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(57) Abstract: A method of parsing a stream of tokens representative of language usage is provided in one embodiment. The
method includes: a. storing a set of packages, each package being representative of a phrase-structure tree, each tree derived from
a rule-based grammar; and b. parsing the stream using the packages to establish a structural description for the stream. In another
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grammar, wherein a subset of the packages includes a set of relational descriptions, and b. parsing the stream using the packages
establish a structural description and a relational description of the stream.
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Grammar-Package Driven Parsing

Technical Field

The present invention relates to syntactic parsers and their components for

use in digital computers.

Background Art

Syntactic parsers, driven by a set of syntactic rules, analyze sentences into
syntactic structures called phrase structure trees. It is known in the prior art of
corpus-based parsers to employ phrase structure trees and their statistics. The trees
used for parsing in this approach are derived from a manually annotated corpus of
sentences. If the corpus is representative of linguistic usage such an approach helps
to assure a relatively thorough set of trees for purposes of parsing. On the other
hand, there is a substantial computational overhead associated with this approach
due to the substantial complexity of language analyzed in this fashion.

References concerning grammatical parsers and related subject matter
include the following, which are hereby incorporated herein by reference in their
entirety:

Abney, S., Partial parsing via finite-sate cascades, ESSLLI'96 Robust Parsing
Workshop, 1996

Aho, AV.and J. D. Ullman, The Theory Of Parsing , Translation And Compiling,
Prentice Hall, 1972.

Aho, AV, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques And
Tools, Reading MA: Addison-Wesley, 1986.

Bod, R. and R. Scha, Data-Oriented Language Processing: An Overview, Institute
for Logic, Language and Computation, University of Amsterdam, 1996.

Bolc, L, Natural Language Parsing Systems, Springer-Verlag, 1987, Heidelberg.
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Briscoe, J. and J. Carroll, Generalized Probabilistic LR Parsing of Natural
Language with Unification-based Grammar, Computational Linguistics, 1993, vol 19,

no 1, pages 25-59.

Charniak, E., Tree-bank Grammars, CS-96-02, Brown University, 1996.

Charniak, E. Statistical techniques for natural language parsing, Al Magazine,
1997.

Chelba, C. et al., Structure and performance of a dependency language model,
Proceedings of Eurospeech’97, 1997.

Chomsky, N., Lectures on Government and Binding, Foris, 1981.

Chomsky, N., Three Models For Description Of Language, in IRE Transactions
PGIT, 2 113 -114, 1956.

Collins, M. ]., A New Statistical Parser Based On Bigram Lexical Dependencies, in
IRE Transactions PGIT 1956.

Covington, M. A., A Dependency Parser For Variable-Word-Order Languages,
Artificial Intelligence Programs, University of Georgia, 1990.

Earley, J. An Efficient Context-Free Parsing Algorithm, In Processing in Grosz,
B., K. Jones and B. Webber ed. Readings in Natural Language Processing, Morgan
Kaufmann, 1986.

Fraser, N. M., Parsing and Dependency Grammar, UCL Working Papers in
Linguistics 1, 1989.

Hayes, D. C., Dependency Theory: A Formalism And Some Observations,
Language, 1964, 40, 511-525.

Hudson, R., English Word Grammar, Blackwell, 1990, Oxford.

Kaplan, R. M., The Formal Architecture Of Lexical-Functional Grammar, Journal
of Information Science and Engineering, 1989, 5, 305—322. |

Kaplan, R. and ]. Bresnan, Lexical-Functional Grammar: A Formal System For
Grammatical Representation, 173--281, The Mental Representation of Grammatical

Relations, MIT.
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Kay, M., Algorithm Schemata And Data Structures In Syntactic Processing in
Grosz, B., K. Jones and B. Webber ed. Readings in Natural Language Processing,
Morgan Kaufmann, 1986.

Lafferty, I et al., Grammatical trigrams: a probabilistic model of link grammar,
AAAI Fall Symposium on Probabilistic Approaches to Natural Language, 1992.

Magerman, D. M., Natural Language Parsing As Statistical Pattern Recognition,
Department of Computer Science, 1986.

Marcus et al., Building a large annotated corpus of English: the Penn Treebank,
Computational Linguistics, Vol. 19, 1993.

McCord, M. C., A New Version Of Slot Grammar, IBM Research Report RC
14506, IBM Thomas J. Watson Research Centre, 1989

Melcuk, I. A., Dependency Syntax: Theory And Practice, State University Press
of New York, 1988.

Tesniere, L., Elements De Syntaxe Structurale, Klincksieck, 1959.

Tomita, M., Linguistic Sentences And Real Sentences, Proceedings of COLING,
1988.

Tomita, M., Efficient Parsing For Natural Language, Kluwer, 1986

Tomita, M. Current Issues in Parsing Technology, Kluwer, 1991, Boston.

One difficulty of parsing lafge word-count phrases or sentences using a
context free grammar is that as the length of the sentence increases, the number of
possible parses increases dramatically. Because parsing must, by one means or
another, take into account these possible parses, the computational effort in parsing
typically increases exponentially as the input to the parser increases in word count.

Summary of the Invention

In one embodiment of the invention, there is provided a method of parsing a
stream of tokens representative of language usage. The method of this embodiment
includes:

a. storing a set of packages, each package being representative of a
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phrase-structure tree, each tree derived from a rule-based grammar; and
b. parsing the stream using the packages to establish a structural
description for the stream. |

In another embodiment of the invention, there is also provided a method of
parsing a stream of tokens representative of language usage. The method of this
embodiment includes:

a. storing a set of packages, each package being representative of a
phrase structure tree associated with a grammar, wherein a subset of the packages
includes a set of relational descriptions, and

b. parsing the stream using the packages establish a structural
description and a relational description of the stream.

In a further embodiment based on either of the above embodiments, the
grammar further specifies constraints on attribute values, the packages contain
information derived from such constraint, and such information is employed in
parsing the stream using the packages. Alternatively or in addition, packages in the
set are selected to satisfy a desired set of constraints. Also alternatively or in
addition, the set of packages includes a first subset of packages for which the depth
of the corresponding tree is within a desired first range. Also alternatively or in
addition, the set of packages includes a second subset of packages for which the
width of the corresponding tree is within a desired second range. Also alternatively
or in addition, the set of packages includes a third subset of for which the observed
frequency of use in parsing a specific corpus of input streams is within a desired
third range. The first subset is optionally identical to the set; the second subset is
optionally identical to the set; and the third subset is optionally identical to the set.
Also optionally, the grammar is a structure function grammar.

In an embodiment related to the first embodiment described above, each
member of a subset of the packages includes a function template that functionally
describes syntax associated with the phrase structure tree that the member package

represents, and parsing the stream includes evaluating relational content of the

-4-
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stream.

In another embodiment, there is provided a method of parsing a stream of
tokens representative of language usage, and the method of this embodiment
includes:

providing a set of phrase structure definitions, a set of relational structure
definitions, and a set of mappings between them;

using the phrase structure definitions to provide a phrase structure of the
stream; and

using the mappings and the relational structure definitions to process the
resulting phrase structure to arrive at a functional description of the stream.

Optionally the embodiment further includes using the relational structure
definitions to process further the functional description and the stream to arrive at a
further enhanced functional description.

In another embodiment, there is provided a method of computing a phrase
structure description from a given functional description. The method of this
embodiment includes:

providing a set of phrase structure definitions, a set of relational structure
definitions, and a set of mappings between them;

using the mappings and the relational structure definitions to process the
functional description to arrive at a phrase structure description of the stream.

Optionally, the given functional description results from using the relational
structure definitions to parse a stream of tokens.

In yet another embodiment of the invention, there is provided a method of
parsing a stream of tokens representative of language usage, and the method of this
embodiment includes:

providing a set of phrase structure definitions, a set of relational structure
definitions, and a set of mappings between them;

using the relational structure definitions to provide a relational structure of

the stream; and
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using the mappings and the phrase structure definitions to process the
resulting relational structure to arrive at a phrase structure description of the
stream.

Optionally in the above parsing methods, the phrase structure definitions,

5 the set of relational structure definitions, and the set of mappings between them are
pursuant to a structure function grammar.

