
[19] Patents Registry
The Hong Kong Special Administrative Region
香港特別行政區
專利註冊處

[11] 1246425 B
EP 3259686 B1

[12] STANDARD PATENT (R) SPECIFICATION
轉錄標準專利說明書

[21] Application no. 申請編號

18105675.1

[22] Date of filing 提交日期

02.05.2018

[51] Int. Cl.

G06F 16/2452 (2019.01)

[54] QUERYING A DATA SOURCE ON A NETWORK

查詢網絡上的數據源

[30] Priority 優先權

18.02.2015 US 62/117,588

26.06.2015 US 14/752,094

[43] Date of publication of application 申請發表日期

07.09.2018

[45] Date of publication of grant of patent 批予專利的發表日期

15.05.2020

[86] International application no. 國際申請編號

PCT/US2016/018028

[87] International publication no. and date 國際申請發表編號及

日期

WO2016/133880 25.08.2016

EP Application no. & date 歐洲專利申請編號及日期

EP 16708842.6 16.02.2016

EP Publication no. & date 歐洲專利申請發表編號及日期

EP 3259686 27.12.2017

Date of grant in designated patent office 指定專利當局批予專利日

期

24.07.2019

[73] Proprietor 專利所有人

AB Initio Technology LLC

201 Spring Street

Lexington, Massachusetts 02421

UNITED STATES OF AMERICA

[72] Inventor 發明人

SCHECHTER, Ian

ALLIN, Glenn John

[74] Agent and / or address for service 代理人及/或送達地址

CLT PATENT & TRADEMARK (H.K.) LIMITED

Unit 09, 34/F., Office Tower, Convention Plaza

No. 1 Harbour Road, Wanchai

HONG KONG

.

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
3

25
9

68
6

B
1

TEPZZ¥ 59686B_T
(11) EP 3 259 686 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
24.07.2019 Bulletin 2019/30

(21) Application number: 16708842.6

(22) Date of filing: 16.02.2016

(51) Int Cl.:
G06F 16/2452 (2019.01)

(86) International application number:
PCT/US2016/018028

(87) International publication number:
WO 2016/133880 (25.08.2016 Gazette 2016/34)

(54) QUERYING A DATA SOURCE ON A NETWORK

ABFRAGEN EINER DATENQUELLE IN EINEM NETZWERK

INTERROGATION D’UNE SOURCE DE DONNÉES SUR UN RÉSEAU

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 18.02.2015 US 201562117588 P
26.06.2015 US 201514752094

(43) Date of publication of application:
27.12.2017 Bulletin 2017/52

(60) Divisional application:
19176570.0

(73) Proprietor: AB Initio Technology LLC
Lexington, Massachusetts 02421 (US)

(72) Inventors:
• SCHECHTER, Ian

Sharon, MA 02067 (US)
• ALLIN, Glenn John

Arlington, MA 02476 (US)

(74) Representative: Lloyd, Patrick Alexander
Desmond
Reddie & Grose LLP
The White Chapel Building
10 Whitechapel High Street
London E1 8QS (GB)

(56) References cited:
US-A1- 2001 011 371 US-A1- 2009 055 370
US-A1- 2013 246 864

EP 3 259 686 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

CLAIM OF PRIORITY

BACKGROUND

[0001] This description relates to querying a data
source on a network, e.g., using SQL or another type of
query language.
[0002] A query to a data source specifies data to be
retrieved from the data source. The query can be provid-
ed to the data source (e.g., a database) and a data
processing system associated with the data source (e.g.,
a database management system) can return the data
specified by the query. Various techniques can be used
to parse the query to identify the data in the data source
specified by the query.
[0003] US 2009/055370 discloses data warehousing
and analytics on a distributed file system. The method
described executes an ANSI/SQL expression belonging
to the SELECT-WHERE-equi-JOIN class on data resid-
ing in a distributed file system.
[0004] US 2001/0011371 is concerned with compila-
tion of embedded language statements in a source code
program. In processing a source program a determina-
tion is made as to whether a program is in a first or a
second language. The statement is lexically scanned and
parsed into a parse tree if in the first language and lexi-
cally scanned if in the second language.

SUMMARY

[0005] The invention is defined by the independent
claims, to which reference should be made.
[0006] Preferably, the portion of the computer program
includes executable instructions that define a manner in
which the resource is accessed, where the executable
instructions operate based on the configuration data pro-
vided to the portion of the computer program.
[0007] In one embodiment, the configuration data is
specified in a catalog that can be updated based on a
change to a data format used by the resource.
[0008] Preferably, the method includes generating pa-
rameter values based on the configuration data; and pro-
viding the parameter values to a portion of the computer
program, the portion being capable of communicating
with the resource; the execution of the computer program
being based on the parameter values.
[0009] In one embodiment, generating parameter val-
ues based on the configuration data includes executing
a parameter generator which generates a parameter file
in a format readable by the portion of the computer pro-
gram, and in which providing the parameter values to the
portion of the computer program includes making the pa-
rameter file available to the portion of the computer pro-
gram.
[0010] Preferably, the SQL query includes a SELECT
statement that includes an argument, where at least a

portion of the argument corresponds to the identifier as-
sociated with the resource.
[0011] Preferably, the computer program includes
components representing operations of the SQL query.
[0012] Preferably, the computer program is a dataflow
graph and the portion of the computer program is a sub-
graph of the dataflow graph.
[0013] Preferably, the resource is accessed using an
application programming interface (API) exposed by the
resource.
[0014] One preferred embodiment includes causing
functions of the API to be executed in response to re-
ceiving the SQL query, the functions of the API being
executable at the resource, and the instructions trans-
mitted to the resource causing the functions of the API
to be executed.
[0015] One embodiment of the invention includes for-
matting the data received from the external resource in
the form of a database table.
[0016] Preferably, the resource is not a relational da-
tabase management system.
[0017] Preferably, the instructions are transmitted to a
facility of the resource that does not return results in re-
sponse to a SQL query.
[0018] Preferably, the data received from the resource
in response to the instructions includes data specified by
the SQL query.
[0019] One preferred embodiment includes identifying
records and fields in the data received from the resource
in response to the instructions, the records and fields
identified based on a record format associated with the
resource that is external to the data processing system.
[0020] Embodiments of the invention may provide one
or more of the following advantages. A data processing
system can execute a query that references a resource
external to the data processing system (e.g., one avail-
able on the Internet) and is not a relational database man-
agement system.
[0021] Data distributed across networks (e.g. large
networks such as the Internet) can be efficiently be made
accessible by using database programming languages
(e.g. SQL), even though the data sources in the network
may not be responsive to the database language or may
not be relational databases. This may provide a flexible
search scheme that can be especially adapted to the
particular data sources and can thereby be used in net-
works with data sources that are changing over time. In
turn, this may allow distributed networks to more rapidly
be developed (e.g. by scaling up or down the number of
data sources, or by exchanging or modifying data sourc-
es) while maintaining access to the data stored in the
current data sources of the developed network.
[0022] Other features and advantages of the invention
will become apparent from the following description, and
from the claims.

1 2

EP 3 259 686 B1

3

5

10

15

20

25

30

35

40

45

50

55

DESCRIPTION OF DRAWINGS

[0023]

Figure 1 shows a data processing system that can
process a query.
Figures 2A-2C show elements of the data processing
system.
Figure 3 shows a user interface for executing a que-
ry.
Figure 4A shows a dataflow graph.
Figure 4B shows a subgraph of a dataflow graph.
Figure 4C shows executable code of a component.
Figures 5A-5C show contents of a catalog of external
resources.
Figure 6A-6D are flowcharts for processes associ-
ated with executing a query.

DESCRIPTION

[0024] A data processing system can convert a query
(such as a SQL query) into a computer program such as
a dataflow graph. The computer program includes com-
ponents which, when executed, carry out operations
(e.g., data processing operations) equivalent to opera-
tions specified by the query.
[0025] Figure 1 shows a data processing system 100
that can process a query 102 to generate results 104
specified by the query 102. The results 104 are based
on data 106 received from an external resource 108 ref-
erenced by the original query 102. The data processing
system 100 receives the data 106 in response to instruc-
tions 110 that the data processing system 100 generates
based on the query 102 and sends to the external re-
source 108.
[0026] A query 102 is used to retrieve data specified
by the query. One type of query 102 is a structured query
language (SQL) query. This description will use SQL que-
ries as an example, but the techniques described here
could also be used with other types of queries such as
multidimensional expressions (MDX) queries.
[0027] A SQL query (also referred to as SQL state-
ments) uses commands and syntax defined by the struc-
tured query language (SQL). In general, a query is a
statement that specifies a subset of data in one or more
datasets that are indicated in the query. The specified
subset can be returned by a system that processes the
query to the system that issued the query. The data spec-
ified by the query and returned in response to the query
is generally a portion of the total data stored in the dataset
indicated by the query. An example of a SQL query could
be "SELECT last_name FROM current_customers." This
SQL query includes an operation, SELECT, which in-
structs a system executing the query to retrieve data ac-
cording to the arguments of the SELECT operation. In
the syntax of SQL, the arguments are
"current_customers," which is a set of data such as a
database table, and "last_name," which is a column of

the database table. When a system interprets the query
and executes the operations of the query, the system will
return the data of the last name column (e.g., each portion
of data contained in the last name column) in response
to the query. SQL is described in detail in "SQL Bible,
2nd Edition" by Alex Kriegel and Boris Trukhnov, pub-
lished April 7, 2008, ISBN 978-0470229064.
[0028] A typical example of a resource that returns data
in response to a query is a relational database. A rela-
tional database is a collection of one or more database
tables and a system that manages data processing op-
erations such as interpreting SQL queries, reading data
from the tables, writing data to the tables, and performing
other kinds of data processing functions. A database ta-
ble is a collection of data arranged in a) rows each rep-
resenting a record and b) columns each representing a
category of data stored in the rows. For example, a da-
tabase table called "current customers" may have rows
each representing a current customer of a business and
may have columns representing categories of data such
as name of the customer, address of the customer, last
product purchased by the customer, and so on.
[0029] A relational database table a kind of database
table that stores data in the form of tuples, each of which
is made up of elements of data corresponding to at-
tributes. A tuple can take the form of a row in the relational
database, and an attribute can take the form of a column
in the relational database. Thus, each tuple contains el-
ements of data (sometimes called attribute values) each
corresponding to one of the attributes of the database
table. Further, a grouping of multiple tuples is sometimes
called a relation.
[0030] A relational database management system
(RDBMS) is a system that processes instructions direct-
ed to creating and modifying data stored in the relational
database. An RDBMS includes functionality for interpret-
ing a query and returning data specified by the query.
The combination of interpreting a query and returning
data specified by the query is sometimes referred to as
executing the query. For example, some RDBMS imple-
mentations include an engine which a) parses a SQL
query, b) identifies operations that are defined by the
structured query language, c) identifies arguments of the
commands, and d) carries out (e.g., executes) the oper-
ations according to the arguments.
[0031] As described above, the SQL query "SELECT
last_name FROM current_customers, includes an oper-
ation, SELECT, which instructs an RDBMS to retrieve
data according to the arguments of the SELECT opera-
tion. The arguments are "current_customers," which is a
database table managed by the RDBMS,
and "last_name," which is a column of the database ta-
ble. When the RDBMS interprets the query and executes
the operations of the query, the RDBMS will return the
data of the last name column (e.g., each portion of data
contained in the last name column) in response to the
query. In some implementations of an RDBMS, a module
called a query planner will identify the operations to be

