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AUTOMATIC NEURAL-NET MODEL GENERATION AND MAINTENANCE

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the priority of U.S.
application no. 10/374,406, filed February 26, 2003 and
entitled “AUTOMATIC NEURAL-NET MODEL GENERATION AND
MAINTENANCE”, and the benefit of the following commonly
assigned, co-pending U.S. provisional applications:

(a) Serial No. 60/374,064, filed April 19, 2002 and
entitled “PROCESSING MIXED NUMERIC AND/OR NON-NUMERIC
DATA";

(b) Serial No. 60/374,020, filed April 19, 2002 and
entitled “AUTOMATIC NEURAL-NET MODEL GENERATION AND
MAINTENANCE” ;

(c) Serial No. 60/374,024, filed April 19, 2002 and
entitled “WIEWING MULTI-DIMENSIONAL DATA THROUGH
HIERARCHICAL VISUALIZATION”;

(d) Serial No. 60/374,041, filed April 19, 2002 and
entitled “METHOD AND APPARATUS FOR DISCOVERING
EVOLUTIONARY CHANGES WITHIN A SYSTEM”;

(e) Serial No. 60/373,977, filed April 19, 2002 and
entitled “AUTOMATIC MODEL MAINTENANCE THROUGH LOCAL
NETS”; and

(f) Serial No. 60/373,780, filed April 19, 2002 and
entitled “USING NEURAL NETWORKS FOR DATA MINING”.

TECHNICAL FIELD
This application relates to neural nets. In
particular, the application relates to neural net model

building and maintenance.
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DESCRIPTION OF RELATED ART

Humans use their abilities of pattern recognition in
many things they do, and particularly to solve problems.
The following are some examples of how people use pattern
recognition to anticipate and/or detect problems and find
solutions to the problems:

(a) an experienced manager, based on her experience
and knowledge of customers' buying patterns and
her observations of current conditions (for
example, weather, day of the week, date, local
economy, etc.), predicts the number of units of
a merchandise that should be ordered for the
upcoming month; and

(b) a brewmaster samples his product over time and
his intuition and experience suggests to him
changes to the ingredients or procesgs he should
make to improve the product.

Artificial neural network ("neural net") techniques
provide an information processing tool, with similar
pattern recognition capabilities, which may be trained to
provide an input-output model for assbrted applications.

A typical neural net comprises a number of
interconnected neuron-like processing elements (or nodes)
that send data to each other along connections. A
processing element receives a number of inputs, either
from other processing elements or directly from inputs of
the network, and multiplies each of the inputs by a
corresponding weight and adds the results together to
form a weighted sum. It then applies a transfer function
(also referred to herein as “activation function” and

“basis function”) to the sum to obtain a value known as
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the state of the element. The state 1is then either
passed on to one or more other processing elements along
weighted connections, or provided as an output of the
network. Collectively, states are used to represent
information in the short term, while weights represent
long-term information or learning.

Processing elements in a neural net may be organized
into layers. For example, a multi-layer hidden-layer net
has an input layer, an output layer and one or more
hidden layers between the input layer and output layer.
The outputs of the input layer are passed to one of the
hidden layers. Generally, hidden layer processing
elements allow the network to build intermediate
representations which combine input data in ways that
help the neural net model to learn the desired input-
output mapping with greater accuracy through training.
Outputs of the hidden layers are passed to the output
layer, and the output layer produces one or more outputs.

Training 1is a process through which neural nets
learn an input-output model through exposure to data and
adjustment of the weights associated with connections
between processing nodes. A training process may involve
the following steps:

1) Repeatedly presenting examples of a particular

input/output task to the neural net model;

2) Comparing the model output and a desired output

to measure error; and

3) Modifying model weights to reduce the error.

This process 1is repeated until further iteration
fails to decrease the error (or the error falls below a

predetermined minimum) . The network then is said to be
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"trained".

Through training with, for example, training sets of
sample data, neural nets can learn to extract
relationships from the data, similar to the way that
humans learn from experience, and, when in operation
(often also called “consultation”), recall the 1learned
relationships in order to extrapolate suitable solutions
in new situations (for example, not expressly represented
in the training data). Training a neural net by applying
sets of specific, selected samples helps the network to
develop a general input-output model. The trained model
is expected to output for each input pattern one or more
output values associated with the input pattern, while
maintaining the appearance of a blackbox (i.e. the
details or inner workings, such as weights and nodes,
within the trained model are not readily apparent to a
user or observer).

Selecting an appropriate net structure plays a
substantial role in building a neural net computational
model of a functional relationship or system. If it is
assumed that no prior knowledge of the problem is known
and therefore only commonly-used node activation
functions are used, the 1issues in the neural net
generation process include the following. First, a net
type (for example, layers in the net) are selected. Once
the net type is selected, one determines an appropriate
number and connectivity of nodes in the net as well as
node parameters.

FIG. 1 shows a plot of training error versus number
of nodes (ranging from one to twenty) in a hidden layer

of a conventional single hidden-layer net, for a sample
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data set of seven inputs and one output. As exemplified
in FIG. 1, there is often no observable relationship
between the training error and the number of hidden-layer
nodes. The number of nodes used in a conventional neural
net model typically 1is determined by experience and
trial-and-error, which of course is not suitable for

automatic model building.