In accordance with another embodiment of the invention, there is provided a
method of computing a semantic representation of an input stream, and the method
includes:

10 providing a set of semantic interpretation definitions;

parsing the stream in accordance with any of claims 2 and 19 to create a
functional description; and

computing the semantic representation from the functional description using
the semantic interpretation definitions.

15 Brief Description of the Drawings

The foregoing features of the invention will be more readily understood by
reference to the following detailed description, taken with reference to the
accompanying drawings, in which: '

Fig. 1is a diagram illustrating structural and relational descriptions of a

20  sentence;

Fig. 2 provides an illustration of the structural and relational objects and their

relationship with each other;

Fig. 3 is a diagram of an exemplary phrase structure with functional

annotations;

25 Fig. 4 is a diagram of a function template associated with the phrase structure

of Fig. 3 in accordance with an embodiment of the present invention;

Fig. 5 illustrates a grammar specification file in accordance with an
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embodiment of the present invention;

Fig. 6 is a block diagram of an SFG compiler in accordance with an

embodiment of the present invention;

Fig. 7 illustrates a PS tree that can be built utilizing the SFG in Fig. 5, in

accordance with an embodiment of the present invention;

Fig. 8 illustrates four template instantiations that are associated with the PS

tree of Fig. 7;

Fig. 9 illustrates the format of lexicon specification in accordance with an

embodiment of the present invention;

Fig. 10 is a diagram of two-dimensional parsing in accordance with an

embodiment of the present invention;

Fig. 11 indicates the process of a structure function grammar based

understanding system in accordance with an embodiment of the present invention;
Fig. 12 shows a prior art LFG-based process;

Fig. 13 is a diagram illustrating one type of grammar package in accordance

with an embodiment of the present invention;

Fig. 14 provides a first example of how the grammar package in Fig. 13 is

used;

Fig. 15 illustrates the features and templates of description output by the

parser;

Fig. 16 illustrates the relationship among the coverage of rules, the coverage

of packages and linguistic domain;

Fig. 17 illustrates the general architecture of a spoken dialogue system in

accordance with an embodiment of the present invention;

Fig. 18 illustrates the architecture of TBSI in accordance with an embodiment

-7
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of the present invention;

Fig. 19 illustrates the process of natural language understanding in

accordance with an embodiment of the present invention;
Fig. 20 illustrates the format of a TBSL specification file;

Fig. 21 is a simplified block diagram of an embodiment of a parser in

accordance with the present invention;

Fig. 22 illustrates procedures of semantic evaluation in accordance with an

embodiment of the present invention.

Fig. 23 provides examples of semantic evaluation in accordance with an

embodiment of the present invention.

Detailed Description of Specific Embodiments

As used in this description and the accompanying claims, the following

terms shall have the meanings indicated, unless the context otherwise requires:
“Language usage” refers to written or spoken language and therefore
includes text and speech. |

A “parser” is a device that assigns a structural description and/or a relational
description to a sentence or phrase. The former expresses the underlying phrase
structure. The latter captures links of any nature between words in the input.
Examples of these two types of descriptions are shown in Fig. 1.

A “token” is a tangible representation of language usage, and includes a
word in normal orthography as well as other forms of representation including, but
not limited to, phoneme-encoded and subphoneme-encoded language usage,
computer-readable representations of the foregoing, and digitally encoded speech.

A “Structure Function Grammar” (SFG) is a grammar that describes both
structural and relational dimensions of syntax.

A “two-dimensional grammar” is a type of grammar that supports structural

-8-
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and relational dimensions in grammar modeling and processing.

A “phrase-structure tree derived from a rule-based grammar” includes a
representative part of a tree that is derived from a rule-based grammar in cases
where a whole tree is not derived for the package or not used in the package.

A “subset” is a non-null set and need not be a proper subset, so that a
“subset” may therefore be (but is not required to be) identical with its associated
parent set.

A new grammar formalism, a Structure Function Grammar (SFG), has been
developed to:

e Describe the grammar of different types of languages

e Support knowledge engineering for different parsing strategies: phrase
structure parsing, dependency parsing, and their various combinations.

e Encourage declarative grammar coding for maximal productivity for grammar
writing, debugging and maintenance

It is an engineering grammar in that it is an attempt to find the best
compromise between linguistic and engineering reciuirements:

e Adequate descriptive power for wide-coverage of real-life expressions in
different languages

e Grammar codes independent from a particular processing system but
susceptible to lean data structures and modularity in the system architecture

The theories of grammar in computational linguistics —such as Categorical
Grammar, Dependency Grammar, Government and Binding Theory, Generalized
Phrase Structure Grammar, Head-driven Phrase Structure Grammar, Lexical
Functional Grammar (LFG), Tree-Adjoining Grammar—vary in their point of view,
motivation, context of development and emphasis. Most of them are mono-
dimensional—either they focus on one aspect of grammatical structure and ignore
the other, or they sit on one aspect of grammar and derive the rest from it.

We have found that the multilingual and multiple-application context of
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natural language processing (NLP) puts two important requirements on data
modeling and system structure:
¢ A grammar formalism that facilitates maximally economical grammar modeling
of various types of languages, such as configurational and non-configurational,
inflectional and isolated languages.
e A possibility to use one or combined multiple parsing schemes (structural
parsing, relational parsing) to fulfill various tasks on a single data model.
These requirements are addressed by a two-dimensional parsing on the basis of a
two-dimensional grammar. Like LFG, SFG promotes both structural and relational
view of languages. But unlike LFG, SFG pushes the relational view of language
further to its logical end to fulfill the second requirement: two-dimensional parsing.

The postulation of two dimensions is based on the conviction that the
grammar of languages has two fundamental aspects: structural and relational. Both
structural and relational features are valuable inputs to the parsing process and
after-parsing process in NLP and neither is derivable completely from the other.

The context free grammar is advantageous in a number of respects. It covers
important grammatical properties of natural languages. There is parallelism
between the rewrite rule and the tree graph. It is parsimonious and sufficiently
flexible for various parser schemes: top-down, bottom-up, mixed mode. Parsing
algorithms are well studied. For its structural description, SFG may conveniently
utilize the conventional context free grammar formalism.

The context free grammar, however, is deficient for natural language
modeling. Several augmentations to the context-free grammar have been proposed
in prior art, such as transformation, complex symbols, feature structures. SFG
augments the structural description provided by context free grammar with a
functional description. The functional description is intended to capture the
relational dimension of a grammatical structure. Different languages map structural

and functional dimensions differently. This approach is premised on the theory that

-10 -
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it is necessary to treat functional description in its own right rather than as
appendage to the phrase structure tree. This is a fundamental argument for the

functional paradigm of grammar.

Relationship of the two dimensions in SFG

SEG is a two-dimensional grammar in the sense that its two dimensions are
independent. The descriptive primitives of the two dimensions are defined
independently and derived independently. SFG allows relational constructs to be
computed not only from structural description but also from other information,
such as morphology and semantics independent of structural constructs. It follows
LFG in recognizing the necessity to explicitly model both structural and functional
structures of language. Moreover, it not only defines the functional constructs
independently of structural constructs but also allows for the functional description
to be derived independently from structural descriptions. The emphasis on the
independence of the two dimensions is motivated and required by flexibility in
parsing.

The two dimensions interact with each other in two respects. On the one
hand, the relational information licenses the structural configuration. On the other,
structural information provides clues about relational distribution through its
functional assignments.

The existence of two independent but related dimensions provides two
possible perspectives of a grammatical phenomenon. What is awkward to describe
on one dimension can be possibly neatly accounted for on the other. The real sense
of complementation comes from fully independent (independently defined AND
derivable) dimensions. The two-dimensional descriptions can complement each
other to increase the overall coverage of the grammar while still keeping the
grammar as lean as possible.

The two dimensional description provides different approaches to the

description of linguistic facts. This flexibility in data modeling facilitates a

-11 -
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comprehensive yet economical approach to grammar modeling.

The two dimensional perspective requires the definition of three basic

constructs: (1) structural constructs, (2) relational constructs, and (3) mappings

between structural and relational constructs.

Fig. 2 provides an illustration of the structural and relational objects and

their relationship with each other. Figs. 3 is a diagram of an exemplary phrase

structure and Fig. 4 is a diagram of a function template associated with the phrase

structure of Fig. 3 in accordance with an embodiment of the present invention.

