wo 2014/039458 A1 |1 I} NN TP OO0 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

13 March 2014 (13.03.2014)

WIPOIPCT

(10) International Publication Number

WO 2014/039458 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 9/45 (2006.01) GO6F 9/445 (2006.01)

International Application Number:
PCT/US2013/057892

International Filing Date:
3 September 2013 (03.09.2013)

Filing Language: English
Publication Language: English
Priority Data:

13/604,618 5 September 2012 (05.09.2012) US

Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, Washington 98052-6399

(US).

Inventors: TEJANI, Sameer; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). TRUFINESCU,
Adina M.; c/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington

(8D

98052-6399 (US). SHAABAN, Yasser; c/o Microsott Cor-
poration, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). GBADEGES-
IN, Abolade; c/o Microsott Corporation, LCA - Interna-
tional Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US). BABBAR, Ashish; c¢/o Microsoft Cor-
poration, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). TSAIL, Mei-
Chin; ¢/o Microsoft Corporation, LCA - International Pat-
ents, One Microsoft Way, Redmond, Washington 98052-
6399 (US). RAMASWAMY, Subramanian; c/o Mi-
crosoft Corporation, LCA - International Patents, One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
FERNANDO, Casimir Lakshan; ¢/o0 Microsoft Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

[Continued on next page]

(54) Title: GENERATING NATIVE CODE FROM INTERMEDIATE LANGUAGE CODE FOR AN APPLICATION

(57) Abstract: Disclosed herein are representative embodiments of tools and tech-

ONLINE PROVIDER/MARKETPLACE

B 135

PRELIMINARY
CODE FOR
APPLICATION
130

140

COMPILER

150

¥

COMPUTING DEVICE 100

MDIL CODE
FOR
APPLICATION

120

LIBRARIES
170

BINDER

160

NATIVE
IMAGE FOR
APPLICATION
10

LOADED
APPLICATION

180

FIG. 1

Y niques for installing, executing, and/or updating managed applications through gener -
ation of native code from code in an intermediate language. According to one exem-
plary technique, a computing device receives machine dependent intermediate lan-
guage code (MDIL code) generated by an online provider for an application. Addi-
tionally, the computing device installs the application on the computing device by
generating a native image for the application, which includes binding a portion of the
MDIL code with one or more libraries on the computing device. Also, the native im-
age is stored on the computing device for use in loading the application for execution.

WO 2014/039458 A1 |00 00 000N 0O

84)

HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

GENERATING NATIVE CODE FROM INTERMEDIATE
LANGUAGE CODE FOR AN APPLICATION

BACKGROUND
[001] Various mobile devices also support applications that can be downloaded in a
representation that cannot be executed directly but can be executed when compiled on a
mobile device using just-in-time compilation (JIT compilation). Although JIT compilation
of code has been used to run applications on a computer, running applications using JIT
compilation has limitations, including additional time needed for compilation when the
application runs, and potentially non-optimal decisions made during compilation.

SUMMARY

[002] Among other innovations described herein, this disclosure presents various
representative embodiments of tools and techniques for installing, executing, and/or
updating managed applications through generation of native code from code in an
intermediate language. According to one exemplary technique, a computing device
receives machine dependent intermediate language code (MDIL code) generated by an
online provider for an application. The computing device installs the application on the
computing device by generating a native image for the application, including by binding a
portion of the MDIL code with one or more libraries on the computing device. Also, the
native image is stored on the computing device for use when loading the application for
execution.
[003] According to an exemplary tool, a computing device receives, from an online
provider, an installation package for an application, where the installation package
includes a set of machine dependent intermediate language files (MDIL files).
Additionally, a binder of the computing device is provided at least one file of the set of
MDIL files and one or more libraries to be bound to the at least one file. The binder
generates a native image for the application by binding MDIL code of the at least one
MDIL file using the one or more libraries.
[004] In another exemplary technique, an online provider generates MDIL code from
preliminary code for an application. A computer system generates a set of MDIL files for
the application by compiling preliminary code of the application into MDIL code, then
signs respective files of the set of MDIL files to indicate the respective files are trusted as

being from an online marketplace. The computer system generates a binding list that

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

identifies the respective files of the set of MDIL files, and also generates an installation
package for the application comprising the set of MDIL files for the application and the
binding list. The computer system then provides, at the online marketplace, the
installation package for downloading.
[005] When it receives the installation package, a computing device receives the MDIL
code and generates a native image for the application to install the application on the
computing device. Additionally, a runtime engine of the computing device and/or one or
more libraries used by the installed application can be updated on the computing device
during an update to the computing device, and the application is automatically updated in
response. The application is updated by generating an updated native image for the
application using the one or more libraries that were updated. The updated native image is
generated such that it is runnable using the updated runtime engine on the computing
device. After the updated native image is generated, the application is run by loading the
updated native image instead of the previously generated native image.
[006] This summary is provided to introduce a selection of concepts in a simplified form
that are further described below. This summary is not intended to identify key features or
essential features of the claimed subject matter, nor is it intended to be used to limit the
scope of the claimed subject matter. The foregoing and other objects, features, and
advantages of the technologies will become more apparent from the following detailed
description, which proceeds with reference to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS
[007] FIG. 1 is a diagram illustrating an exemplary online provider / marketplace and
exemplary computing device that loads a native image of an application installed by
binding machine dependent intermediate language code (MDIL code).
[008] FIG. 2 is a flow diagram of an exemplary method of binding MDIL code of an
application to install the application on a computing device.
[009] FIG. 3 is diagram illustrating an exemplary online provider / marketplace and
exemplary computing device that can install one or more managed applications by
generating one or more native images from code in an intermediate language that is
provided and generated by the online provider / marketplace (or other online providers /
marketplaces).
[010] FIG. 4 is a flow diagram of an exemplary method for installing and updating an

application through native code generation using code in a MDIL.

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

[011] FIG. 5 is a flow diagram of an exemplary method of generating an installation
package for an application, where the installation package can be provided for download.
[012] FIG. 6 is a diagram of a computing device that can generate one or more updated
native images for one or more installed applications.
[013] FIG. 7 is a flow diagram of an exemplary method for updating an application by
generating a native image for the application from code in a MDIL.
[014] FIG. 8 is a schematic diagram depicting an exemplary mobile device with which at
least some of the disclosed embodiments can be implemented.
[015] FIG. 9 is a schematic diagram illustrating a generalized example of a suitable
implementation environment for at least some of the disclosed embodiments.
[016] FIG. 10 is a schematic diagram illustrating a generalized example of a suitable
computing environment for at least some of the disclosed embodiments.

DETAILED DESCRIPTION
[017] This disclosure presents various representative embodiments of tools and
techniques for installing, executing, and/or updating managed applications through
generation of native code from code in an intermediate language. For example, a
computing device receives MDIL code generated by an online provider for an application.
The computing device installs the application by generating a native image for the
application. As part of the generation of the native image, the computing device binds a
portion of the MDIL code with one or more libraries on the computing device. The
computing device stores the native image for use when loading the application for
execution. In this way, performance of the application can benefit from previous offline
compilation of at least part of the application (to produce MDIL code appropriate for the
device). At the same time, this approach can facilitate updating of the application when
there is a change to a library used by the application and/or MDIL code for the application.
[018] The various features of the techniques and tools described herein can be used in
combination or separately, depending on implementation. Different features of the
techniques and tools described herein affect different stages of processing, including
ingestion, installation, execution, application update and device update. The term
ingestion generally refers to the process in which a developer uploads an application to an
online provider, which processes the application for efficient execution on one or more
types of computing devices, validates the application, and makes the application available
for download. The term installation generally refers to the process of adapting the

application to run on a specific computing device, which converts the application to a form

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

more suitable for prompt and secure execution on the device (e.g., converting MDIL code
to native instructions during binding by resolving references to libraries and other
resources, storing a native image that can be loaded for execution, marking the application
as trusted, etc.). During execution, the trusted native image for the application can be
quickly loaded and run. The term application update generally refers to the process in
which an application is updated (e.g., MDIL code for the application), which can involve
re-installation of the application on the device. The term computing device update
generally refers to the process that follows after a runtime engine, a library or other
resource referenced by an application has been updated, which typically involves re-
binding applications that depend on the library or other resource that has changed.
Exemplary System for Installing and Loading an Application by Generating Native
Code from Code in a MDIL

[019] FIG. 1 is a diagram illustrating an exemplary online provider / marketplace and
exemplary computing device 100 that loads a native image 110 of an application installed
by binding MDIL code 120. In FIG. 1, preliminary code 130 for the application is
received by an online provider 140. For example, the preliminary code 130 can be code
for the application that is source code or code in an intermediate language such as
Microsoft Intermediate Language (MSIL). At 135, the preliminary code is provided to a
compiler 150 that compiles the preliminary code 130 into the MDIL code 120 for the
application. The preliminary code 130 can be a higher level representation of the code for
the application than the MDIL code 120. For example, the preliminary code 130 is in an
intermediate language (IL) that is at a higher level than the MDIL code 120, which is at a
level closer to machine code. The MDIL code 120 can be machine dependent such that it
includes native code that is based on a processor instruction set. The processor instruction
set can be an instruction set for an ARM processor, an x86 processor, or other processor.
The MDIL code 120 can also include unresolved pseudo instructions with symbolic
references which can be resolved to generate native code through binding.