3 4

EP 3 259 686 B1

4

5

10

15

20

25

30

35

40

45

50

55

carried out. In this way, SQL is a query language appli-
cable to a relational database, e.g., applicable to data
maintained by an RDBMS.
[0032] The external resource 108 is external to the data
processing system 100. (Some components of the data
processing system 100 are shown in detail in figures 2A-
2C). For example, the external resource 108 could be a
facility that communicates using a network (e.g., the In-
ternet). The data processing system 100 communicates
with the external resource 108 by sending data to, and
receiving data from, a network. The external resource
108 may include sets of data such as database tables,
data files, or other data structures stored on storage me-
dia, e.g., tangible, non-transitory computer-readable me-
dia.
[0033] The data processing system 100 is capable of
generating results 104 specified by the query 102 even
if the external resource 108 specified by the query 102
does not include an RBDMS. Put another way, the ex-
ternal resource 108 need not be an RDBMS or include
an RDBMS among its components. Some examples of
the external resource 108 will include an RDBMS while
other examples of the external resource 108 will not in-
clude an RDBMS.
[0034] In use, the data processing system 100 gener-
ates a computer program 108 (sometimes referred to as
a data processing program) based on the query 102. For
example, the computer program 108 can be generated
using an engine (e.g., an engine that forms a subsystem
of the data processing system 100) that takes a query
as input and produces a dataflow graph as output. Al-
though a dataflow graph is used as an example here, the
computer program can be any kind of program that in-
cludes program code that can be executed to carry out
instructions represented by the program code.
[0035] In this way, a computer program such as the
computer program 108 shown in figure 1 can, when ex-
ecuted, produce the same output as the execution of the
corresponding query 102, e.g., by a database manage-
ment system such as an RDBMS. Thus, a query 102 can
be written using a query language such as SQL. Howev-
er, the systems, e.g., subsystems of the data processing
system 100, carrying out the corresponding data
processing operations can execute the computer pro-
gram 108 in order to perform operations that are equiv-
alent to operations that would be performed by a system
(e.g., an RDBMS) that executed the query 102. (Gener-
ally, an RDBMS does not have functionality capable of
executing the computer program 108). When we say that
two operations are equivalent, we mean that the two op-
erations produce substantially the same output data
when provided with the same input data. As an example,
two operations may produce exactly the same output da-
ta when provided with the same input data. As an exam-
ple, two operations provided with the same input data
may produce output data that only differs in data format-
ting, e.g., one operation may produce comma-delimited
output data, and an equivalent operation may produce

tab-delimited output data that is otherwise identical to the
comma-delimited output data.
[0036] The data processing system 100 can generate
results 104 specified by a query 102 even if the query
102 includes a reference 112 to a data source other than
an RDBMS. For example, the query 102 may reference
an external resource 108 that is not an RDBMS. Because
the external resource 108 is not an RDBMS, the external
resource 108 is not associated with functionality for in-
terpreting queries, e.g., SQL queries. In some implemen-
tations, the data processing system 100 can apply the
query to data received from the external resource 108 if
the data processing system 100 has access to a record
format of data of the external resource 108. A record
format (sometimes called a schema) is a description of
the organization of a body of data.
[0037] The external resource 108 could be any source
of data that is external to the data processing system
100. By external to the data processing system 100, we
mean that the resource is not one of the components of
the data processing system 100. (Some examples of
components of the data processing system 100 are
shown in detail in figures 2A-2C). For example, the ex-
ternal resource 108 could be a facility that communicates
using a network 114 (e.g., the Internet, represented here
by a "cloud"). The data processing system 100 commu-
nicates with the external resource 108 by sending data
to, and receiving data from, the network 114. In some
examples, the external resource 108 could be a web site
or another facility that communicates using Internet-
based protocols such as TCP/IP or UDP/IP.
[0038] In some implementations, the external resource
108 may include an RDBMS that is not visible to the net-
work 114. By this we mean that the external resource
108 may include a relational database management sys-
tem that stores data of the external resource 108, but the
relational database management system does not ac-
cept queries such as SQL queries that arrive by way of
the network 114 except in limited cases (e.g., in cases
such as by way of a system administrator interface that
allows a system administrator to submit queries). For ex-
ample, if the external resource 108 is a web site available
on the Internet, then the external resource 108 may have
a "back-end" relational database that stores data. In this
example, the relational database does not accept SQL
queries from a web browser interface, a mobile applica-
tion, or other access techniques in use by many or most
users of the external resource 108. Instead, the data of
the external resource 108 is primarily accessed by way
of a technique that does not include a SQL query, such
as a hypertext transfer protocol (HTTP) request, or an
instruction submitted by way of an application program-
ming interface (API, described below), or another tech-
nique.
[0039] Because the external resource 108 does not
interpret the query 102, the data processing system 100
determines instructions 110 to transmit to the external
resource 108 that can be interpreted by the external re-

5 6

EP 3 259 686 B1

5

5

10

15

20

25

30

35

40

45

50

55

source 108. The instructions 110 are in a form other than
in the form of the original query 102. For example, if the
original query 102 is a SQL query, the instructions 110
are not a SQL query (e.g., the instructions 110 do not
contain SQL commands or arguments). The data
processing system 100 can determine what instructions
110 to send to the external resource 108 based on the
query 102 and based on other information describing the
external resource 108. In some implementations, the da-
ta processing system 100 has modules used to interpret
the query 102 and generate results 104 specified by the
query 102. In some implementations, the data processing
system 100 generates a computer program that includes
operations corresponding to operations that perform the
query 102 and, when executed, sends the instructions
110 to the external resource 108.
[0040] Figures 2A-2C show elements of the data
processing system 100 that can be used to execute a
query 102 that references an external resource 108. Re-
ferring to figure 2A, hen the query 102 is received by the
data processing system 100, the query 102 is provided
to a computer program generation engine 120. The com-
puter program generation engine 120 generates a com-
puter program 132 that, when executed, carries out op-
erations corresponding to the query 102. For example,
the query 102 may be a SQL query, e.g., a query that
contains one or more commands defined by the struc-
tured query language and arguments associated with the
operations. In this example, the computer program 132
contains executable functionality that is equivalent to op-
erations that perform the SQL query. When the computer
program 132 is executed (e.g., by an execution engine
140), the computer program 132 executes based on the
same arguments defined in the SQL query.
[0041] The data processing system 100 can carry out
operations that perform the query 102 (a process some-
times referred to as executing the query 102) using tech-
niques that do not rely on functionality of an RDBMS,
e.g., query interpretation functionality of an RDBMS, to
carry out the operations. Instead, the query can be carried
out by executing the computer program 132. Once the
computer program 132 is generated and configured, no
query interpretation functionality of a relational database
is used to generate output based on the query 102. Fur-
ther, the data processing system 100 can execute the
query 102 even if data sources identified in the query 102
are not databases that operate using queries in the form
of the query 102. For example, the external resource 108
may not be configured to accept instructions specified in
the form of SQL. If the query 102 is a SQL query and
references the external resource 108 then the data
processing system 100 can receive the query 102 and
determine what operations should be performed, in re-
sponse, when the computer program 132 is configured
and executed, so that the output of the computer program
132 is equivalent to output of an execution of the query
102.
[0042] In this way, a SQL query can be used to retrieve

data from systems other than relational database sys-
tems. Because SQL is a common language used to spec-
ify queries, many users know how to write SQL queries
and many legacy systems are configured to automatically
generate SQL queries. The techniques described here
allows users and legacy systems to write or generate
SQL queries, and the SQL queries can be carried out to
retrieve data from external resources that do not have
functionality for interpreting SQL queries. Further, data
can be retrieved from an external resource by the data
processing system 100, rather than copying data from
the external resource to a relational database that exe-
cutes SQL queries.
[0043] In some implementations, the computer pro-
gram 132 includes a dataflow graph. A dataflow graph is
a computer program that contains components repre-
senting operations to be performed on input data and
links between the components (sometimes called nodes)
representing flows of data. The operations represented
by the components generate output data based on the
input data by processing the input data. A component
can provide input data to and receive output data from
other components if the component is linked to the other
components, in which each link between two compo-
nents represents a flow of data from one of the compo-
nents to the other component. A subset of components
of a graph (e.g., one or more components of the graph)
is sometimes referred to as a subgraph of the graph.
[0044] When the dataflow graph is executed by a
graph-based processing system, each of the compo-
nents is executed, e.g., a computer program or portion
of a computer program is executed and carries out the
operation represented by the component. During execu-
tion the dataflow graph receives input data which is proc-
essed (e.g., operated on by the operations of the dataflow
graph’s components) to generate output data.
[0045] Some or all of the components of a dataflow
graph are each associated with information for invoking
executable program code to perform the operation asso-
ciated with the component. In some implementations, a
data structure representing the dataflow graph can in-
clude data referencing executable code. The data struc-
ture can be used to instantiate the dataflow graph, by
which we mean the data structure can be used to execute
code that carries out operations associated with the da-
taflow graph. For example, a component may be asso-
ciated with a reference to a computer program stored in
computer-readable storage containing computer-exe-
cutable instructions for carrying out the operation asso-
ciated with the component, e.g., processing and output-
ting data.
[0046] In some examples, some or all components of
a dataflow graph are each associated with information
for making data available to the program code. For ex-
ample, a component may be associated with function
calls that can be invoked to deliver data to the executable
program associated with the component, or the compo-
nent may be associated with network ports that can re-

7 8

EP 3 259 686 B1

6

5

10

15

20

25

30

35

40

45

50

55

ceive data that is delivered to the executable program
associated with the component, or the component may
be associated with another technique for delivering data
to the executable program associated with the compo-
nent. In this way, each component can receive, process,
and output data.
[0047] In some examples, a dataflow graph is param-
eterizable, by which we mean a dataflow graph can be
configured using values of parameters when the dataflow
graph is prepared for execution. An instance of a dataflow
graph that is provided parameter values is sometimes
called a parameterized instance of the dataflow graph.
A parameter is a type of data that can be changed to
change the behavior of the program to which the param-
eter belongs. For example, a value of a parameter can
be provided to the program in order to change the way
the program processes input data to produce output data.
In the case of a dataflow graph, each component of a
dataflow graph may be associated with one or more pa-
rameters. Similarly, one or more of the parameters may
be associated with a single component or with multiple
components.
[0048] One example of a graph-based system is de-
scribed in detail in U.S. Publication No. 2007/0011668,
titled "Managing Parameters for Graph-Based Applica-
tions,". A system for executing graph-based computa-
tions is described in U.S. Patent 5,966,072, titled "Exe-
cuting Computations Expressed as Graphs,". Further,
components of a dataflow graph can be substituted for
operations of a query 102. Techniques in accordance
with this substitution are further described in U.S. Publi-
cation No. 2011/0179014A1, titled "Managing Data Que-
ries," and U.S. Publication No. 2012/0284255A1, also
titled "Managing Data Queries,". In some implementa-
tions, a dataflow graph can be produced from a query
102.
[0049] Referring to figure 2B, n some examples, the
computer program 132 includes a portion 134 that, when
executed, communicates with the external resource 108.
For example, the portion 134 may include executable
functionality (e.g., executable program code) that is con-
figured to transmit data to, and/or receive data from, the
external resource 108. When the 134 is executed (e.g.,
program code of the portion 134 is interpreted and carried
out by an execution engine), the computer program 134
transmits data to and/or receives data from the external
resource 108. In some implementations, the portion 134
(as well as other portions of the computer program 132)
may include program code that was provided to the data
processing system 100 and is retrieved based on the
identity of the external resource 108. For example, an
application developer (not shown) may have written the
program code of the portion 134 to comply with technical
requirements of the external resource. In some imple-
mentations, the technical requirements include an appli-
cation programming interface (API), described below. In
some implementations, the portion 134 is a component
of a dataflow graph, or a subgraph of a dataflow graph.

