发明名称：一种低收缩率单组分聚氨酯泡沫及其制备方法

摘要

本发明公开了一种低收缩率单组分聚氨酯泡沫及其制备方法。本发明的聚氨酯泡沫，是采用如下的原料制备的：聚酯多元醇或聚醚多元醇；胺类化合物催化剂；恶唑烷酮类化合物；增塑/阻燃剂；增溶剂；泡沫稳定剂；异氰酸酯；推进/发泡剂。本发明收缩率低，采用 GB8811 标准对其进行检测，收缩率仅为 5.4%，能够满足建筑行业对单组分泡沫的要求，解决目前建筑工地施工时遇到的泡沫和墙体之间脱离，造成墙体冷析或漏水的问题。
1. 一种低收缩率单组分聚氨酯泡沫，其特征在于，是采用如下的原料制备的：

(a) 聚酯多元醇或聚醚多元醇；

(b) 胺类化合物催化剂，用量为聚酯多元醇或聚醚多元醇质量的 1-3%；

(c) 吡啶类化合物，用量为聚酯多元醇或聚醚多元醇质量的 1-5%；

(具体结构式)

其中 R₁=(CH₂)ₙ, n=1-3, R₂ 是 CH₃ 或 C₂H₅；

(d) 增塑/阻燃剂，用量为聚酯多元醇或聚醚多元醇质量的 70-120%；

(e) 增溶剂，用量为聚酯多元醇或聚醚多元醇质量的 3-15%；

(f) 泡沫稳定剂，用量为聚酯多元醇或聚醚多元醇质量的 2-3%；泡沫稳定剂为聚环氧乙烷和环氧丙烷接枝改性硅烷；

(g) 异氰酸酯，用量为聚酯多元醇或聚醚多元醇质量的 1.5-2.5 倍；

(h) 推进/发泡剂，用量为聚酯多元醇或聚醚多元醇质量的 80-120%。

2. 根据权利要求 1 所述的低收缩率单组分聚氨酯泡沫，其特征在于，所说的聚酯多元醇或聚醚多元醇的官能度为 2-4，分子量为 400-10000，羟值为 100-400 mg KOH/g。

3. 根据权利要求 2 所述的低收缩率单组分聚氨酯泡沫，其特征在于，所说的聚酯多元醇或聚醚多元醇的羟值为 150-250 mg KOH/g。

4. 根据权利要求 1 所述的低收缩率单组分聚氨酯泡沫，其特征在于，
聚醚多元醇含阻燃元素。

5. 根据权利要求1所述的低收缩率单组分聚氨酯泡沫，其特征在于，聚酯多元醇为含芳香环结构的聚酯，其官能度为2~3。

6. 根据权利要求1所述的低收缩率单组分聚氨酯泡沫，其特征在于，催化剂选自五甲基二乙基三胺、二甲基环己胺、N-甲基吗啉、二甲基乙醇胺或二吗啡啉二乙基醚中的一种。

7. 根据权利要求1所述的低收缩率单组分聚氨酯泡沫，其特征在于，增塑/阻燃剂为磷酸三氯异丙酯或氯化石蜡。

8. 根据权利要求1所述的低收缩率单组分聚氨酯泡沫，其特征在于，增溶剂为N-甲基吡咯烷酮、二氯甲烷或丁二酸二乙酯。

9. 根据权利要求1~8任一项所述的低收缩率单组分聚氨酯泡沫，其特征在于还含有色浆或/和防老剂，用量为聚酯多元醇或聚醚多元醇质量的0.3~3%。

10. 根据权利要求1~9任一项所述的低收缩率单组分聚氨酯泡沫的制备方法，其特征包括如下步骤：

 将多元醇聚醚或聚酯多元醇、催化剂、恶唑啉类化合物、增塑/阻燃剂、增溶剂、泡沫稳定剂和等组份混合均匀，制得聚氨酯组合料(I);

 将异氰酸酯/聚氨酯组合料(I)依次灌入气雾罐;