In addition, conventional neural nets are not
conducive to incremental and/or adaptive learning. The
term “incremental learning”, as used herein, means that

(a) the net can be expanded with new nodes added and (b)
computation of a new set of weights for the expanded net
utilizes the weights from before the expansion as a
starting point rather than starting from scratch. The
term “adaptive learning”, as used herein, means that
after a neural net model has been established, additional
data can be used to update the model to achieve better
overall results. For example, neither incremental
learning nor adaptive learning can be achieved
efficiently by a hidden-layer net because the nonlinear
processing by a hidden-layer net is widely distributed
and interconnected across the nodes, and therefore any
adjustments to the weights based on determined error also
must be nonlinearly distributed.

Therefore, neural net model generation and
maintenance methodologies which facilitate incremental

and adaptive learning are needed.
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SUMMARY

The disclosure provides a method of incrementally
forming and adaptively wupdating a neural net model.
According to one embodiment, the method includes (a)
incrementally adding to the neural net model a function
approximation node, and (b) determining function
parameters for the function approximation node and
updating function parameters of other nodes in the neurél
network model, by using the function parameters of the
other nodes prior to addition of the function
approximation node to the neural network model.‘ Steps
(a) and (b) may be repeated, if a model accuracy of the
neural net model with the function approximation node
added thereto is below a predetermined accuracy level.

According to one embodiment, a set of sample data
patterns is used to form a list of function approximation
node candidates, and the function approximation node is
selected from the 1list of function approximation node
candidates. The 1list of function approximation node
candidates may be formed by splitting the set of sample
data patterns into a plurality of clusters in a first
level of a cluster hierarchy, determining that a selected
cluster in the first level has a population exceeding a
predetermined size, and splitting the selected cluster
into two or more clusters and replacing the selected
cluster with the two or more clusters in a next level of
the cluster hierarchy. The clusters on each level of the
cluster hierarchy based on cluster size, to form a sorted
list of function approximation node candidates.

The function parameters for the nodes in the neural
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net model may be determined by applying a hierarchical k-
means clustering methodology to a set of sample data
patterns. For example, a function approximation node may
be a radial basis node, and a center and radius of the
radial basis node are determined through a hierarchical
k-means clustering methodology.

The method may further include monitoring a model
accuracy of the neural net model while the neural net
model is used on-line, and adaptively updating the neural
net model, if the model accuracy of the neural net model
is below a predetermined threshold. The adaptive update
may include incrementally adding one or more additional
nodes to the neural net model, to represent new data.
The new data may correspond to a data range not
represented in the set of sample data patterns and/or to
a change in system dynamics. The adaptive update may
include updating the function parameters of the nodes in
the neural net model. If the adaptive updating reaches a
limit, a full retrain of the neural net model may be
performed.

The additional nodes, according to one embodiment,
may be formed by applying a clustering methodology to new
data patterns. - The clustering methodology may include,
for example, clustering the new data patterns into a
number of clusters which is approximately a number of the
nodes in the neural net model, determining that a
selected cluster is far away from positions associated
with the respective nodes in the neural net model, and
adding to the neural net model an additional node
associated with the selected cluster and a center of the

selected cluster.
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An orthogonal least squares methodology may be
applied to determine a set of weights for the neural net
model. The set of weights may be adaptively updated by
using new data patterns and/or to compensate for system
drift. The weights of the nodes in the neural net model
prior to the adaptive update may be combined with a set
of new weights based on a forgetting factor. The
forgetting factor may be determined based on a cause of
model degradation.

The present disclosure also provides a method of
incrementally forming a neural net model. In one
embodiment, the method includes applying a hierarchical
clustering methodology to a set of sample data patterns
to form a list of function approximation node candidates,
and incrementally applying function approximation nodes
from the list of function approximation node candidates
to form a model with an accuracy at or above a selected
accuracy level.

According to another embodiment, the method includes
forming a plurality of function approximation nodes for
the neural net model by applying a hierarchical
clustering methodology to a set of sample data patterns,
and applying an orthogonal least squares methodology to
determine a set of weights associated with the function

approximation nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the present disclosure can be more
readily understood from the following detailed
description with reference to the accompanying drawings

wherein:
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FIG. 1 shows a graphical representation of a plot of
training error versus number of nodes in a hidden layer
of a single-layer hidden-layer net;

FIG. 2A shows a flow chart for a method of
incrementally forming a neural net model, in accordance
with one embodiment of the present disclosure;

FIG. 2B shows a flow chart for a hierarchical
clustering methodology, in accordance with one
embodiment ;

FIG. 2C shows a flow chart for a method of
generating an ordered list of candidate node functions,
according to one embodiment, wusing the hierarchical
clustering methodology shown in FIG. 2B;

FIG. 2D shows a flow chart for a method of
incrementally constructing a model, according to one
embodiment, using a list of candidate node functions;

FIG. 3A shows a flow chart for a method of
incrementally forming and adaptively maintaining a neural
net model at an adequate accuracy level, according to one
embodiment of the present disclosure;

FIG. 3B shows a flow chart for a method of
adaptively updating a model to maintain accuracy of the
model, according to one embodiment, using new data;

FIG. 4 shows a schematic view of a functional link
net structure;

FIG. 5 shows a plot of data patterns and outputs
produced by a model generated by applying methodologies
provided by the present disclosure, for a non-linear time
series example;

FIG. 6 shows a plot of data patterns and outputs
produced by a model, generated and updated by applying
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methodologies provided by the present disclosure, for a

non-linear time series (with drift) example.