[020] The MDIL code 120 for the application is received at the computing device 100.
As part of the installation of the application, the MDIL code 120 is provided to a binder
160 that binds the MDIL code 120 to one or more libraries 170 on the device. The one or
more libraries 170 can be code libraries and/or framework libraries for classes, types, or
the like. By binding the MDIL code 120 on the computing device 100, the binder 160

generates the native image 110 of the application. The native image 110 includes native

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

code for the application and is stored at the device. At 180, the native image is loaded to
execute the application.

Exemplary Method for Binding MDIL Code to Install an Application on a
Computing Device

[021] FIG. 2 is a flow diagram of an exemplary method 200 of binding MDIL code of an
application to install the application on a computing device. In various implementations,
the illustrated method blocks of FIG. 2 may be merged, divided into sub-blocks, or
omitted.

[022] In FIG. 2, a computing device receives MDIL code for the application from an
online provider at 210. For example, the computing device can receive one or more files
which include code for the application, where the code is in an IL that is machine
dependent such as code in Machine Dependent Intermediate Language as described in
U.S. Patent Application Publication No.: US 2011/0258615 or in another machine
dependent intermediate language. Since the MDIL code is received at the computing
device from the online provider, the MDIL code can be generated from compilation by the
online provider or elsewhere in the cloud. For example, the online provider compiles
preliminary code for the application to generate the MDIL code for the application.

[023] In some implementations, an installation package for the application is received
and the installation package includes the MDIL code for the application. The installation
package for an application can include other information for the application such as
resource files for the application. The MDIL code for an application can be stored on the
computing device for installation of the application and for subsequent updating of the
application.

[024] At 220, the application is installed on the computing device by generating a native
image of the application, which includes binding the MDIL code of the application. For
example, a binder can bind the MDIL code to one or more libraries available on the
computing device to generate a native image for the application that is executable. The
application can be a managed application executed using a runtime or execution engine
such as the Common Language Runtime of the .NET framework, or other runtime engine.
A runtime engine and/or execution engine can be a software layer on which the
application ultimately runs. In some implementations, a managed application is an
application that executes using a framework that includes one or more shared libraries and
one or more managed code runtime environments. For example, libraries are base class

libraries that are shared among applications. In some implementations, a library on a

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

computing device can be an image of the library that is in native and/or machine code,
which can be loaded into memory for use by a managed application that is also loaded into
memory. In some implementations, the generated native image can be generated by a
binder such that the native image is runnable by a runtime or execution engine that is used
to run the application on the computing device. For example, the binder can use and/or
reference the runtime engine for the application during binding so that the binding is
appropriate for execution using the runtime engine.

[025] In some implementations, the binding, of the binder, resolves the MDIL code and
generates native code for the application that is included in the native image for the
application. The native code can be machine code that is executable on a particular
processor and that uses instructions from a processor instruction set. The processor
instruction set can be an instruction set for an ARM processor, an x86 processor, or other
processor. In some implementations, in generating the native image, for each MDIL file
in the set of files received for the application, the respective MDIL file and the one or
more libraries that are to be bound to the MDIL code of the file are provided to the binder.
For example, one or more file paths to MDIL files and/or library files can be provided to
the binder. The binder binds the respective MDIL files to the libraries provided to the
binder to generate the native image for the application. The native image can include
native code such as machine code that is executable by the processor of the computing
device. (In addition to the native image, at least some code for the application can be kept
in an IL form, for just-in-time compilation or other compilation before the application is
launched or when the application is launched. This may be useful when resources
frequently changes, or when a type value or other reference cannot be resolved when the
application is installed and remaining MDIL code is bound to libraries on the device.)
[026] In some implementations, the application can be installed on the device by a
package manager. For example, during installation of the application, a received
installation package for the application can be unpacked by a package manager. If the
installation package and/or one or more of the files included in the installation package are
compressed, then the package manager can decompress such files. If one or more files are
not compressed then the package manager does not decompress such files. The package
manager can provide each of the MDIL files that are to be bound to the binder along with
the libraries that are to be bound to the respective MDIL files. In some implementations,
the package manager provides the MDIL files and/or the one or more libraries by

providing references to the MDIL files and/or the one or more libraries to the binder. The

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

binder binds the respective MDIL files to the provided libraries for the respective MDIL
files to generate the native image of the application. The native image can be generated by
the binder such that the native image is runnable using the runtime engine available on the
computing device for running the application.

[027] At 230, the native image of the application is stored on the computing device for
use when loading the application for execution. For example, the native image generated
is loaded to execute the application (and the MDIL code that is not executable is not used
to execute the application). In some implementations, the native image is determined as
being trusted before being loaded for execution. In other implementations, the computing
device does not make any determination about whether the native image is trusted before
the native image is loaded for execution.

Exemplary System for Generating Native Code from Provided MDIL Code for
Application Installation and Execution

[028] FIG. 3 is diagram illustrating an exemplary online provider / marketplace and
exemplary computing device 350 that can install one or more managed applications by
generating one or more native images from code in an intermediate language such as a
MDIL that is provided and generated by the online provider (or other online providers). In
FIG. 3, an online provider 305 uses a compiler 310 to compile preliminary code 315 into
one or more MDIL files 320, which are files that include code in a MDIL. The set of the
one or more MDIL files 320 are packaged into an installation package 325 for the
application. Each of the MDIL files can be signed as being trusted, as shown at 330. One
or more files 335 that include support information such as resource files or application
content can be included in the installation package 325. The installation package 325 is
stored by the online provider 305 and is offered for downloading, as shown at 340. Before
the installation package 325 is downloaded from the online provider 305, the installation
package 325 itself can be signed as trusted, as shown at 345.

[029] Thus, the installation package 325 is offered as part of a catalog of applications in
an online marketplace. Different versions of the installation package 325 can be offered
for different types of computing devices. For example, different types of MDIL code
(adapted for different types of processors) are included in different installation packages
for the different types of computing devices. The installation packages available for
different types of computing devices can also include a version with non-MDIL code (e.g.,

MSIL code in a XAP file) for purposes of backward compatibility.

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

[030] The computing device 350 downloads one or more installation packages, including
the installation package 325, from the online provider at 355. As part of installing the
application, the package manager 360 of the computing device 350 unpacks the one or
more MDIL files 320 and the one or more files 335 that include support information for
the application. The package manager also invokes a binder 365. For each MDIL file of
the set of the one or more MDIL files 320, the package manager 360 provides the
respective MDIL file such as MDIL file 322 to the binder 365 along with the one or more
libraries to be bound with the respective MDIL file, such as the one or more libraries 370.
The binder 365 binds the respective MDIL file to the one or more libraries provided for
the respective MDIL file to generate native code. The libraries provided for the MDIL
files (such as the one or more libraries 370) are included in the set of libraries 375 that are
on the computing device 350. Using the native code generated from binding the one or
more MDIL files 320, the binder generates a native image 380 for the application. The
native image 380 can be generated by the binder 365 such that the native image 380 is
runnable using a runtime engine on the computing device that can run the application.

The native image 380 is stored as part of installing the application on the device, as shown
at 385. The computing device 350 can also install one or more other applications and
store generated native images corresponding to the respective other applications.

[031] As shown at 390, the native image 380 can be signed as trusted code that was
generated from trusted code by the binder 365. The native image 380 can be signed before
it is stored and/or loaded for use in executing the application. At 395, the native image
380 is loaded to execute the application. When loaded, the native code of the native image
1s executed by the computing device 305 to provide the functionality of the application.
Exemplary Method for Installing and Updating an Application through Native Code
Generation using Code in a MDIL

[032] FIG. 4 is a flow diagram of an exemplary method 400 for installing and updating
an application through native code generation using code in a MDIL. In FIG. 4, as shown
at 410, an installation package is generated that includes MDIL code. In some
implementations, the MDIL code can be included in one or more files. In some
implementations, preliminary code can be compiled to generate the MDIL code.

[033] In some implementations, the MDIL code for the application includes native code
based on a processor instruction set, but can also include pseudo instructions. For
example, a pseudo instruction includes a symbolic reference and/or field key that cannot

be resolved when the MDIL is generated. Thus, in some implementations, pseudo

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

instructions can include symbolic references to fields, types, or the like. For example, the
symbolic references can be tokens that identify a field or a type to be used without
specifically indicating a field’s offset or a type’s size. In some implementations, a
symbolic reference can be a token that can be interpreted by a binder to determine native
code to be generated for the symbolic reference. For example, for a token such as a field
token that references a field of an object, a binder on a particular computing device can (1)
lay out the object as it is available on the computing device through a library and (2)
determine the appropriate offset for the field of the object, when generating executable
instructions for the computing device. Thus, in some implementations, field offsets for
objects in MDIL code can be symbolic instead of hard coded as a numeric offset (such as
in a corresponding native code).

[034] The pseudo instruction can abstract implementation details which are to be
determined and/or resolved when the pseudo instruction is bound to an appropriate library
on a computing device. In some implementations, MDIL code includes psecudo
instructions that include symbolic references that can be converted by a binder to produce
native instructions that are executable by a processor. For example, MDIL code can
include pseudo instructions that can be converted by a binder into machine instructions for
accessing a field of an object which is managed by a runtime engine such as the Common
Language Runtime (CLR) of the .NET framework or the like. In some implementations,
pseudo instructions in the MDIL code can be similar to machine code in a native language
such that registers are already allocated but offsets have not been included for one or more
libraries and/or classes. For example, the field offset included in a native instruction as
converted from the pseudo instruction can be determined by a binder and can depend on a
version of a library available and/or on a computing device. In some implementations,
MDIL code can include pseudo instructions that can be converted by a binder into
machine instructions for looking up an instantiation or instance of a generic type or
method.