As illustrated in Fig 2, on the structural dimension, the following entities

must be defined:

Lexical categories, such as noun, adjective, verb,

Constituent categories, such as np, vp, and

Constituent structure, whose components are labeled with lexical and
constituent categories, for example, S = NP + VP.

Also as illustrated generally in Fig. 2, on the relational dimension, four

entities must be defined:

Attributes, such as gender, number
Values associated with the attributes, such as masculine, feminine
Functions, such as subject, object, and

Function templates, such as predication and modification.

These seven entities are basic objects of SFG. Constituent structures, functions and

templates are composed of the other objects in their respective dimensions.

The mappings between structural and relational objects exist in two places
Lexical categories and attribute-value pairs. A lexical category can be
associated with a particular set of attributes, even values. For instance, a
French pronoun (which is a lexical category) has case, person, gender and
number (which are attributes that, for a given pronoun, have corresponding

values).

-12-
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¢ Functional assignment. Function template and functions can be mapped on to
constituent structures or their lexical constituents. As is illustrated in Fig. 3, the
function template, predication, is assigned to S and VP constituent structures.

Subject and objects are mapped onto the nouns and predicate to the verb.

The SFG specification language is designed to enable the linguist to express
his SFG model of grammar. This section explains the SFG Specification Language
by examples, and in particular the sample SFG grammar specification file shown in
Fig. 5.

For the ease of use in grammatical modeling, two issues are identified and
considered in the language design.

e Size of the specification language

» Style of the specification language

It is the objective to keep the specification language as small as possible. The
central symbols in the language are (), { }, +, and =. They are used to model feature,
functional and structural descriptions respectively. The language is designed to
have a prose style of grammar modeling rather than that of mathematical formulas.
Its symbolic convention makes use of the typography of natural language texts as
much as possible, so that grammar modeling is felt more like a composition than a
Morse code transcription.

The alphabet used to make up an SFG expression is confined to 26 letters of
English, both small and capitalized, 10 figures from 0 to 9. A name is expressed
with letters and/or figures. The following are legal and distinctive names:

Link, link, 3link, link4, li3nk, linK

Control symbols include braces, curly brackets, comma, semi-colon, full stop,
plus and equation.

Attributes, such as item 54 in Fig. 5, and their values, such as item 55 in Fig.
5, are declared (using a declaration 57 of Fig. 5) as follows.

person{1, 2, 3}, gender{masculine, feminine, neuter}.

-13-




10

15

20

25

WO 01/98942 PCT/IB01/01595

It is a list of attributes with their values in the curly brackets. Each
attribute is separated with a comma and the list is terminated with a full stop. The
name of the attribute must be unique. The name of the value can be shared across
attributes.

person{1, 2, 3}, gender{masculine, feminine, neuter}, case{1, 2, 3}.

Every attribute must have at least one value.

The lexical category is defined (using a declaration 57 in Fig. 5) in a fashion

(shown as item 53) similar to defining attributes.
noun{number, gender}, verb{time, aspect}, adjective{gender, number}, adverb(}.

The category, noun, has number and gender as its attributes. A lexical category
can have no attribute, as in the case of adverb. It is possible to define a special lexical
category by insisting that its attribute is instantiated with a particular value, for
instance,

noun32{gender:masculine, number}

Specifying functions
Functions are components of the function templates. The format of their
definition is the same as that of the lexical category.

subject{case:1}, predicate{time, aspect}, object{case:2}, adjunct{}.

Specifying function templates

The function template is made up of two components:
e Template characterization (template definitions 58 in Fig. 5)
e Template composition (phrase structure definitions and 2-D mappings 59 in
Fig. 5)
Each template has a list of attributes associated with it. It is template
characterization, expressed between curly brackets. The template composition

specifies what functions it is made up of. It is expressed between braces. Among the

-14 -
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composing functions, the first function is treated as head function and the rest
are subsidiary functions. In the statement below modified is the head function of
modification.
modification{gender, number}(modified, modifier), adjunction(predicate, adjunct).
It is possible to declare a function template without explicitly specifying its
characterization as in adjunction. In this case, the attributes of the head function will
be treated as characterization of the template. It is possible to impose a particular

value of an attribute on a function template.

modification12{gender:masculine, number (modified, modifier)

In related embodiments, an open list of functions may be specified for a

function template as follows.

modification{gender, number modified, modifier*)

It means in the template, modification, the function, modifier, can have more than one

occurrence.

Specifying constituent categories

The constituent categories are declared as follows.

S, NP, VP, AP, AVP.

Specifying constituent structure and mappings to function templates

A constituent structure is expressed in the format of a rewrite rules.

NP = AP + NP.

-15-
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This is not yet a complete statement. For the statement to be complete, mappings

to function templates must be added, such as illustrated in Fig. 5.

NP(modification) = AP(modifier) + NP(modified).

This is to say NP has a function template, modification. The composing function of

modification, modifier, is assigned to the constituent of NP, AP, and modified to NP.

Constraints can be specified on the rewrite rule as follows.

S(predication) = NP(subject){number:1, person:2} VP(predicate){person:2}.

The function template and function are assigned to a phrase structure (PS)

constituent through the PS rules and processed during PS construction. For every

phrase structure constituent, there is a functional specification: a function and

function template associated. The exception is the top and terminal node of the PS

structure, which has only template assignment or function assignment.

SFG specification file

Fig 5 illustrates a grammar specification file in accordance with an

embodiment of the present invention. The file consists of five parts:

attribute specification
function specification
template specification
constituent specification

constituent structure specification

Their order is fixed. The hash sign can be used to signify the title of the

section. The percentage sign instructs the compiler to ignore everything until the

next line.

Fig. 6 is a block diagram of a grammar package compiler in accordance with

an embodiment of the present invention. The grammar specification (an SFG file) is

-16 -
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input to the tokenization process 61 to separate the various lexemes in the SFG

file (see for example fig. 5). The tokenization process checks that the SFG file
follows the correct format and produces error messages when the SFG file format is
incorrect. The lexemes are then used in the recognition process 62 to create an
internal representation of the grammar (65) comprising all attributes, values,
functions, function templates, constituent categories, lexical categories and
constituent structures. The recognition process will check that the SFG description
is valid, for example that constituent structures only use constituent categories that
are defined etc. On detection of errors an appropriate error message is generated.
The grammar packaging process (63) then builds all possible grammar packages
(representing phrase structure trees) that meet the descriptions and constraints
described by the grammar and by the optional constraints on packages, such as
width and depth of the resulting packages. The grammar packages that meet the
constraints are stored in the grammar package database (64) which can be further
optimally organized for fast retrieval and access by the parser process that will use

the grammar packages.

Generic function and template

They are sugarcoating devices to prevent unnecessary enumeration in the

grammar modeling.

Generic function

Generic functions are defined as follows.

..., adjunct{}, self{}, ...

It implies that the function, adjunct or self, takes as its characterization whatever

attribute-values pairs of the constituent playing the role of adjunct or self.

Generic template

-17 -
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A generic template has a generic function as its head. Its characterization
is taken from the characterization of the generic function, which in turn is taken

from the daughter constituent assuming the function. It is specified as follows.
..., singleton{self}, ...

In the case of the following rule,

AP(singleton) = adj(self).

The compiler will build a concrete template for this constituent structure. The
concrete template will take all the attributes from adj as its characterization. When a
concrete AP constituent structure, the attribute-values pairs of adj will be percolated

to the concrete template.
AP(singleton) = adv + AP(self).

The characterization of the concrete template will be percolated from a lexical

constituent through the path of head functions.

Mapping underspecification

The mappings between structural constructs and relational constructs are not
neat, otherwise there is no need to distinguish them. There are two possibilities of

mapping underspecification.

Mapping underspecification of structure

This occurs when some constituent in the structural construct does not play
any role in the template.
AP(singleton) = adv + AP(self).

This is a way to ignore constituents that do not contribute to the computation of the

-18 -
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relational constructs.

Mapping underspecification of template

Mapping underspecification of templates, when one or more the composing
functions are not assigned to any constituent. For instance,

..., predication{predicator, subject, object]}, ...

S(predication) = NP (subject) + VP(predicator).
VP(predication) = VP(predicator) + NP(object).

It is legal to assign incomplete templates to constituent structures. The existence of

merge operations in parsing will be presupposed.

Recursive feature/functional structure

Attributes are primitive entities in SFG. There is no nesting of attributes in
an attribute. Different from feature unification grammars such as HPSG and LFG,
there is no such a thing as ‘path of attributes” or complex feature terms.

