PROCEDE ET DISPOSITIF DE MESURE D'UNE ACTIVITÉ ENZYMATIQUE DANS UN FLUIDE BIOLOGIQUE.

L'invention concerne un procédé et un dispositif pour mesurer une activité enzymatique dans un fluide biologique. Le procédé comprend les opérations suivantes: a) fournir un support présentant une surface conductrice sur laquelle est immobilisé un substrat spécifique de l'activité enzymatique à mesurer, le substrat comportant un résidu électron actif; b) faire réagir un échantillon du fluide biologique avec le substrat de manière à provoquer une réaction enzymatique engendrant un produit électron actif; c) détecter la quantité du produit électron actif par une mesure ampérométrique au moyen du support en contact avec le milieu contenant l'enzyme. Application notamment à la mesure d'activités enzymatiques liées à la coagulation du sang.
Procédé et dispositif de mesure d'une activité enzymatique dans un fluide biologique

L'invention se rapporte au domaine des analyses biologiques et elle concerne plus particulièrement un procédé et un dispositif pour la mesure d'une activité enzymatique dans un fluide biologique, notamment dans du sang total.

La détermination d'activités enzymatiques données, dans certains fluides biologiques, revêt une importance particulière pour le diagnostic et le traitement de certaines maladies.

C'est le cas en particulier de la détermination de différentes activités enzymatiques liées à la coagulation du sang total. En effet, la détermination de ces activités enzymatiques pose des problèmes particuliers lorsque le fluide biologique considéré est trouble et/ou coloré et peut donc donner lieu à des difficultés lors d'analyses par voie optique.

Dans le cas du sang total, qui est un fluide trouble et coloré, il est certes possible d'en extraire le plasma à des fins d'analyse ultérieure. Toutefois, la préparation du plasma nécessite un certain nombre d'étapes pré-analytiques et est en outre une source d'erreurs potentielles.

On connaît déjà d'après le brevet US 4 304 853 aux noms de Nigretto et Jozefowicz, un procédé de dosage des protéases et anti-protéases des systèmes de la coagulation.

Ce brevet décrit plus particulièrement un procédé de dosage des protéases et des anti-protéases, et notamment des protéases et anti-protéases des systèmes de la coagulation et du complément. Ce procédé consiste à faire réagir l'enzyme à doser sur un substrat électro-chimiquement neutre mais qui fournit après hydrolyse par l'enzyme un produit d'hydrolyse susceptible d'être soit oxydé, soit réduit électro-chimiquement dans le domaine d'électro-activité du système, ce produit étant ensuite déterminé par ampérométrie à un pH compris entre 6 et 10.

Le dosage de l'enzyme s'effectue ici par une mesure électrique particulière, définie dans le brevet.

Un exemple particulier du substrat utilisé est le chlorure de benzoyl-D,L-arginyl-p-aminodiphenylamide. La réaction enzymatique permet alors de libérer l'amine correspondante, à savoir la p-aminodiphenylamine, encore appelée pADA, par abréviation.
Toutefois, ce procédé connu de dosage et mesure des protéases et anti-protéases de la coagulation s'effectue seulement en milieu homogène, c'est-à-dire en solution.

Le brevet EP 1 031 830, au nom de la société ASULAB, reprend en grande partie le principe de capteur électrochimique du brevet US 4 304 853 mentionné précédemment.

ASULAB propose de mesurer le temps de prothrombine en mesurant l'activité électrique générée par une réaction enzymatique avec un substrat électrogène formé par un groupe chargé qui peut être coupé de sa chaîne par la thrombine. La surface sur laquelle le substrat se fixe est une couche de platine ou d'argent.

Comme dans le cas du brevet US 4 304 853, la réaction s'effectue en milieu homogène, c'est-à-dire en solution.

La publication WO 01/63271, au nom de ROCHE DIAGNOSTICS, reprend l'idée d'utiliser une mesure électrochimique pour la mesure de la coagulation. Ce brevet fait état d'une réaction en milieu homogène et utilise un réactif pour la mise en évidence de la thrombine, qui n'est pas fixé sur un support solide. Le dispositif décrit comprend des électrodes de mesure en palladium. Toutefois, cette publication ne mentionne pas explicitement la mesure de facteurs de coagulation.

Le brevet US 6 495 336 de la société PENTAPHARM décrit des produits permettant une mesure électrochimique de l'activité des protéines de la coagulation, et plus précisément l'activité de la thrombine. Le brevet revendique une réaction dans un milieu homogène en présence d'électrodes d'or ou de platine, le principe de mesure s'apparentant à la technologie décrite dans le brevet US 4 304 853 mentionné plus haut.