[035] With reference to FIG. 4, at 420, a computing device receives the MDIL code for
an application. For example, the computing device can receive an installation package for
the application that includes MDIL files that include the MDIL code for the application.
In some implementations, the installation package can include a binding list that includes a
listing of the MDIL files of the application that are to be bound to generate a native image
for the application and listing of the set of one or more libraries that are to be bound to the

respective MDIL files. In some implementations, one or more of the libraries to be bound

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

to the MDIL code of an application are libraries that are declared and/or included in the
source code of the application. One or more other libraries to be bound to the MDIL code
of an application can be libraries that are not declared and/or included in the source code
of the application.

[036] At 430, the application is installed on the computing device by generating a native
image for the application. In some implementations, the application can be installed by a
package manager. For example, the package manager can determine that the installation
package is signed as trusted before using its files to install the application on the
computing device, and if the installation package is not signed as trusted, the package
manager does not use the installation package to install the application on the computing
device. The package manager can provide each of the MDIL files that are to be bound to
the binder along with the libraries that are to be bound to the respective MDIL files. In
some implementations, instead of or in addition to determining whether the entire
installation package is signed as trusted, the MDIL files can be determined to be signed as
trusted before being used to generate a native image for the application, and MDIL files
that are determined not to be signed as trusted are not used to generate a native image for
the application. In some implementations, the package manager can be provided and use a
binding list to automatically determine and identify the MDIL files that are to be bound
and the respective libraries that are to be bound the code of the respective MDIL files for
the application. The binding list can be in a machine readable format such as in a
programming, scripting, or markup language. For example, the binding list can be
included in a file that includes information organized using the Extensible Markup
Language (XML).

[037] In some implementations, the package manager provides the MDIL files and/or the
one or more libraries to the binder by providing references to the MDIL files and/or the
one or more libraries to the binder. The binder binds the respective MDIL files to the
provided libraries for the respective MDIL files to generate the native image of the
application. At a high level, the binder reads in MDIL instructions, converts 1L
instructions to native instructions, and passes through instructions that are already in
native form. For example, a binder can bind the MDIL code to one or more libraries on
the computing device to generate a native image for the application that is executable.
The native image can be generated by the binder such that the native image is runnable
using the runtime engine on the computing device, that is available to the binder, that is

for running the application. The runtime engine can be a software layer that can

10

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

ultimately run the application on the computing device. In some implementations, the
binder can be run using information from a script, user input and/or other information. In
some implementations of binding code, the MDIL code is provided to the binder. The
binder resolves the pseudo instructions to generate corresponding native instructions. For
example, from symbolic references (e.g., field token) in pseudo instructions, the binder
can generate native code by determining and specifying numeric offsets for fields based on
a type layout. In some implementations, the MDIL pseudo instructions can be used to
create native instructions which can differ in length from the pseudo instructions.
Alternatively, the native instructions may not differ in length from the pseudo instructions.
In some implementations, at least some of the MDIL code for an application can be close
to the machine code included in a native image of the application; however, other parts of
the MDIL code can provide a level of abstraction that allows a portion of the MDIL code
to be bound to a library that can be available in one or more versions. Through binding,
the MDIL code can be used to generate executable code that executes using a particular
version of the library. For example, binding MDIL code to a first set of libraries can
generate executable code for the application. Or, binding the MDIL code to the set
libraries with one or more of the libraries being of a different version can also generate
executable code for the application. The sets of versions of the one or more libraries can
have overlapping versions of libraries.

[038] In some implementations, binding MDIL code generates code that can be directly
executed by a processor without further compilation. For example, binding MDIL code to
a library includes generating a native instruction from an instruction in the MDIL code. In
some implementations, MDIL code includes pseudo instructions that include symbolic
references that are converted and/or bound by a binder to produce native instructions that
are executable by a processor. For example, a binder can convert pseudo instructions into
native code instructions for accessing a field of an object which can be managed by a
runtime engine on the computing device. In some implementations, parts of the MDIL
code can be similar to the generated native code such that registers are allocated, but in the
MDIL code offsets have not been included for one or more libraries and/or classes. In
some implementations, a binder can convert pseudo instructions into native code
instructions for looking up an instantiation or instance of a generic type or method.

[039] In some implementations, MDIL code symbolic instructions and the generated
corresponding native instructions are consistent with regard to virtual method slot

assignment and/or object field layout. For example, the MDIL code and the executable

11

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

native code can be consistent with regard to object field layout, such that a portion of
MDIL code for accessing objects that includes a field token can be used to generate native
instructions (e.g., machine instructions) using numeric field offsets. In some
implementations, the binder can generate a numeric offset from a symbolic reference to
generate one or more executable machine instructions. For example, a symbolic reference
in the MDIL code is converted by a binder into a specific field reference such that the
specific field reference includes a numeric size and/or offset.

[040] In some implementations of binding MDIL code, a binder can interpret a symbolic
reference that includes a token to determine native code to be generated for the symbolic
reference. For example, for a field token that references a field of an object, the binder
can lay out the object as it can be available on the computing device and determine the
appropriate offset for the field of the object for generating executable instructions for the
computing device. In some implementations of binding MDIL code, a binder that can
bind MDIL code is more complicated than a linker. For example, in binding MDIL code,
the binder can adjust one or more jumps in resulting native code so that the jumps are to
their intended targets.

[041] In addition to native code in the native image, at least some code for the
application can be kept in an IL form. The code in IL form is further processed during
just-in-time compilation or other compilation before the application is launched or when
the application is launched. This may be useful when a runtime engine, a library, or other
resource frequently changes. Or, it may be useful when a type value or reference cannot
be resolved during the binding process in which remaining MDIL code is bound to
libraries on the computing device.

[042] At 440, the native image is stored for use when loading the application for
execution. For example, when a user launches the application on the computing device,
the native image of the application is loaded by an execution engine or runtime such as the
CLR of the .NET framework or other runtime engine. In some implementations, the
computing device can include MSIL code for the application that can be compiled on the
computing device using just-in-time compiling to execute the application, but instead of
executing the application using the MSIL code, the native image for the application is
loaded and executed to run the application. In some implementations, when the native
image is loaded, one or more library images or assemblies are loaded that are used by the
code of the application as included in the native image. For example, the native image can

be loaded for execution using a runtime engine of the computing device. The native

12

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

image for the application can be signed by the binder before it is stored, to show that the
application is trusted.

[043] At 450, the computing device is updated at least by updating a set of libraries on
the computing device. For example, one or more of the libraries in the set of libraries of
the computing device can be updated, replaced, or changed. This can disrupt the operation
of applications that were bound to a previous version of the set of libraries. Thus, after the
one or more libraries are updated, replaced, or changed, one or more of the applications on
the computing device can be updated such that an updated native image for the respective
applications can be generated. An updated native image for an application can be
generated by binding MDIL code for the application (which is stored in MDIL form on the
computing device even after installation) to at least one of the set of one or more libraries
that were updated. The rebinding of the MDIL code for the application to one or more of
the libraries on the computing device after libraries are updated can allow the native
images to properly reference the one or more libraries as available on the computing
device after updating the device and/or updating libraries of the device. At the same time,
complete re-compilation of code for an application is not needed every time a library
changes, since the MDIL code for the application can be reused. When the changed
library is used by many of the applications on a device, re-binding using previously stored
MDIL code for the respective applications can greatly simplify the process of updating
native images for the respective applications.

[044] For example, suppose seven applications each have a dependency on a library that
has been changed. For each of the seven applications, offline compilation in the cloud
(e.g., by an online provider) can produce efficient MDIL code for that application, using
compilation that is more sophisticated and/or time-consuming that just-in-time
compilation or compilation on a device for purposes of updating. Rather than re-compile
cach of the seven applications when the library changes, which would be time-consuming
and might lead to a less efficient native image, the respective applications are re-bound to
libraries on the computing device, which is much faster since the “heavy lifting” on
compilation optimization was previously done in the cloud.

[045] In some implementations, the computing device is updated such that the updating
includes updating a runtime engine of the computing device. For example, the runtime
engine, of the computing device, that runs one or more installed applications using native
images for the applications can be updated, replaced, or changed. The runtime engine can

be the software layer that ultimately runs an updated application so when the runtime

13

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

engine is changed an updated native image for an updated application can be generated by
a binder to be executable using the updated runtime engine as available to the binder and
on the computing device. In some implementations, both a runtime engine and libraries of
the computing device are changed upon a device update and an application can be updated
so that it can be executed and/or run properly with the updated runtime engine and updated
libraries.