The function is a primitive entity in functional description. It cannot be
nested. Though the template has a structure, template nesting is not necessary in
functional description.

Though they are believed to provide expressive power to the formalism, the
use of recursive feature structure with can weigh down the parsing process. The
decision between a flat and recursive feature representation is a trade-off between
expressivenéss of the formalism and complexity of computation. Since SFG is
intended as computational grammar for real-time applications, the reduction of
computation complexity is the priority in this case.

Fig. 7 illustrates a PS tree that can be built utilizing a SFG in accordance with
an embodiment of the present invention. The functional description consists of four

merged template instantiations, shown in Fig 8.
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Lexicon for SFG

The lexicon provides three kinds of information:

e lexical category

e lexical characterization

e functional context

The lexical category is defined in the grammar specification. The lexical
characterization is the form of attribute-values pairs. It is feature description of the
lexical entry. It can be morphological, semantic or pragmatic in nature. The minimal
requirement of sound lexical characterization is that it must contain the
characterization of the lexical category. The functional context specifies the function
template in which the lexical entry plays a role. For instance, the transitivity
relationship of a verb can be captured by the function templates that require zero or
one or two objects. The functional context can be under-specified. In other words,
the lexical entry does not have any functional expectations or constraints on the
derivation of functional description.

The format of lexicon specification in accordance with an embodiment

of the present invention is illustrated in Fig. 9.

2-D parsing

On the basis of a two-dimensional grammar such as SFG, the parser has two
main modules:

e structural parsing

e functional parsing
The task of these modules is identical: to build structural and functional description,
though their approach is different. This is made possible by the independence of the
dimensions in the grammar.

The structural parsing is structure-driven. It operates on the PS definitions. It
builds the legitimate PS tree. Since PS rules are annotated with grammatical

functions and function templates, the functional templates can be derived from the
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tree. The functional annotation can be also used as a licensing device to control
the overgeneration of the PS rule.

The functional parsing is driven by the function template. The process seeks
to build function templates with clues from morphological, lexical and semantic
features of constituents. Once the functional templates are derived, a PS tree can be
built according to the structure the functional templates are mapped to. This

structural description is the canonical form.

Different solutions for different languages

Structural parsing is better suited for configurational languages where there
is a neater mapping from structural to functional descriptions. Functional parsing
or dependency parsing, abstracting away from structural details, is at its best to
cope with non-configurational languages, where word order is freer.

The independence of the dimensions allows for different problem-solving
approaches. This builds into the parser some flexibility in problem solving. Given a
problem, there is a choice of

e which mode of parsing is used;

e which mode of parsing is used first in a complementary use of 2

dimensions.;

e when one mode of parsing is switched to the other.

Different solutions for different tasks

Fig 21 shows a typical use of two-dimensional parsing. The parser uses 2
related data stores: phrase structure definitions 211 describe the structural relations
between tokens in the stream for the language usage; the functional template
definitions 212 describe the functional relations between tokens in the stream,
mapped to the phrase structure definitions in 211. The input stream of tokens is first
preprocessed using morphological pre-processing (217) to derive the corresponding

sequence of parts-of-speech and (not shown) attribute values. This stream of parts-
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of-speech and attribute values is then subject to structural parsing 213, which is

informed by phrase structure definitions 211, to arrive at phrase structures and
corresponding functional templates which are further parsed by functional parsing
214 to compute the functional and structural descriptions that are the output of the
parser.

Fig. 10, which expands on the uses shown in Fig. 21, is a diagram of 2D
parsing in accordance with an embodiment of the present invention. The two-
dimensional parser is composed of several modules. Depending on the nature of
the task and language, the solution is channeled through different modules. In
particular, Fig. 10 shows various possible uses of two-dimensional parsing. The
parser uses three related data stores: phrase structure definitions 1011 describe the
structural relations between tokens in the stream for the language usage; the
relational structure definitions 109 describe the functional relations between tokens
in the stream. The phrase structure to relational structure mappings 1012 relate the
two definitions. Together these data stores 109, 1011, and 1012 provide a two-
dimensional model of language usage.

A first use is of this two-dimensional model is to subject a token input to
structural parsing in process 101, which is informed by phrase structure definitions
1011, to arrive at phrase structure 104. This is effectively a one-dimensional use of
the data, where parsing only considers the structural dimension.

A second use is to subject the phrase structure computed by structural
parsing in 101 to the structure-based functional description process 102 to compute
a functional description by using the relational structure descriptions 109
corresponding to the phrase structure. This is two-dimensional parsing, where the
relational description is fully driven by the structural dimension.

A third use is to further parse the resulting phrase structure description from
101 and the input in the functional dimension in functional parsing process 106
using relational structure definitions 109 to build the functional description 105.

This functional description is not only driven by the structural dimension, but is
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computing a more detailed or complete functional description seeded by the

initial functional description associated with the phrase structure that is input to
106. This is two-dimensional parsing, with first parsing in the structural dimension
and then completing the functional description by further parsing in the functional
domain.

A fourth use is to utilize the resulting functional description 1013 from
process 106 in the function-based structural description process 107 to compute a
canonical phrase structure 108. This approach allows use of the enhanced functional
description obtained by parsing in the functional domain to create an enhanced
structural description of the input.

A fifth use may result from not parsing the input first in 101 but instead
passing it immediately to 106 without a phrase structure. This approach causes
parsing to be first done in the relational dimension, to be optionally followed by a
structural dimension parse. (Such an approach is not shown in fig 10.)

Figure 10 only shows serial processing. Interleaved processing, where
computations in the structural and functional domain are following each other in
each step of processing the input stream, is also possible.

Fig. 11 indicates the process of a structure function grammar based
understanding system in accordance with an embodiment of the present invention.
Compare Fig. 11 with Fig. 12, which shows a prior art LFG-based process, taken
from Kaplan, R. M., The formal architecture of Lexical-Functional Grammar,
Journal of Information Science and Engineering, 1989, 5, 305—322. Fig. 19, which
provides an embodiment similar to that in Fig. 11, is described in further detail

below.

Mode of operation of the two-dimensional parser

There can be two processing modes of the two-dimensional parser: serial and
interleaved. What is presumed above here is a serial processing: in a first phase, the

parser uses the structural dimension to build up a structural description, and its
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related functional description. In particular, a token input is subject to structural

parsing in process 101, which is informed by phrase structure definitions 1011, to
arrive at phrase structure 104. In a second phase, the resulting phrase structure
description and the input are further parsed in the functional dimension in
functional parsing process 106 using relational structure definitions 109 to build the
final functional description 105. The phrase structure definitions 1011 and the
relational structure definitions 1012 are related by mappings between them, shown
as phrase structre to relational structure mappings 1012.

An interleaved processing strategy is also a possible. In the interleaved
processing, there is no strict sequence of one dimension followed by the other, but
the parsing is done in the two dimensions on every intermediate step in the parsiﬁg
procéss.. A potential advantage of this process mode is to bring functional data to
bear on the structural parsing so that the parser can recover extra-grammatical
structural variations.

It is further possible to take the functional descriptions derived form either of
the above approaches and to apply a function-based structural description process
107 to develop what we call “a canonical phrase structure” 108, which is not
necessarily identical to phrase structure 104 but which is associated with it by the

common functional description 103 or 1013.

Grammar packaging

The technique of grammar packaging is designed to enable the parser to
operate on a set of related rules rather than on a single rule at a time of parsing
operation. If a parse of a sentence is likened to a building, parsing is a process of
constructing the building with prefabricated material. The idea of prefabrication
divides the construction into two stages: building prefabricated parts and
assembling them. The two-stage process promises efficiency in the second stage. In
other words, Grammar packaging is a technique of pre-computing (off-line) partial

solutions, given rules in SFG.
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Given basic definitions of grammar (parts of speech, constituent categories
and structures, attributes and values, function templates for SFG), the process of
packaging the grammar is to derive complex grammatical entities off-line for the
parser to use on-line. The data and sizes of grammar packages vary from one
application to another. The technique offers original solutions in grammar
engineering and parser developments. Here we address topics including:
e Package-driven parsing: such parsers recognize the partial solution instead of
constructing them from scratch and assemble them into a whole solution.
e Grammar fine-tuning: automatically or manually tuning the coverage of the
grammar in terms of packages.
e Coding the grammatical behavior in the lexicon.
e Augmentation to NLP systems with statistics of packages.

e Machine learning of grammar by packages with help of package-driven parsers.