[0050] In some implementations, the computer pro-
gram generation engine 120 generates the computer pro-
gram 132 by accessing one or more pre-existing portions
of a computer program and assembling the portions to
form the computer program 132. For example, the com-
puter program generation engine 120 may have access
to a component library 126 that stores pre-existing com-
ponents, e.g., pre-existing portions of executable pro-
gram code. For example, a pre-existing component may
be a component suitable for inclusion in a dataflow graph,
or may be another graph (e.g., a subgraph) suitable for
inclusion in a dataflow graph.
[0051] In some implementations, the component li-
brary 126 may include pre-existing components each of
which corresponds to a particular kind of external re-
source 108. For example, the component library 126 may
include a component 124 that corresponds to an external
resource 108 indicated by the reference 112 in the query
102. In some examples, the component 124 may have
been developed by a developer for the purpose of ena-
bling the data processing system 100 to access the ex-
ternal resource 108 corresponding to the reference 112.
A component 124 can be chosen from the component
library 126 based on the identity of the external resource
108.
[0052] When the computer program generation engine
120 receives one or more components 124 (e.g., from
the component library 126), the computer program gen-
eration engine 120 also configures the component 124
or components. In doing so, the computer program gen-
eration engine 120 generates a computer program 132
with configured portions. For example, the configured
computer program 132 includes a configured portion 134
corresponding to the component 124 or components that
include executable functionality for communicating with
the external resource 108.
[0053] In some implementations, the configured por-
tion 134 can be configured based on properties 136 re-
ceived by the computer program generation engine 120.
The properties 136 include data describing characteris-
tics of the external resource 108. The data is used by the
computer program 132 to determine how to send and
receive data from the external resource 108. In some
examples, the external resource 108 may send and re-
ceive data in a particular format. In these examples, the
properties 136 can include a specification of the format
of data to be sent and received from the external resource
108. In some examples, the external resource 108 may
require the use of a credential such as a username and/or
password. In these examples, the properties 136 can in-
clude a specification of the identifier. In some examples,
the external resource 108 may be accessible at a partic-
ular address or other location. For example, the external
resource 108 may be accessible at a particular IP (Inter-
net Protocol) address, or a particular server name, or
another type of address. In these examples, the proper-
ties 136 can include the address information.
[0054] The properties 136 can be received from a

9 10

EP 3 259 686 B1

7

5

10

15

20

25

30

35

40

45

50

55

source that can be updated, e.g., in response to changes
in operation of the external resource 108. For example,
the properties 136 may be stored in a catalog 122 con-
taining data representing properties corresponding to ex-
ternal resources 108 with which the data processing sys-
tem 100 is capable of communicating. The catalog 122
could be a database, a flat file, or any other type of data
storage mechanism. In some implementations, the cat-
alog 122 is can be read from and written to by multiple
entities at the same time. For example, the catalog 122
could be implemented as a database or other data stor-
age technique that has functionality for managing con-
current data read and write operations. One example of
functionality for managing concurrent data read and write
operations is the use of locks or semaphores that indicate
when a portion of data is being written to. One type of
locking functionality that could be used is two-phase lock-
ing, in which one or more locks are acquired, a read or
write operation is carried out, and then the locks are re-
leased. By managing concurrent data read and write op-
erations, a single catalog 122 can be used by many in-
stances of the generation engine 120. Further, a single
catalog 122 can store properties 136 for many types of
external resources 108. The properties 136 associated
with any of the external resources 108 can be updated
at any time, even if the number of external resources 108
supported by the catalog 122 is large enough such that
the properties 136 are frequently accessed (e.g., such
that at least some properties stored in the catalog 136
are read from or written to several times or more every
second).
[0055] In some examples, if the external resource 108
changes in operation, any executable code for commu-
nicating with the external resource 108 (e.g., executable
code that makes up part of an executable component
124) need not be changed; only the properties are up-
dated. For example, the external resource 108 may
change the way in which it provides output data to other
systems. The properties 136 enable the computer pro-
gram generation engine 120 to configure the portion 134
of the configured computer program 132 in a way that
the configured portion 134 will be configured to accept
data in the format that will be received from the external
resource 108. Further, the configured computer program
132 can generate instructions 110 to be sent to the ex-
ternal resource and, when interpreted by the external re-
source 108, will cause the external resource 108 to send
back data 106 responsive to the instructions 110. The
instructions 110 can be formatted by the configured por-
tion 134 based on a format of instructions specified by
the properties 136. In some implementations, the format
of instructions is derived from data stored in the catalog
122.
[0056] In some implementations, the catalog 122 in-
cludes information about record formats of data 106 of
external resources 108 with which the data processing
system 100 is capable of communicating. For example,
the computer program 132 can use a record format 128

stored in the catalog 122 to interpret data 106 received
from a corresponding external resource 108. In some
examples, a record format 128 stored in the catalog 122
specifies a structure of data 106 that is received from the
external resource 108. The record format may specify a
structure of data in which the data is organized into
records, such that each record has multiple fields. The
computer program 132 can use the record format 128 to
identify records and fields in data 106 received from the
external resource 108. In some examples, the computer
program 132 can use the record format 128 to interpret
the data 106, for example, to translate the records and
fields of the data to a different format (e.g., a format to
be used in output of the computer program 132).
[0057] In some implementations, the computer pro-
gram 132 can use the record format 128 of the catalog
122 to output data in a form that corresponds to the form
expected of results of a SQL query. In some examples,
a relational database management system returns data
in the form of records and fields, e.g., in response to a
SQL query. Thus, if the computer program 132 can also
identify records and fields in data 106 from an external
resource 108, the computer program 132 can provide
output in the form of records and fields in response to a
SQL query. This can be performed even if the data 106
received from the external resource 108 does not take
the form of data typically received from a relational da-
tabase, e.g., a database table.
[0058] In some implementations, the computer pro-
gram 132 can be configured with parameters. For exam-
ple, the parameters may be values that can be changed
to change the behavior of the program. As a specific ex-
ample, a parameter may be "filename" and the value of
the parameter could be the location of a file in a file sys-
tem. The value of the parameter can be changed to a
location of a different file to configure the program to ac-
cess the different file. Two instances of the same program
(e.g, instances of the same executable program code)
can be configured with different parameter values, which
will change the behavior of the two instances of the same
program.
[0059] Referring to figure 2C, the computer program
generation engine 120 can use the properties to generate
parameter values 138 which are used to configure the
portion 134 of the configured computer program 132. In
some examples, the computer program 132 may have a
parameter corresponding to each of the properties 136.
For example, the computer program 132 may have a
parameter called "record_format" which is used to deter-
mine what format in which the computer program 132
will receive data 106. The computer program generation
engine 120 can generate a parameter value 138 for the
"record_format" parameter based on the record format
received as part of the properties 136 for the external
resource 108. As another example, the computer pro-
gram 132 may have a parameter called "username"
which is used to supply a username when connecting to
the external resource 108. The computer program gen-

11 12

EP 3 259 686 B1

8

5

10

15

20

25

30

35

40

45

50

55

eration engine 120 can generate a parameter value 138
for the "username" parameter based on username data
received as part of the properties 136 for the external
resource 108.
[0060] In some implementations, the parameter values
138 are provided to the computer program 132 in the
form of a parameter file in a format readable by the com-
puter program 132. For example, the parameter file may
be formatted in a data manipulation language (DML).
[0061] In some implementations, the computer pro-
gram 132 is generated based on executable code asso-
ciated with the external resource 108. For example, the
catalog 122 may specify a location of executable code
that, when the executable code is configured (e.g., using
configuration data such as the properties 136), then the
executable code can be used to communicate with the
external resource 108. In this way, if the executable code
is updated, e.g., by a system administrator or other entity
who is authorized to change executable code, the catalog
122 stores the location of the updated executable code.
When the computer program generation engine 120 gen-
erates the computer program 132, the computer program
generation engine 120 can access the catalog to deter-
mine a location of the most up-to-date version of the ex-
ecutable code.
[0062] Once the computer program 132 is generated,
an execution engine 140 receives the computer program
132. The execution engine 140 then executes the com-
puter program 132, e.g., carries out instructions specified
by program code associated with the computer program
132. When executed, the computer program 132 (e.g.,
the configured portion 134 of the computer program) gen-
erates instructions 110 and transmits the instructions 110
to the external resource 108. In some implementations,
the external resource 108 exposes an API 142 (applica-
tion programming interface) which is used to send in-
structions to and receive data from the external resource
108. In general, the API 142 can be any facility which
enables the computer program 132 to interact with the
external resource 108. For example, the API 142 may
specify types of instructions that the external resource
108 is configured to receive and carry out. An example
of an instruction typically specified by an API is a function
call. A function is a portion of executable program code.
When using a function call, the computer program 132
transmits, as part of the instructions 110, the name of a
function and arguments to be passed to the function (e.g.,
used by the executable program code of the function).
The instructions 110 may include many function calls, or
other types of instructions, or both.
[0063] In some implementations, if the computer pro-
gram 132 is a dataflow graph, the execution engine 140
includes a specialized operating system, sometimes
called a graph operating system. A graph operating sys-
tem is a computer program capable of executing the op-
erations underlying individual components of a dataflow
graph. For example, if a component of a dataflow graph
represents an operation to be carried out by a data

processing system, the graph operating system is tasked
with instructing a data processing system to carry out the
operation.
[0064] After sending the instructions 110 to the exter-
nal resource 108, the computer program 132 receives
data 106 from the external resource responsive to the
instructions 110. The execution engine 140 then formats
the received data 106 into results 104 of the query 102.
In this way, the data processing system 100 can execute
the query 102 to generate results 104 specified by the
query.
[0065] In some implementations, the external resource
108 provides the data 106 in a format such as JSON
(JavaScript Object Notation), which specifies data in the
form of attribute-value pairs, or XML (Extensible Markup
Language) which specifies data demarcated by tags in-
dicating a category for the data. In some implementa-
tions, the record format 128 for the data 106 is stored in
the catalog 122 in association with other data associated
with the external resource 108 and can be used to inter-
pret the JSON or XML data.
[0066] When the computer program 132 is executed
by the execution engine 140, the computer program 132
(e.g., the results 104) is equivalent to output of a system
(other than the execution engine 140) that executes the
query 102 but does not execute the configured computer
program 132. In this way, the computer program 132 is
an example of a computer program that corresponds to
the query 102. In some implementations, the computer
program 132 formats the results 104 in the form of a
database table 144. In this way, the data processing sys-
tem 100 can execute a query 102, e.g., database query
such as a SQL query) and provide the same kind of output
that would be provided if a system such as an RDBMS
executed the query 102 and provided results specified
by the query.
[0067] Further, while a SQL query is typically used to
retrieve data stored in a database table, the query 102
shown here can be used to retrieve data stored in any of
several possible forms. The data 106 received from the
external resource 108 may be in a form other than a da-
tabase table (e.g., a relational database table), for exam-
ple, a flat file. A flat file is a data file that does not contain
structural relationships between elements of data. The
data of the flat file may be capable of being represented
in the form of records and fields. In some examples, the
data 106 received from the external resource 108 may
be in a format native to the external resource 108, by
which we mean the data 106 may be in a format used by
the external resource 108 to store and process data.
[0068] Figure 3 shows a user interface 300 for execut-
ing a query. This user interface 300 is associated with
data processing system 100 shown in figures 1 and 2.
This user interface 300 enables a user (not shown) to
enter a SQL query 302 in a text box 304 of the user in-
terface 300. The SQL query 302 includes a ’SELECT’
command 306 and an argument 308 that is an identifier
for a data source. Here, the argument 308 is "web.wiki-