Exemplary Method for Generating an Installation Package for an Application that
can be Provided for Download

[046] FIG. 5 is an exemplary method 500 of generating an installation package for an
application that can be provided for download. In various implementations, the illustrated
method blocks of FIG. 5 may be merged, divided into sub-blocks, or omitted. In FIG. 5,
preliminary code for an application is received. For example, a developer of an
application can send code for the application in a preliminary language and/or state, and
the preliminary code for the application can be received by an online provider such as an
online marketplace. In some implementations, the preliminary code for the application is
source code for the application. For example, source code can be code written in one or
more programming languages such as C++, C#, Visual Basic®, J#, J++, or other like
programming languages. In some implementations, the preliminary code for the
application is in an intermediate representation such as in an IL. For example, source code
for the application can be compiled by a compiler and/or a generator into an intermediate
representation in an IL. In some implementations, the IL can be in Microsoft Intermediate
Language (MSIL). In some implementations, the IL does not include native instructions
that are machine dependent. The code in IL can be compiled, however, into code in a
MDIL that includes native instructions that are machine dependent.

[047] In some implementations, other information is received for the application as well
as the preliminary code for the application. For example, resource files for the application
can be received that are used by the application when it is executed. Resource files for
applications can be one or more files that include sound information, music information,
graphics information, video information, other media information, data base information,
text information, and the like. In some implementations, the preliminary code can be
packaged in and/or received in one or more compressed files such as a ZIP file or a XAP
file. Alternatively, the preliminary code is not packaged in and/or received in one or more
compressed files. In some implementations, one or more files with MDIL code for the

application are received by the online provider, but MDIL files received from the

14

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

developer can be discarded as untrusted files that were not generated by the online
provider. Alternatively, the online provider does not discard any MDIL files received by
the online provider. In some implementations, the preliminary code can be received in
one or more assemblies. For example, preliminary code (such as code in MSIL included
in an assembly) can be compiled into code that is at a binary level. An assembly that
includes MSIL code can be an MSIL assembly. In some implementations, an MSIL
assembly can comprise one or more files.

[048] At 520, the preliminary code of the application is compiled to produce MDIL code
which is code that is in an intermediate language that is machine dependent. As a general
rule, decisions or references within an IL file are resolved during the compilation process,
but decisions or references to a library, external source, external type, etc. are left
unresolved. The MDIL file is thus a mix of (a) assembly instructions, native code or other
device dependent instructions and (b) pseudocode instructions or other device independent
instructions that are to be resolved later. Thus, the MDIL code compiled from the
preliminary code can be in an intermediate language that is a lower level language than the
language of the preliminary code. For example, the preliminary code is in an intermediate
language that is at a higher level (further away from machine code), and the MDIL code is
at a lower level that is closer to machine code. Even so, the MDIL code is typically not
directly executable without being bound, because the MDIL code includes symbolic
references that are not native code. Instead, the MDIL code can be converted to
executable machine code by a binder. In some implementations, the preliminary code for
the application is not directly executable but can be compiled into executable code when it
1s compiled by a just-in-time compiler. For example, code for the application in MSIL can
be just-in-time compiled to run the application from the MSIL code. In some
implementations, code for an application in MSIL can be provided to a compiler to
generate MDIL code for the application. Typically, the MSIL code does not include
native instructions, nor does it include the pseudo instructions included in the MDIL code
that are to be resolved and/or bound by a binder to generate native code for the
application.

[049] The MDIL code can be included in one or more MDIL files. In some
implementations, an MDIL file can have a name and/or file extension such that “.mdil” is
included in the name and/or file extension of the MDIL file. In other implementations, an
MDIL file can have another naming convention, such that “.mdil” is not included in the

name and/or file extension of the MDIL file.

15

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

[050] In some implementations, when the preliminary code is compiled, in addition to
pseudo instructions, the compiler produces one or more assemblies for the MDIL code.
For example, MDIL code included in an assembly can be compiled into code that is at a
binary level. An assembly that includes MDIL code can be an MDIL assembly. In some
implementations, an MDIL assembly can comprise one or more files.

[051] Compiling the preliminary code into MDIL code for the application before the
application code is received at a target computing device (on which the application is to be
executed) can provide various advantages. For example, compile time can be removed
from the time it takes to install the application on the target computing device. Removing
the compilation from the installation of the application on the target device can also allow
for compile-time optimizations of the code to be done in the cloud, without that time being
added to the time it takes to install the application on a target device. In particular, this
can help avoid time-consuming re-compilation on the target computing device for multiple
applications that depend on a library whenever the library is changed and/or when a
runtime engine is changed.

[052] In some implementations the compilation of the preliminary code can produce one
or more native code files for the application that include native code for the application
and do not include MDIL code.

[053] In some implementations, for each MSIL assembly file received for the
application a corresponding MDIL file is generated by a compiler. The preliminary code
can be compiled to generate MDIL code that is dependent on an instruction set for a first
processor (for a first type of target computing device), and different MDIL code can be
generated that is dependent on an instruction set for a second processor (for a second type
of target computing device). For example, compiling preliminary code for an application
can produce MDIL code that can be bound to run on a device that has a first processor,
and produce different MDIL code for the application that can be bound to run on another
device with a different second processor. For example, the first processor can be an ARM
processor and the second processor can be an x86 processor.

[054] At 530, the MDIL code of the application is signed as trusted. For example, MDIL
code files generated from the preliminary code can be signed with a publisher key to
indicate that the signed files include trusted code. In some implementations, native code
generated by compiling preliminary code can be signed as trusted. For example, native
code files that are generated by a compiler can be signed with a publisher key to indicate

that the signed files include trusted code.

16

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

[055] At 540, an installation package is generated that includes the MDIL code. For
example, the MDIL code can be packaged into a container such as one or more files that
can be downloaded for installing the application. In one implementation, the MDIL code
in one or more MDIL code files are packaged into one or more compressed files such as a
ZIP file or a XAP file. A compressed installation package can lower the amount of data to
be downloaded for the application from the online provider. Alternatively, the installation
package is not in a compressed form. Different types of MDIL code (adapted for different
types of processors) can be included in different installation packages for different types of
computing devices. The installation packages available for different types of computing
devices can also include a version with non-MDIL code (e.g., MSIL code in a XAP file)
for purposes of backward compatibility.

[056] In some implementations, the installation package can include other information
for the application such as resource files for the application. For example, resource files
for the application can be received that can be used by the application when it is executed.
Resource files for applications can be one or more files that include sound information,
music information, graphics information, video information, other media information, data
base information, text information, and the like. The installation package can also include
a listing of files that are included in the installation package. The listing of files can
include information about the files included in the installation package. For example, the
installation package can include a file that includes information organized using
Extensible Markup Language (XML). The XML file can include a list of the files that are
included in the installation package. For each of the files listed, the XML file can include
information associated with the listed file. For example, the XML file can list each of the
MDIL code files included in the installation package and indicate that each of the MDIL
code files are able to be bound. The XML file can also indicate the one or more libraries
that are to be bound to the code of respective listed MDIL code files.

[057] In some implementations, the generated installation package itself is signed as
trusted. For example, the installation package can be signed with a publisher key to
indicate that it includes code and/or other information that is trusted. In some
implementations, the installation package can be encrypted.

[058] At 550, the installation package is provided for downloading. For example, the
online provider and/or partner of the online provider can store the installation package for
download. The online provider can be an online marketplace from which one or more

applications can be downloaded for installation onto one or more computing devices. The

17

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

application can be included in a catalogue of applications that are available for
downloading from the online marketplace. For example, the application can be
downloaded by a computing device using the internet and/or the cloud. The application
can be downloaded such that the installation package for the application is downloaded.
In some implementations, the application can be downloaded to a computing device after
the application has been purchased and authorized to be downloaded to the computing
device. In some implementations, the application can be downloaded without being
purchased. For example, the application can be offered and downloaded for free.
Exemplary System for Generating Updated Native Images for Installed Applications
[059] FIG. 6 is a diagram of a computing device 600 that can generate one or more
updated native images 605 for one or more installed applications. In FIG. 6, the
computing device includes one or more generated native images 610 for the one or more
installed applications on the computing device. The computing device 600 includes
updated libraries 620, which include one or more libraries that were updated after being
bound to respective MDIL code of applications to generate the one or more native images
610. Because at least one of the libraries that were bound to the one or more native
images 610 were updated, the computing device 600 updates the applications installed on
it by generating the one or more updated native images 605 for the installed applications.
The computing device also includes an updated runtime engine 670.

[060] In generating the one or more updated native images 605 for the installed
applications, a binder 625 generates an updated native image for each of one or more
installed applications. As shown in FIG. 6, for each installed application that has a native
image that was bound to at least one library that has been changed and/or updated, the
package manager 630 provides the binder 625 the MDIL files of the respective application
for rebinding to generate an updated native image for the application being updated, such
as the updated native image 635. The updated native images can be generated by the
binder 625 such that the native images are executable using the updated runtime engine
670.

[061] To generate the updated native image 635, for each MDIL file for the application
being updated, binder 625 is provided the respective MDIL file of the application such as
MDIL file 640 and one or more libraries such as the one or more libraries 645 that are to
be bound to the MDIL file. The one or more libraries provided for binding to the code of
the MDIL file can include at least on library that has been updated and is included in the

18

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

set of updated libraries 620. In some implementations, one or more libraries bound to the
code of an MDIL file of an application being updated have not been updated.

[062] When generated, the updated native image for the application, such as the updated
native image 635, is stored as at least one of the one or more updated native images 605
for the installed applications on the computing device. The updated native image can also
be signed as trusted code, as shown at 650, before the updated native image is used to
execute the application. At 655, the computing device loads a generated updated native
image for an application to execute the application instead of the previously generated
native image for the application.