Types
There are two main types:

o Packages for structural parsing
e Packages for functional parsing

Packages for structural parsing

Fig. 13 is a diagram illustrating one type of grammar package in accordance
with an embodiment of the present invention.

Packages for structural parsing are based on phrase structure trees. The
minimal data requirement in a package is the categories of the root and leaves of
the phrase structure. The former is the category of package and the latter are the
elements of package.

Depending on the requirement of the application, other useful information

can be added.

If feature operations and functional description are required, the package
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will include function templates, function assignment and feature constraints.

If the partial parses identified by the right packages need to be combined,
then packages will include internal nodes of the phrase structure to be able to
perform tree grafting or merging operations.

If the contextual constraints should be imposed on the applicability of a
package, then lookbacks and lookaheads must be included.

If the packages are used to chunk an input, then the elements of packages
must be lexical categories/lexical tokens. (Chunking is a term in NLP, used here to
refer to processing an input utterance and indicating the start and end of
constituents in the phrase structure, without creating a hierarchical tree of
constituents.) \

If the packages are used to combine chunks, then the elements of packages

will be non-terminal phrase structure categories.

Packages for functional parsing

Packages for functional parsing are based on the function templates, since
the parsing operation is based on functional constraints. The minimal data in
packages must include the identity of the template as the category of the package.
The elements of the package will include information on lexical categories. The
element that is assigned a function will also include the function type.

Feature constraints can be added to the elements if the applicability of the
package needs to be further restricted.

If the canonical phrase structure needs to be derived from template
packages, the information on which phrase structures are mapped to must be

included.

Size of packages

The size of grammar packages is the information required for grammar

packaging. It determines the shape of the package and the overall coverage of the
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linguistic domain by the grammar packages.

Measurement of packages

The grammar package is ‘measured’ along two dimensions: depth and
width. The width is the span of the package over an input. If the width of the
package of structural parsing is set to 5, the parsing operation will consider 5 tokens
in an input.

The depth of a grammar packages is measured by the number of levels of
hierarchy in the phrase structure tree corresponding to the package.. By setting
appropriate values on the depth and width of packages, the grammar engineer can
determine the coverage of the parser on the basis of his grammar. These constraints
are important tools for grammar engineers to control the parser behavior: focusing
the parser operation on a particular part of the problem domain. Efficiency can be
achieved if the parser is rightly engineered to cover the central part of the problem

domain.

Constraints on tree depth and width, attribute vaues

The depth and width of grammar packages can be set to any positive integer
larger than zero. The different combination of the values, such as depth being 10
and width being 4, will produce grammar packages that
J Have different shapes
J Jointly cover different parts of the linguistic domain.
If the depth is set to 5, then the package may have a maximum of five levels of
structure embedding.
The parameters can be neutralized by setting a very large value, such as 100,
1000. Suppose the depth is set 100 and the width to 5. This means the packaging is
probably only constrained by the number of words coverable by the grammar
package, as the constraint to have packages less than 100 deep will not likely need

to be enforced for any package covering 5 words.
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Since the coverage of grammar packages is only a subset of grammatical
structures derivable from the grammar model, it is important to make sure that
the most appropriate subset is covered.
¢ The depth must be high enough to allow for all the interesting partial solutions
modeled in a grammar that has many levels of factoring out constituency.
o The width must be sufficient to cover all the interesting packages derivable from
a fat-structure grammar.

There is a difference between imposing constraints on attribute values and
imposing constraints on depth and width of packages. Constraints on attribute
values may can be specified in a rule-based grammar from which the packages are
derived. Basically such constraints limit when a rule in the rule-based grammar can
apply. This property has the effect of reducing the language covered by the
grammar model (the square shown in Fig. 16). The effect of attribute value
constraints on packages is typically to produce more packages to be used in
parsing, because specific combinations of attribute values for a particular tree now
need specific packages. There are two ways attribute value constraints may be
honored by the parser. One is to create these more specific packages and then for
the input stream to check the attribute values and only use the packages that can
apply. The other is to neglect the attribute values first, using only packages that
reflect no attribute value constraints; then when all possible combinations of
packages have been determined in this manner, prune away those packages that fail
to fulfill the attribute value constraints. In fact, in a further related embodiment, the
parser may operate in a manner that the attribute value constraints are not used as
hard constraints, but rather as score indicators; in this embodiment, a parse that
makes more attribute value mismatches is scored as worse than one with less, but
not unacceptable. (As to this last point, see below: “Scores in terms of certainty of

feature description”.)
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Creation of packages

Packages for structural parsing can be created in conventional parsing
schemes, top-down or bottom-up, breadth or depth first. Each creation terminates
when the resultant phrase structure exceeds the constraint on the size of packages.

Packages for functional parsing is also based on packages for structural
parsing. Information on templates and function assignments with respect to the
elements of the package is extracted from phrase structure with functional

annotations.

Package-driven parsers
Main processes

Recognition of phrase structures

Fig. 14 provides a first example of how the grammar package in Fig. 13 is
used.

The on-line operation can be summed up as follows.

Given a string, whose tokens start with T, and ends with T, and a set of
grammar packages, G, the parser proceeds from T, to T, , or in the other way,
seeking for a list of packages from G whose elements cover T,. The parse of the

string is represented by this list of packages.

Feature synthesis operation

The instantiation of an attribute is the assignment of particular values. Given
an attribute with two possible values, the possible instantiations of the attribute are
four-fold. Take gender{masculine, feminine} for example

gender[+masculine, -feminine]

gender[-masculine, +feminine]
gender[+masculine, +feminine]

Types of attribute instantiations
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The attribute instantiation can be grouped into four types
¢ Void instantiation (gender[-masculine, -feminine])

¢ Unique instantiation (gender[+masculine, -feminine])

e Multiple instantiation (gender[+masculine, +feminine])

5 e Full instantiation (gender{[+masculine, +feminine])

Two kinds of feature synthesis

The synthesis of attribute instantiations occurs in operations on templates.
There are two main types of synthesis of attribute instantiation: synthesis by type
and synthesis by token. The former is governed by generic synthesis logic. It is
10 application independent. The latter is based on this logic as well as attribute specific

interpretation, which is application dependent.

Type synthesis
The result of type synthesis is conditioned by the types of attribute
instantiations. The synthesis logic can be stated as below.
15 Let void, unique, multiple and full instantiations be a, §§, x and §
respectively.
X synthesis operator
= yields
a=b identical with
20 if a is equal to b, then the result is a.
if a is not equal to b, then the result is o
aAb meetofaandb
if the intersection is empty, the result is o

otherwise the result can be instantiation § or ¥

Intersection of Types of resultant

instantiations Instantiations
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BAay oorf

XAX B ory

| any type of instantiation
axl = o

Pxp = B=P

Bxx = Bax

AXA = XAK

IxI = 1

Token synthesis

The mechanism of token synthesis serves as means to override the generic
rules of synthesis stated above. It applies to specific instances of attribute
instantiation. The necessity of token synthesis can be seen in the following

examples.

Synthesis operations

Feature synthesis is performed on templates associated with a phrase
structure built by the structural parsing. It is a process deriving feature description.
Fig. 15 illustrates the feature and template of description output by the parser.
There are three main operations:

e Instantiate attributes of the functions in the template

* Synthesize features of templates (This is a process of bringing attribute
instantiations from functions to the template)

e Synthesize features of the connected templates. Connected templates are
templates whose functions anchor on an identical token.

Each phrase structure has a main template carried by the head constituent.
The feature synthesis for a phrase structure must identify templates (directly or

indirectly) connected with the main template.
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 Selection of the best parses

Two basic means of assessing a parse proposed by the recognition process
are based on
e Coverage of packages
e Certainty of functional description

They are effective heuristics to evaluate and select a parse.

Fragments of the parse

The fewer packages the parse has to cover the input and the more tokens
covered by the packages in the parse, the more likely it is a correct result. In short,
the parse that has the least fragments is likely to be correct. Since this indicates the
agreement of the input with grammar, it is observed as the grammar becomes

complete, the heuristic is more effective.

