140 may be 
maintained in Volatile memory, or in non-volatile memory. 
0051. The row from the table 120 that is in the logically 
deleted state might be directly inserted into delete bitmap 140 
in response to receiving a request to delete a corresponding 
row. However, this approach may involve scans of a column 
store to locate positions of deleted records. In an aspect of the 
present disclosure, a delete buffer record 301 may be added to 
delete buffer 160 in response to receiving a request to delete 
a row. This may occur prior to an update of delete bitmap 
entry 141 in delete bitmap 140. For example, the system 100 
may insert delete buffer record 301 into delete buffer 160. 
0.052 A subsequent process may retrieve delete buffer 
record 301 using a key value 170. Accordingly, the delete 
buffer 160 may then periodically update delete bitmap 140 
based on the contents of delete buffer record 301. The transfer 
of additional records may be performed by a tuple mover 
which may periodically empty delete buffer 160 while logi 
cally inserting deleted row into the delete bitmap 140. The 
tuple mover may also cause rows in delta store 150 to be 
migrated to column stores 130. The delete bitmap 140 would 
then contain only the committed deleted rows from the table 
120 that are in the logically deleted state. A scan of the 
corresponding table, as might be performed during a query, 
might then be performed as described in further detail in FIG. 
3B below. 

0053 Referring now to FIG. 3B, there is depicted a flow 
chart of instructions that may be executed by the one or more 
computing devices to cause the system 100 to perform a scan 
of the table 120. Although elements 360-368 are depicted as 
a sequence, in various aspects the operations depicted in 
blocks 360-368 may be altered, omitted, supplemented with 
additional operations, or performed in parallel. Accordingly, 



US 2016/O125021 A1 

the depicted order should not be construed as limiting the 
Scope of the present disclosure. 
0054 Referring to block 360, instructions for performing 
a scan operation 350 may comprise determining to access a 
row. This may, for example, comprise determining to Scan 
from a previous row to a current row. It might also comprise 
determining that a row comprises values consistent with a 
filtering criteria associated with the query. 
0055 Referring to block 362, instructions for performing 
scan operation 350 may comprise identifying the presence of 
information in a delete buffer that is indicative of a logically 
deleted state for a row. In some cases, the delete buffer may 
comprise information indicating that the row has been 
deleted. In other cases, the delete buffer may comprise infor 
mation indicating that the row has not been deleted. In an 
aspect, a delete buffer may comprise a record corresponding 
to a particular row only when that particular row has been 
deleted. For another, non-deleted row, the absence of the entry 
may comprise information indicative of the row not having 
been deleted. 
0056 Referring to block 364, instructions for performing 
scan operation 350 may comprise identifying the presence of 
information in a delete bitmap that is indicative of a logically 
deleted state for the row. In some cases, the delete bitmap may 
comprise information indicative of the logically deleted State 
for a row, while in other cases the delete bitmap may comprise 
information indicating that the row is not in a logically 
deleted state. For example, a bit might be set to “1” in the 
delete bitmap to indicate that the row has been deleted, or set 
to “0” to indicate that the row has not been deleted. In some 
aspects of the present disclosure, Some other set representa 
tion may be used. It may be the case that the presence or 
absence of a record in the delete bitmap may indicate that the 
row is or is not in a logically deleted State. 
0057 Referring to block 366, instructions for performing 
scan operation 350 may comprise excluding the row from the 
results of a scan when either the delete buffer or the delete 
bitmap contain information that is indicative of the row being 
in a logically deleted State. 
0058 FIGS. 4 and 5 depict the preferred aspect in further 
detail of a system 100 with instructions stored on the one or 
more memories 110 that, when executed, provide for effi 
ciently updating a table 120. FIG. 4 shows an illustration of 
two compressed row groups 401 and 402, respectively. Row 
group 401 may have sequence number “0”, indicating that it 
was constructed during index build. Row group 402’s 
sequence number may be “100', indicating that the tuple 
mover (not pictured) may have created it at Some later time. 
There are also two delta store row groups, 403 and 404, with 
null sequence numbers indicating that they may be mutable. 
Since there may be one or more delta stores, row group 404 
may grow to contain enough rows to fill two compressed row 
groups. There may be at least one entry in the delete bitmap 
140, indicating that the first row in row group 401, (A, 1), has 
been deleted. There may be at least one (key, sequence num 
ber) pair in the delete buffer 160, indicating that all rows with 
key 'D' in immutable row groups whose sequence number is 
“103 or less have been deleted. 
0059 Now further looking to FIG. 5, the tuple mover (not 
pictured) may begin to compress delta store 404. It may 
increment the highest assigned sequence number to "104. 
and assign it to the delta store 404, thus marking it as immu 
table. While the delta store 404 is being compressed, row (D. 
8) gets updated to (D, 11). The update may split into a delete 