[063] In addition to handling updates to libraries on the device, the device can update an
application when the application has changed (e.g., MDIL code of the application has
changed). In this case, the device updates the application by generating an updated native
image for the application, including binding a new portion of the MDIL code with the one
or more libraries (unchanged) on the device. The updated native image for the application
can be generated by the binder such that the native images are runnable using the updated
runtime engine.

[064] As shown at 660, the previously generated native image can be stored temporarily
during the generation of the updated native image and/or update of the computing device
600 until the update of the application and/or computing device 600 is verified as
successful. If the update to the computing device and/or to the application fails, the
previously generated native image can be restored from temporary storage and again used
as the native image that is loaded by the computing device to execute the application.
Exemplary Method for Updating an Application through Native Code Generation
using Code in a MDIL

[065] FIG. 7 is an exemplary method 700 for updating an application by generating a
native image for the application from code in a MDIL. In various implementations, the
illustrated method blocks of FIG. 7 may be merged, divided into sub-blocks, or omitted.
In FIG. 7, a set of one or more libraries are updated on a computing device, as shown at
710. For example, a portion or all of the one or more libraries on the computing device
are changed, modified, or otherwise updated. In some implementations, the set of one or
more libraries are updated and a runtime engine of the device is updated as part of a
computing device update. In some implementations, for one or more applications on the
computing device, at least one of the libraries of the one or more libraries that were bound

to MDIL code for the respective application (to generate a native image for the respective

19

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

application during installation) has been changed, modified, or otherwise updated. In
some implementations, a library is updated and /or changed such that the code of the
native image for an application that is bound to the library no longer corresponds properly
to at least one offset for the library. For example, an offset for at least one field of an
object has changed in the library, or the like. A set of the libraries on the computing
device can be updated as part of an operating system update. Or, libraries on the
computing device can be updated as part of an update to a framework and/or an execution
engine update. For example, the computing device can use a framework to execute
managed application such as the NET framework, and the libraries that are part of the
framework are changes and/or updated and/or the runtime engine that is part of the
framework is changed and/or updated. In the NET framework, the base class libraries can
be changed or updated to a different and/or newer version of the framework libraries. In
some cases, not all the libraries on the computing device are updated and/or changed. In
other cases, all the libraries on the computing device are updated and/or changed.

[066] At 720, the computing device generates an updated native image for an
application. For example, an application that was installed on the computing device by
generating a native image from MDIL code for the application can be updated such that a
new native image (e.g., an updated native image) is generated for the application by
binding the MDIL code for the application to one or more libraries after at least one of the
one or more libraries has been updated on the computing device. The generating of the
updated native image can be similar to the generation of the native image when the
application was originally installed. For example, the updated native image can be
generated for the application using at least one of the updated libraries of the computing
device as described above for the installation process. Thus, the generating of an updated
native image occurs after a first native image for the application has already been
generated for the application and one or more of the libraries bound during the generation
of the first native image have been updated and/or changed on the computing device. In
some implementations, when the runtime engine has been updated along with libraries of
the computing device, the binding of the MDIL code of the application being updated can
be done such that the generated native image is executable using the updated runtime
engine and the updated libraries as available on the computing device.

[067] Or, an updated native image can be generated when MDIL code for the application
is updated but libraries and/or runtime engines have not changed. For example, the

computing device receives new MDIL code for the application as part of an application

20

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

update. The received new MDIL code for the application can be installed as described
herein such as using the method 200 above. For example, the computing device updates
the application by generating an updated native image for the application, including
binding a portion of the new MDIL code with the one or more libraries (unchanged) on the
computing device. The native code generated for the application by a binder can be
generated such that it is runnable using the runtime engine available on the device for
running the application.

[068] In some implementations, for the application being updated, the MDIL code for the
application stored on the computing device for the application can be bound to one or
more libraries of the device. For example, a binder can bind the MDIL code to one or
more libraries available on the computing device to generate an executable native image
that is updated for the application. The binding resolves the MDIL code and generates
native code for the application that is included in the updated native image for the
application. In some implementations, in generating the updated native image, for each
MDIL file in the set of MDIL files for the application, the respective MDIL file and the
one or more libraries that are to be bound to the MDIL code of the file are provided to the
binder. The binder binds the respective MDIL files to the libraries provided to the binder
to generate the updated native image for the application. The updated native image can
include native code, such as machine code that is executable by the processor of the
computing device, and the updated native image typically does not include unbound
pseudo instructions as in the MDIL code. In some implementations, the generated updated
native images can be signed as trusted code.

[069] In some implementations, the updated native image replaces the previously
generated native image for the application as the native image that is loaded for executing
the application. The updated native image is loaded to execute the application because the
updated native image includes native code that is executable using the at least one of the
updated libraries of the computing device. The previously generated native image may be
unstable and/or unreliable, such that it does not function properly or as expected, because
it can improperly reference an earlier version of one of the libraries available on the
computing device.

[070] In some implementations, when an updated native image is being generated, the
previously generated native image is stored and/or backed up temporarily until the
application and/or update to the computing device is verified as successful. For example,

an update to the computing device that updates libraries of the computing device can

21

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

trigger the regeneration and/or updating of native images for applications. If the update to
the computing device or the update of a native image for an application fails, the failed
update can be rolled back and the previously generated native image of the application that
is stored can be used as the native image of the application when executed. In some
implementations, application data is also preserved. For example, a user of the application
can generate user data and/or application data before the application is updated, and, after
the application is updated, the user data and/or application data can be preserved such that
the generation of the updated native image does not change the user data and/or
application data from the previous version of the application.

[071] At 730, the computing device generates an updated native image for one or more
other applications installed on the device. For example, for each additional application
installed on the computing device that has a native image that was generated by binding
MDIL code to one or more of the libraries that were updated, an updated native image for
the respective application is generated by binding the MDIL code to the one or more
libraries as updated. The dotted lines, as shown at 730, indicate that the block 730 can be
omitted from the method or included in the method in various implementations of the
method 700. In some implementations, after one or more libraries of a device are updated
(such as in a framework update), the applications of the device can be automatically
updated, and updated native images for the applications can be generated, so that the
applications execute properly using the updated libraries. If an installed application does
not use shared libraries that have been updated and/or changed, the application need not be
updated, and an updated native image need not be generated for the application, as the
previously generated native image for the application can function properly with the
libraries as available on the device. In some implementations, when a runtime engine has
been updated along with the libraries of the computing device, the updated native images
for the applications can be generated such that the application is executable on the
computing device using the updated runtime engine and the updated libraries as available
on the computing device.

[072] At 740, the updated native image is stored for use when loading the application to
execute the application at the computing device. For example, the updated native image is
loaded instead of a native image of the application generated previous to the generation of
the updated native image. The updated native image is loaded to execute the application
because the updated native image can properly reference the libraries it uses. By

generating updated native images by rebinding already downloaded MDIL code for an

22

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

application, a computing device that uses native images to run applications can be updated
without having to download an updated version of the application, without re-installing the
application from newly downloaded information for the application, and without re-
compiling the application.

Exemplary Mobile Device

[073] FIG.8 is a system diagram depicting an exemplary mobile device 800 including a
variety of optional hardware and software components, shown generally at 802. In
general, a component 802 in the mobile device can communicate with another component,
although not all connections are shown, for ease of illustration. The mobile device can be
any of a variety of computing devices (e.g., cell phone, smartphone, tablet computer,
handheld computer, Personal Digital Assistant (PDA), etc.) and can allow wireless two-
way communications with one or more mobile communications networks 804, such as a
cellular or satellite network.

[074] The illustrated mobile device 800 can include a controller or processor 810 (e.g.,
signal processor, microprocessor, ASIC, or other control and processing logic circuitry)
for performing such tasks as signal coding, data processing, input/output processing,
power control, and/or other functions. An operating system 812 can control the allocation
and usage of the components 802 and support for one or more application programs 814
and/or one or more software programs 815 such as one that can implement one or more of
the technologies described herein for generating native code from IL code on a device for
applications. The application programs can include common mobile computing
applications and software (c.g., email applications, calendars, contact managers, web
browsers, messaging applications, a runtime engine), or any other computing applications.
Functionality 813 for accessing an application store, an online marketplace, or online
provider can also be used for acquiring and updating code and/or other information for
application programs §14.

[075] The illustrated mobile device 800 can include memory 820. Memory 820 can
include non-removable memory 822 and/or removable memory 824. The non-removable
memory 8§22 can include RAM, ROM, flash memory, a hard disk, or other well-known
memory storage technologies. The removable memory 824 can include flash memory or a
Subscriber Identity Module (SIM) card, which is well known in GSM communication
systems, or other well-known memory storage technologies, such as "smart cards." The
memory 820 can be used for storing data and/or code for running the operating system 812

and the applications 814 and 815. Example data can include web pages, text, images,

23

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

sound files, video data, or other data sets to be sent to and/or received from one or more
network servers or other devices via one or more wired or wireless networks. The
memory 820 can be used to store a subscriber identifier, such as an International Mobile
Subscriber Identity (IMSI), and an equipment identifier, such as an International Mobile
Equipment Identifier (IMEI). Such identifiers can be transmitted to a network server to
identify users and equipment.