DETAILED DESCRIPTION

This disclosure provides tools (in the form of

methodologies and systems) for neural net model
generation and maintenance. Novel incremental and/or
adaptive methodologies for efficiently building

adequately accurate neural net models of mappings learned
through training and for maintaining the accuracy of the
models are provided. The incremental methodologies
described herein provide efficiency, as compared with
other approaches, and the adaptive methodologies are
exercised in response to changes in a nature of the data
or in the system response.

In accordance with one embodiment, efficient
incremental improvement of a model encompasses addition
of nodes 1in an appropriate manner and computation of:
improved system model parameters recursively £from the
previously learned model, which is thus improved
incrementally.

In accordance with another embodiment, incremental
learning includes adding nodes from an ordered candidate
list sequentially based on guidance provided by
hierarchical clustering. The architecture of the
hierarchical clustering may be binary beyond the first
level and may have a maximum number of levels. The
candidate list may be generated by sorting the clusters
first by 1level and then by cluster size. Nodes are
selected from the sgorted list starting with functions

from top-level clusters. If accuracy of the model is not
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adequate, more nodes are added sequentially until all
nodes 1in the candidate 1list are exhausted or until a
desired accuracy 1s obtained. This methodology may be
applied to obtain a model with adequate accuracy and
having a moderate size.

Adaptive learning, in response to changes either in
system dynamics or to range of data or both, includes, in
accordance with one embodiment, a simple methodology for
adjusting the network parameters and/or structure,
without having to undergo a complete retrain. Under this
methodology, clustering of new data is used to determine
if new nodes shouid be added, and the top most linear
weights for the existing nodes and for any new nodes
generated are computed by using only the new data in
combination with existing weights in the net, according
to a “forgetting factor” based on a determination of a
cause of degradation in performance of the original model
and also on number of patterns used for training.

An embodiment of the present disclosure may use a
combination of hierarchical c¢lustering, radial Dbasis
function and linear orthogonal least squares
methodologies to provide incremental model building and
adaptive maintenance.

An exemplary method for incrementally forming a
neural net model, in accordance with one embodiment of
the present disclosure, is described with reference to
FIG. 2A. A hierarchical clustering methodology is
applied to a set of sample data patterns to form a list
of function approximation node candidates (step S21).
Function approximation nodes selected from the 1list of

function approximation node candidates are incrementally
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added to the neural net model to form a model with an
accuracy at or above a selected accuracy level (step
S22) .

The method of incrementally forming a neural net
model, according to another embodiment, includes applying
a hierarchical clustering methodology to a set of sample
data patterns to form a 1list of function approximation
node candidates, and incrementally adding to the neural
net model one or more function approximation nodes
selected from the list of function approximation node
candidates, until a model with an accuracy at or above a
selected accuracy level is obtained. The function
approximation node candidates may include Gaussian nodes,
sigmoidal basis nodes, wavelet basis nodes, etc. The
nodes may be non-linear.

A hierarchical clustering methodology, according to
one exemplary embodiment, is described with reference to
FIG. 2B. The set of sample data patterns is split into a
plurality of clusters in a first level of «cluster
hierarchy (step S8211). Select a cluster 1in current
(first) level and compare the population of the cluster
to a predetermined size threshold (step S212). If the
population of the cluster exceeds the threshold (step
§213), the cluster is split into and replaced with two or
more clusters in a next level of the cluster hierarchy
(step 8214); The process is repeated until no clusters
exceeding the size threshold remain (step S215).

A method of generating an ordered list of candidate
node functions, according to one exemplary embodiment
(FIG. 2C), may use the methodology of FIG. 2B to develop

a cluster hierarchy. When all remaining clusters are
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moderate-sized (e.g., population is below threshold)
[steps S212-S215], a list of candidate node functions may
be generated by sorting the clusters on each level of the
cluster hierarchy, based on cluster size (step S216).

A method of incrementally constructing a moderately-
sized model with adequate accuracy, in accordance with
one embodiment (FIG. 2D), may use a list of candidate
node functions generated by applying, for example, the
methodology shown in FIG. 2C. If there are any node
functions on the candidate list (step S221), the first
node function on the list is selected and added to the
model (step S$222). New weights are computed, along with
a system error (or other accuracy indicator (step S223).
If the accuracy of the model is not adequate (step S224),
the process returns to step S221 to process any candidate
node functions remaining on the list.

A method, in accordance with another embodiment, for
incrementally forming a neural net model off-line and
adaptively maintaining the neural net model at an
adequate accuracy level and a moderate size is described
with reference to FIG. 3A. A function approximation node
is incrementally added to the neural net model (step
S31) . Function parameters are determined for the
function approximation node and function parameters of
other nodes in the neural net model are updated, by using
new data and the existing function parameters of the
other nodes prior to addition of the function
approximation node (step S32). Function approximation
nodes may be added to the neural net model (steps S31 and
S32) until the model has an adequate accuracy (see, for

example, FIG. 2D). The model formed off-line may be
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deployed and used on-line (step S33). Accuracy of the
model 1is monitored as new data is fed as input to the
model (step S834). If the model is not adequately
accurate (for example, meet a minimum level of accuracy)
[step S35], model parameters and/or structure may be
updated adaptively (step S36). The adaptive update may
be necessitated, for example, by a change in system
dynamics or by drift in the system. The neural net model
may have poor accuracy for new data that is not
represented by (for example, far away from) any of the
clusters of sample data patterns which correspond to the
function approximation nodes. In this latter instance,
the adaptive wupdate may wuse the new data to add
additional nodes to the model. See, for example, FIG. 3B
and corresponding discussion below.