Scores in terms of certainty of feature description

A feature description can be evaluated in terms of certainty degrees. It is an

important clue on how much the phrase structure is endorsed in functional aspects.

Certainty of attribute instantiations

The degree of certainty for an attribute instantiation, certainty for short, is
related to the instantiation type. The value of certainty of attribute instantiations is
between 1 and 0 inclusive. 1 indicates absolute certainty whereas 0 absolute
uncertainty. The value for void instantiation is 0 and that for unique instantiation is
1. The multiple instantiation and full instantiation falls between 0 and 1.

Given the number of all possible values for an attribute, n, and the number of the
values assigned to the attribute, m, in an instantiation, the certainty, C, is calculated
by the following rules:

Ifm=0,thenC=0.

C=[n-m-1)]/n.
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Certainty of feature description

A feature description is a set of attribute instantiations. It is associated

with a function, an template or with connected templates in a phrase structure.
The certainty of a feature description, C,, is the average of the certainty

total of the attribute instantiations in the feature description. n is the number of

attribute instantiations in the feature description.

1 n
Cy =;-Zc,.

i=]

Robustness

Embodiments of package-driven parsers may be made to be robust. Robust
parsers driven by grammar packages can perform
o Partial parsing. In other words, it outputs a forest of phrase structure trees
covering the utterance, not a single tree.

e Incomplete parsing. It can skip tokens with which no package can bridge

across.

Efficiency
Efficiency is an important potential benefit of embodiments of the present

invention employing grammar packaging. In utilizing packages that have been
prepared in advance of the parsing process itself, the actual parsing activity has the
potential to be more efficient. Efficiency comes from two directions:
e The parser’s on-line operation is always relevant to the grammar and input

concerned. No irrelevant work is performed.
e The partial solutions have already been built off-line. The parser does not

construct a parse from scratch on-line.
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Statistic augmentation

Statistics of phonemes, morphemes and words have proven to be helpful
in speech and morphological processing. But statistics of grammatical rules are not
as effective. Grammar packages, be it phrase structures with feature annotations,
templates, or combined, are more tangible units of language structure and their
distribution is more restricted than abstract rewrite rules, similar to other linguistic
tokens. They offer a new dimension of statistics of grammar. N-gram probability of
grammar packages, will reveal grammatical tendencies of human languages.

Three advantages of such statistic information are immediately obvious:
e Optimized search path: search falling below a threshold of probability is
abandoned.
e DParse disambiguation. Everything equal, the parse with high probability is
preferred.
e Assessment of grammaticality. High probability adds another dimension parse
evaluation, as in ASR hypotheses re-scoring.
The statistics of grammar packages—the frequency with which each package
is used— can be obtained through parsing a training corpus. This information can
be acquired in the actual operation of the parser and used for self-adaptive

performance.

Uses

The parser can be used for various purposes:
e Dialogue understanding
e Evaluation of recognition hypotheses from speech recognition
e Prosodic patterns extraction in text-to-speech generation
¢ Natural language query processing

* Question and answer systems
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Grammar engineering based on grammar packages

SFG modeling can produce a grammar that covers a wide range of
theoretical possibilities. In real life applications, it is almost impossible to have a
grammar that neither over-generates nor under-generates. This is the misfit
between the grammar model and the actual linguistic domain, as indicated by the
square and triangle in Fig.16. It has been a serious bottleneck in building rule-
based parsing systems to develop a grammar of proper coverage. A typical scenario
is that the addition of rules to cover grammatical phenomena most likely has
ramification of effects and causes a huge over-generation. As a result, the new
grammar also covers a great deal of nonsense. This situation of one step forward
and two steps backward is worsened by the complex relationship among rules and
difficulty to understand the coverage of the grammar from the rules. Tuning
grammar in terms of rules has proven to be work of high complexity and low
productivity. This is often cited by advocates of statistical approaches as one of
reasons to replace ‘stupid” humans with ‘intelligent’ machines, which ‘somehow’ do
things acceptably. Grammar packages offer effective platform for grammar tuning.
The possibility of lexicalization of grammar packages also contributes to the

resolution of overgeneration problems.

Tuning grammar through grammar packages

Tuning grammar in terms of rules has prbven to be work of high complexity
and low productivity. Grammar packaging does not maintain the original coverage
of the grammar model. Given certain dimensional specifications, the process
generates packages that cover only a subset of linguistic facts. The packages
represent a weaker grammar. It is illustrated by the square and circle in Fig. 16. The
ultimate aim is to bring the circle to fit the pentagon as much as possible for
maximal efficiency of processing and the best coverage of central grammatical
phenomena. It can be achieved in three steps in package-based grammar

engineering.
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. Provide a grammar model that covers all the central facts (the square
covering the pentagon)(including, for example, by placing constraints on
attributes as discussed above).
¢ Put constraints on properties of grammar packages to reduce the number of
packages being generated while also avoiding the elimination of packages
that cover the central linguistic facts (the circle covering the pentagon)(for
example, by constraints on depth and width discussed above).
e Tailor the coverage of grammar packages that have been generated

(modifying the circle to fit the pentagon better).

Tailoring the coverage of generated grammar packages—that is, grammar
package fine-tuning—offers an effective solution to the frustration of large
grammar coding. Itis a solution to keep the step forward without slipping back.
The grammarians can trim the overgenerated package and control the on-line
search space of the parser by removing the over-generated packages (impossible or
rare packages). This is tailoring the circle to fit the pentagon as much as possible is
illustrated in Fig. 16. It is an effective means to visualize the coverage of the
grammar and on-line search space of the parser so that intelligent decisions can
replace the ad hoc trial and error attempts. It is a convenient grammar object to
manipulate to tailor the grammar coverage to fit the actual linguistic domain. It
opens up automatic or semi automatic fine-tuning of grammar. Running the parser
through a representative corpus of inputs produces statistics of package usage, and
these permit the elimination of packages that are used infrequently in parsing. The
threshold for elimination of packages can therefore be set to eliminate unused and

infrequent packages.

Lexicalization of exceptional grammar packages

Grammar packages automatically generated from a SFG model populate the
lexicon so that lexical tokens can be brought to bear on the applicability of grammar

packages. To avoid the redundancy associated with conventional lexicalization of
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syntactic structures, packages that cannot apply on a lexical token will be
recorded with that token. The purpose is to make use of information on word-
specific exceptions from lexicon while still benefiting maximally from the generic

nature of grammar rules.

Template-based Semantic Interpretation

The Template-based Semantic Interpreter (TBSI or TSI) is designed to extract
semantic information with respect to certain pragmatic information, such as

dialogue scenarios.

System Context

TSl is designed primarily to fit into a spoken dialogue system. Fig. 17
illustrates the general architecture of a spoken dialogue system using a parser in
accordance with an embodiment of the present invention. The user 171 utters
speech that is processed by a speech recognition system 172 to generate one or more
sentence hypotheses, the speech recognition system being driven by discourse
context information 175 such as speech recognition grammars for the application.
The sentence hypotheses are processed by the Language Understanding process 173
to compute the request semantic frame, using the discourse context information
(175), such as the SFG data and semantic interpretation data. The resulting semantic
frame describes the semantics of the user’s utterance to be used by the dialogue
management process 176. The dialog management process may consult a database
174 to obtain information for the user. It then either produces an answer or a new
question for the user, by producing a response semantic frame containing the
semantic representation of the information or question to be rendered to the user.
The dialogue management process also selects or produces discourse context
information 175 to reflect the new situation in the dialog. The language generation
process (177) produces a natural language sentence that can be either shown as text

to the user or can be rendered as spoken language by means of speech synthesis
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(178).

System structure

The template-based semantic interpreter (TBSI or TSI) uses the robust parser
described above for analyzing a stream of tokens. Fig. 18 illustrates the architecture
of a TBSI in accordance with an embodiment of the present invention. The robust
parser is shown as item 189, which receives a language usage input tokens shown
here as “strings”. The parser 189 has access to lexicon 1801 (obtained via lexical
compiler 1802 pursuant to a lexical specification) and grammar 187 (obtained via
SFG compiler 188 pursuant to an SFG specification). The simple semantic structure
output from the parser 189 is subject to further processing by semantic composer
184 and semantic evaluator 185, which produce a complex semantic structure
output and optional QLF (Quasi Logical Form) format, which provides a formal
representation of the semantic content of the input. The semantic composer 184 and
the semantic evaluator 185 are in communication with the semantic model 182,
obtained from a Template-based Semantics Language (TBSL) compiler 186 (which is
here and sometimes called “TS specification language compiler”) operating on a
Template-based Semantics Language specification file (which is here and sometimes
termed “TS semantic specification”) and the TCL interpreter 183 (developed based
on semantic model 182). These data objects and processes are discussed in the

following sections.