[076] The mobile device 800 can support one or more input devices 830, such as a
touchscreen 832, microphone 834, camera 836, physical keyboard 838 and/or trackball
840 and one or more output devices 850, such as a speaker 852 and a display 854. Other
possible output devices (not shown) can include piezoelectric or other haptic output
devices. Some devices can serve more than one input/output function. For example,
touchscreen 832 and display 854 can be combined in a single input/output device. The
input devices 830 can include a Natural User Interface (NUI). An NUI is any interface
technology that enables a user to interact with a device in a “natural” manner, free from
artificial constraints imposed by input devices such as mice, keyboards, remote controls,
and the like. Examples of NUI methods include those relying on speech recognition,
touch and stylus recognition, gesture recognition both on screen and adjacent to the screen,
air gestures, head and eye tracking, voice and speech, vision, touch, gestures, and machine
intelligence. Other examples of a NUI include motion gesture detection using
accelerometers/gyroscopes, facial recognition, 3D displays, head, eye , and gaze tracking,
immersive augmented reality and virtual reality systems, all of which provide a more
natural interface, as well as technologies for sensing brain activity using electric field
sensing electrodes (EEG and related methods). Thus, in one specific example, the
operating system 812 or applications 814 can comprise speech-recognition software as
part of a voice user interface that allows a user to operate the device 800 via voice
commands. Further, the device 800 can comprise input devices and software that allows
for user interaction via a user’s spatial gestures, such as detecting and interpreting gestures
to provide input to a gaming application or other application.

[077] A wireless modem 860 can be coupled to an antenna (not shown) and can support
two-way communications between the processor 810 and external devices, as is well
understood in the art. The modem 860 is shown generically and can include a cellular
modem for communicating with the mobile communication network 804 and/or other
radio-based modems (e.g., Bluetooth 864 or Wi-Fi 862). The wireless modem 860 is

typically configured for communication with one or more cellular networks, such as a

24

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

GSM network for data and voice communications within a single cellular network,
between cellular networks, or between the mobile device and a public switched telephone
network (PSTN).

[078] The mobile device can further include at least one input/output port 880, a power
supply 882, a satellite navigation system receiver 884, such as a Global Positioning
System (GPS) receiver, an accelerometer 886, and/or a physical connector 890, which can
be a USB port, IEEE 1394 (FireWire) port, and/or RS-232 port. The illustrated
components 802 are not required or all-inclusive, as any components can deleted and other
components can be added.

Exemplary Implementation Environment

[079] FIG. 9 illustrates a generalized example of a suitable implementation environment
900 in which described embodiments, techniques, and technologies may be implemented.
[080] In example environment 900, various types of services (e.g., computing services)
are provided by a cloud 910. For example, the cloud 910 can comprise a collection of
computing devices, which may be located centrally or distributed, that provide cloud-
based services to various types of users and devices connected via a network such as the
Internet. The implementation environment 900 can be used in different ways to
accomplish computing tasks. For example, some tasks (e.g., processing user input and
presenting a user interface) can be performed on local computing devices (e.g., connected
devices 930, 940, 950) while other tasks (e.g., storage of data to be used in subsequent
processing) can be performed in the cloud 910.

[081] In example environment 900, the cloud 910 provides services for connected
devices 930, 940, 950 with a variety of screen capabilities. Connected device 930
represents a device with a computer screen 935 (e.g., a mid-size screen). For example,
connected device 930 could be a personal computer such as desktop computer, laptop,
notebook, netbook, or the like. Connected device 940 represents a device with a mobile
device screen 945 (e.g., a small size screen). For example, connected device 940 could be
a mobile phone, smart phone, personal digital assistant, tablet computer, or the like.
Connected device 950 represents a device with a large screen 955. For example, connected
device 950 could be a television screen (e.g., a smart television) or another device
connected to a television (e.g., a set-top box or gaming console) or the like. One or more
of the connected devices 930, 940, and 950 can include touchscreen capabilities.
Touchscreens can accept input in different ways. For example, capacitive touchscreens

detect touch input when an object (e.g., a fingertip or stylus) distorts or interrupts an

25

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

electrical current running across the surface. As another example, touchscreens can use
optical sensors to detect touch input when beams from the optical sensors are interrupted.
Physical contact with the surface of the screen is not necessary for input to be detected by
some touchscreens. Devices without screen capabilities also can be used in example
environment 900. For example, the cloud 910 can provide services for one or more
computers (¢.g., server computers) without displays.

[082] Services can be provided by the cloud 910 through service providers 920, or
through other providers of online services (not depicted). For example, cloud services can
be customized to the screen size, display capability, and/or touchscreen capability of a
particular connected device (e.g., connected devices 930, 940, 950).

[083] In example environment 900, the cloud 910 provides the technologies and
solutions described herein to the various connected devices 930, 940, 950 using, at least in
part, the service providers 920 and the one or more online providers 925. For example, the
service providers 920 can provide a centralized solution for various cloud-based services.
The service providers 920 can manage service subscriptions for users and/or devices (e.g.,
for the connected devices 930, 940, 950 and/or their respective users). The cloud 910 can
provide resources for downloading, sending, or receiving one or more one installation
packages for one or more applications as discussed herein. For example, intermediate
language code for an application can be compiled in the cloud 910 by at least one of the
online providers 925. As shown at 965, a native image is generated for an application by
connected device 930 from IL code downloaded from the cloud 910.

Exemplary Computing Environment

[084] FIG. 10 depicts a generalized example of a suitable computing environment 1000
in which the described innovations may be implemented. The computing environment
1000 is not intended to suggest any limitation as to scope of use or functionality, as the
innovations may be implemented in diverse general-purpose or special-purpose computing
systems. For example, the computing environment 1000 can be any of a variety of
computing devices (e.g., desktop computer, laptop computer, server computer, tablet
computer, media player, gaming system, mobile device, etc.)

[085] With reference to FIG. 10, the computing environment 1000 includes one or more
processing units 1010, 1015 and memory 1020, 1025. In FIG. 10, this basic configuration
1030 is included within a dashed line. The processing units 1010, 1015 execute computer-
executable instructions. A processing unit can be a general-purpose central processing

unit (CPU), processor in an application-specific integrated circuit (ASIC) or any other type

26

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

of processor. In a multi-processing system, multiple processing units execute computer-
executable instructions to increase processing power. For example, FIG. 10 shows a
central processing unit 1010 as well as a graphics processing unit or co-processing unit
1015. The tangible memory 1020, 1025 may be volatile memory (e.g., registers, cache,
RAM), non-volatile memory (e.g., ROM, EEPROM, flash memory, etc.), or some
combination of the two, accessible by the processing unit(s). The memory 1020, 1025
stores software 1080 implementing one or more innovations described herein, in the form
of computer-executable instructions suitable for execution by the processing unit(s).

[086] A computing system may have additional features. For example, the computing
environment 1000 includes storage 1040, one or more input devices 1050, one or more
output devices 1060, and one or more communication connections 1070. An
interconnection mechanism (not shown) such as a bus, controller, or network interconnects
the components of the computing environment 1000. Typically, operating system
software (not shown) provides an operating environment for other software executing in
the computing environment 1000, and coordinates activities of the components of the
computing environment 1000.

[087] The tangible storage 1040 may be removable or non-removable, and includes
magnetic disks, magnetic tapes or cassettes, CD-ROMs, DVDs, or any other medium
which can be used to store information in a non-transitory way and which can be accessed
within the computing environment 1000. The storage 1040 stores instructions for the
software 1080 implementing one or more innovations described herein such as generating
native code from IL code for one or more applications.

[088] The input device(s) 1050 may be a touch input device such as a keyboard, mouse,
pen, or trackball, a voice input device, a scanning device, or another device that provides
input to the computing environment 1000. For video encoding, the input device(s) 1050
may be a camera, video card, TV tuner card, or similar device that accepts video input in
analog or digital form, or a CD-ROM or CD-RW that reads video samples into the
computing environment 1000. The output device(s) 1060 may be a display, printer,
speaker, CD-writer, or another device that provides output from the computing
environment 1000.

[089] The communication connection(s) 1070 enable communication over a
communication medium to another computing entity. The communication medium
conveys information such as computer-executable instructions, audio or video input or

output, or other data in a modulated data signal. A modulated data signal is a signal that

27

10

15

20

25

30

WO 2014/039458 PCT/US2013/057892

has one or more of its characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limitation, communication media
can use an electrical, optical, RF, or other carrier.

[090] Although the operations of some of the disclosed methods are described in a
particular, sequential order for convenient presentation, it should be understood that this
manner of description encompasses rearrangement, unless a particular ordering is required
by specific language set forth below. For example, operations described sequentially may
in some cases be rearranged or performed concurrently. Moreover, for the sake of
simplicity, the attached figures may not show the various ways in which the disclosed
methods can be used in conjunction with other methods.

[091] Any of the disclosed methods can be implemented as computer-executable
instructions stored on one or more computer-readable storage media (e.g., non-transitory
computer-readable media, such as one or more optical media discs, volatile memory
components (such as DRAM or SRAM), or nonvolatile memory components (such as
flash memory or hard drives)) and executed on a computer (e.g., any commercially
available computer, including smart phones or other mobile devices that include
computing hardware). As should be readily understood, the term computer-readable
storage media does not include communication connections, such as modulated data
signals. Any of the computer-executable instructions for implementing the disclosed
techniques as well as any data created and used during implementation of the disclosed
embodiments can be stored on one or more computer-readable media (e.g., non-transitory
computer-readable media, which excludes propagated signals). The computer-executable
instructions can be part of, for example, a dedicated software application or a software
application that is accessed or downloaded via a web browser or other software application
(such as a remote computing application). Such software can be executed, for example, on
a single local computer (e.g., any suitable commercially available computer) or in a
network environment (e.g., via the Internet, a wide-area network, a local-area network, a
client-server network (such as a cloud computing network), or other such network) using
one or more network computers.