13 14

EP 3 259 686 B1

9

5

10

15

20

25

30

35

40

45

50

55

pedia." The argument "web.wikipedia" is associated with
an external resource (e.g., the external resource 108
shown in figure 1).
[0069] In some examples, the data processing system
100 may store a list of identifiers and a list of external
resources associated with each identifier. A number of
techniques could be used to associate identifiers with
external resources. In some examples, referring to fig-
ures 2B-2C, the catalog 122 may store a list of identifiers,
each corresponding to an external resource. For exam-
ple, each identifier may correspond to references 112
included in queries 102 submitted to the data processing
system 100. For example, the reference 112 may be the
argument 308 "web.wikipedia" shown in the query 300
in figure 3. In this way, a reference 112 can be extracted
from a query 102 and used to look up a corresponding
external resource in the catalog 122. Further, the catalog
may associate each identifier with a respective set of
properties 136. The catalog 122 may associate each
identifier with a reference to one or more components in
the component library 126. In this way, a reference to an
external resource can be used to identify, in the catalog
122, a corresponding set of properties and a reference
to a corresponding component (e.g., a component 124
as shown in figures 2B-2C). As another example, the
component library 126 may store identifiers, e.g., may
store an identifier for each component 124, so that an
identifier (such as the name of an external resource) can
be used to identify one or more corresponding compo-
nents (e.g., a component 124 as shown in figures 2B-2C).
[0070] As shown in figure 3, "web.wikipedia" is an iden-
tifier that references a web site called WIKIPEDIA avail-
able on the Internet via hypertext transfer protocol (HT-
TP). When a user clicks a Run Query button 310, the
user interface 300 causes the data processing system
100 (figure 1) to execute the SQL query 302.
[0071] Once the SQL query 302 is executed, the re-
sults 312 of the execution are shown in the user interface
300. In this example, the results 312 are displayed in the
form of a database table. The results 312 include rows
314 and columns 316 containing elements of data. Al-
though the external resource associated with the argu-
ment 308 is not a relational database, the data processing
system 100 enables the query 302 to be executed using
the external resource (here, WIKIPEDIA) as a data
source, and enables the results 312 to be formatted as
a database table. For example, the results 312 can be
formatted as a database table by identifying records and
fields in the data returned by WIKIPEDIA. The identifica-
tion can be performed by using a record format 128 (fig-
ures 2B-2C) associated with WIKIPEDIA. Here, the query
302 included a ’where’ command 318 indicating a criteria
that must be satisfied by the results 312. The command
318 has an argument 320 of "subject = ’SQL’" (this type
of argument is sometimes referred to as a predicate)
which indicates that the results must include the term
"SQL" in the text. Thus, the results 312 all include the
term "SQL".

[0072] Figure 4A shows a dataflow graph 400 gener-
ated in response to the execution of the query 302. The
dataflow graph 400 is an example of the configured com-
puter program 132 shown in figures 2A-2C. In some im-
plementations, the dataflow graph 400 may be a sub-
graph of another dataflow graph containing other com-
ponents. When the query 302 is executed, the data
processing system (figures 1 and 2) generates and con-
figures the dataflow graph 400. Further, the execution
engine 140 (figures 2A-2C) executes the dataflow graph
400 to generate the results 312 shown in figure 3. The
dataflow graph 400 includes a component 402 represent-
ing an external resource 108 (figure 1) and a component
404 representing an input to the external resource 108.
Here, the component 402 represents WIKIPEDIA. For
example, the components 402, 404 may together be an
example of the configured portion 134 shown in figures
2B-2C. When the dataflow graph 400 is executed (e.g.,
by a graph operating system), the component 402 trans-
mits instructions (e.g. the instructions 110 shown in fig-
ures 1 and 2) to the external resource 108. The instruc-
tions are based on input data received from the input
component 404. For example, WIKIPEDIA may expose
a search query function which executes plain text queries
submitted via hyptertext transfer protocol (HTTP). In this
example, the component 402 is configured to transmit a
plain text search query to WIKIPEDIA. For example, the
SQL query 302 included an argument 320 of "subject =
’SQL’." Here, the input component 404 can be configured
to provide the term "SQL" to the component 402 that
communicates with WIKIPEDIA. In turn, the component
402 is configured to transmit the term "SQL" (e.g., re-
ceived from the input component 404) as part of the plain
text search query. In response to the plain text search
query, the component 402 receives results via HTTP,
which may be formatted according to hypertext markup
language (HTML). The component 402 is also configured
to parse the received HTML data and format the parsed
data into a form such as a database table, e.g., the results
312 shown in figure 3.
[0073] In order to communicate with the WIKIPEDIA,
the components 402, 404 are configured using properties
(e.g., the properties 136 shown in figures 2B-2C) specific
to WIKIPEDIA. For example, the properties 136 may in-
clude information describing the format in which WIKI-
PEDIA provides search results, e.g., the particular HTML
formatting used in the search results. In this way, if WIKI-
PEDIA changes the format of its output, the properties
136 (e.g., stored in the catalog 122 shown in figures 2B-
2C) can be updated (e.g., updated by an administrator
user of the catalog 122) to reflect the updated format.
When the component 402 that communicates with WIKI-
PEDIA is configured, the most recent version of the prop-
erties 136 can be accessed and used.
[0074] The components 402, 404 are configured with
parameter values based on the properties. As an exam-
ple, the component 404 may have a parameter called
"input text," and so the component 404 can be configured

15 16

EP 3 259 686 B1

10

5

10

15

20

25

30

35

40

45

50

55

to use the text string "SQL" as the value for the "input
text" parameter. In this way, the criteria defined by the
argument 320 defined in the SQL query is used when
querying WIKIPEDIA.
[0075] In some implementations, the component 402
that communicates with an external resource such as
WIKIPEDIA is made up of multiple executable compo-
nents. In some examples, the component 402 may in-
clude one or more components that include executable
instructions for establishing a network connection with
one or more network resources. For example, the net-
work resources may be servers that can provide data
originating from WIKIPEDIA.
[0076] In some examples, the component 402 may in-
clude one or more components that include executable
instructions for parsing data received from the external
resource. For example, data received from WIKIPEDIA
may include both data responsive to the SQL query 302
and other kinds of data, such as markup data (e.g., tags
such as XML tags), metadata such as data describing a
size or character set of the received data, or other data
not responsive to the query. The components that include
executable instructions for parsing data received from
the external resource can process the data received from
the external resource to separate the data responsive to
the query from the data not responsive to the query. The
data not responsive to the query may be discarded or
used for another purpose. For example, data describing
a size of the received data can be used to determine that
an expected quantity of data has been received from the
external resource.
[0077] In some examples, the component 402 may in-
clude one or more components that include executable
instructions for formatting data received from the external
resource. For example, the component 402 may provide
output data (e.g., to other portions of the dataflow graph
400) that is formatted in a particular manner. The output
data could be, for example, formatted as multiple lines
of text, or multiple elements of an array, or another type
of format. In some implementations, the components that
include executable instructions for formatting data re-
ceived from the external resource can receive parsed
data (e.g., the data parsed by those components which
include executable instructions for parsing data received
from the external resource) and format the parsed data
in a format specified for the output data of the dataflow
graph 400. For example, the format specified for the out-
put data of the dataflow graph 400 may be a format of a
database table.
[0078] One type of component made up of multiple
components is called a subgraph. Figure 4B shows an
example of a subgraph 410 containing components
412a-g that make up the component 402 that communi-
cates with WIKIPEDIA. The components 412a-g each
include executable functionality that carries out a portion
of the computational operations needed to communicate
with WIKIPEDIA. For example, one component 412a is
a "Call Web Service" component that includes executa-

ble code for communicating with a server on a network,
e.g., a server that uses hypertext transfer protocol (HT-
TP). The "Call Web Service" component 412a transmits
requests to the server and receives data in response to
the request. In some implementations, the "Call Web
Service" component 412a transmits a Simple Object Ac-
cess Protocol (SOAP) request to the external resource.
In some implementations, "Call Web Service" component
412a accesses an application programming interface
(API) of the external resource.
[0079] The "Call Web Service" component 412a re-
ceives input specifying data to be transmitted in a re-
quest.
[0080] A replicate component 412b and a reformat
component 412c prepare the data to be transmitted by
the "Call Web Service" component 412a. For example,
the replicate component 412b may receive data from the
input component 404 shown in Figure 4A. In some im-
plementations, the reformat component 412c can then
remove data that is inappropriate to transmit to the ex-
ternal resource. For example, some of the data may be
inappropriate to transmit to the external resource, e.g.,
some of the data could be a search term that can be
transmitted to search functionality of the external re-
source. In some examples, some of the data could be
data that is not appropriate to transmit to the external
resource. For example, the external resource may lack
functionality for processing the data in a manner that is
responsive to the original query (e.g., the query 102
shown in figure 1). As an example, some of the data may
be a regular expression, and the external resource may
lack functionality for evaluating regular expressions re-
ceived by the search functionality of the external re-
source.
[0081] A second reformat component 412d changes a
format of the data received from the external resource,
e.g., parses and formats the data provided as output by
the "Call Web Service" component 412a. For example,
the data received from the "Call Web Service" component
412a may be tagged data such as XML data. The refor-
mat component 412d can extract the data demarcated
by the tags and output he extracted data in a format that
does not use XML tags. The reformat component 412d
may also remove data not needed in the output data. For
example, the data discarded may be XML tags, or data
demarcated by XML tags but that is not responsive to
the query. In some implementations, the reformat com-
ponent 412d uses a record format 128 (figures 2B-2C)
to interpret the structure of the data received from the
"Call Web Service" component 412a, e.g., identify
records and fields in the data received from the "Call Web
Service" component 412a, before reformatting the data.
[0082] The replicate component 412b can also provide
data to a third reformat component 412e. In some imple-
mentations, this reformat component 412e identifies the
data that is inappropriate to transmit to the external re-
source that was remove by the first reformat component
412c. Here, the data that is inappropriate to transmit to