Le publication WO 01/36666 de la société I-STAT concerne un appareillage pour la mesure de coagulation en utilisant un capteur électrochimique. L'appareillage utilise un réactif pour déclencher une réaction de coagulation. Des capteurs mesurent alors directement l'activité enzymatique responsable de la coagulation.

Là aussi, la réaction décrite dans le brevet est une réaction en milieu homogène, c'est-à-dire en solution.

L'invention a notamment pour but d'améliorer la situation en proposant un nouveau procédé et un nouveau dispositif pour la mesure d'une activité enzymatique dans un fluide biologique, qui permet d'éviter les inconvénients de la technique antérieure.
C'est en particulier un but de l'invention de procurer un tel procédé et un tel dispositif qui conviennent à la mesure de différentes activités enzymatiques dans des fluides biologiques de natures diverses, et en particulier dans des fluides biologiques troubles et/ou colorés, comme c'est le cas du sang total.

C'est aussi un but de l'invention de procurer un tel procédé et un tel dispositif qui conviennent à la mesure d'activités enzymatiques présentes dans le sang, et notamment d'activités enzymatiques liées à la coagulation du sang.

C'est encore un but de l'invention de procurer un tel procédé et un tel dispositif qui permettent de conduire une réaction dans différents types de milieux, non seulement en milieux homogènes, mais aussi en milieux hétérogènes.

L'invention concerne plus particulièrement un procédé de mesure d'une activité enzymatique dans un fluide biologique, qui comprend les opérations suivantes :

a) fournir un support présentant une surface conductrice sur laquelle est immobilisé un substrat spécifique de l'activité enzymatique à mesurer, le substrat comportant un résidu électroactif ;

b) faire réagir un échantillon du fluide biologique avec le substrat de manière à provoquer une réaction enzymatique engendrant un produit électroactif révélé par hydrolyse enzymatique ;

c) détecter la quantité du produit électroactif par une mesure ampérométrique au moyen du support en contact avec le milieu contenant l'enzyme.

L'invention permet ainsi de révéler un produit électroactif servant de marqueur et qui peut être libéré du support ou rester attaché au support, dont la quantité fournit une mesure directe de l'activité enzymatique par ampérométrie.

Dans la présente demande, les termes mentionnés ci-dessous ont les significations indiquées :

- ampérométrique : mesure d'un courant généra par une excitation de potentiel, soit instantanée, soit dépendant du temps ;

- substrat : molécule reconnue et transformée par l'enzyme ;
- marqueur : le produit d'une réaction enzymatique qui est un groupe électro-actif détectable par une électrode ;

- électro-actif : susceptible d'être oxydé ou réduit ;

- diffusant : se déplaçant sous l'influence d'un gradient de concentration ;

- volume réduit : micro ou submicrovolumétrique (typiquement inférieur à 100 microlitres) ;

- électrode de travail : conducteur, siège de la réaction électrochimique ou capacitif donnant lieu à la mesure.

Dans une forme de réalisation préférée de l'invention, le substrat est déposé sous la forme d'au moins une couche monomoléculaire de molécules répondant à l'une des formules générales I et II suivantes :

\[S-C_n-(E)-P-X \] \hspace{1cm} (I)
\[S-C_n-(E)-X-P \] \hspace{1cm} (II)

dans lesquelles :

- \(S \) désigne un groupement chimique propre à former une liaison avec la surface conductrice,
- \(C_n \) désigne une chaîne aliphatique méthylénique constituée de \(n \) atomes de carbone,
- \(E \) désigne un espaceur hydrophile non électroactif du type polyéthylène glycol, présent facultativement pour compléter la chaîne \(C_n \),
- \(P \) désigne une séquence polypeptidique spécifique de l'activité enzymatique à mesurer, et
- \(X \) désigne un résidu électroactif propre à être oxydé ou réduit dans un domaine de potentiel accessible dans le milieu.

Dans les formules I et II, \(n \) est nombre entier compris entre 9 et 18.

Ainsi, la surface conductrice du support est modifiée par dépôt d'une couche monomoléculaire ou de strates monomoléculaires de molécules répondant à l'une ou l'autre des formules générales I et II mentionnées précédemment. Ces molécules ont pour propriété de s'auto-assembler spontanément sur la surface conductrice. Elles sont aussi appelées SAM, abréviation de l'expression anglo-saxonne "SELF-ASSEMBLED MONOLAYERS" qui signifie "monocouches auto-assemblées".