If the limit for adaptive updating is reached (for
example, accuracy 1s not improved through adaptive

update) [step S37], preparation for full off-line retrain

is performed (step S38), and then the process restarts at
step S21. On the other hand, if the adaptive update
improves the accuracy of the model (step S37), the

adaptively updated model is redeployed and used on-line
(step S33) and accuracy of the updated model is monitored
(step S34).

A method of adaptively updating a model to maintain
accuracy of the model (for example, step S36), according
to one embodiment of the present disclosure (FIG. 3B),
may be applied in response to, for example, new data
corresponding to change 1in system dynamics and/or in
range of data. The new data is clustered into roughly

the same number of clusters as the number of current
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nodes in the model (step S361). For clusters that are
far away from the current nodes in the model,
corresponding new nodes are added at the positions of the
cluster centers (and weights on output 1links of the new
nodes may be initialized to zero) [step S$S362]. A set of
new weights is computed for all (current and new) nodes
based on the new data (step S$363). The new weights are
combined with the existing weights of the existing nodes
by applying a forgetting factor (step S364). The
forgetting factor may be selected based on, for example,
a cause of degradation in model performance and/or on a
number of training patterns.

Function parameters associated with the nodes in the
neural net model may be generated by using a hierarchical
k-means clustering methodology. For example, the nodes
may include radial basis nodes, and the centers and radii
of the radial basis nodes are determined through the
hierarchical k-means clustering methodology.

Some neural nets may be trained to model or
approximate a functional relationship between input and
output, without requiring training with every possible
input pattern. A relationship between input and output
is described as “functional” to signify that the input-
output relationship can be approximated by a mathematical
function, for example, for each input pattern the input
pattern has only one associated output value (e.g., if
inputs x and y are 4 and 5, output z is always 9; if x
and y are 94 and 73, z is always 26; etc.).

The functional relationship may be linear or non-
linear. Linearity is a mathematical property

(applicable, for example, to a relationship between input
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and output of a  function) that  output (y) is
proportionally related to input (x) [for example, y=2x,
y=5-4x, etc.], such that a small/large change in input
produces a corresponding small/large change in output.
Once it is known that a problem embodies a linear
relationship between variables, the linear factor may be
determined numerically, empirically and/or methodically
through well-known methods. However, 1in real life, the
relationship between independent variables in a
mathematical problem is typically non-linear (i.e. there
is not such a fixed ratio). Therefore, in order for a
neural net to be a universal approximator (which means
that a network can be used to approximate any function to
arbitrary precision when enough nodes are provided in the
net), the neural net should be capable of modeling non-
linear input-output relationships. Some neural nets may

be trained to capture nonlinearity and interactions among

independent variables automatically without pre-
specification.
A functional-link net (“FLN”) is one type of neural

net which can be used to model a functional relationship
between input and output. A FLN may be wused to
approximate any scalar function with a vector of inputs,
x, and an output y. The structure of a FLN with non-
linearity fully contained in a functional-link layer is
illustrated in FIG. 4. The nodes in the functional-link
layer have associated non-linear  basis functions.
Examples of FLNs are described in commonly owned United
States Patents Nos. 4,979,126, 5,734,796, 6,134,537 and
6,212,509 which are incorporated herein in their entirety

by reference. Since a vector function may be decomposed
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into scalar dimensions, and therefore may be approximated
with multiple output nodes or multiple nets, the
discussion of FLN in this disclosure focuses on the case
of one output node, such as shown in FIG. 4, without loss
of generality to cover the typical circumstance in which
there are multiple output nodes.

Hidden-layer nets and FLNs are two types of neural
nets that can serve as universal approximators. However,
a location of the non-linearity is different for the two
types of nets. For a multi-layer hidden-layer net, the
activation function for the hidden-layer nodes typically
is non-linear. Although all the weights are 1linear
weights, any methodology used to train such a net has to
be non-linear. On the other hand, when a FLN is used,
non-linearity may be fully contained in the functional-
link layer, and the rest of the net may be 1linear.
Therefore, linear training techniques such as regression-
based training may be used with a FLN structure. Linear
training refers to techniques that solves the parameters
in the net through linear algebra techniques.

Although both types of nets (i.e., multi-layer
hidden-layer net and functional-link net) may  be
universgsal approximators, how many nodes is enough varies
according to the data and/or the problem. Further, since
the initial set of weights and/or function parameters in
the net are wusually randomly generated, the resulting
trained net is usually just a local minimum in the error
space (e.g., the associated error appears to be at a
minimum). A result of a trained net being at a 1local
minimum is that adding one more node may not reduce the

model error at all, if one does not try a significant
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number of different initial weights and/or sets of
parameter values. This 1is 1less of a problem for the
linearly trainable FLN, unless the randomly generated
parameter values cause the linear problem to be close to
singular (e.g., with an undefined mathematical derivative
at some point 1in the problem space). Therefore, the
problem of training error settling to a local minimum is
much more noticeable and likely to occur with hidden-
layer nets.