May 5, 2016 

followed by an insert. As described above, the aspect of a 
process to perform a delete operation may consist of a seek, 
and the seek may be processed through delta stores seeking 
for the key “D.” If key “D” is not found in delta store 403 and 
delta store 404 may be immutable then the highest assigned 
sequence number, "104.” may insert “D: 104 in the delete 
buffer 160. The insert, (D, 11), may be placed in delta store 
403. Finally, the tuple mover may finish compressing delta 
store 404, and replace it with compressed row groups 504 and 
505, both with sequence number “104.” 
0060. In various aspects, sequence numbers may be asso 
ciated with entries in a delete buffer. If a row with a key “K” 
and sequence number “S” is represented in the delete buffer, 
then every row with key “K” in a column store segment with 
a sequence number less than or equal to “S” may be deter 
mined to be in a logically deleted State. 
0061 Referring now to FIG. 6, FIG. 6 is a flowchart 
depicting a filtering technique which may be employed to 
reduce processing costs associated with movement of data to 
a column store. Although as a sequence of blocks, in various 
aspects the depicted elements may be altered, omitted, 
Supplemented with additional operations, or performed in 
parallel. Accordingly, the depicted order should not be con 
Strued as limiting the scope of the present disclosure. 
0062 Block 600 depicts the provision of information that 

is indicative of access patterns for data in a table. This opera 
tion may be performed in various aspects of the present dis 
closure, or may be omitted. If included in an aspect, the 
information may be indicative of hot or cold areas of data 
access. For example, certain rows may be accessed with a 
higher frequency, while others may be accessed with a lower 
frequency. 
0063 Block 602 depicts receiving information indicative 
of a filter criterion. The filter criterion may be based on the 
access patterns, and may for example specify a criterion for 
including or excluding hot or cold areas. For example, a filter 
criterion might exclude older rows which may be less likely to 
be updated, and include newer rows which may be more 
likely to be updated. 
0064. Block 604 depicts excluding rows from a column 
store based at least in part on the filter criterion. The filtering 
criterion may be used to filter out rows based on a created 
predicate set by a user or the system itself as described in 
block 602. Further, the filter criterion may be applied to rows 
migrating or copying overto a column store. For example, the 
user may set criteria that excludes, from the column store, 
newer data that may be more likely to be updated. Again, the 
predicate or instruction may be set by the user or the system 
itself to filter out some subset of rows from the column store. 
0065 Block 606 depicts maintaining rows excluded from 
the column store in an alternative structure. Typically, this 
may be a row-oriented Store. In various aspects, rows 
excluded from the column store may be maintained in a base 
table. 
0066. In some aspects, the filtering technique should 
exclude from the column store rows that are likely to be 
modified within a shortened timeframe. In one aspect, the 
temperature of a row can be tracked and compression and/or 
movement of rows that have recently changed can be post 
poned. This technique may be used in particular for scenarios 
where the past transactions are usable for predicting the like 
lihood of future transactions occurring. In another aspect, the 
user or application can provide a predicate that determines in 
advance whether a row is cold based on its contents. For 