L'espaceur hydrophile \(E \) est facultatif. Son insertion dans la séquence de la formule I ou de la formule II est utile pour augmenter l'hydrophilie superficielle du substrat, côté de la solution, diminuant ainsi d'éventuels phénomènes de répulsion à courte distance, d'adsorption irréversible ou de dénaturation de l'enzyme lors de son approche vers la surface.
Dans une forme de réalisation préférentielle, dans les formules I et II, S désigne un
groupement thiol, Cₙ désigne une chaîne carbonée hydrophobe comprenant n enchaînements
hydrocarbonés, en particulier méthylène, et supportant un espaceur hydrophile E, P désigne
une séquence peptidique, à au moins deux acides aminés d’un substrat spécifique de l’activité
enzymatique à mesurer et X est une amine aromatique, en particulier le para-
aminodiphénylamide.

S désigne ainsi un groupement thiol, encore appelé sulphydryle, relié à une chaîne carbonée
comprenant n enchaînements méthyliène (n est typiquement de l’ordre de dix) et supportant
un espaceur hydrophile E. Celui-ci est de préférence du type éthylène glycol.

P désigne une séquence peptidique ayant au moins deux acides aminés, typiquement entre
deux et cinq acides aminés. Ce peptide est choisi pour son caractère de spécificité vis-à-vis
de l’enzyme à mesurer, par exemple de la thrombine, dans le cas de la mesure d’une activité
liée à la coagulation du sang.

X est avantageusement une amine aromatique, en particulier le para-aminodiphénylamide.
L’hydrolyse enzymatique permet de révéler l’amine correspondante, à savoir la p-amine
diphénylamine. Cette amine a été choisie pour sa hydrophobie appréciable. Cette propriété
favorise la sensibilité de la détection dans la mesure où elle augmente le coefficient de
partage : concentration de l’amine libre dans le substrat/concentration de l’amine libre en
solution. En outre, l’amine est oxydée aux faibles potentiels, ce qui la rend aisément
détectable en présence d’interférents également oxydables, tels que l’acide ascorbique.

Comme déjà indiqué, l’invention trouve un intérêt tout particulier dans le cas où le fluide
biologique est un fluide trouble et/ou coloré, comme c’est le cas du sang total.

A ce titre, l’activité enzymatique à mesurer peut être celle d’un facteur de coagulation ou du
complément du sang total, en particulier d’un facteur de coagulation tel que la thrombine.
En liaison avec la coagulation, l’activité enzymatique peut servir à doser un inhibiteur ou un
cofacteur de la coagulation du sang, endogène ou exogène, sachant que les facteurs et les
inhibiteurs peuvent être physiologiques ou exogènes. Comme inhibiteur exogène, on peut
citer en particulier l’héparine, substance administrée aux patients pour inhiber la coagulation
du sang.

Pour la réaction de l’opération b), on peut déposer directement une goutte de l’échantillon,
en particulier de sang total, sur le support sur lequel est immobilisé le substrat. Dans ces
conditions, le dépôt d’une faible quantité du fluide, par exemple d’une simple goutte de sang,
sur le support et le substrat, constituant un capteur actif, lieu de la mesure, permet une détection rapide et directe des activités enzymatiques recherchées.

S'agissant de mesures liées à la coagulation du sang total, l'invention permet d'éviter toutes les étapes pré-analytiques conventionnelles nécessaires à la préparation du plasma, ce qui permet de gagner du temps et d'éliminer des sources d'erreurs potentielles.

Ainsi, dans cette application particulière, l'invention permet de mesurer une activité enzymatique à partir d'un échantillon de faible volume du fluide biologique.

Lorsque l'échantillon de fluide, par exemple la goutte de sang, entre en contact avec le substrat, l'enzyme que l'on veut quantifier vient réagir avec le substrat immobilisé. Cette réaction enzymatique engendre un produit électro-actif détecté par l'électrode de mesure intégrée dans le capteur. L'amplitude du signal mesure est proportionnelle à la quantité de produit formée lors de la réaction, ce qui permet de connaître l'activité du facteur de coagulation.

Ce système de mesure peut être utilisé directement par le patient ou par l'intermédiaire d'un personnel hospitalier.

L'un des avantages de l'invention est de permettre une mesure très rapide d'activités enzymatiques, par exemple de facteurs de la coagulation ou d'inhibiteurs de la coagulation. L'invention trouve donc une application particulière dans les salles d'urgence comme outil de diagnostic rapide, ou chez le patient, afin de mesure l'évolution d'une activité enzymatique déterminée.