The neural net model generation and maintenance
methodologies of the present disclosure (referred
collectively herein as “orthogonal functional-link net
methodologies” or “OFLN methodologies”) may be applied to
generate, in accordance with a preferred embodiment, an
efficient, high-performance function approximation neural
net. The OFLN methodologies also include provisions for
maintenance of the subject net so that the net can be
automatically updated in accordance with data obtained
from the system being modeled.

A FLN with Ilinear output nodes is selected as the
net type under the OFLN methodologies. An advantage of a
FLN is that linear regression training techniques, such
as an orthogonal least squares (OLS) learning methodology
(discussed below), can be used to achieve incremental and
adaptive learning.

Under the OFLN methodologies, the appropriate
number of function approximation nodes are considered
together with the parameters of the nodes. For radial-
basis function approximation nodes (discussed below), the
parameters include the 1location of the center and for

gsome cases the effective radius. One may use a heuristic
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radius in combination with random centers, or place
centers on randomly selected existing patterns. A
drawback, however, is that it may be difficult to
determine the quality of the parameters in terms of their
ability to represent the available data. Therefore,
multiple trials and/or user experience, i.e. heuristics
specific to a problem, may be necessary to arrive at a
good model. Under the OFLN methodologies, the data speak
for themselves, that is, the candidate center and radii
values are generated through hierarchical -‘clustering
(discussed below) .

Combining the advantages of radial-basis FLN,
hierarchical clustering and the orthogonal least squares
methodology, the OFLN methodologies may be applied to
provide automatic generation of suitable models of a
system if a set of training data is available. The model
created by the OFLN methodologies may also be updated
adaptively. The combination of effective model building,
which may be performed periodically off-line as new data
accumulate, and adaptive model updating, which may be
carried out on-line as new data are available, provide
the tools for maintaining optimal performance by the
model.

The OFLN methodologies provide a number of features,
including the following, which make the methodologies
particularly suited for solving new and complex real-
world problems:

(a) Learning: the subject methodologies develop
solutions by extracting relationships from data, in a
manner analogous to the way we learn from experience;

(b) Multi-dimensional: under the subject
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methodologies all the features of a problem may be
considered at once, in parallel, in contrast to the human
ability to analyze a finite number of data streams at
once, and conventional sequential algorithms, which may
require a great deal of complex programming to solve a
problem that has many features;

(c) Non-linear: the subject methodologies are not
bound to conventional wmodeling or problem solving
techniques which require that some knowledge of the
underlying nature of the problem is known or assumed in
advance and the solution limited to that form; and

(d) Adaptive: the model may readily be updated to
accommodate new data, continuously improving its

knowledge of the problem.

Orthogonal Least Squares Methodology

The orthogonal least squares fOLS) learning
methodology is an incremental learning methodology.

A FLN may be trained to approximate the following
scalar function, if a set of observed associated input-
output pattern pairs {(xp,, yp)} is provided, where p = 1,

., P (P being the number of pattern pairs):

y=y(x)

(1)
Using the net illustrated in FIG. 4, the following
linear sum of a set of non-linear basis functions, f£;(x)
where j =1, ..., J (J being the number of nodes), may be
used to represent the approximation for the function in

Equation (1):
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y(xX)=D W, f(x) (2)

Since Equation (2) is an approximation, there may be

in addition an error term on the right hand side of the

equation to make it a true equality. However, the error
term is dropped in Equation (2) in the interest of
clarity. Although radial basis functions such as

Gaussians are frequently selected as f;(x) in Equation
(2), other functions, such as sigmoids or wavelets, may
also be used. Substituting the known patterns into
Equation (2), P simultaneous equations are obtained.
Since P (i.e., the number of pattern pairs) is usually
much larger than J, (i.e., the number of function
approximation nodes), the problem is over-specified and a
solution can only be obtained in the sense of least sum
of squares-of-error, or least squares.

If a training methodology based on least squares is
used to train the net, the larger the number of basis
functions used, the smaller the training error results,
assuming the selected basis functions do not cause the
resulting linear system to be nearly singular. However,
the goal of course is to obtain an approximation that is
truly representative of the implicit functional
relationship. The trained net may be tested with the aid
of a wvalidation set (for example, a test set distinct
from the training set) of patterns. Small errors for the
training set patterns alone are not a satisfactory result
of the learning process if a test with the validation set
reveals that the learned relationship is not widely wvalid
across the validation set (e.g., the learned relationship

does not vyield an appropriate output when an input
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pattern that 1is not in the training set is applied).
Under such circumstances, incremental learning and/or
adaptive learning techniques may be applied to refine the
model .

The set of simultaneous equations obtained Ffrom

Equation (2) may be written in matrix form, as follows:

—fl (x;) fi(x) o fi(x)) ] B
fi(x) filx) o fi(xy) ((w Y2
. . . WZ _ .
f(x) fi(x) o fi(x) |||y,
: : : \w, :
_fl(xl’) Silxp) fJ(xP)_ Ve
(3)
or
Fw=y (4)

Each of the non-linear functions f;(x) are described
in terms of parameters. Though these parameters may also
be varied in the training process, they usually are pre-
gselected and remain constant, while only the linear
weights are adjusted, during the training process for
such a net structure.