US 2016/O125021 A1 

example, the user or application can indicate that any order 
row where “shipped=1' is to be treated as cold. This may 
allow the query processor to avoid scanning the column store 
for rows that cannot satisfy the predicate (for example, on 
behalf of a query that limits itself to orders which have not 
been shipped). In some aspects, this technique may be used in 
combination with postponement of compression and/or 
movement of rows that have recently changed. 
0067 FIG.7 depicts a block diagram of a computing envi 
ronment 700 including a computing device 710 operable to 
Support aspects of computer-implemented methods, com 
puter program products, and system components according to 
the present disclosure. In an illustrative aspect, the computing 
device 710 may include one or more of the tables 120 of FIG. 
1, the delta stores 150 of FIG.1, the column store 130 of FIG. 
1, the delete buffer 160 of FIG. 1, and the delete bitmap 140 
of FIG. 1. Each of the tables 120 of FIG. 1, the one or more 
delta stores 150 of FIG.1, the column store 130 of FIG.1, the 
delete buffer 160 of FIG. 1, and the delete bitmap 140 of FIG. 
1 may include or be implemented using the computing device 
710 or a portion thereof. 
0068. The computing device 710 includes at least one 
processor 720 and a system memory 730. Depending on the 
configuration and type of computing device, the system 
memory 730 may be volatile (such as random access memory 
or “RAM), non-volatile (such as read-only memory or 
“ROM flash memory, and similar memory devices that 
maintain stored data even when power is not provided), or 
some combination of the two. The system memory 730 typi 
cally includes an operating system 732, one or more applica 
tion platforms 734, one or more applications, and program 
data. For example, the system memory 730 may include a 
database application 736 and database indices 738 (e.g., 
columnar indices and row-wise indices). 
0069. In an illustrative aspect, the database application 
736 may include a data transfer component that is configured 
to move rows from a delta store to a column store. In another 
illustrative aspect, the processor 720 may be configured to 
execute a query processing engine to execute database que 
ries of the database application 736 that reference both 
columnar database indices and row-wise database indices. 

0070 The computing device 710 may also have additional 
features or functionality. For example, the computing device 
710 may also include removable and/or non-removable addi 
tional data storage devices such as magnetic disks, optical 
disks, tape, and standard-sized or flash memory cards. Such 
additional storage is illustrated in FIG. 7 by removable stor 
age 740 and non-removable storage 750. Computer storage 
media may include Volatile and/or non-volatile storage and 
removable and/or non-removable media implemented in any 
technology for storage of information Such as computer-read 
able instructions, data structures, program components or 
other data. The system memory 730, the removable storage 
740 and the non-removable storage 750 are all examples of 
computer storage media. The computer storage media 
includes, but is not limited to, RAM, ROM, electrically eras 
able programmable read-only memory (“EEPROM), flash 
memory or other memory technology, compact disks (“CD), 
digital versatile disks (“DVD) or other optical storage, mag 
netic cassettes, magnetic tape, magnetic disk storage or other 
magnetic storage devices, or any other medium that can be 
used to store information and that can be accessed by the 
computing device 710. Any such computer storage media 
may be part of the computing device 710. 

May 5, 2016 

0071. The computing device 710 may also have input 
device(s) 760. Such as a keyboard, mouse, pen, Voice input 
device, touch input device, etc. Output device(s) 770, such as 
a display, speakers, printer, etc., may also be included. The 
computing device 710 also contains one or more communi 
cation connections 780 that allow the computing device 710 
to communicate with other computing devices 790 over a 
wired or a wireless network. 

0072. It will be appreciated that not all of the components 
or devices illustrated in FIG. 7 or otherwise described in the 
previous paragraphs are necessary to Support aspects as 
herein described. For example, the removable storage 740 
may be optional. 
0073. The illustrations of the aspects described herein are 
intended to provide a general understanding of the structure 
of the various aspects. The illustrations are not intended to 
serve as a complete description of all of the elements and 
features of apparatus and systems that utilize the structures or 
methods described herein. Many other aspects may be appar 
ent to those of skill in the art upon reviewing the disclosure. 
Other aspects may be utilized and derived from the disclo 
Sure, Such that structural and logical Substitutions and 
changes may be made without departing from the scope of the 
disclosure. Accordingly, the disclosure and the figures are to 
be regarded as illustrative rather than restrictive. 
0074. It should be understood that the various techniques 
described herein may be implemented in connection with 
hardware or software or, where appropriate, with a combina 
tion of both. The subject matter presented herein may be 
implemented as a computer process, a computer-controlled 
apparatus or a computing system oran article of manufacture, 
Such as a computer-readable storage medium. 
0075. The techniques, or certain aspects or portions 
thereof, may, for example, take the form of program code 
(i.e., instructions) embodied in tangible storage media or 
memory media implemented as storage devices, such as mag 
netic or optical media, Volatile or non-volatile media, Such as 
RAM (e.g., SDRAM, DDR SDRAM, RDRAM, SRAM, 
etc.), ROM, etc., that may be included in computing devices 
or accessible by computing devices. When the program code 
is loaded into and executed by a machine. Such as a computer, 
the machine becomes an apparatus for practicing the disclo 
Sure. In the case of program code execution on programmable 
computers, the computing device generally includes a pro 
cessor, a storage medium readable by the processor (includ 
ing Volatile and non-volatile memory and/or storage ele 
ments), at least one input device, and at least one output 
device. One or more programs that may implement or utilize 
the processes described in connection with the disclosure, 
e.g., through the use of an application programming interface 
(API), reusable controls, or the like. Such programs are 
preferably implemented in a high level procedural or object 
oriented programming language to communicate with a com 
puter system. However, the program(s) can be implemented 
in assembly or machine language, if desired. In any case, the 
language may be a compiled or interpreted language, and 
combined with hardware implementations. 
0076 Although the subject matter has been described in 
language specific to structural features and/or acts, it is to be 
understood that the subject matter defined in the appended 
claims is not necessarily limited to the specific features or acts 
described above. Rather, the specific features and acts 
described above are disclosed as examples of implementing 