17 18

EP 3 259 686 B1

11

5

10

15

20

25

30

35

40

45

50

55

the external resource can be provided by the reformat
component 412e to a join component 412f which com-
bines data received from two components.
[0083] The second reformat component 412d also pro-
vides its output to the join component 412f. Thus, the join
component 412f provides output representing input from
the second reformat component 412d and the third refor-
mat component 412e.
[0084] A filter component 412g receives the output of
the join component 412f. The filter component 412g re-
moves data not responsive to the query (e.g., the query
102 shown in figure 1). As an example, the "Call Web
Service" component 412a may output data not respon-
sive to the original query because the "Call Web Service"
component 412a was not provided one or more elements
(e.g., portions) of the query. The one or more elements
of the query may be a regular expression, which may not
be appropriate to provide to the external resource repre-
sented by the "Call Web Service" component 412a. Here,
the filter component 412g could receive the regular ex-
pression (e.g., as output by the third reformat component
412e to the join component 412f, and as removed by the
first reformat component 412c from the output provided
to the "Call Web Service" component 412a). The filter
component 412g can filter the data first received from
the "Call Web Service" component 412a based on the
regular expression. Although the example of a regular
expression is used here, the filter component 412g could
filter the data based on other types of elements of the
query or other types of criteria, e.g., criteria not specified
in the query.
[0085] Each of the components of the subgraph 410
shown in figure 4B has its own executable code that is
carried out when the subgraph 410 is executed. For ex-
ample, Figure 4C shows an example of the executable
code 440 that makes up the Call Web Service component
412 shown in figure 4B. The executable code 440 in-
cludes code 442 for formatting requests to the external
resource, code 444 for parsing output from the external
resource, code 446 for transmitting a request to the ex-
ternal resource, and code 448 for providing output from
the external resource to other components.
[0086] As described above with respect to figures 2B-
2C, a catalog 122 contains data corresponding to exter-
nal resources 108 that the data processing system 100
is capable of communicating with. The data stored in the
catalog 108, e.g, the properties 136, is used to configure
a computer program 132.
[0087] As shown in figure 5A, in some implementa-
tions, a user interface 500 can be used to view and edit
data stored in the catalog 122. The user interface 500
enables a user (e.g., an administrator of the catalog 122)
to view and edit the data for an entry 502 in the catalog.
An entry 502 of the catalog stores data relevant to a par-
ticular external resource, e.g., WIKIPEDIA. Although one
example of a user interface 500 and an entry 502 is
showed here, other types of catalogs may have other
types of entries, and the other types of entries may con-

tain different kinds of data.
[0088] This entry 502 includes data such as general
information 504a about the entry. The entry 502 can also
include a record format 504b of the external resource
associated with the entry 502, which specifies the format
of data received from the external resource, as described
below. The entry 502 can also include indices 504c for
the entry which specifies names for data that can be used
to query the external resource associated with this entry
502, as described below. For example, the entry 502 can
also include keys 504d for the entry. A key is used for
data sources, such as relational databases, that store
data in the form of records. A key an attribute for which
record’s stored value for the attribute is unique. The entry
502 can also include parameters 504e for the entry. In
some implementations, referring to figure 2C, parame-
ters. e.g., the parameters 138, are used to configure a
computer program 132. In some implementations, the
parameters 504e include data values for the properties
136 shown in figures 2B-2C, which include data describ-
ing characteristics of the external resource associated
with this entry 502. For example, the parameters 504e
may include configuration data such as credentials (e.g.,
a username and password) used to gain authorized ac-
cess to an external resource 108. The entry can also
include permissions 504f for the entry 502, which indicate
what entities (e.g., what users of the user interface 500
such as administrators of the catalog 122) can access
and/or modify the entry 502. The entry can also include
statistics 504g for the entry 502, which specify statistical
data about the external resource 108 associated with this
entry 502, e.g., statistical data such as the quantity of
data available at the external resource 108.
[0089] As shown in figure 5A, the general information
504a of the entry includes a reference 506 to a path of
stored executable code. In some implementations, refer-
ring to figure 1, the stored executable code is the portion
134 of the computer program 132 that communicates
with the external resource 108. The reference 506 can
be used by the generation engine 120 to access the
stored executable code and use the stored executable
code to generate the computer program 132.
[0090] As shown in figure 5B, the entry 502 can also
include a record format 504b of the external resource
associated with the entry 502. The record format 504b
may be an example of the record format 128 shown in
figures 2B-2C. The record format 504b specifies the for-
mat of data received from the external resource. For ex-
amine, the record format 504b can include an embedded
record format 508 and fields 510. The fields 510 specify
names for data transmitted to and received from the ex-
ternal resource. For example, here the fields 510 are
"subject," which is a name for data transmitted to WIKI-
PEDIA (e.g., a subject used in a query to the encyclope-
dia), and "line" which is a name for data received from
WIKIPEDIA (e.g., lines of an encyclopedia entry corre-
sponding to a subject). The embedded record format 508
specifies format information about the data provided to

19 20

EP 3 259 686 B1

12

5

10

15

20

25

30

35

40

45

50

55

and received from the external resource. For example,
this embedded record format 508 indicates that the "sub-
ject" and "line" fields are formatted using UTF-8, which
is a particular kind of Unicode character encoding.
[0091] As shown in figure 5C, the entry 502 can also
include indices 504c for the entry which specifies names
for data that can be used to query the external resource
associated with this entry 502. For example, this entry
502 has an index 514 called "subject." Thus, the external
resource is configured to receive a data value for "sub-
ject" and return data responsive to the data value. For
example, WIKIPEDIA may be configured to return ency-
clopedia entries where the data value appears in a "sub-
ject" field associated with each entry.
[0092] Figure 6A shows a flowchart representing a pro-
cedure 600 for executing a query. The procedure 600
can be carried out, for example, by components of the
data processing system 100 shown in figure 1.
[0093] The procedure receives 602 a SQL query. For
example, the SQL query can be an example of the query
102 shown in figure 1. The SQL query includes an iden-
tifier associated with a resource that is external to the
data processing system. Further, this resource is not a
relational database management system. The resource
could be the external resource 108 shown in figure 1. An
example of an identifier is the argument 308 shown in
figure 3.
[0094] The procedure generates 604 a computer pro-
gram based on the SQL query. The computer program
could be the computer program 132 shown in figures 2A-
2C. In some examples, the computer program includes
components representing operations of the SQL query.
In some examples, the computer program is a dataflow
graph and the portion of the computer program that com-
municates with the external resource is a component or
a subgraph of the dataflow graph. An example of a da-
taflow graph 400 is shown in figure 4A. In some imple-
mentations, the procedure 610 shown in figure 6B can
be carried out during the generation of the computer pro-
gram, e.g., to configure one or more portions of the com-
puter program during generation of the computer pro-
gram. In some implementations, the procedure 630
shown in figure 6D can be carried out to generate a data
structure that can be used to instantiate the computer
program, e.g., a dataflow graph.
[0095] The procedure executes 606 the computer pro-
gram, e.g., based on parameter values used to configure
the computer program. For example, the computer pro-
gram may be executed by the execution engine 140
shown in figures 2A-2C. In some implementations, the
execution of the computer program corresponds to the
procedure 620 shown in figure 5C.
[0096] Figure 6B shows a flowchart representing a pro-
cedure 610 used to configure a portion of a computer
program when generating a computer program. In some
implementations, the procedure 610 represents steps for
generating 604 a computer program as shown in figure
6A. The procedure 610 can be carried out, for example,

by components of the data processing system 100 shown
in figure 1, such as the computer program generation
engine 120. In some implementations, a computer pro-
gram is generated by assembling multiple portions. Each
portion may be configured while the computer program
is being assembled. This procedure 610 can be used to
configure a portion of the computer program being as-
sembled.
[0097] The procedure identifies 614 configuration data
associated with an external resource. For example, the
external resource could be the external resource 108
shown in figures 1 and 2. The configuration data specifies
information used by a computer program to access the
external resource and receive data from the external re-
source. In some implementations, the configuration data
specifies a format of data to be received from the re-
source, e.g., the record format 128 shown in figures 2B-
2C. In some implementations, the configuration data
specifies data used to access the resource on a network.
For example, the configuration data can contain creden-
tials, such as a username and password, used to obtain
authorized access to data of the external resource,
and/or the configuration data can contain a network ad-
dress such as a host name or uniform resource locator
(URL), and/or the configuration data can contain other
kinds of data. For example, the configuration data could
be an example of the properties 136 shown in figures 2B-
2C. In some examples, the configuration data is specified
in a catalog that can be updated based on a change to
a data format used by the resource.
[0098] The procedure generates 616 parameter val-
ues based on the configuration data. For example, the
parameter values may be the parameter values 138
shown in figures 2C. In some implementations, a param-
eter generator receives data and generates a parameter
file in a format readable by the computer program. The
parameter file is then provided to the computer program.
For example, the parameter generator could be a portion
of the computer program generation engine 120 shown
in figure 1. The data received by the parameter generator
could be data of the properties 136 shown in figures 2B-
2C. For example, the parameter generator may parse
the properties 136 to determine the parameter values
138.
[0099] The procedure provides 516 parameter values
to a portion of the computer program. The portion is ca-
pable of communicating with the resource. For example,
the portion of the computer program may be the config-
ured portion 134 shown in figures 2B-2C. The portion of
the computer program includes executable instructions
that define a manner in which the resource is accessed.
Further, the executable instructions operate based on
the parameters provided to the portion of the computer
program.
[0100] The procedure 610 can be carried out for any
portion of a computer program being generated. Once
all portions of the computer program have been config-
ured, the computer program is ready for execution.

21 22

EP 3 259 686 B1

13

5

10

15

20

25

30

35

40

45

50

55

[0101] Figure 6C shows a flowchart representing a pro-
cedure 620 for executing a computer program that cor-
responds to a query. In some implementations, the pro-
cedure represents steps for executing 606 a computer
program as shown in figure 6A. The procedure 620 can
be carried out, for example, by components of the data
processing system 100 shown in figure 1, such as the
computer program execution engine 140. The computer
program could be the computer program 132 shown in
figures 2A-2C. For example, the procedure 620 can be
initiated when the computer program execution engine
140 receives the computer program 132 and carries out
operations corresponding to executable code of the com-
puter program 132.
[0102] The execution of the computer program causes
one or more instructions to be transmitted 622 to an ex-
ternal resource. For example, the external resource can
be the external resource 108 shown in figures 1 and 2.
The instructions define operations other than operations
of a SQL query corresponding to the computer program.
For example, the instructions may be the instructions 110
shown in figure 1. In some examples, the instructions are
transmitted to a facility of the external resource that does
not return results in response to a SQL query, e.g., the
instructions are not transmitted to a facility of the external
resource that receives a SQL query as input, evaluates
the SQL query, and responds with data specified by the
SQL query. In this way, in some examples, the instruc-
tions do not include SQL instructions such as SQL com-
mands or arguments. In some implementations, the re-
source is accessed using an application programming
interface (API) exposed by the resource. An example of
the API 142 is shown in figure 2C.
[0103] The execution of the computer program causes
data to be received 624 from the resource in response
to the instructions. For example, the data could be the
results 104 shown in figure 1. The results may be format-
ted in the form of a database table, e.g., the database
table 144 shown in figure 1. The data received from the
resource in response to the instructions includes data
specified by the SQL query. In this way, the received data
is the same as data that would have been received from
the external resource if the resource were provided a
SQL query and, in response, the external resource re-
turned data specified by the SQL query.
[0104] Figure 6D shows a flowchart representing a pro-
cedure 630 for generating a data structure in a computer
instantiating a dataflow graph that corresponds to a que-
ry. For example, the dataflow graph could be the com-
puter program 132 shown in figures 2A-2C. An example
of dataflow graph 400 that corresponds to a query is
shown in figure 4A.
[0105] A request to a query planner based on the query
is generated 632. A query planner is a system that gen-
erates data that represents steps that can be carried out
to execute a query. A query planner often generates the
data in the form of steps that can be carried out by an
RDBMS.