[092] For clarity, only certain selected aspects of the software-based implementations are
described. Other details that are well known in the art are omitted. For example, it should
be understood that the disclosed technology is not limited to any specific computer
language or program. For instance, the disclosed technology can be implemented by

software written in C++, C#, J++, Java, Perl, JavaScript, Adobe Flash, or any other

28

10

15

20

25

WO 2014/039458 PCT/US2013/057892

suitable programming language. Likewise, the disclosed technology is not limited to any
particular computer or type of hardware. Certain details of suitable computers and
hardware are well known and need not be set forth in detail in this disclosure.

[093] It should also be well understood that any functionally described herein can be
performed, at least in part, by one or more hardware logic components, instead of
software. For example, and without limitation, illustrative types of hardware logic
components that can be used include Field-programmable Gate Arrays (FPGAs), Program-
specific Integrated Circuits (ASICs), Program-specific Standard Products (ASSPs),
System-on-a-chip systems (SOCs), Complex Programmable Logic Devices (CPLDs), etc.
[094] Furthermore, any of the software-based embodiments (comprising, for example,
computer-executable instructions for causing a computer to perform any of the disclosed
methods) can be uploaded, downloaded, or remotely accessed through a suitable
communication means. Such suitable communication means include, for example, the
Internet, the World Wide Web, an intranet, software applications, cable (including fiber
optic cable), magnetic communications, electromagnetic communications (including RF,
microwave, and infrared communications), electronic communications, or other such
communication means.

[095] The disclosed methods, apparatus, and systems should not be construed as limiting
in any way. Instead, the present disclosure is directed toward all novel and nonobvious
features and aspects of the various disclosed embodiments, alone and in various
combinations and subcombinations with one another. The disclosed methods, apparatus,
and systems are not limited to any specific aspect or feature or combination thereof, nor do
the disclosed embodiments require that any one or more specific advantages be present or
problems be solved. In view of the many possible embodiments to which the principles of
the disclosed invention may be applied, it should be recognized that the illustrated
embodiments are only preferred examples of the invention and should not be taken as
limiting the scope of the invention. Rather, the scope of the invention is defined by the
following claims. We therefore claim as our invention all that comes within the scope of

these claims and their equivalents.

29

WO 2014/039458 PCT/US2013/057892

CLAIMS

1. A method comprising:

receiving, at a computing device, machine dependent intermediate language code
(MDIL code) generated by an online provider for an application;

at the computing device, installing the application on the computing device by
generating a native image for the application by binding the MDIL code, the generating
the native image comprising;:

binding a portion of the MDIL code with one or more libraries on the
computing device; and

storing the native image on the computing device for use when loading the
application for execution.

2. The method of claim 1 further comprising updating the computing device,
the updating the computing device comprising:

updating a set of libraries on the computing device, the set of libraries including at
least one library of the one or more libraries bound to the portion of the MDIL code;

updating at least one runtime engine of the computing device;

after the updating of the set of libraries, automatically generating an updated native
image for the application by binding the portion of the MDIL code with the at least one
library of the one or more libraries after the one or more libraries are updated on the
computing device, the updated native image for the application generated such that the
updated native image is runnable using the updated at least one runtime engine; and

storing the updated native image on the computing device for use when loading the
application for execution.

3. The method of claim 1, further comprising loading the native image during
execution of the application, wherein the loading of the native image is performed by a
common language runtime.

4. The method of claim 1, wherein the MDIL code comprises one or more
machine code instructions and one or more pseudo instructions encoded at a binary level,
and wherein the machine code instructions are based on a processor instruction set for a
processor of the computing device.

5. The method of claim 4, wherein the binding the MDIL code with the one or
more libraries comprises:

generating executable code at least by generating a native language instruction

from a pseudo instruction of the pseudo instructions in the MDIL code.

30

WO 2014/039458 PCT/US2013/057892

6. The method of claim 5 wherein the generating a native language instruction
comprises generating a numeric field offset based on the pseudo instruction.

7. The method of claim 6, wherein the pseudo instruction includes a token that
identifies a field and the native instruction includes the numeric field offset to reference
the field when executed.

8. The method of claim 1, further comprising:

receiving new MDIL code for the application;

updating the application on the computing device by generating an updated native
image for the application, including binding a new portion of the MDIL code with the one
or more libraries on the computing device; and

storing the updated native image on the computing device for use when loading the
application for execution.

9. A computing device that includes a processor and memory, the memory
storing computer-executable instructions for causing the computing device to perform a
method, the method comprising:

receiving, at the computing device, at least one installation package for an
application from an online provider, the at least one installation package comprising a set
of machine dependent intermediate language files (MDIL files);

providing, to a binder of the computing device, at least one MDIL file of the set of
MDIL files and one or more libraries to be bound to the at least one MDIL file; and

with the binder, generating a native image for the application, the generating
comprising binding machine dependent intermediate language code (MDIL code) of the
at least one MDIL file using the one or more libraries.

10. A method comprising:

generating a set of machine dependent intermediate language files (MDIL files) for
an application by compiling preliminary code of the application into machine dependent
intermediate language code (MDIL code);

signing respective files of the set of MDIL files to indicate the respective files are
trusted as being from an online marketplace;

generating a binding list that identifies the respective files of the set of MDIL files;

generating an installation package for the application comprising the set of MDIL
files for the application and the binding list; and

providing, at the online marketplace, the installation package for downloading.

31

WO 2014/039458 PCT/US2013/057892
1/10
r 2
ONLINE PROVIDER/MARKETPLACE 140
135
PRELIMINARY
CODE FOR » COMPILER
APPLICATION
130 150
MDIL CODE
FOR <
APPLICATION
120 |
_ y
. 4
e 2
COMPUTING DEVICE 100
MDIL CODE
FOR LIBRARIES
APPLICATION 170
3] BINDER |e—
160
NATIVE
IMAGE FOR = APll_D(EIIACE)AE'?ON
APPLICATION
1o 180
_ y

FIG. 1

WO 2014/039458 PCT/US2013/057892

2/10

200

Y

AT A COMPUTING DEVICE, RECEIVE, FROM AN ONLINE
PROVIDER, MDIL CODE FOR AN APPLICATION [

| 210
!

INSTALL THE APPLICATION ON THE COMPUTING DEVICE BY
GENERATING A NATIVE IMAGE FOR THE APPLICATIONBY [\
BINDING THE MDIL CODE 220

!

STORE THE NATIVE IMAGE AT THE COMPUTING DEVICE FOR
USE WHEN LOADING THE APPLICATION FOR EXECUTION

230

FIG. 2

WO 2014/039458 PCT/US2013/057892

3/10
r 2
ONLINE PROVIDERIMARKETPLACE 305
MDIL FILES SIGNING
N APPLICATION
COMPILER » FOR 330 CONTENT
310 APPLICATION 935
120 | 335
l — |
N — N
PRELIMINARY INSTALLATION
CODE FOR INSSTL(EFEﬁON — S'ingG 1 PACKAGE FOR
APPL;??TION PAGKAGES FOR B THE APF;I;SCATION
315 DOWNLOAD 329
\ ~ y
355 ~|
.

s 2
— ™~ COMPUTING DEVICE ~ 350 N
&//

N———— APPLICATION
PACKAGE MANAGER P ONTENT
LIBRARIES 360 335
315 DN .
INSTALLATION) B
PACKAGE FOR » VDILFILES
THE APPLICATION
| FOR
370 325 APPLICATION
LIBRARIES TO BE 320 -
BOUND TO AN
MDIL FILE FOR vDILN| | — $ —
THE APPLICATION [T"| BNPER [FILE [R——
322 ——
365 STORED MDIL
CODE FOR
INSTALLED
__ APPLICATION(S) J
/’—\
C 385 D
\—/
NATIVE SIGNING N———
IMAGEFOR H 300 P NATIVE IMAGES [4o hDED
390 APPLICATION
APPLICATION FOR INSTALLED
380 APPLICATIONS 3%
_/
_

FIG. 3

WO 2014/039458 PCT/US2013/057892

4/10

400

'