Using a linear least squares technique, a solution

for Equation (4) may be expressed as follows:

w=[FF)'Fy (5)

However, in actual computation, the weight wvector w

is usually computed directly wusing singular value
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decomposition (SVD) or LU decomposition of F®F rather than
the pseudo-inverse technique corresponding to Equation
(5) . The computation is straightforward if F is fixed. A
problem arises when F is augmented during training as in
the case of adding function approximation nodes
dynamically. Direct computing of w may require a whole
new SVD or LU decomposition of the augmented F*F, although
the only change in F is an added column.

In order to handle augmenting of F during training,
the OLS methodology  provides an extra step of
orthogonalization. The extra step allows most of the
results from a computation before F is augmented to be
reused after F is augmented in, for example, a recursive
fashion.

In Equation (4), each row of the matrix F is a
representation of a single pattern vector in terms of the
J basis functions. Accordingly, the matrix F is a
representation of an entire set of P pattern vectors in
terms of the J basis functions. The matrix F can also be

considered as a row of column vectors £;, as follows:

F=[f f,.f] (6)
In the OLS methodology, a set of orthogonal vectors

h may be built from the £ wvectors in the Gram-Schmidt

manner as follows:
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The coefficients Cx; are determined by the following

orthogonalization condition:

<hh, >=<hf, >-C, <hh,>=0

so that
C,=<hf >/<hh, >
(8)

With this notation, the matrix F may be rewritten as
follow:
F=HA

(9)

where A 1s an upper triangular matrix with the
coefficients as its elements and ones on its diagonal.

Now Equation (4) may be rewritten as follows:

HAw =y (10)
By denoting
g =Aw
(11)

the set of simultaneous equations is transformed to the

following:

Hg

1l
<
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The least squares solution for g is as
g=(HH)'Hy

where HH is the following diagonal matrix:

h'h, 0 0
HIH — h’ZhZ O
0 0 h'h,

and therefore (H*H) ! is as follows:

L

— 0 .. 0
hlhl
1
() =|" W °
2702
0 0 L
hh,

PCT/US03/11713

follows:

(15)

If another h vector is added to the representation,

the new g vector may be evaluated recursively as follows,

which may be shown with straightforward linear algebra:

h;c+lyk+l :|'
i = |igk
h;:+lhk+l

The solution for w is then as follows:
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w=A"g (17)

Since A 1s an upper triangular matrix, the inverse

matrix A™! may also be computed recursively as follows:

0
Al = AL Alc,
0 1

(18)

Using the new g vector and the A™' matrix, the new
weight vector may be obtained using Equation (17).

Thus, a FLN with non-linearity fully contained in a
functional-link layer may be constructed incrementally by
applying the OLS methodology. The OLS methodology
provides a natural control on the number of nodes. As
nodes are added to the net, the error of training
generally reduces. The adding of nodes stops when the

target of training is reached or when signs of over-
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training are evident.

Hierarchical Clustering

The OLS methodology allows for easy addition of new
function approximation nodes during the time of training.
The next question is: what new node should be added, that
is, what parameters should be used in the new node
function.

Random choice is one technique. The random vector
FLN uses randomly selected node parameters and applying
the OLS methodology to it may be a natural extension of
this type of net. However, randomly selected parameters
may not provide adequate coverage of the data
distribution, and a number of (random selection) trials
may be desired to obtain a good model such as described
in the ensemble net technique.

The OFLN methodologies, in accordance with one
embodiment, uses radial basis function approximation
nodes in the functional-link layer. An advantage of using
radial  Dbasis functional-link layer nodes is that
clustering methodologies may be used to generate the
centers and radii.

A k-means clustering methodology may be used for
determining the centers and radii. Since the number of
clusters typically is unknown before training,
hierarchical k-means clustering (discussed below) may be
used to generate node parameters, in accordance with one
embodiment. The hierarchical k-means clustering
methodology is a divisive technique. The whole sample
data set 1is first clustered into a small number of

clusters. Depending on the population of the resulting
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clusters, large ones may be split further into smaller
clusters until the populations of the clusters are
moderate or the number of levels in the cluster hierarchy
exceeds a selected maximum. The limit on the number of
levels is used to control the maximum complexity of the
resulting model. The k-means methodology is used in each
level of clustering.

There are several advantages to using hierarchical
clustering versus single level clustering. For example,
there is no need to guess the number of clusters to be
generated or the radii of the clusters, as are required
up front by some other clustering methodologies. 1In
addition, different 1levels in the <cluster hierarchy
represent descriptions of data at different 1levels of
detail. The different 1levels is quite important in
building a model since, in order for the model to
generalize well, it is better to have a small number of
nodes in the net as long as the training error is
acceptable. With different levels of detail, the net may
start with a coarse description on the first level, and
if the training error 1is not satisfactory, additional
detail may be added wusing results from lower level
clusters until the model is acceptable. This
automatically results in models of modest complexity.

Under many other methodologies, the number of nodes
is often chosen to be larger than necessary, in the
interest of obtaining sufficient detail. Either forward
selection or backward elimination, however, may be
desired to control complexity. With  hierarchical
clustering, the process is comparable to forward

selection. However, the number of candidates is much
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smaller at any stage since only clusters in the same or
next level may be considered. For a small value of k (for
example, two) in generating next-level clusters, the
whole selection process may be eliminated since simply
adding the candidate which corresponds to the cluster
with the largest population among the remaining same-
level or next-level clusters achieves performance similar
to that obtained with forward selection. This
simplification often may significantly reduce the

training time.