[0106] A query plan generated by the query planner
based on the request is received 634. A query plan is
data that represents a description of one or more steps
to be performed by a system managing a relational da-
tabase, e.g., an RDBMS.
[0107] A data source is identified 636, e.g, based on
the query. The data source can be an external resource,
e.g., the external resource 108 shown in figures 1 and 2.
The identification could be made based on a reference
represented in the query, e.g., the reference 112 shown
in figure 1. In some examples, the data source is identified
based on an argument in the query.
[0108] An executing system other than a system man-
aging a relational database is identified 638. The execut-
ing system could be a system that executes dataflow
graphs. For example, the executing system could be the
execution engine 140 shown in figures 2A-2C. In con-
trast, an example of a system managing a relational da-
tabase is an RDBMS.
[0109] A data structure instantiating a dataflow graph
is generated 640. As described above with respect to
figures 2A-2C, a dataflow graph is a computer program
that contains components representing operations to be
performed on input data and links between the compo-
nents (sometimes called nodes) representing flows of
data.
[0110] The data structure includes a node that repre-
sents at least one operation to be executed. The node is
associated with information usable by an executing sys-
tem to invoke executable program code to perform the
operation. The node is also associated with information
usable by an executing system to make data available
to the program code. At least one link of the dataflow
graph represents output data of an operation of the node
being provided as input data to an operation of another
node of the dataflow graph.
[0111] The operation is chosen based on a step de-
scribed by the query plan. In some implementations, the
operation includes accessing data available at the data
source. For example, the component 402 of the graph
400 shown in figure 4A is an example of a node that
accesses data available at a data source external to the
system executing the dataflow graph.
[0112] When the generated 640 dataflow graph is ex-
ecuted, program code based on the dataflow graph can
be executed on the identified executing system. Further,
data can be received from the data source. For example,
the data can be received 624 as shown in figure 6C.
[0113] In some implementations of the procedures
600, 610, 620, 630 an API is used. When an API is used,
the procedure 600 includes causing functions of the API
to be executed in response to receiving the SQL query.
The functions of the API are executable at the external
resource. Further, the instructions transmitted to the re-
source (e.g., in the procedure 620 shown in figure 5C)
cause the functions of the API to be executed. In this
way, a SQL query can be used to query a resource that
is not a relational database management system and

23 24

EP 3 259 686 B1

14

5

10

15

20

25

30

35

40

45

50

55

does not interpret SQL queries.
[0114] The generation engine 120 and/or execution
engine 140 shown in figure 1 may be hosted, for example,
on one or more general-purpose computers under the
control of a suitable operating system, such as a version
of the UNIX operating system. For example, this can in-
clude a multiple-node parallel computing environment in-
cluding a configuration of computer systems using mul-
tiple central processing units (CPUs) or processor cores,
either local (e.g., multiprocessor systems such as sym-
metric multiprocessing (SMP) computers), or locally dis-
tributed (e.g., multiple processors coupled as clusters or
massively parallel processing (MPP) systems, or remote,
or remotely distributed (e.g., multiple processors coupled
via a local area network (LAN) and/or wide-area network
(WAN)), or any combination thereof.
[0115] The user interface 300 shown in figure 3 may
be part of a development environment. The development
environment is, in some implementations, a system for
developing applications as dataflow graphs. Dataflow
graphs made in accordance with this system provide
methods for getting information into and out of individual
processes represented by graph components, for mov-
ing information between the processes, and for defining
a running order for the processes. This system includes
algorithms that choose interprocess communication
methods from any available methods (for example, com-
munication paths according to the links of the graph can
use TCP/IP or UNIX domain sockets, or use shared mem-
ory to pass data between the processes).
[0116] The techniques described above can be imple-
mented using a computing system executing suitable
software. For example, the software may include proce-
dures in one or more computer programs that execute
on one or more programmed or programmable comput-
ing system (which may be of various architectures such
as distributed, client/server, or grid) each including at
least one processor, at least one data storage system
(including volatile and/or non-volatile memory and/or
storage elements), at least one user interface (for receiv-
ing input using at least one input device or port, and for
providing output using at least one output device or port).
The software may include one or more modules of a larg-
er program, for example, that provides services related
to the design, configuration, and execution of dataflow
graphs. The modules of the program (e.g., elements of
a dataflow graph) can be implemented as data structures
or other organized data conforming to a data model
stored in a data repository.
[0117] The software may be provided on a tangible,
non-transitory medium, such as a CD-ROM or other com-
puter-readable medium (e.g., readable by a general or
special purpose computing system or device), or deliv-
ered (e.g., encoded in a propagated signal) over a com-
munication medium of a network to a tangible, non-tran-
sitory medium of a computing system where it is execut-
ed. Some or all of the processing may be performed on
a special purpose computer, or using special-purpose

hardware, such as coprocessors or field-programmable
gate arrays (FPGAs) or dedicated, application-specific
integrated circuits (ASICs). The processing may be im-
plemented in a distributed manner in which different parts
of the computation specified by the software are per-
formed by different computing elements. Each such com-
puter program is preferably stored on or downloaded to
a computer-readable storage medium (e.g., solid state
memory or media, or magnetic or optical media) of a stor-
age device accessible by a general or special purpose
programmable computer, for configuring and operating
the computer when the storage device medium is read
by the computer to perform the processing described
herein. The inventive system may also be considered to
be implemented as a tangible, non-transitory medium,
configured with a computer program, where the medium
so configured causes a computer to operate in a specific
and predefined manner to perform one or more of the
processing steps described herein.
[0118] A number of embodiments of the invention have
been described. Nevertheless, is to be understood that
the foregoing description is intended to illustrate and not
to limit the scope of the invention, which is defined by the
scope of the following claims. Accordingly, other embod-
iments are also within the scope of the following claims.
For example, various modifications may be made without
departing from the scope of the invention. Additionally,
some of the steps described above may be order inde-
pendent, and thus can be performed in an order different
from that described.

Claims

1. A computer-implemented method, performed by a
data processing system, of executing a computer
program based on a query that is expressed in ac-
cordance with a query language applicable to a re-
lational database, the computer program executed
based at least in part on data stored in a tangible,
non-transitory computer-readable medium, the exe-
cuting including:

receiving (602) a SQL query, where the SQL
query includes an identifier associated with a
resource that is external to the data processing
system;
generating (604) a computer program based on
the SQL query, including:

identifying a data source based on the SQL
query;
identifying an executing system other than
a system managing a relational database;
generating a request to a query planner
based on the query;
providing the request to the query planner;
receiving a query plan generated by the

25 26

EP 3 259 686 B1

15

5

10

15

20

25

30

35

40

45

50

55

query planner based on the request, the
query plan including a description of one or
more steps to be performed by a system
managing a relational database;
generating a data structure instantiating a
dataflow graph that includes:

a first node that represents at least one
operation to be executed,
the first node associated with informa-
tion usable by an executing system to
invoke executable program code to
perform the operation,
the first node associated with informa-
tion usable by an executing system to
make data available to the program
code, and
the operation chosen based on a step
described by the query plan, and

at least one link that represents output data
of an operation of the first node being pro-
vided as input data to an operation of a sec-
ond node of the dataflow graph;
identifying (614) configuration data associ-
ated with the resource, the configuration da-
ta specifying at least one value used in com-
municating with the resource; and
executing (604) the computer program,
based on the configuration data, the execu-
tion of the computer program causing:

transmitting (622) one or more instruc-
tions to the resource, the instructions
defining operations other than opera-
tions of the SQL query, and
receiving data (624) from the resource
in response to the instructions.

2. The method of claim 1 in which the portion of the
computer program includes executable instructions
that define a manner in which the resource is ac-
cessed, where the executable instructions operate
based on the configuration data provided to the por-
tion of the computer program.

3. The method of any preceding claim in which the con-
figuration data is specified in a catalog that can be
updated based on a change to a data format used
by the resource.

4. The method of any preceding claim including
generating parameter values based on the configu-
ration data; and
providing the parameter values to a portion of the
computer program, the portion being capable of
communicating with the resource;
the execution of the computer program being based

on the parameter values.

5. The method of claim 4 in which generating parameter
values based on the configuration data includes ex-
ecuting a parameter generator which generates a
parameter file in a format readable by the portion of
the computer program, and
in which providing the parameter values to the por-
tion of the computer program includes making the
parameter file available to the portion of the compu-
ter program.

6. The method of any preceding claim in which the SQL
query includes a SELECT statement that includes
an argument, where at least a portion of the argu-
ment corresponds to the identifier associated with
the resource.

7. The method of any preceding claim in which the com-
puter program includes components representing
operations of the SQL query.

8. The method of any of claims 1 to 6 in which the com-
puter program is a dataflow graph and the portion of
the computer program is a subgraph of the dataflow
graph.

9. The method of any preceding claim in which the re-
source is accessed using an application program-
ming interface (API) exposed by the resource.

10. The method of claim 9 including
causing functions of the API to be executed in re-
sponse to receiving the SQL query,
the functions of the API being executable at the re-
source, and the instructions transmitted to the re-
source causing the functions of the API to be exe-
cuted.

11. The method of any preceding claim including format-
ting the data received from the external resource in
the form of a database table.

12. The method of any preceding claim in which the re-
source is not a relational database management sys-
tem.

13. The method of any preceding claim in which the in-
structions are transmitted to a facility of the resource
that does not return results in response to a SQL
query.

14. The method of any preceding claim in which the data
received from the resource in response to the in-
structions includes data specified by the SQL query.

15. The method of any preceding claim including iden-
tifying records and fields in the data received from

27 28

EP 3 259 686 B1

16

5

10

15

20

25

30

35

40

45

50

55

the resource in response to the instructions, the
records and fields identified based on a record format
associated with the resource that is external to the
data processing system.