La surface conductrice est avantageusement une couche d'un métal susceptible d'immobiliser les molécules covalentes (I) ou (II), en particulier l'or. De préférence, il s'agit d'une couche d'or déposée sur un support à base de silicium.

L'opération de détection s'effectue avec des électrodes qui comprennent typiquement une électrode de travail, une contre-électrode et éventuellement une électrode de référence. L'électrode de travail est avantageusement constituée par le support lui-même. La contre-électrode et l'électrode de référence peuvent être distinctes ; toutefois, il est avantageux que la contre-électrode et l'électrode de référence soient confondues, la contre-électrode servant alors de référence de potentiel.

L'opération de détection comprend avantageusement la mesure de l'amplitude d'un signal proportionnel à la quantité de produit électro-actif révélé lors de la réaction enzymatique.
Sous un autre aspect, l'invention concerne un dispositif de mesure d'une activité enzymatique dans un fluide biologique, pouvant être utilisé pour la mise en œuvre du procédé défini précédemment.

Ce dispositif comprend essentiellement :

- un support présentant une surface conductrice ;
- un substrat spécifique de l'activité enzymatique à mesurer et comportant un résidu électroactif, le substrat étant immobilisé sur la surface conductrice ;
- des moyens de détection par mesure électrochimique, en particulier ampérométrique.

Dans ce dispositif, le substrat est avantageusement déposé sous la forme d'au moins une couche monomoléculaire de molécules répondant à l'une ou l'autre des formules générales I et II telles que mentionnées plus haut. Par conséquent, les caractéristiques définies précédemment pour le procédé s'appliquent aussi au dispositif.

Dans une forme de réalisation de l'invention, les moyens de détection ampérométrique comprennent un potentiostat propre à délivrer entre les électrodes de travail et l'électrode de référence une différence de potentiel périodique et ajustable au domaine de détection du marqueur.

Dans la description qui suit, faite à titre d'exemple, on se réfère aux dessins annexés, sur lesquels :

- la figure 1 est la formule développée d'un exemple d'un substrat selon l'invention ;
- la figure 2 représente la formule développée de la séquence peptidique du substrat de la figure 1 ;
- la figure 3 est une vue en perspective d'une électrode selon l'invention ;
- la figure 4 est une vue en perspective d'une cellule de mesure utilisée dans l'invention ;
- la figure 5 représente la détection ampérométrique de la p-aminodiphénylamine (pADA) en solution par une surface d'or modifiée par une monocouche du substrat dont la formule est représentée à la figure 1 ;
- la figure 6 représente la variation progressive d'un courant voltamétrique enregistré pendant une cinétique d'hydrolyse en présence de 80 mU/ml de trypsine ; et
la figure 7 est un graphique montrant l'évolution des courants de la figure 6 en fonction du temps.

L'invention sera décrite à l'aide de l'exemple suivant.

Exemple

L'exemple décrit se réfère au dosage de la trypsine, à des fins de validation du procédé et du dispositif de l'invention. La trypsine est une protéase au même titre que les enzymes de l'hémostase. La trypsine est une protéase au même titre que les enzymes de l'hémostase.

Le système utilisé comprend une surface conductrice, de préférence en un métal noble tel que l'or, modifiée par dépôt d'une couche monomoléculaire ou de straties monomoléculaires de molécules répondant à l'une ou l'autre des formules générales I et II telles que mentionnées précédemment.

Dans ces formules, S est un groupement thiol (encore appelé sulfhydryle), C_a est une chaîne carbonée comprenant onze enchaînements méthylène, E est un espaceur hydrophile du type hexa-éthylène glycol, P est une séquence tripeptidique d'un substrat hydrolysé par la trypsine (dont la formule est représentée sur la figure 2) et X est le para aminodiphénylamide.

L'amine qui sera libérée par hydrolyse enzymatique, à savoir la p-aminodiphénylamine, a été choisie en raison de son hydrophobie appréciable, comme mentionné plus haut. Cette amine est oxydée à de faibles potentiels, ce qui la rend aisément détectable en présence d'interférent également oxydables, comme l'acide ascorbique.

On décrira maintenant la préparation de la surface. Cette surface est une barrette rectangulaire 1 (voir la figure 3) présentant en surface une couche d'or 2 déposée sur une couche de titane 3, elle-même déposée sur une barrette 4 à base de silicium.