Adaptive Model Update

Even under the best circumstances, a model is only
an approximation of the underlying functional
relationship or system during a period of time when the
data with which the model was trained was collected.
There are many factors which contribute to a motivation
to update the model.

If the same inputs are provided at different times,
a model should return the same computed output values.
However, the wvalue is not necessarily representative of
the functional relationship or system being modeled.
Noise in observation typically causes the old computed
value to be somewhat different from the newly observed
one.

The model also may be obsolete. In the use of a
mathematical model of a system, the focus is on the
inputs, and system parameters are considered to Dbe
constant. However, after the model is established, the
gsystem parameters may drift and cause the underlying

gsystem behavior to shift. For example, the further a
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driver steps on a brake pedal of a car, the faster the
car stops, and a model may be built to predict how fast
the car stops for a particular distance the brake pedal
moves. However, as the brake pads wear thin and brake
fluid ages over time, the same amount of travel in the
brake pedal results in the car stopping slower than
before.

It is possible to compensate for minor changes due
to noise or system drift, by updating some appropriate
parameters, for example, the weights in the FLN model.
Newly available data may help to cancel noise in previous
training data or to bring the model more up to date. In
practice, it is difficult to determine whether the cause
ig noise or drift since normally both exist and it is
likely that noise effects are dominant in the short term
while drift might be responsible for secular effects and
is dominant for a longer term.

Another situation in which updating the model 1is
desired 1is when novel cases are identified in newly
available data. For cases of novel data, changing
weights associated with existing nodes may not be enough
to represent the effects of the novel data. Adding new
nodes associated with data regions in which the novel
cases exist may be used to address this problem. Again,
clustering may be used to determine the position and
spread of the new node function. With centers from
clustering results, it is easy to identify patterns that
fall outside of known regions.

While it is difficult to perform adaptive learning
for the conventional multi-layer hidden-layer net

structure due to the non-linearity within the training
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methodology, the adaptive update for a FLN with non-
linearity contained in the functional-link layer, such as
the net generated by the OFLN methodologies, may be
carried out as follows.

If a set of newly obtained associated pattern pairs
{(x's, y'p)} is provided, in which p =1, ..., P', and P’
is much smaller than the original number P of patterns in
the training set, a new F' matrix may be obtained using
the same radial-basis function approximation nodes
supplemented with additional nodes as warranted. A least
squares solution w' equivalent to Equation (5) may be
obtained. Assuming w represents the current weights in
the model, with =zeros for 1links from the additional
nodes, the new weights wpe,z may be obtained using the

following equation:

Wiew = (1 - )W +ow’

(19)
where a is a parameter between 0 and 1. Determination of
a is based on several parameters, such as the number of
patterns in the new set compared with the previous
training set, confidence level in the newly available set
versus the previous one, the estimated rate of change in
the underlying system and the time elapsed since the
model was first established. One way to compute the

parameter a is to use the following equation:

Pl

(1-A)P +P'

where P and P' are the numbers of patterns in the
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training set used to train the current model and in the
newly available data set, respectively. The parameter A
is a forgetting factor. 1Its value is also within [0, 1].
The higher the wvalue of A, the less effect the existing
weights w have on the new weights wpew. In other words,
the current weights are forgotten to a greater extent.
The advantage of introducing A is that it separates the
tangible part (i.e., the number of patterns) from the
intangible parts of the determination process for the
parameter «. .

Although adaptive learning may help to reduce
differences caused by both noise and drift, there is a
distinction between the two causes. To obtain a desired
response, the input parameters may still be in the same
neighborhood for differences caused by zero-mean noise
but may be progressively different for differences caused
by drift. In addition, the desired operations to update
the model are also different. For the noise case, the
parameters in the existing model are treated with equal
importance. In contrast, for drift, they need to be
forgotten. The parameter A is provided for this purpose
in Equation (20).

For adaptive updating of model parameters to work,
the general underlying principle in the functional
relationship or model may still be wvalid and the amount
of change may be small. If these conditions are not
true, a completely new model may be established. Even if
the change is gradual, the amount of change may become
significant over time. Therefore, adaptive updating is
best for a short-term solution. As new data accumulates,

a full retrain may be conducted, periodically or when Wpew
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is sufficiently different from the original w. A
difference between adaptive update and full retrain is
that adaptive update keeps all existing nodes and only
adjusts the weights for them, while for full retrain all
function approximation nodes (and weights) are newly
generated. Full retrain may provide better performance
but is also much more time consuming. Performing an
adaptive update to an on-line model frequently coupled
with installing a fully retrained model from off-line
periodically may be an effective technique to ensure that
the model is always up to date.

Whether previous training data may be archived is a
trade-off issue. The adaptive updating does not require
any of them. Whether a full retrain uses them depends on
whether the retrain is called for by large amount of new
data or by large difference in weights. For the latter
case (i.e. large difference in weights) with a small
amount of new data, retrain with all or some of the
previous training data may be desired. However, for fast
changing situation, dropping old data may yield better
results. One technique that may work sufficiently well
for most situations is to keep a fixed amount of data,

dropping old ones as new ones are available.

Examples

A simple non-linear time series example is discussed
below to illustrate a ©process of automatic model
generation and updating by using OFLN methodologies. The
example may apply exemplarily to network performance and
positioning of network centers.