16. A data processing system capable of executing a
computer program based on a query that is ex-
pressed in accordance with a query language appli-
cable to a relational database, the computer program
executed based at least in part on data stored in a
tangible, non-transitory computer-readable medium,
the data processing system configured to perform
operations including:

receiving (602) a SQL query, where the SQL
query includes an identifier associated with a
resource that is external to the data processing
system;
generating (604) a computer program based on
the SQL query, including:

identifying a data source based on the SQL
query;
identifying an executing system other than
a system managing a relational database;
generating a request to a query planner
based on the query;
providing the request to the query planner;
receiving a query plan generated by the
query planner based on the request, the
query plan including a description of one or
more steps to be performed by a system
managing a relational database;
generating a data structure instantiating a
dataflow graph that includes:

a first node that represents at least one
operation to be executed,
the first node associated with informa-
tion usable by an executing system to
invoke executable program code to
perform the operation,
the first node associated with informa-
tion usable by an executing system to
make data available to the program
code, and
the operation chosen based on an step
described by the query plan, and

at least one link that represents output data
of an operation of the first node being pro-
vided as input data to an operation of a sec-
ond node of the dataflow graph;
identifying (614) configuration data associ-
ated with the resource, the configuration da-
ta specifying at least one value used in com-
municating with the resource; and
executing (604) the computer program,

based on the configuration data, the execu-
tion of the computer program causing:

transmitting (622) one or more instruc-
tions to the resource, the instructions
defining operations other than opera-
tions of the SQL query, and
receiving (624) data from the resource
in response to the instructions.

17. A non-transitory computer readable storage device
storing instructions that enable a data processing
system to execute a computer program based on a
query that is expressed in accordance with a query
language applicable to a relational database, the
computer program executed based at least in part
on data stored in a tangible, non-transitory computer-
readable medium, the instructions causing the data
processing system to perform the method of any of
claims 1 to 15.

Patentansprüche

1. Computerimplementiertes, von einem Datenverar-
beitungssystem durchgeführtes Verfahren des Aus-
führens eines Computerprogramms basierend auf
einer Abfrage, die entsprechend einer Abfragespra-
che ausgedrückt wird, die auf eine relationale Da-
tenbank anwendbar ist, wobei das Computerpro-
gramm zumindest teilweise basierend auf Daten
ausgeführt wird, die in einem greifbaren, nichtflüch-
tigen computerlesbaren Medium gespeichert sind,
das Ausführen umfassend:

Empfangen (602) einer SQL-Abfrage, wobei die
SQL-Abfrage eine Kennung enthält, die mit ei-
ner Ressource in Verbindung steht, die außer-
halb des Datenverarbeitungssystems gelegen
ist;
Erzeugen (604) eines Computerprogramms ba-
sierend auf der SQL-Abfrage, umfassend:

Identifizieren einer Datenquelle basierend
auf der SQL-Abfrage;
Identifizieren eines Ausführungssystems,
das kein System ist, das eine relationale Da-
tenbank verwaltet;
Erzeugen einer Anforderung an einen Ab-
frageplaner basierend auf der Abfrage;
Bereitstellen der Anforderung an den Abfra-
geplaner;
Empfangen eines Abfrageplans, der von
dem Abfrageplaner basierend auf der An-
forderung erzeugt wurde, wobei der Abfra-
geplan eine Beschreibung eines oder meh-
rerer Schritte umfasst, die von einem Sys-
tem durchzuführen sind, das eine relationa-

29 30

EP 3 259 686 B1

17

5

10

15

20

25

30

35

40

45

50

55

le Datenbank verwaltet;
Erzeugen einer Datenstruktur, die einen
Datenflussgraphen instanziiert, der Folgen-
des umfasst:

einen ersten Knoten, der mindestens
eine auszuführende Operation dar-
stellt, wobei
der erste Knoten mit Informationen in
Verbindung steht, die von einem Aus-
führungssystem nutzbar sind, um aus-
führbaren Programmcode aufzurufen,
um die Operation durchzuführen,
der erste Knoten mit Informationen in
Verbindung steht, die von einem Aus-
führungssystem nutzbar sind, um dem
Programmcode Daten zur Verfügung
zu stellen, und
die Operation basierend auf einem
Schritt gewählt wird, der von dem Ab-
frageplan beschrieben wird, und
mindestens eine Verbindung, die Aus-
gabedaten einer Operation des ersten
Knotens darstellt, die einer Operation
eines zweiten Knotens des Datenfluss-
graphen als Eingabedaten bereitge-
stellt werden;
Identifizieren (614) von Konfigurations-
daten, die mit der Ressource in Verbin-
dung stehen, wobei die Konfigurations-
daten mindestens einen Wert spezifi-
zieren, der beim Kommunizieren mit
der Ressource genutzt wird; und
Ausführen (604) des Computerpro-
gramms basierend auf den Konfigura-
tionsdaten, wobei die Ausführung des
Computerprogramms Folgendes be-
wirkt:

Übertragen (622) einer oder meh-
rerer Anweisungen an die Res-
source, wobei die Anweisungen
andere Operationen definieren als
Operationen der SQL-Abfrage,
und
Empfangen von Daten (624) von
der Ressource in Reaktion auf die
Anweisungen.

2. Verfahren nach Anspruch 1, wobei der Abschnitt des
Computerprogramms ausführbare Anweisungen
enthält, die eine Weise definieren, auf die auf die
Ressource zugegriffen wird, wobei die ausführbaren
Anweisungen basierend auf den Konfigurationsda-
ten arbeiten, die dem Abschnitt des Computerpro-
gramms bereitgestellt werden.

3. Verfahren nach einem der vorhergehenden Ansprü-

che, wobei die Konfigurationsdaten in einem Katalog
spezifiziert sind, der basierend auf einer Änderung
eines Datenformats aktualisiert werden kann, das
von der Ressource genutzt wird.

4. Verfahren nach einem der vorhergehenden Ansprü-
che, umfassend
Erzeugen von Parameterwerten basierend auf den
Konfigurationsdaten; und
Bereitstellen der Parameterwerte an einen Abschnitt
des Computerprogramms, wobei der Abschnitt im-
stande ist, mit der Ressource zu kommunizieren;
wobei die Ausführung des Computerprogramms auf
den Parameterwerten basiert.

5. Verfahren nach Anspruch 4, wobei das Erzeugen
von Parameterwerten basierend auf den Konfigura-
tionsdaten Ausführen eines Parametererzeugers
umfasst, der eine Parameterdatei in einem Format
erzeugt, das von dem Abschnitt des Computerpro-
gramms lesbar ist, und
wobei das Bereitstellen der Parameterwerte an den
Abschnitt des Computerprogramms Zurverfügung-
stellen der Parameterdatei an den Abschnitt des
Computerprogramms umfasst.

6. Verfahren nach einem der vorhergehenden Ansprü-
che, wobei die SQL-Abfrage eine SELECT-Anwei-
sung umfasst, die ein Argument umfasst, wobei zu-
mindest ein Abschnitt des Arguments der Kennung
entspricht, die mit der Ressource in Verbindung
steht.

7. Verfahren nach einem der vorhergehenden Ansprü-
che, wobei das Computerprogramm Komponenten
umfasst, die Operationen der SQL-Abfrage darstel-
len.

8. Verfahren nach einem der Ansprüche 1 bis 6, wobei
das Computerprogramm ein Datenflussgraph ist und
der Abschnitt des Computerprogramms ein Unter-
graph des Datenflussgraphen ist.

9. Verfahren nach einem der vorhergehenden Ansprü-
che, wobei mithilfe einer Anwendungsprogrammier-
schnittstelle (API), die durch die Ressource expo-
niert ist, auf die Ressource zugegriffen wird.

10. Verfahren nach Anspruch 9, umfassend Bewirken,
dass Funktionen der API in Reaktion darauf ausge-
führt werden, dass die SQL-Abfrage empfangen
wird, wobei die Funktionen der API an der Ressource
ausführbar sind, und wobei die Anweisungen, die an
die Ressource übertragen werden, bewirken, dass
die Funktionen der API ausgeführt werden.

11. Verfahren nach einem der vorhergehenden Ansprü-
che, umfassend Formatieren der Daten, die von der

31 32

EP 3 259 686 B1

18

5

10

15

20

25

30

35

40

45

50

55

außerhalb gelegenen Ressource empfangen wer-
den, in Form einer Datenbanktabelle.

12. Verfahren nach einem der vorhergehenden Ansprü-
che, wobei die Ressource kein System zur Verwal-
tung relationaler Datenbanken ist.

13. Verfahren nach einem der vorhergehenden Ansprü-
che, wobei die Anweisungen an eine Einrichtung der
Ressource übertragen werden, die keine Ergebnis-
se in Reaktion auf eine SQL-Abfrage zurückgibt.

14. Verfahren nach einem der vorhergehenden Ansprü-
che, wobei die Daten, die von der Ressource in Re-
aktion auf die Anweisungen empfangen werden, Da-
ten umfassen, die von der SQL-Abfrage spezifiziert
werden.

15. Verfahren nach einem der vorhergehenden Ansprü-
che, umfassend Identifizieren von Datensätzen und
Feldern in den Daten, die von der Ressource in Re-
aktion auf die Anweisungen empfangen werden, wo-
bei die identifizierten Datensätze und Felder auf ei-
nem Datensatzformat basieren, das mit der Res-
source in Verbindung steht, die außerhalb des Da-
tenverarbeitungssystems gelegen ist.

16. Datenverarbeitungssystem, das imstande ist, ein
Computerprogramms basierend auf einer Abfrage
auszuführen, die entsprechend einer Abfragespra-
che ausgedrückt wird, die auf eine relationale Da-
tenbank anwendbar ist, wobei das Computerpro-
gramm zumindest teilweise basierend auf Daten
ausgeführt wird, die in einem greifbaren, nichtflüch-
tigen computerlesbaren Medium gespeichert sind,
wobei das Datenverarbeitungssystem ausgelegt ist,
Operationen auszuführen, umfassend:

Empfangen (602) einer SQL-Abfrage, wobei die
SQL-Abfrage eine Kennung enthält, die mit ei-
ner Ressource in Verbindung steht, die außer-
halb des Datenverarbeitungssystems gelegen
ist;
Erzeugen (604) eines Computerprogramms ba-
sierend auf der SQL-Abfrage, umfassend:

Identifizieren einer Datenquelle basierend
auf der SQL-Abfrage;
Identifizieren eines Ausführungssystems,
das kein System ist, das eine relationale Da-
tenbank verwaltet;
Erzeugen einer Anforderung an einen Ab-
frageplaner basierend auf der Abfrage;
Bereitstellen der Anforderung an den Abfra-
geplaner;
Empfangen eines Abfrageplans, der von
dem Abfrageplaner basierend auf der An-
forderung erzeugt wurde, wobei der Abfra-

geplan eine Beschreibung eines oder meh-
rerer Schritte umfasst, die von einem Sys-
tem durchzuführen sind, das eine relationa-
le Datenbank verwaltet;
Erzeugen einer Datenstruktur, die einen
Datenflussgraphen instanziiert, der Folgen-
des umfasst:

einen ersten Knoten, der mindestens
eine auszuführende Operation dar-
stellt, wobei
der erste Knoten mit Informationen in
Verbindung steht, die von einem Aus-
führungssystem nutzbar sind, um aus-
führbaren Programmcode aufzurufen,
um die Operation durchzuführen,
der erste Knoten mit Informationen in
Verbindung steht, die von einem Aus-
führungssystem nutzbar sind, um dem
Programmcode Daten zur Verfügung
zu stellen, und
die Operation basierend auf einem
Schritt gewählt wird, der von dem Ab-
frageplan beschrieben wird, und
mindestens eine Verbindung, die Aus-
gabedaten einer Operation des ersten
Knotens darstellt, die einer Operation
eines zweiten Knotens des Datenfluss-
graphen als Eingabedaten bereitge-
stellt werden;
Identifizieren (614) von Konfigurations-
daten, die mit der Ressource in Verbin-
dung stehen, wobei die Konfigurations-
daten mindestens einen Wert spezifi-
zieren, der beim Kommunizieren mit
der Ressource genutzt wird; und
Ausführen (604) des Computerpro-
gramms basierend auf den Konfigura-
tionsdaten, wobei die Ausführung des
Computerprogramms Folgendes be-
wirkt:

Übertragen (622) einer oder meh-
rerer Anweisungen an die Res-
source, wobei die Anweisungen
andere Operationen definieren als
Operationen der SQL-Abfrage,
und
Empfangen (624) von Daten von
der Ressource in Reaktion auf die
Anweisungen.