Typiquement, la couche d'or a une épaisseur de 3000 Angström, la couche de titane de 300 Angström et la barrette de silicium de 500 micromètres. L'ensemble est recuit vingt minutes à 250°C sous vide. Le processus est réalisé selon les techniques habituelles d'élaboration des supports d'information en micro-informatique ou en micro-électronique. Il est cependant nécessaire de prétraiter l'or pour optimiser la formation d'une monocouche auto-assemblée (SAM) présentant les propriétés requises. La surface, manipulée avec des gants protecteurs non paraffinés, est soigneusement dégraissée à l'acétone, puis à l'éthanol, puis rincée à l'eau ultra pure, à nouveau à l'éthanol et enfin séchée sous courant d'azote.
Elle est ensuite utilisée comme électrode de travail dans un montage électrochimique classique à trois électrodes (électrode de travail, contre-électrode et électrode de référence) et immergée dans une solution d'eau pure contenant 0,5 % en volume d'acide sulfurique.

On décrira maintenant les opérations de prétraitement. Les méthodes antérieures de préparation des surfaces destinées à la formation de monocouche auto-assemblées (SAM) font appel soit à l'électrochimie, soit à des méthodes physiques sous vide. Un état de surface reproductible et contrôlé a pu être obtenu selon la procédure électrochimique. Elle consiste à imposer à la barrette un nombre de cyclo-voltamogrammes entre 0,0 et 1,5 V/référence Ag/AgCl à la vitesse de balayage de 0,1 V/s suffisante pour obtenir une stabilisation de la réponse. Ceci nécessite environ trente cycles. La courbe i/E (courant/potentiel) met alors en évidence une série de pics attribuée à la formation d'oxydes d'or dans la zone 1,2-1,5 V suivie, après inversion du potentiel, d'un pic étroit de la réduction de ces oxydes vers 0,8 V. L'intégration du pic de réduction permet d'évaluer la surface effective de l'électrode et donc, par comparaison avec la surface géométrique, la rugosité. L'électrode est retirée de la solution à un potentiel final de 0,0 V laissant l'or exempt d'oxydes préjudiciables à la formation de SAM, comme décrit dans la littérature.

Les expériences sont conduites avec un potentiostat EG & G Princeton Applied Research modèle 273 A, équipé d'un logiciel ECHEM ou Power Suit EG & G.

On décrira maintenant le dépôt de la monocouche assemblée (SAM). Après rinçage vigoureux avec de l'eau ultra pure, la barrette est abandonnée sous agitation et à température ambiante pendant au moins douze heures dans 10 ml d'éthanol contenant un mélange homogène de substrat électrogène et de mercapto-hexanol couplé à une chaîne de polyéthylène glycol en C₃ dans une proportion comprise entre 0,1 et 10 % respectivement calculée pour obtenir une concentration totale de 0,1 mM. Le mercapto-hexanol joue le rôle de diluant du substrat de la figure 1 sur la surface. Des résultats préliminaires négatifs conduits avec une SAM exempte de thiol de dilution laissent à penser que la dilution superficielle du substrat électrogène dégage une meilleure accessibilité de l'enzyme au substrat et rendent les conditions physico-chimiques locales plus favorables à l'accomplissement de l'hydrolyse enzymatique. D'autres études conduites au laboratoire et les indications recueillies dans la littérature pour des molécules de structure comparable indiquent qu'une durée de modification de douze heures est suffisante pour obtenir une saturation de la surface par la SAM. La densité de la SAM immobilisée a été évaluée par la technique de la micro-balance à quartz (QCM). Elle atteint environ 4 H 10¹⁰ mol/cm², en accord avec les données publiées sur des analogues.

Après dépôt, la caractérisation de la SAM peut être effectuée avec différentes techniques:
- désorption électrochimique : cette méthode consiste à soumettre la surface modifiée à un balayage de potentiel réducteur de 0 à -1,4 V en milieu KOH 0,5 M à 0,05 V/s. Dans ces conditions, chaque ensemble de liaisons (Au-S) présent à la surface subit une réduction électrochimique qui aboutit à la désorption de la molécule organique. Cette réaction consomme des électrons. Il apparaît donc un pic de désorption dont le potentiel est caractéristique de chaque thiol. L'intégration du pic donne la densité superficielle du thiol.

- oxydation électrochimique : le substrat électrogène immobilisé présente un signal d'oxydation situé au-delà de 0,4 V correspondant à l'oxydation de X couplé au substrat. L'intégration de la réponse donne la densité superficielle du thiol.

- pondérée : une SAM déposée sur l'or supporté par un cristal de quartz se prête à une pesée par la technique de QCM.