 将推进/发泡剂充入气雾罐，并混合均匀即获得产品。
一种低收缩率单组分聚氨酯泡沫及其制备方法

技术领域

本发明涉及一种聚氨酯泡沫及其制备方法，尤其涉及一种单组分聚氨酯泡沫及其制备方法。

背景技术

单组分聚氨酯泡沫，（简称 OCF），是气雾技术和聚氨酯泡沫技术交叉结合的产物。它是一种将聚氨酯预聚物、发泡剂、催化剂等组分装填于耐压气雾罐中的特殊聚氨酯产品。当物料从气雾罐中喷出时，沫状的聚氨酯物料会迅速膨胀并与空气接触到的基体中的水分发生固化反应形成泡沫。固化后的 OCF 泡沫具有填缝、粘结、密封、隔热、吸音等多种效果，是一种环保节能、使用方便的建筑材料，可适用于密封堵漏、填空补缝、固定粘结、保温隔音，尤其适用于塑钢或铝合金门窗和墙体间的密封堵漏及防水。

目前 OCF 的生产几乎都采用“罐内聚合”生产工艺，即首先将多元醇、催化剂，助剂和异氰酸酯灌入气雾罐中，封好阀门后，再将发泡剂（抛射剂）充入，然后充分摇动，使罐内物料混合均匀并发生反应，形成聚氨酯预聚物、助剂和抛射剂的混合物，即得到罐装 OCF 产品。

由于单组分聚氨酯泡沫经过了两次发泡，即首先由抛射剂将聚氨酯预聚物吹成沫状体，然后沫状体继续与空气中的水分反应生成 CO₂，进一步使沫状体膨胀，因此，最后形成密度较低且具有一定闭孔率的固化泡沫(15-30kg/m³)。随着泡沫体内气体的逸出，如此低密度的聚氨酯泡沫具有较大的收缩倾向。收缩率的大小对其填充密封效果有较大的影响。例如将 OCF 用于塑钢门窗和水泥墙体之间的密封时，如果收缩率过大，就会造成泡沫和墙体之间脱离，形成缝隙，造成墙体冷桥或漏水现象。
通常，对于含有一定闭孔率的低密度聚氨酯泡沫，可以通过适当提高体系的交联度，增加泡沫微孔膜壁的强度来提高尺寸稳定性，这在双组分泡沫中已经证明是行之有效的。但是，对于 OCF 来说，体系交联度越大，聚氨酯预聚体的粘度也越高，OCF 罐的贮存稳定性也就越差，严重时，罐内出现凝胶，无法摇动，导致产品报废。因此 OCF 体系官能度的提高受到限制，致使尺寸稳定性问题不能很好地解决。

英国专利 GB1086609,GB1175717 披露的降低 OCF 收缩率的方法是：采用具有两个内胆的气雾剂罐，将多元醇及部分抛射剂组分和异氰酸酯及部分抛射剂组分分别装入两个内胆中，使用时打开阀门，两股液流通过适当的混合（如静态混合器）后，形成泡沫。这种思路借鉴了双组分的高官能度聚氨酯泡沫体系，其主要缺点是使用双内胆气雾剂罐和静态混合器，包装成本很高；一旦打开阀门，必须一次用完，否则混合后的物料会堵塞混合器。美国专利 US4263412 采用的方法是：采用内置塑料软袋的气雾剂罐，将聚氨酯预聚物和部分抛射剂装入内袋中，将其余抛射剂装入气雾剂罐中，由于抛射剂起着驱动物料和发泡剂的双重作用，将抛射剂分两袋，相当于减少发泡剂，增大了泡沫密度，从而改善泡沫尺寸稳定性。美国专利 US4258140 采用含 N 的多元醇制备聚氨酯预聚物，这种预聚物能与空气中的水分迅速反应，得到尺寸稳定的泡沫。德国专利 DE4303887 披露的方法是：在物料体系中加入少量粘度为 110-230mPa.s@25℃的饱和脂肪烃，提高泡沫的开孔率，改善泡沫尺寸稳定性。世界专利 WO02090410 的方法是：在制备预聚物时加入单官能度小分子醇，通过降低预聚物的官能度，制得高开孔率的泡沫，减少收缩率。显然通过提高开孔率的方法改善尺寸稳定性的泡沫，起不到很好的密封、隔热和防水效果。上述专利虽然都提到如何降低 OCF 泡沫的收缩率，但都没有给出具体数据。国家聚氨酯泡沫填缝剂标准筹备组对市售进口 OCF 的泡沫尺寸稳定性测试结果表明，
大多数进口 OCF 产品的收缩率在 7-12%(枪式)，例如美国 FOMO 的产品收缩率为 8.5%，德国 Hago 公司产品的收缩率为 8%，WELLGO 公司的 OCF 为 7.4%。