17. Nichtflüchtige computerlesbare Speichervorrich-
tung, die Anweisungen speichert, die es einem Da-
tenverarbeitungssystem ermöglichen, ein Compu-
terprogramms basierend auf einer Abfrage auszu-
führen, die entsprechend einer Abfragesprache aus-
gedrückt wird, die auf eine relationale Datenbank an-

33 34

EP 3 259 686 B1

19

5

10

15

20

25

30

35

40

45

50

55

wendbar ist, wobei das Computerprogramm zumin-
dest teilweise basierend auf Daten ausgeführt wird,
die in einem greifbaren, nichtflüchtigen computerles-
baren Medium gespeichert sind, wobei die Anwei-
sungen bewirken, dass das Datenverarbeitungssys-
tem das Verfahren nach einem der Ansprüche 1 bis
15 durchführt.

Revendications

1. Procédé réalisé par ordinateur, exécuté par un sys-
tème de traitement de données, consistant à exécu-
ter un programme informatique sur la base d’une
requête exprimée conformément à un langage de
requête applicable à une base de données relation-
nelle, le programme informatique étant exécuté au
moins en partie sur des données stockées sur un
support lisible par ordinateur, tangible et non transi-
toire, le procédé d’exécution comprenant les étapes
consistant à :

recevoir (602) une requête SQL, la requête SQL
comprenant un identifiant associé à une res-
source externe au système de traitement de
données;
générer (604) un programme informatique basé
sur la requête SQL, comprenant les étapes con-
sistant à :

identifier une source de données basée sur
la requête SQL ;
identifier un système d’exécution autre
qu’un système gérant une base de données
relationnelle ;
générer une demande auprès d’un planifi-
cateur de requêtes sur la base de la
requête ;
fournir la demande au planificateur de
requêtes ;
recevoir un plan de requête généré par le
planificateur de requêtes en fonction de la
demande, le plan de requête comprenant
une description d’une ou de plusieurs éta-
pes à exécuter par un système gérant une
base de données relationnelle ;
générer une structure de données présen-
tant un exemple de graphique de flux de
données comprenant :

un premier noeud qui représente au
moins une opération à exécuter,
le premier noeud étant associé à des
informations utilisables par un système
en cours d’exécution pour appeler un
code de programme exécutable afin
d’effectuer l’opération,
le premier noeud étant associé à des

informations utilisables par un système
d’exécution pour mettre des données à
la disposition du code de programme,
et
l’opération étant choisie en fonction
d’une étape décrite par le plan de re-
quête, et
au moins un lien qui représente des
données de sortie d’une opération du
premier noeud étant fourni en tant que
données d’entrée à une opération d’un
second noeud du graphe de flux de
données ;
identifier (614) des données de confi-
guration associées à la ressource, les
données de configuration spécifiant au
moins une valeur utilisée pour commu-
niquer avec la ressource ; et
exécuter (604) le programme informa-
tique, en fonction des données de con-
figuration, l’exécution du programme
informatique provoquant les étapes
consistant à :

transmettre (622) une ou plusieurs
instructions à la ressource, les ins-
tructions définissant des opéra-
tions autres que les opérations de
la requête SQL, et
recevoir des données (624) de la
ressource en réponse aux instruc-
tions.

2. Procédé selon la revendication 1, dans lequel la par-
tie du programme informatique comprend des ins-
tructions exécutables qui définissent une manière
d’accéder à la ressource, où les instructions exécu-
tables fonctionnent en fonction des données de con-
figuration fournies à la partie du programme infor-
matique.

3. Procédé selon l’une quelconque des revendications
précédentes, dans lequel les données de configura-
tion sont spécifiées dans un catalogue qui peut être
mis à jour en fonction d’un changement de format
de données utilisé par la ressource.

4. Procédé selon l’une quelconque des revendications
précédentes, comprenant les étapes consistant à
générer des valeurs de paramètres basées sur les
données de configuration ; et
fournir les valeurs de paramètres à une partie du
programme informatique, cette partie pouvant com-
muniquer avec la ressource ;
l’exécution du programme informatique étant basée
sur les valeurs de paramètres.

5. Procédé selon la revendication 4, dans lequel la gé-

35 36

EP 3 259 686 B1

20

5

10

15

20

25

30

35

40

45

50

55

nération de valeurs de paramètres sur la base des
données de configuration comprend l’exécution d’un
générateur de paramètres qui génère un fichier de
paramètres dans un format lisible par la partie du
programme informatique, et
dans lequel la fourniture des valeurs de paramètres
à la partie du programme informatique comprend la
mise à disposition du fichier de paramètres à la partie
du programme informatique.

6. Procédé selon l’une quelconque des revendications
précédentes, dans lequel la requête SQL inclut une
instruction SELECT qui contient un argument, au
moins une partie de l’argument correspondant à
l’identifiant associé à la ressource.

7. Procédé selon l’une quelconque des revendications
précédentes, dans lequel le programme informati-
que comprend des composants représentant les
opérations de la requête SQL.

8. Procédé selon l’une quelconque des revendications
1 à 6, dans lequel le programme informatique est un
graphe de flux de données et la partie du programme
informatique est un sous-graphe du graphe de flux
de données.

9. Procédé selon l’une quelconque des revendications
précédentes, dans lequel la ressource est accessi-
ble à l’aide d’une interface de programmation d’ap-
plication (API - application programming interface)
exposée par la ressource.

10. Procédé selon la revendication 9, comprenant l’éta-
pe consistant à
provoquer l’exécution des fonctions de l’API en ré-
ponse à la réception de la requête SQL,
les fonctions de l’API étant exécutables sur la res-
source, et les instructions transmises à la ressource
entraînant l’exécution des fonctions de l’API.

11. Procédé selon l’une quelconque des revendications
précédentes, comprenant l’étape consistant à for-
mater les données reçues de la ressource externe
sous la forme d’une table de base de données.

12. Procédé selon l’une quelconque des revendications
précédentes, dans lequel la ressource n’est pas un
système de gestion de base de données relationnel-
le.

13. Procédé selon l’une quelconque des revendications
précédentes, dans lequel les instructions sont trans-
mises à une installation de la ressource qui ne ren-
voie pas de résultat en réponse à une requête SQL.

14. Procédé selon l’une quelconque des revendications
précédentes, dans lequel les données reçues de la

ressource en réponse aux instructions incluent des
données spécifiées par la requête SQL.

15. Procédé selon l’une quelconque des revendications
précédentes, comprenant l’étape consistant à iden-
tifier des enregistrements et des champs dans les
données reçues de la ressource en réponse aux ins-
tructions, les enregistrements et les champs étant
identifiés en fonction d’un format d’enregistrement
associé à la ressource qui est externe au système
de traitement de données.

16. Système de traitement de données, capable d’exé-
cuter un programme informatique sur la base d’une
requête exprimée conformément à un langage de
requête applicable à une base de données relation-
nelle, le programme informatique étant exécuté au
moins en partie sur des données stockées sur un
support lisible par ordinateur, tangible et non transi-
toire, le système de traitement de données étant con-
figuré pour effectuer des opérations consistant à :

recevoir (602) une requête SQL, la requête SQL
comprenant un identifiant associé à une res-
source externe au système de traitement de
données;
générer (604) un programme informatique basé
sur la requête SQL, y compris
identifier une source de données basée sur la
requête SQL ;
identifier un système d’exécution autre qu’un
système gérant une base de données
relationnelle ;
générer une demande auprès d’un planificateur
de requêtes sur la base de la requête ;
fournir la demande au planificateur de
requêtes ;
recevoir un plan de requête généré par le pla-
nificateur de requêtes en fonction de la deman-
de, le plan de requête comprenant une descrip-
tion d’une ou de plusieurs étapes à exécuter par
un système gérant une base de données
relationnelle ;
générer une structure de données présentant
un exemple de graphique de flux de données
comprenant :

un premier noeud qui représente au moins
une opération à exécuter,
le premier noeud étant associé à des infor-
mations utilisables par un système d’exé-
cution pour appeler un code de programme
exécutable afin d’effectuer l’opération,
le premier noeud étant associé à des infor-
mations utilisables par un système d’exé-
cution pour mettre des données à la dispo-
sition du code de programme, et
l’opération étant choisie en fonction d’une

37 38

EP 3 259 686 B1

21

5

10

15

20

25

30

35

40

45

50

55

étape décrite par le plan de requête, et
au moins un lien qui représente des don-
nées de sortie d’une opération du premier
noeud étant fourni en tant que données
d’entrée à une opération d’un second noeud
du graphe de flux de données ;
identifier (614) des données de configura-
tion associées à la ressource, les données
de configuration spécifiant au moins une va-
leur utilisée pour communiquer avec la
ressource ; et
exécuter (604) le programme informatique,
en fonction des données de configuration,
l’exécution du programme informatique
provoquant les étapes consistant à :

transmettre (622) une ou plusieurs ins-
tructions à la ressource, les instructions
définissant des opérations autres que
les opérations de la requête SQL, et
recevoir des données (624) de la res-
source en réponse aux instructions.

17. Dispositif de stockage non transitoire, lisible par or-
dinateur, stockant des instructions pour permettre à
un système de traitement de données d’exécuter un
programme informatique sur la base d’une requête
exprimée conformément à un langage de requête
applicable à une base de données relationnelle, le
programme informatique étant exécuté sur la base
au moins en partie de données stockées dans un
support lisible par ordinateur, tangible et non transi-
toire, les instructions amenant le système de traite-
ment de données à mettre en oeuvre le procédé se-
lon l’une quelconque des revendications 1 à 15.

39 40

EP 3 259 686 B1

22

EP 3 259 686 B1

23

EP 3 259 686 B1

24

EP 3 259 686 B1

25

EP 3 259 686 B1

26

EP 3 259 686 B1

27

EP 3 259 686 B1

28

EP 3 259 686 B1

29

EP 3 259 686 B1

30

EP 3 259 686 B1

31

EP 3 259 686 B1

32

EP 3 259 686 B1

33

EP 3 259 686 B1

34

EP 3 259 686 B1

35

EP 3 259 686 B1

36

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 2009055370 A [0003]
• US 20010011371 A [0004]
• US 20070011668 A [0048]

• US 5966072 A [0048]
• US 20110179014 A1 [0048]
• US 20120284255 A1 [0048]

Non-patent literature cited in the description

• ALEX KRIEGEL ; BORIS TRUKHNOV. SQL Bible.
07 April 2008 [0027]

	BIB
	DES