- perméation au moyen de marqueurs redox réversibles. La cinétique de la modification progressive de l'or par la SAM est suivie par l'évolution du signal cyclo-voltamétrique de couples redox simples connus pour donner un signal réversible ou quasi-réversible, tels le couple Fe(CN)$_6^{3-/4-}$ (hexacyanoferate III/II) ou Ru(CN)$_6^{3+/2+}$ (hexacyanoruthénate III/II). Sur or non modifié, la réversibilité des signaux est caractérisée par une séparation des pics anodique et cathodique d'oxydo-réduction de l'ordre de 65-80 mV en milieu Tris 0,15 M/KCl 0,5 M pH 7,4. Au fur et à mesure de la formation de la SAM, l'intensité des courants anodique et cathodique faiblit jusqu'à donner une variation exponentielle. Le recours à différentes théories (théories Amatore-Teyssier-Savéant ou de Finklea) permet d'évaluer la densité des défauts responsables de la persistance du signal voltamétrique d'oxydoréduction des marqueurs.

- capacitance : le courant résiduel obtenu en la présence d'une SAM abaissé le courant résiduel de la surface nue du fait de la capacité de la couche moléculaire auto-assemblée. La capacité typique de la double couche nue, de l'ordre de 20μF/cm2 sur un or nu descend à 2 à 6μF/cm2 après modification. Dans la zone 0,0-0,35 V, la capacité de la SAM du support ayant la formule de la figure 1 est peu sensible au potentiel.

L'analyse électrochimique est réalisée au moyen d'un dispositif tel que représenté à la figure 4. L'analyse électrochimique de l'activité de la trypsinne est conduite dans une cuve cylindrique 10 en polytétrafluoréthylène contenant 5ml de tampon Tris 0,15 M/KCl 0,5 M à pH 7,4 en utilisant la barrette 1 comme électrode de travail, un fil de platine 11 comme contre-électrode et une électrode Ag/AgCl 12 comme électrode de référence insérée latéralement dans la cuve, en ne laissant au contact de la solution que l'embout pour minimiser les adsorptions de protéines sur le verre. Il est aussi possible de ne mettre en jeu
que deux électrodes : l'électrode de travail et un fil d'argent qui joue alors le rôle de pseudo-référence, à condition de veiller à suffisamment séparer les deux électrodes pour que les phénomènes qui se déroulent sur la contre-électrode n'interfèrent pas avec ceux qui se déroulent sur l'électrode de travail.

La surface de la barrette, placée horizontalement sous la cuve, est accessible à la solution par un regard circulaire 13 pratiqué à travers le fond de la cuve. L'étanchéité est assurée par pression mécanique exercée par un système de serrage mécanique 14 et par interposition d'un joint torique 15 de polymère résistant aux solvants, entre la cuve et la barrette.

On décrira maintenant le signal électrochimique.

La réponse de la surface modifiée en présence de trypsine est obtenue par application d'un train de signaux voltamétriques triangulaires entre 0,0 et 0,35 V à la vitesse de 0,1 V/s et périodiquement à une fréquence qui dépend de la concentration d'enzyme (entre 10 et 300s).

Le potentiel maximum ne doit pas dépasser 0,35 V pour ne pas risquer d'oxygener le substrat non hydrolysé. Cette limite vise aussi à ne pas affecter l'intégrité de la SAM. Le bruit de fond du système est d'abord enregistré dans la solution exempte de trypsine. Ceci donne des voltamgrammes superposés dont les courants seront retranchés de ceux obtenus en présence d'enzyme. Puis, dès l'introduction de l'enzyme, on trace le premier voltamogramme de la cinétique, donnant le courant à t = 0.

L'enzyme nécessaire pour obtenir une concentration finale de 80 mU BAEE/ml (BAEE = basyl argine ethyl ester) est introduite au temps t₀, de la cinétique. Après une brève agitation de la solution pour homogénéiser la concentration de l'enzyme, on observe le développement progressif d'un signal voltamétrique qui se détache du courant résiduel en produisant une croissance du courant dans la zone du potentiel attendue pour l'oxygenation de la pADA libre, vers 0,17 V comme le montre la figure 5. Cette figure montre les variations du courant I en fonction du potentiel E en mV pour différentes concentrations de la pADA libre.

Le courant produit résulte de l'oxygenation de l'amine accumulée à proximité de la surface (dans la solution et probablement, du fait de l'hydrophobie non négligeable de la pADA, dans la SAM), pendant le temps qui sépare deux balayages successifs de potentiels, comme montré à la figure 6.