US 2016/O125021 A1 

the claims and other equivalent features and acts are intended 
to be within the scope of the claims. 
0077. The previous description of the aspects is provided 
to enable a person skilled in the art to make or use the aspects. 
Various modifications to these aspects will be readily appar 
ent to those skilled in the art, and the generic principles 
defined herein may be applied to other aspects without 
departing from the scope of the disclosure. Thus, the present 
disclosure is not intended to be limited to the aspects shown 
herein but is to be accorded the widest scope possible consis 
tent with the principles and novel features as defined by the 
following claims. 
What is claimed: 
1. A database system with improved update efficiency, the 

system comprising: 
one or more computing devices that, when activated, store 

and retrieve data in a table maintained in structures com 
prising a first, second, and third plurality of records, the 
first plurality of records corresponding to at least a Sub 
set of a column of the table and comprising a first record 
indicative of a value of the column for a row of the table, 
the second plurality of records indicative of logically 
deleted states for one or more of the first plurality of 
records, the third plurality of records comprising infor 
mation indicative of propagation states of one or more 
rows of the table; and 

one or more memories having stored thereon computer 
readable instructions that, upon execution by the one or 
more computing devices, cause the system at least to: 
receive a request to delete the row from the table: 
determine, based at least in part on a key value, that the 

third plurality of records indicates that the value of the 
column has been propagated to the first plurality of 
records; 

store an additional record in a buffer, the additional 
record indicative of the row being in a logically 
deleted state, the additional record accessible in the 
buffer by the key value; and 

identify a position of the of the first record in the first 
plurality of records and, based on the position, update 
the second plurality of records to indicate that the row 
is in the logically deleted State. 

2. The database system of claim 1, further having stored 
thereon computer-readable instructions that, upon execution 
by the one or more computing devices, cause the system at 
least to: 

delete the additional record from the buffer in response to 
updating the second plurality of records. 

3. The database system of claim 1, further having stored 
thereon computer-readable instructions that, upon execution 
by the one or more computing devices, cause the system at 
least to: 

determine that the first record has been deleted by perform 
ing at least one of using the key value to locate the 
additional record in the buffer or using the position of the 
first record in the plurality of records to access a second 
record in the second plurality of records. 

4. The database system of claim 1, wherein the second 
plurality of records comprises a set representation, wherein a 
member of the set representation is accessible based at least in 
part on the position of the first record in the plurality of 
records. 

May 5, 2016 

5. The database system of claim 1, further having stored 
thereon computer-readable instructions that, upon execution 
by the one or more computing devices, cause the system at 
least to: 

determine to exclude one or more rows of the table from the 
first plurality of records based at least in part on a filter 
criteria selected based at least in part on a frequency of 
changes to the Subset of rows. 