Approach to natural language understanding

Semantic interpretation in a natural language understanding (NLU) system
is an issue closely related to the domain of semantics and a particular grammar
formalism. There are three notable architectures of the NLU process indicated by
the numbered curves in Fig. 19.

String: a sequence of words

L-Description: a list of lexemes, derived from the lexical analysis of String
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P-Description: a forest of phrase structure trees
F-Description: a set of instantiated function templates

S-Description: a set of semantic templates, situation-independent, derived

from linguistic structures. They are used to express simple semantic constructs,

often closely linked with the function templates in F-Description.

T-Description: a set of situation-specific, domain-dependent, task templates.

The three curves are three types of semantic interpretation:

Lexeme-based interpretation. It is the least sophisticated and ‘leap’s a longest
distance over the process. It is suitable for very simple and restricted task of
semantic interpretation

Structure-based interpretation. It is less ‘superficial” than lexeme-based
approach, since the phrase structure provides clues on the relationship
among the lexemes. The effectiveness of the approach relies on the
requirement that phrase structures can be mapped ‘neatly” onto its semantic
structure or the meaning structure of the application domain.
Function-based interpretation. It is based on ‘deeper’ grammar analysis. It is
linguistically more sophisticated and less dependent on special patterns of
expression in the sublanguage of the application domain.

The solid line indicates the route TSI ‘travels’ from FORM to MEANING.

Our approach is the function-based interpretation. Apart from the interpretation

abstracted away from actual structures, it has other merits:

Possibility of decoupling syntax and semantics in processing and modeling
There is a prospect for reusability, since syntactic modeling and processing
can have some degree of domain/application independence whereas
semantic modeling and processing may be language-independent.

It uses multiple level representation of knowledge and promises a modular
approach to knowledge engineering: different formalisms for different tasks

and domain facts.
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Template-based Semantics Language (TBSL) is the formalism to define

semantic structures and its components required for natural language

understanding. Fig. 20 illustrates the format of a TBSL specification file. The

specification has four sections:

Interpretation of linguistic templates

Definition of domain functions

Definition and interpretation of domain templates

Definition and interpretation of intentions

Grammatical units

e TBSL has three grammatical units:

Term (date, destination, menul, “tcl_wakeup$1”)

Expression (Atmodification “tcl_Atmodification”,)

Statement (Atquant “tcl_Atquant”, Atempty “tcl_Atempty”.)

e A term is made up of 26 English letters (both upper and lower cases) and 10

digits from 0 to 9, except for the special term in between double quotes. The

special term can be made up of any characters. The punctuation used is listed

in the following table.
Punctuation Function
Comma Separating a term or expression.
Full stop Ending a statement
Percentage sign Introducing a comment line, ignored by
the compiler
Hash sign Introducing a section title
Curly brackets Marking an expression of a list
Round brackets Marking an expression of a list
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Square brackets Marking an expression of a list

Double quotes Marking a name of evaluation procedure

Organization of TS specification file
A TBS model utilizes definitions of conceptual structures in a particular
application domain. Given a conceptual space to describe, the task is to partition the
space in such a way that
* some partitions can be derived from a lexico-syntactic entities (simple concepts);
o these partitions can in turn form bigger partitions (complex concepts);
e the partitions can be easily manipulated with reference to other communicative
factors.
There is no clear-cut demarcation between simple and complex concepts. On
the one hand, the semantic model is based on the grammar model: it “continues’
from the functional description defined in grammar. On the other, it is related to the

dialogue model, for example, the relationship between composite templates with

dialogue intentions.

Use of Tcl scripts

The special term between double quotes indicates the name of the Tcl script
to call when the semantic object concerned is evaluated. The body of the script is
held in a file, *.tcl. Semantic features are passed from the C program into the Tcl
interpretation as global variables of the Tcl interpreter. The process of TBSI consists
of two main modules:

e Semantic composition

e Semantic evaluation

Modeling semantics of the application domain

There are four basic building blocks in modeling the semantics of an

application domain in the framework of TBSI
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. Semantic Primitives: conceptual elements relevant to applications
. Simple Concepts: aggregation of semantic primitives corresponding to
phrase structures

e Complex Concepts: formulating domain semantic templates

e Concepts Evaluation: calling TCL scripts to transform concepts into QLF

format.

Modeling simple concepts in SFG

The relational dimension of SFG is also suitable to describe basic semantic
elements. Simple concepts can be described in terms of templates. Semantic
primitives can be defined as attributes and values or as template functions. If a
concept is expressed by a lexeme or encoded in a phrase structure, it can be treated
in SFG.

Following items are defined in SFG.

. Syntactic entities (primitive or complex)
J Semantic entities (primitive features, simple constructs)
. Mappings between syntactic and semantic entities

Modeling complex concepts in TBSL

If a concept is typically expressed in more than one phrases or even
sentences, it is better to treat in the semantic model in TBSL. For example, the
concept of ‘travel” is a complex concept: it involves the means, date, time,
destination, departure, class, etc. The complex concepts typically involve multiple
grammatical structures defined in SFG.

The semantic model in TBSL captures two basic information. It specifies the
composition of complex concepts, simple concepts that can be its elements,
evaluation of the simple and complex concepts and the association of complex

concepts with pragmatic objects, such as dialogue intentions.
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Modeling semantic evaluation

Each semantic object must be evaluated to some other representation or
constrained in their legibility in becoming part of a larger object. The evaluation is
not part of TBSL but coded in Tcl scripts. The names of the scripts are specified

between quotes.

Interpretation processes

e structural parsing with parsers described above to identify semantically
interesting phrase structures

e derivation of simple concepts, deriving templates from phrase structures

e semantic composition: formulating complex concepts

e semantic evaluation: calling Tcl scripts to transform complex concepts into

other representation

Extraction of simple concepts with package-driven parsers

The parser operates on a SFG grammar. It identifies the stream of tokens that
have syntactic structures defined in SFG and builds simple concepts from the
templates associated with the phrase structures. The structures not covered by SFG
are skipped.

Semantic composition

Given these simple concepts extracted from the input, TBSI seeks to compose
them into larger and complex concepts.

The component is given an ordered list of candidates, (possible domain
templates). It first short lists the candidates by pragmatic considerations, checking if
candidates match the pragmatic settings, such as dialogue intentions active at the
juncture of dialogue process.

It then starts the trial composition procedure. It seeks to fill in the slot

(domain function) of complex concept in the (domain template) with simple

-43 -




10

15

20

25

WO 01/98942 PCT/IB01/01595

concepts extracted during parsing. It evaluates simple concepts by the associated
Tcl script and pass it onto evaluation by the scripts associated with the slot. The
purpose is to assess the eligibility of the simple concept becoming part of the
complex concept.
The result can be un-instantiated, partially or fully instantiated. The best
instantiation is determined according to the following criteria.
e Between partially and fully instantiated templates, choose the fully
instantiated template.
¢ Between two fully instantiated templates, choose the template of a larger
size, the one with more components.
e Between two fully inste;ntiated templates of the same size, choose the one

with a higher priority ranking (defined in the specification of semantics).

Semantic evaluation

The process has three features: procedural, compositional and destructive.

We address each of these features in turn.

Procedural

Fig. 22, illustrates procedures of semantic evaluation in accordance with an
embodiment of the present invention. The semantic evaluation has three stages.
e Evaluation of atomic templates
e Evaluation of functions of composite templates
e Evaluation of composite templates
Each stage feeds on the intermediate evaluation from the previous stage.

Fig. 23 provides examples of semantic evaluation in accordance with an

embodiment of the present invention.

Compositional
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¢ The semantic evaluation follows the structures built in the semantic composition.

There are four layers of evaluation. The evaluation of the outer layer is a
mathematical function of the evaluations of the inner layers.

e The evaluation of atomic templates is also compositional. In many cases, the

evaluation of an atomic template requires the evaluation of another atomic

template as input, as indicated by the loop in the above figure.

.