Après quelques cycles de potentiels, le signal se stabilise, indiquant que la cinétique est arrivée à son terme. La pente de la courbe i = f(temps) est proportionnelle à l'activité de l'enzyme. L'intensité maximale obtenue est proportionnelle à la quantité de substrat accessible à l'enzyme sur la surface, comme le montre la figure 7.
Le procédé et le dispositif ci-dessus peuvent être appliqués pour mesurer d'autres activités enzymatiques dans un fluide biologique, notamment des activités enzymatiques liées à la coagulation du sang total.
Revendications

1. Procédé de mesure d'uneactivité enzymatiquedans un fluidesbiologique, caractérisé en ce qu'il comprend les opérations suivantes :

a) fournir un support présentant une surface conductrice sur laquelle est immobilisé un substrat spécifique de l'activité enzymatique à mesurer, le substrat comportant un résidu électroactif ;

b) faire réagir un échantillon du fluides biologique avec le substrat de manière à provoquer une réaction enzymatique engendrant un produit électroactif ;

c) détecter la quantité du produit électroactif par une mesure ampérométrique au moyen du support en contact avec le milieu contenant l'enzyme.

2. Procédé selon la revendication 1, caractérisé en ce que le substrat est déposé sous la forme d'au moins une couche monomoléculaire de molécules répondant à l'une des formules générales I et II suivantes :

\[S-C_n-(E)-P-X \] (I)
\[S-C_n-(E)-X-P \] (II)

dans lesquelles :

- S désigne un groupement chimique propre à réagir avec la surface conductrice,
- C\(_n\) désigne une chaîne aliphatique méthylenique constituée de n atomes de carbone,
- E désigne un espaceur hydrophile non électroactif du type polyéthylène glycol, présent facultativement pour compléter la chaîne C\(_n\),
- P désigne une séquence polypeptidique spécifique de l'activité enzymatique à mesurer, et
- X désigne un résidu électroactif propre à être oxydé ou réduit dans un domaine de potentiel accessible dans le milieu, après l'hydrolyse enzymatique.

3. Procédé selon la revendication 2, caractérisé en ce que, dans les formules I et II, S désigne un groupement thiol, C\(_n\) désigne une chaîne carbonée hydrophobe comprenant n enchaînements hydrocarbonés, en particulier méthylène, et supportant un espaceur hydrophile E, P désigne une séquence peptidique, à au moins deux acides aminés d'un substrat spécifique de l'activité enzymatique à mesurer et X est un amide aromatique, en particulier le para-aminodiphénylamide.

4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le fluides biologique est un fluidé pouvant être trouble et/ou coloré.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le fluide biologique est du sang total.

6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'activité enzymatique est celle d'un facteur de coagulation ou du complément du sang total, en particulier d'un facteur de coagulation tel que la thrombine.

7. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'activité enzymatique sert à doser un inhibiteur ou un cofacteur de la coagulation du sang, endogène ou exogène.

8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que, dans l'opération b), on dépose directement une goutte de l'échantillon, en particulier de sang total, sur le support sur lequel est immobilisé le substrat.

9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que la surface conductrice est une couche d'un métal susceptible d'immobiliser les couches covalentes (I) ou (II), en particulier l'or.

10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que l'opération de détection comprend l'utilisation d'électrodes de mesure ampérométrique comprenant une électrode de travail, une contre-electrode et éventuellement une électrode de référence.

11. Procédé selon la revendication 10, caractérisé en ce que l'électrode de travail est constituée du support.

12. Procédé selon l'une des revendications 10 et 11, caractérisé en ce que la contre-electrode et l'électrode de référence sont confondues.

13. Procédé selon l'une des revendications 1 à 12, caractérisé en ce que l'opération de détection comprend la mesure de l'amplitude d'un signal proportionnel à la quantité de produit électroactif révélé lors de la réaction enzymatique.

14. Dispositif de mesure d'une activité enzymatique dans un fluide biologique, pour la mise en œuvre du procédé selon l'une des revendications 1 à 13, caractérisé en ce qu'il comprend :

- un support présentant une surface conductrice ;
- un substrat spécifique de l'activité enzymatique à mesurer et comportant un résidu électroactif, le substrat étant immobilisé sur la surface conductrice ;
- des moyens de détection par mesure électrochimique, en particulier ampérométrique.