6. The database system of claim 1, further having stored 
thereon computer-readable instructions that, upon execution 
by the one or more computing devices, cause the system at 
least to: 

store a sequence number with the additional record; and 
determine that the row is in the logically deleted state based 

at least in part on the sequence number. 
7. The database system of claim 1, wherein the buffer 

comprises at least one of a tree structure or a hash table. 
8. The database system of claim 1, wherein the first plural 

ity of records is compressed. 
9. A computer-readable storage medium having stored 

thereon instructions that, upon execution by one or more 
computing devices, cause the one or more computing devices 
at least to: 

maintain a first plurality of records corresponding to at 
least a Subset of a column of a table and comprising a 
first record indicative of a value of the column for a row 
of the table: 

maintain a second plurality of records indicative of logi 
cally deleted states for one or more of the first plurality 
of records: 

maintain a third plurality of records comprising informa 
tion indicative of propagation states of one or more rows 
of the table: 

receive a request to delete the row from the table; 
determine, based at least in part on a key value associated 

with the row, that the third plurality of records indicates 
that the value of the column has been propagated to the 
first plurality of records; 

store an additional record in a buffer, the additional record 
indicative of the row being in the logically deleted state, 
the additional record accessible in the buffer by the key 
value; and 

identify a position of the of the first record in the first 
plurality of records and, based on the position, update 
the second plurality of records to indicate that the row is 
in the logically deleted state. 

10. The computer-readable storage medium of claim 9. 
comprising further instructions that, upon execution by the 
one or more computing devices, cause the one or more com 
puting devices to at least: 

delete the additional record from the buffer in response to 
updating the second plurality of records. 

11. The computer-readable storage medium of claim 9. 
comprising further instructions that, upon execution by the 
one or more computing devices, cause the one or more com 
puting devices to at least: 

determine that the first record has been deleted by perform 
ing at least one of using the key value to locate the 
additional record in the buffer or using the position of the 
first record in the plurality of records to access a second 
record in the second plurality of records. 



US 2016/O125021 A1 

12. The computer-readable storage medium of claim 9. 
comprising further instructions that, upon execution by the 
one or more computing devices, cause the one or more com 
puting devices to at least: 

determine to exclude one or more rows of the table from the 
first plurality of records based at least in part on a filter 
criteria. 

13. The computer-readable storage medium of claim 9. 
wherein the second plurality of records comprises a set rep 
resentation, wherein a member of the set representation is 
accessible based at least in part on the position of the first 
record in the plurality of records. 

14. The computer-readable storage medium of claim 9. 
wherein the buffer comprises at least one of a tree structure or 
a hash table. 

15. The computer-readable storage medium of claim 9. 
comprising further instructions that, upon execution by the 
one or more computing devices, cause the one or more com 
puting devices to at least: 

store a sequence number with the additional record; and 
determine that the row is in the logically deleted state based 

at least in part on the sequence number. 
16. A computer-implemented method of improving effi 

ciency in a database management system that maintains a 
subset of data for a table in a first plurality of records struc 
tured for column-oriented retrieval, the method comprising: 

maintain a first record in the first plurality of records, the 
first recording comprising a value for a column of a row 
of the table, the row associated with a key value; 

maintaining a second plurality of records indicative of 
logically deleted states for one or more of the first plu 
rality of records: 

maintaining a third plurality of records comprising infor 
mation indicative of propagation states of one or more 
rows of the table; 

May 5, 2016 

determining, based at least in part on the key value, that the 
third plurality of records indicates that the row has been 
propagated: 

storing an additional record in a buffer, the additional 
record indicative of the row being in the logically deleted 
state, the additional record accessible in the buffer by the 
key value; and 

identifying a position of the of the first record in the first 
plurality of records and, based on the position, update 
the second plurality of records to indicate that the row is 
in the logically deleted state. 

17. The computer-implemented method of claim 16, fur 
ther comprising: 

deleting the additional record from the buffer in response to 
updating the second plurality of records. 

18. The computer-implemented method of claim 16, fur 
ther comprising: 

determining that the first record has been deleted by per 
forming at least one of using the key value to locate the 
additional record in the buffer or using the position of the 
first record in the plurality of records to access a second 
record in the second plurality of records. 

19. The computer-implemented method of claim 16, fur 
ther comprising: 

determining to exclude one or more rows of the table from 
the first plurality of records based at least in part on a 
filter criteria. 

20. The computer-implemented method of claim 16, 
wherein the second plurality of records comprises a set rep 
resentation, wherein a member of the set representation is 
accessible based at least in part on the position of the first 
record in the plurality of records. 

k k k k k 