发明内容

本发明需要解决的技术问题是公开一种低收缩率单组分聚氨酯泡沫及其制备方法，以克服现有技术存在的上述缺陷。

本发明的低收缩率单组分聚氨酯泡沫，是采用如下的原料制备的：

(a) 聚酯多元醇或聚醚多元醇；

所说的聚酯多元醇或聚醚多元醇的官能度为 2-4，分子量为 400-10000，羟值为 100-400 mg KOH/g，最好为 150-250 mg KOH/g；

所说的聚醚多元醇优选聚环氧丙烷(PPO)型，其起始剂为甘油，乙二胺，二乙二醇或其混合物，例如上海高桥石化三厂生产的牌号为 GQ210, GE-310 或 TMN500 的产品，以及天津石化三厂生产的牌号为 TMN1000 的产品，聚醚多元醇也可以是含阻燃元素，如含有卤素，氮或磷的聚醚，如 SOLVAY FLUOR AND DERIVATE GmbH 公司生产的牌号为 PHT-4, AMGARD V82, IXOL M125 的产品；

优选的聚醚多元醇为含芳香环结构的聚醚，其官能度为 2-3，是由多元羧酸或酸酐与多羟基化合物通过缩聚反应制得；所用的羧酸可以是脂肪族和芳香族羧酸的混合物，但至少应有一种是含芳香环的羧酸，可采用市售产品，如 STEPANOL COMPANY 公司生产的牌号为 PS3152, PS-2412, PS-2352 的产品，以及 COIM COMPANY 公司生产的牌号为 ISOEXTER 360,4537 的产品；

(b) 催化剂，用量为聚酯多元醇或聚醚多元醇质量的 1-3%；

催化剂为用于聚氨酯反应的胺类化合物，优选五甲基二乙基三胺 (Polycat 5)、二甲基环己胺(DMCHA)、N-甲基吗啉、二甲基乙醇胺 (DMEA)
或二氨基二乙基醚（DMDEE）等中的一种；

(c). 氨唑类化合物，用量为聚酯多元醇或聚醚多元醇质量的 1-5%；

氨唑类化合物为反应型潜固化剂，特别是羟基氨唑。氨唑与部分异氰酸酯（-NCO）反应，降低了体系黏度，可使罐内物料粘度降低，确保罐内物料的储存稳定性。但是，当使用 OCF 时，喷出的物料与空气接触，氨唑结构会立即与空气中的水反应生成氨基和伯羟基（反应速度远远大于-NCO 与水的反应速度），新生成的氨基和伯羟基会迅速与-NCO 反应，起到交联 PU 泡沫的作用，从而降低泡沫收缩率，改善 OCF 的尺寸稳定性，氨唑类化合物可采用市售产品，如东元精细化工有限公司生产的牌号为 ODW-201 的产品，其结构通式如下:

![结构式]