15. Dispositif selon la revendication 14, caractérisé en ce que le substrat est déposé sous la forme d’au moins une couche monomoléculaire de molécules répondant à l’une des formules générales I et II suivantes:

\[
\begin{align*}
S-C_n(E)-P-X & \quad (I) \\
S-C_n(E)-X-P & \quad (II)
\end{align*}
\]
dans lesquelles:

- S désigne un groupement chimique propre à réagir avec la surface conductrice,
- \(C_n \) désigne une chaîne aliphatique méthylénique constituée de n atomes de carbone,
- E désigne un espaceur hydrophile non électroactif du type polyéthylène glycol, présent facultativement pour compléter la chaîne \(C_n \),
- P désigne une séquence polypeptidique spécifique de l'activité enzymatique à mesurer, et
- X désigne un résidu électroactif propre à être oxydé ou réduit dans un domaine de potentiel accessible dans le milieu, après l'hydrolyse enzymatique.

16. Dispositif selon la revendication 15, caractérisé en ce que, dans les formules I et II, \(S \) désigne un groupement thiol, \(C_n \) désigne une chaîne carbonée hydrophobe comprenant n enchaînements hydrocarbonés, en particulier méthylène, et supportant un espaceur hydrophile \(E \), \(P \) désigne une séquence peptidique, à au moins deux acides aminés, d’un substrat spécifique de l'activité enzymatique à mesurer et \(X \) est un amide aromatique, en particulier le para-aminodiphénylamine.

17. Dispositif selon l’une des revendications 14 à 16, caractérisé en ce que la surface conductrice est une couche d’un métal noble, en particulier d’or, déposée sur le support.

18. Dispositif selon l’une des revendications 14 à 17, caractérisé en ce que les moyens de détection comprennent des électrodes de mesure ampérométrique comprenant une électrode de travail, une contre-électrode et éventuellement une électrode de référence.

19. Dispositif selon la revendication 18, caractérisé en ce que l’électrode de travail est constituée par le support.

20. Dispositif selon l’une des revendications 18 et 19, caractérisé en ce que la contre-électrode et l’électrode de référence sont confondues.

21. Dispositif selon l’une des revendications 18 à 20, caractérisé en ce que les moyens de détection ampérométrique comprennent un potentiostat propre à délivrer entre les
électrodes de travail et l'électrode de référence une différence de potentiel périodique et ajustable au domaine de détection du marqueur.

22. Dispositif selon l'une des revendications 14 à 21, caractérisé en ce qu'il comprend une série de substrats spécifiques respectivement d'enzymes différentes, permettant ainsi une analyse simultanée et l'établissement d'un profil diagnostique.
FIG. 5

FIG. 6

FIG. 7
DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 1 031 830 A (ASULAB S.A) 30 août 2000 (2000-08-30) * page 5, ligne 4 - ligne 15 * * page 6, ligne 6 - ligne 7 *</td>
<td>1-22</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>WO 01/63271 A (ROCHE DIAGNOSTICS GMBH; UNKRIG, VOLKER; MARQUANT, MICHAEL; HINDELANG,) 30 août 2001 (2001-08-30) * page 2, ligne 23 - page 3, ligne 10 * * page 8, ligne 20 - ligne 25 *</td>
<td>1-22</td>
<td></td>
</tr>
</tbody>
</table>

Date d'achèvement de la recherche
1 juin 2005

Examinateur
Jacques, P
La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 01-06-2005.
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française.

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA 2363827 A1</td>
<td>14-09-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1157029 A1</td>
<td>31-08-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002542154 T</td>
<td>28-11-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10-12-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1849700 A</td>
<td>08-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2298994 A1</td>
<td>24-08-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 2000241384 A1</td>
<td>08-09-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6352630 B1</td>
<td>20000862 A1</td>
</tr>
<tr>
<td>WO 0163271 A 30-08-2001</td>
<td>DE 10016775 A1</td>
<td>AT 278186 T</td>
<td>30-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 3378501 A</td>
<td>15-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2400651 A1</td>
<td>03-09-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 50103875 D1</td>
<td>30-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 10163271 A1</td>
<td>04-11-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1261861 A1</td>
<td>30-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003524184 T</td>
<td>04-12-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003146113 A1</td>
<td>12-08-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>07-08-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1149019 A1</td>
<td>19-06-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3061860 D1</td>
<td>28-06-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1261556 C</td>
<td>17-03-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 55144899 A</td>
<td>29-10-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 59035598 B</td>
<td>04-04-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12-11-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29-08-1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003515111 T</td>
<td>28-08-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0136666 A1</td>
<td>22-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6750053 B1</td>
<td>25-05-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004175296 A1</td>
<td>15-06-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>09-09-2004</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82