GENERATE INSTALLATION PACKAGE THAT INCLUDES MDIL
CODE FOR AN APPLICATION ™

l 410

AT A COMPUTING DEVICE, RECEIVE, FROM AN ONLINE ~
PROVIDER, THE MDIL CODE FOR AN APPLICATION 420

A 4

INSTALL THE APPLICATION ON THE COMPUTING DEVICE BY
GENERATING A NATIVE IMAGE FOR THE APPLICATION BY I~
BINDING THE MDIL CODE 430

l

STORE THE NATIVE IMAGE AT THE COMPUTING DEVICE FOR |~
USE WHEN LOADING THE APPLICATION FOR EXECUTION 440

l

UPDATE THE COMPUTING DEVICE BY UPDATING A SET OF

LIBRARIES ON THE COMPUTING DEVICE \450

FIG. 4

WO 2014/039458 PCT/US2013/057892

5/10

500

Y

RECEIVE PRELIMINARY CODE FOR AN APPLICATION N\

l 510

COMPILE THE PRELIMINARY CODE OF THE APPLICATION TO ~
PRODUCE MDIL CODE FOR THE APPLICATION 590

l

SIGN THE MDIL CODE OF THE APPLICATION AS TRUSTED ™~

l 530
GENERATE AN INSTALLATION PACKAGE FOR THE APPLICATION
THAT INCLUDES THE MDIL CODE N
540

|

PROVIDE THE INSTALLATION PACKAGE FOR DOWNLOAD ~
550

FIG. 5

WO 2014/039458 PCT/US2013/057892

6/10
(™
COMPUTING DEVICE 600
610 TEMPORARY STORAGE
y FOR GENERATED
GENERATED NATIVE IMAGE FOR
3
NATIVE IMAGES INSTALLED
FOR INSTALLED APPLICATION TO BE
(_ APPLICATIONS J REBOUND 660
/\
C 620) < >
STORED MDIL
UPDATED CODE FOR
LIBRARIES INSTALLED
PACKAGE MANAGER APPLICATION(S
T 630
UPDATED o
LIBRARIES TO BE MDIL
BOUND TO AN » BINDER & FILE FOR
MDIL FILE FOR 625 APPLICATION
THE APPLICATION TO BE
645 REBOUND
640 i:
l — RUNTIME ENGINE
UPDATEDDN 805 670
NATIVE SIGNING
IMAGE FOR | || UPDATED NATIVE >
APPLICATION 650 IMAGES FOR AP;?{?:&'ET?ON
635 INSTALLED
— (_ APPLICATIONS 655
\. Yy

FIG. 6

WO 2014/039458 PCT/US2013/057892

710

700

'

UPDATE A SET OF LIBRARIES OF THE DEVICE ~

A 4

GENERATE AN UPDATED NATIVE IMAGE FOR AN APPLICATION ™~

l 720
f— """ —-—"—-—"—""—"—-"—~—”"—— - —_— 1
| GENERATE UPDATED NATIVE IMAGES FOR OTHER |\
| APPLICATIONS OF THE COMPUTING DEVICE | 730

STORE THE UPDATED NATIVE IMAGE(S) AT THE COMPUTING ™
DEVICE FOR USE WHEN LOADING THE APPLICATION(S) FOR | 740
EXECUTION

FIG. 7

WO 2014/039458 PCT/US2013/057892
8/10
802
800 '/820
NON-
MOBILE DEVICE POWER SUPPLY
REMOVABLE 882
MEMORY 822 =
() GPS RECEIVER REMOVABLE ACCELEROMETER
884 MEMORY 824 886
| . I |
INPUT/OUTPUT || PROCESSOR PHYSICAL
PORTS 880 810 CONNECTOR 890
| : 1
INPUT DEVICE(S) OUTPUT DEVICE(S) WIRELESS MODEM
830 850 860
804 TOUCHSCREEN —
832 SPEAKER Wi-Fi
— 852 862
MICROPHONE
834 DISPLAY BLUETOOTH
854 864
CAMERA
836 OPERATING
PHYSICAL SYSTEM 812
KEYBOARD 838
814
TRACKBALL V4
840 APPLICATIONS
APPLICATIONS
APPLICATION SOFTWARE FOR
STORE GENERATING NATIVE CODE
FUNCTIONALITY FROM IL CODE FOR APPS
813 815

FIG. 8

WO 2014/039458 PCT/US2013/057892

9/10

900

SERVICE PROVIDERS ONLINE PROVIDERS
920 925

NATIVE CODE
GENERATION
FOR APPS
965

J
<O
N
()]

WO 2014/039458 PCT/US2013/057892

10/10

COMPUTING ENVIRONMENT 1000 coOMMUNICATION
r—-——— ———-——— CONNECTION(S) 1070

|

2\ (graphics or |
co-

processing I

|

|

|

central
processing

I

I INPUT DEVICE(S) 1050
| | unit 1010

| . J

I

I

_ unit 1015

OUTPUT DEVICE(S)
1060

("MEMORY) (MEMORY)

SOFTWARE 1080 IMPLEMENTING DESCRIBED TECHNOLOGIES
FOR GENERATING NATIVE CODE FROM IL CODE FOR
APPLICATIONS

FIG. 10

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/057892

INV.
ADD.

A. CLASSIFICATION OF SUBJECT MATTER

GO6F9/45 GO6F9/445

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, COMPENDEX, INSPEC, IBM-TDB, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

ANDERSON A ET AL: "The binary
compatibility standard",

INTELLECTUAL LEVERAGE. SAN FRANCISCO, FEB.
27 - MAR. 3, 1989; [COMPUTER SOCIETY
INTERNATIONAL CONFERENCE (COMPCON)],
WASHINGTON, IEEE COMP. SOC. PRESS, US,
vol. CONF. 34,

27 February 1989 (1989-02-27), pages
32-37, XP010014718,

DOI: 10.1109/CMPCON.1989.301899

ISBN: 978-0-8186-1909-0

page 33, left-hand column, line 8 - line
29

GB 2 467 495 A (TENCENT TECHNOLOGY [CN]
TENCENT TECH SHENZHEN CO LTD [CN])

4 August 2010 (2010-08-04)

page 1, Tine 4 - page 10, Tine 2

_/__

1-9

1-9

Further documents are listed in the continuation of Box C.

See patent family annex.

npn

U=

'K

"Qr

document defining the general state of the art which is not considered
to be of particular relevance

earlier application or patent but published on or after the international

filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other

means

* Special categories of cited documents :

"T" later document published after the international filing date or priority

date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be

considered novel or cannot be considered to involve an inventive

step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination

being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed

"&" document member of the same patent family

Date of the actual completion of the international search

8 November 2013

Date of mailing of the international search report

12/02/2014

Name and mailing address of the ISA/

Tel. (+31-70) 340-2040,

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Authorized officer

Fax: (+31-70) 340-3016 Jonsson, Svante

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

International application No.
INTERNATIONAL SEARCH REPORT PCT/US2013/057892
Box No.ll Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. I:' Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. I:' Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. |:| Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

-

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. I:' As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

see additional sheet(s)

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

I:' No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/057892

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

US 20117258615 Al (SOLLICH PETER FRANZ
VALENTIN [DE])

20 October 2011 (2011-10-20)

cited in the application

abstract
paragraph
paragraph
paragraph
paragraph
paragraph
paragraph
paragraph
paragraph

[0002]
[0034]
[0048]
[0088]
[0116]
[0121]
[0176]
[0198]

- paragraph [0022]
- paragraph [0051]

- paragraph [0218]
JINCHUAN KE ET AL: "Data Communication
Analysis and Algorithm for the Efficiency
of Data Distribution in High Performance
Computing",

ADVANCED COMPUTER THEORY AND ENGINEERING,
2008. ICACTE '08. INTERNATIONAL CONFERENCE
ON, IEEE, PISCATAWAY, NJ, USA,

20 December 2008 (2008-12-20), pages
566-570, XP031399877,

ISBN: 978-0-7695-3489-3

page 567, left-hand column, line 39 -
right-hand column, line 7

EP 0 510 616 A2 (HITACHI LTD [JP])

28 October 1992 (1992-10-28)

abstract

column 5, line 24 - column 9, line 37
column 13, Tine 18 - column 17, Tine 14
column 39, Tine 29 - line 52

column 44, Tine 16 - column 45, Tine 8
ZHANG X ET AL: "SYSTEM SUPPORT FOR
AUTOMATIC PROFILING AND OPTIMIZATION",
OPERATING SYSTEMS REVIEW, ACM, NEW YORK,
NY, US,

vol. 31, no. 5,

1 December 1997 (1997-12-01), pages 15-26,
XP000771018,

ISSN: 0163-5980, DOI:
10.1145/269005.266640

page 15, right-hand column, line 23 - page
18, left-hand column, line 15

page 19, left-hand column, line 8 - line
18

page 24, right-hand column, line 4 - line

EP 2 405 352 Al (FUJITSU LTD [JP])
11 January 2012 (2012-01-11)
paragraph [0001] - paragraph
paragraph [0037] - paragraph
paragraph [0067] - paragraph

[0026]
[0048]
[0076]

1-9

1-9

1-9

1-9

1-9

Form PCT/ISA/210 (col

ntinuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/057892
Patent document Publication Patent family Publication

cited in search report date member(s) date

GB 2467495 A 04-08-2010 CA 2706739 Al 18-06-2009
CN 101169736 A 30-04-2008
DE 112008003313 T5 05-01-2011
GB 2467495 A 04-08-2010
US 2010280952 Al 04-11-2010
WO 2009074046 Al 18-06-2009

US 2011258615 Al 20-10-2011 CN 102222013 A 19-10-2011
US 2011258615 Al 20-10-2011

EP 0510616 A2 28-10-1992 DE 69230707 D1 06-04-2000
DE 69230707 T2 16-11-2000
EP 0510616 A2 28-10-1992
EP 0834803 A2 08-04-1998
EP 0838754 A2 29-04-1998
JP 3602857 B2 15-12-2004
JP HO4322329 A 12-11-1992
us 5586323 A 17-12-1996
us 6343373 Bl 29-01-2002
US 2002026633 Al 28-02-2002
US 2004154007 Al 05-08-2004

EP 2405352 Al 11-01-2012 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

International Application No. PCT/ US2013/ 057892

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-9

Installing an application at a computing device

2. claim: 10

Generating and providing an installation package for an
application

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