其中 R_1=-(CH_2)_n, n=1-3, R_2 可以是 CH_3 或 C_2H_5；

(d). 增塑/阻燃剂，用量为聚酯多元醇或聚醚多元醇质量的 70-120%，最好为 80-100%，优选的增塑/阻燃剂为磷酸三氯异丙酯(TCPP)或氯化石蜡等；

(e). 增溶剂，用量为聚酯多元醇或聚醚多元醇质量的 3-15%，最好为 4-8%；

增溶剂用来增加非极性推进剂与聚氨酯的相溶性，优选的增溶剂为 N-甲基吡咯烷酮（NMP）、二氯甲烷(MC)或丁二酸二乙酯(DBE)等；

(f). 泡沫稳定剂，用量为聚酯多元醇或聚醚多元醇质量的 2-3%；

泡沫稳定剂选自用于聚氨酯硬泡或聚异氰酸酯泡沫的表面活性剂，泡
沫稳定剂为聚环氧乙烷和环氧丙烷接枝改性硅烷，可采用市售产品，例如德国高斯米特公司生产的牌号为 B8404、B8460 或 B8462 的产品，如美国康普顿公司生产的牌号为 L-6900、L-5440、L-5420、L-5421 的产品，如美国气体产品公司生产的牌号为 DC5604,DC193,DC5589,DC5103 的产品；

(g) 异氰酸酯，用量为聚酯多元醇或聚醚多元醇质量的 1.5-4 倍，最好为 1.8-2.5 倍；

异氰酸酯优选官能度为 2.2-2.9 的多苯基甲烷多异氰酸酯 (p-MDI)、甲苯二异氰酸酯 (TDI) 或其改性体，可采用市售产品，例如 HUNTSMAN CORP.公司生产的牌号为 SUP5005,SUP2085 的产品，BASF CORP.公司生产的牌号为 M20S 的产品，BAYER CORP.公司生产的牌号为 44V20L 的产品，烟台万华聚氨酯公司生产的牌号为 PM-200 等的产品；

(h) 推进/发泡剂，用量为聚酯多元醇或聚醚多元醇质量的 80~110%；

推进/发泡剂选自对臭氧层破坏潜值 (ODP) 为零或低 ODP 值的化合物，优选醚类化合物、氢氟氯烃、氢氟烃或低分子烷烃等，适用的推进/发泡剂选自二甲醚、丙丁烷、1,1,1,2-四氯乙烷 (HFC-134a) 或二氯二氟甲烷 (F12) 等。

按照本发明优选的方案，可根据需要加入色浆，如黄色颜料,绿色颜料等，以增加泡沫的色彩，以及防老剂，如 2,6-二叔丁基对甲基苯酚,N,N’-二苯基对苯二胺等添加剂，其用量为聚酯多元醇或聚醚多元醇质量的 0.3~3%；

本发明的低收缩率单组分聚氨酯泡沫的制备方法包括如下步骤：

将多元醇聚醚或聚酯多元醇、催化剂、恶唑烷类化合物、增塑/阻燃剂、增溶剂、泡沫稳定剂和等组份混合均匀，制得聚氨酯组合料(I)；

将异氰酸酯、聚氨酯组合料(I) 依次灌入气雾罐；

将推进/发泡剂充入气雾罐，即获得产品，竖直放至 24 小时后，即可
使用。

根据需要，可加入色浆和防老剂；本发明的低收缩率单组分聚氨酯泡沫的使用方法与常规的方法相同，但是，其收缩率低，采用 GB8811 标准对其进行检测，收缩率仅为 5.4%。能够满足建筑行业对单组分泡沫的要求；解决目前建筑工地施工遇到的泡沫和墙体之间剥离，造成墙体冷凝或漏水的问题。本发明采用恶唑啶与部分异氰酸酯基（-NCO）反应，降低了体系官能度，可使罐内物料粘度降低，确保罐内物料的储存稳定性。但是，当使用 OCF 时，喷出的物料与空气接触，恶唑啶结构会立即与空气中的水反应生成氨基和伯羟基（反应速度远远大于-NCO 与水的反应速度），新生成的氨基和伯羟基会迅速与-NCO 反应，起到交联 PU 泡沫的作用，从而降低泡沫收缩率，改善 OCF 的尺寸稳定性。