Destructive

¢ The semantic evaluation is destructive in the sense that the result of previous
evaluation will be overwritten and lost. This means on-line economy without

possibility of backtracking.

Uses of Tcl procedures

The Tcl procedure for evaluating simple concept ‘synthesizes’ the semantic
features of each component. Similarly the Tcl procedure for evaluating composite
templates “synthesizes the evaluations of each composing elements.

The Tdl procedure for evaluating the function of a domain template,
however, can be used for two purposes. The procedure can be written as treatment
common to all the simple concept eligible to fulfil the function. Alternatively, it can
be discriminative. Based on the evaluation of the simple concept, it can check if the
candidate fulfils the requirement. This use is equivalent to imposing semantic
constraint.

The output of the semantic evaluation of valid semantic structures is an
expression in another representation (semantic request frame in Fig. 17). It is

delivered to the dialogue manager for processing.
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What is claimed is:
1. A method of parsing a stream of tokens representative of language usage,
the method comprising:

a. Storing a set of packages, each package being representative of a
corresponding phrase-structure tree derived from a rule-based grammar; and

b. parsing the stream using the packages to establish a structural description
for the stream.

2. A method of parsing a stream of tokens representative of language usage,
the method comprising:

a. storing a set of packages, each package being representative of a
corresponding phrase structure tree associated with a grammar, wherein a subset of
the packages includes a set of relational descriptions, and

b. parsing the stream using the packages establish a structural description
and a relational description of the stream.

3. A method according to any of claims 1 and 2, wherein the grammar further
specifies constraints on attribute values, the packages contain information derived
from such constraint, and such information is employed in parsing the stream using

the packages.

4. A method according to any of claims 1 and 2, wherein packages

in the set are selected to satisfy a desired set of constraints.

5. A method according to any of claims 1 and 2, wherein the set of packages
includes a first subset of packages for which the depth of the corresponding tree is
within a desired first range.

6. A method according to claim 3, wherein the set of packages includes a first
subset of packages for which the depth of the corresponding tree is within a
desired first range.

7. A method according to any of claims 1 and 2, wherein the set of packages
includes a second subset of packages for which the width of the corresponding tree

is within a desired second range.
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8. A method according to claim 5, wherein the set of packages includes a

second subset of packages for which the width of the corresponding tree is
within a desired second range.
9. A method according to claim 6, wherein the set of packages includes a
second subset of packages for which the width of the corresponding tree is within a
desired second range.
10. A method according to any of claims 1 and 2, wherein the set of packages
includes a third subset of for which the observed frequency of use in parsing a
specific corpus of input streams is within a desired third range.
11. A method according to claim 3 , wherein the set of packages includes a third
subset of for which the observed frequency of use in parsing a specific corpus of
input streams is within a desired third range.
12. A method according to claim 6 , wherein the set of packages includes a third
subset of for which the observed frequency of use in parsing a specific corpus of
input streams is within a desired third range.
13. A method according to claim 7, wherein the set of packages includes a third
subset of for which the observed frequency of use in parsing a specific corpus of
input streams is within a desired third range.
14. A method according to claim 5, wherein the first subset is identical to the set.
15. A method according to claim 7, wherein the second subset is identical to the
set.
16. A method according to claim 10, wherein the third subset is identical to the
set.
17. A method according to any of claims lor 2, wherein the grammar is a
structure function grammar.
18. A method according to claim 1, wherein:

each member of a subset of the packages includes a function template that

functionally describes syntax associated with the phrase structure tree that the

member package represents, and
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parsing the stream includes evaluating relational content of the stream.
19. A method of parsing a stream of tokens representative of language usage,
the method comprising:

a. providing a set of phrase structure definitions, a set of relational structure
definitions, and a set of mappings between them;

b. using the phrase structure definitions to provide a phrase structure of the
stream; and

c. using the mappings and the relational structure definitions to process the
resulting phrase structure to arrive at a functional description of the stream.

20. A method as in claim 19, the method further comprising:

d. further using the relational structure definitions to process further the
functional description and the stream to arrive ata further enhanced functional
description.

21. A method of computing a phrase structure description from a given
functional description, the method comprising:

a. providing a set of phrase structure definitions, a set of relational structure
definitions, and a set of mappings between them;

b. using the mappings and the relational structure definitions to process the
functional description to arrive at a phrase structure description of the stream
22. A method according to claim 21, wherein the given functional description
results from using the relational structure definitions to parse a stream of tokens.
23. A method of parsing a stream of tokens representative of language usage,
the method comprising:

a. providing a set of phrase structure definitions, a set of relational structure
definitions, and a set of mappings between them;

b. using the relational structure definitions to provide a relational structure
of the stream; and

¢. using the mappings and the phrase structure definitions to process the

resulting relational structure to arrive at a phrase structure description of the
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stream.

24. A method according to any of claims 19, 21, and 23, where the phrase
structure definitions, the set of relational structure definitions, and the set of
mappings between them are pursuant to a structure function grammar.

5 25. A method of computing a semantic representation of an input stream,
method comprising:
a. providing a set of semantic interpretation definitions;
b. parsing the stream in accordance with any of claims 2 and 19 to create a
functional description; and
10 c. computing the semantic representation from the functional description

using the semantic interpretation definitions.
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56 comments
<, %A sample grammar specification file

%comment section to be ignored by grammar compiler

katirbutes (_\ 54 attribute
number{1, 2, X}, gender{m, f, n}, case{1, 2, 3}, person{1, 2. 3},
time{a, p, f}, aspect{s, i, p}.

{a, p, f}, aspect{s, i, p} ‘\55va|ues

#lexical categories
n{number, person, gender}, v{time aspect}, a{gender}, adv{ }.

#constituent categories )\53 characterization of lexical categories
S, NP, VP, AP, AVP.

declarations 57 \'

#function categories
subject{case:1}, predicate{time, aspect}, object{case:2}, modifier{ },

modified{case}, adjunct{ }, seli{ }. 52 function

#function template characterization

predication{time, aspect, person, number} (predicate, subject,
object),

modification{gender, number} (modified, modifier),
adjunction(predicate, adjunct), singleton(self).

/ #constituent structure
S(predication) = NP(subject){number:1} + VP(predicate){pergon:2}.
NP(modification) = AP(modifier) + NP(modified).

NP(singleton) = n(self).

VP(predication) = VP(predicate) + NP(object).

VP(adjunction) = AVP(adjunct) + VP(predicate).

VP(singleton) = v(self)

AP(adjunction) = AVP(adjknct) + AP(puédicate).

AP(singleton) = a(self).
AVP(singjeton)= adv(self).

1 attribute value

and 2-D mappings 59\L

591 functional annotations

phrase structture defs.
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abaissaic
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n;fl:v;}.

abaissassions,
v{imood:sub;tense:ipf;person:1;number:P;el:y/n;fl:v;}.

abaisse,
v{mood:imp;tense:prs;person:2;number:S;el:y/n;fl:v;}
v{imood:ind/sub;tense:prs;person:1/3;number:S;el:y/
n;fl:iv;}.

abaisse-langue,
n{gender:M;number:P/S;el:y/n;fl:v;}
n{gender:M;number:S;el:y/n;fl:v;}.

abaissement,
nn{gender:M;number:S;el:y/n;fl:v;}.

abaissements,
n{gender:M;number:P;el:y/n;fl:v;}.

abaissent,

v{mood:ind/sub;tense:prs;person:3;number:P;el:y/
n;fl:v;}.
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It specfies operations on linguistic
templates, which are defined in the
SFG specification

It specifies which grammatical
template can assume what
function.

It specfies which domain functions
the template is made up of.

It specifies which domain templates
are associated with intentions and
their priority rankings.

> pred

Ly aaa(xxx, zzz)

|y ppp{aaa, bbb, ccc} “interpret ppp",

#interpretation of SFG templates
mod 'interpret mod",
"interpretypred”,
sing “interpret sin

#defintion & interpretation of domain functions
xxx{mod} “interpret xxx",

> yyy{pred, sing} “interpret yyy", ‘\\\
zzz{sing} "interpret zzz".

#definition & interpetation of domain templates
"interpret aaa",
"interpret bbb",
“interpret ccc”.

bbb(xxx)
cCe(Xxx, YyY, 22z)

#definition & interpretation of intents

qqa{ccc, aaa} ﬂ‘ ",

The order is sensitive.

Fig. 20
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