实例中所用原材料如下：

GE310，聚醚多元醇，官能度为 3，分子量为 1000，羟值：165mgKOH/g，上海高桥石化三厂生产

GE210，聚醚多元醇，羟值：110mgKOH/g，上海高桥石化三厂

HD 204 含芳香环的聚醚多元醇，官能度为 2.1，分子量为 580 羟值：205mgKOH/g，上海东元精细化工公司。

B-8870，硅烷泡沫稳定剂,德国巴斯夫公司。

L-5340，聚环氧乙烷改性硅烷泡沫稳定剂,美国 Compton 公司

DMDEE 二环丙烯二乙基醚，催化剂，美国气体产品公司。

TCPP 三氯乙基异丙醇磷酸酯，阻燃剂，浙江天诚化工有限公司。

S-42，氯化石蜡,上海氯碱公司

DESMODUR 44V20L，多亚甲基多异氰酸酯，德国 Bayer 公司

PM-200 多亚甲基多异氰酸酯,烟台万华聚氨酯公司。
SUPRASEC 5025, 多亚甲基多异氰酸酯，美国 HUNTSMAN 公司
HTM5007，改性甲苯二异氰酸酯，上海昊海化工有限公司
ODW-201，羟基恶唑定，上海昊海化工有限公司
DBE，丁二酸二乙酯
NMP，N-甲基吡咯烷酮

表 1 中的配方为质量份。

实施例 1

按表 1 所列的配方，将多元醇聚醚或聚酯多元醇、催化剂、恶唑啶化合物、增塑/阻燃剂、增溶剂、泡沫稳定剂和等组份混合均匀，制得聚氨酯组合料(1)，按配比依次将多亚甲基多异氰酸酯与组合料(1)灌入气雾罐中后封盖阀门，依次充入推进剂丙丁烷（LPG）和二甲醚（DME）后，充分摇动气雾罐至少 1 分钟。放置 24 小时后，喷出泡沫，固化定性后，取样测试尺寸稳定性等物理机械性能，采用 Q/IEFA21-1999 标准进行检测，其结果见表 1。

实施例 2—5

按表 1 所列的配方，工艺过程同实施例 1。实施例 2-5 是在使用恶唑啶的条件下，通过改变配方中的多元醇、泡沫稳定剂和阻燃剂/增塑剂和异氰酸酯制得的单组分泡沫。采用 Q/IEFA21-1999 标准进行检测，其结果见表 1。

实施例 6—8

按表 1 所列的配方，工艺过程同实施例 1。实施例 6-8 是无恶唑啶配方的对比实例。与用恶唑啶配方的泡沫相比，这些泡沫的尺寸稳定性和压缩强度较差。
表 1. 单组分聚氨酯泡沫的配方及性能

<table>
<thead>
<tr>
<th>实施例</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>配方</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE310</td>
<td>100</td>
<td>80</td>
<td>70</td>
<td>100</td>
<td>100</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD204</td>
<td>100</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>GE210</td>
<td>20</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B8870</td>
<td>3</td>
<td>3</td>
<td></td>
<td>2.5</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-5034</td>
<td>3</td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMDEE</td>
<td>1</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>3</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>TCPP</td>
<td>54</td>
<td>54</td>
<td>30</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>S42</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODW-201</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBE</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>NMP</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DME</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>28</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>LPG</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>92</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Desmodur44v20L</td>
<td>150</td>
<td>221</td>
<td>170</td>
<td></td>
<td></td>
<td>180</td>
<td>180</td>
<td>250</td>
</tr>
<tr>
<td>Suprasenc5025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTM-5007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>192</td>
</tr>
</tbody>
</table>

性能:

自由泡密度, kg/m³
24 22 27 27 19 23 26 23

压缩强度, KPa
48 56 46 52 42 41 40 46

粘结强度:
铝-铝
95 121 90 110 87 95 90 118

PVC-PVC
102 134 112 118 97 100 111 129

尺寸变化率, %
7 5.4 8.5 7.7 5.8 11 14 10

阻燃性:
B3 B2 B3 B2 B3 B3 B3 B2