A non-linear times series 1s simulated by the
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following equation:

y(t)=[0.8~0.5exp(=y* (.= 1))]y(t - 1)
—[0.3+0.9exp(-y*(t = 1)]y(t - 2)
+ 0.1sin(ny (¢ —1)) +e(¢)

(21)

where e(t) 1s a zero mean noise sequence with wvariance
0.01. The initial conditions were set as y(0) = 0.1 and
y(-1) = 0. The previous two points are used to predict
the value of the current point.

Two thousand samples of the time series were
generated. The first 1000 patterns were used as the
training set and the remaining 1000 were used as the
validation set. Gaussians were used as the function
approximation nodes. The centers were determined by
using cluster centers and the spreads were determined by
using the radii of the clusters. Hierarchical k-means
clustering up to 3 levels with 3 clusters at the first
level and binary split at the next two levels were used.
The hierarchical clustering resulted in a total of 21
clusters. The clusters were sorted based on ascending
level and descending population. The net started with 3
nodes corresponding to the top-level clusters, and nodes
were added from the list of clusters sequentially. For an
error target of 5e-4, a total of 12 nodes were selected.
An error for the validation set was also less than 5e-4,
indicating good generalization capability of the
resulting model.

FIG. 5 shows the training patterns, a noise-free

limit cycle, a limit cycle produced by the model when the
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model output was fed back to the input, and positions of
cluster centers from different 1levels of clustering, for

a simulated non-linear time series and results from the

FLN model. The small dots correspond to training
patterns. The gray loop corresponds to the noise-free
limit cycle. The black loop corresponds to the limit

cycle produced by the FLN model when the output was fed
back to the input. The large black circles correspond to
the positions of the centers of the first level clusters.
The triangles correspond to the second level clusters.
The diamonds correspond to selected third level clusters.
The selected centers appear to be at strategic positions
and the 1limit cycle produced by the model agrees well
with the noise-free system limit cycle.

To illustrate the process of maintaining optimal
model performance through a combination of adaptive model
update and periodic retraining of the model, a constant
drift term is added to the non-linear time series system
corresponding to Equation (21), as follows for t > 1000:

20

y(t) =[0.8—0.5exp(—y* (1 = 1)]y(r 1)
~[0.3+0.9exp(=y*(¢ = 1)]y(t - 2)
+0.1sin(my( — 1)) + 0.25 + e(¢)

(22)

Two additional training data sets containing 500
patterns in each set were generated. The error of
consulting these patterns using the original model was

0.00326. Adaptive learning was applied with each training
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set sequentially. The forgetting factor used was 0.5 in
both cases. The resulting errors of the modified models
corresponding to the training data sets were 0.00114 and
0.000713, respectively. A new model was also built by
using both new training data sets to simulate the
periodic retrain. Again, for an error target of 5e-4,
only 12 new nodes were used.

FIG. 6 shows limit cycles produced by the models at
different stages when the output was fed back to the
input as compared to the noise-free limit cycle for the
drifted system corresponding to Equation (22). The gray
dot loop corresponds to the noise-free limit cycle. The
solid gray loop corresponds to the limit cycle produced
by the original model. The solid black loop corresponds
to the 1limit cycle produced after the first adaptive
learning. The asterisk dot loop corresponds to the limit
cycle produced after the second adaptive learning. The
plus dot 1loop corresponds to the new model after full
retrain with new data.

From FIG. 6, it is evident that adaptive learning
may be used to correct the model parameters so as to
bring the model outputs progressively closer to the
target. However, as new patterns accumulate to warrant a
retrain, the new model performs better than the
adaptively updated model since the retrained model is not
affected by the old parameters in the original model. 1In
addition, centers may be tuned to the new data set.

Therefore, an advantage of the OFLN methodologies
over other existing methodologies, such as
backpropagation, is that OFLN methodologies may be used

to generate candidate processing nodes automatically and
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efficiently by wutilizing knowledge of where the data
points are situated. The OFLN methodologies may also be
used to dynamically adjust the number of processing nodes
to maintain or improve the fidelity of the function
approximation, without user intervention. The
functional-link net structure facilitates adaptive
learning, through which the FLN model may successfully
perform the tasks of learning with noisy training data,
predicting a wvalue of a current observation based on
previous ones, and maintaining accuracy in a presence of
drift in the underlying functional relationship or system

(e.g., signal generation mechanism) .

Applications of the OFLN Methodologies

Neural net models formed and maintained through the
OFLN methodologies may be applied to provide computer
application software with abilities similar to human
pattern recognition and predictive skills. The
methodologies may be incorporated in a computer program
or software module stored in a computing system's memory,
on a computer readable medium and/or transmitted via a
computer network and/or other transmission media in one
or more segments, which is executable on the computing
system.

The following are just a few examples of such skills
which application software may be adapted to have.

Application software may be adapted to make
predictions based on the current state and on the
historical trend, such as, for example, predicting an
amount of merchandise to order from a supplier to avoid

running out of inventory in the upcoming month, while not
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keeping too much inventory (e.g., above what is needed
for the month). Over time, the model may be updated, by
applying adaptive update methodologies, to account for
changes in fashion trends, economic conditions, etc.

Application software also may be adapted to emulate
other intelligent behavior, such as the following: (a)
predictive modeling: developing cause-and-effect models
of systems from data that describes the systems behavior,
and predicting the behavior of the gystem based on new
“cause” data; and (b) optimization: improving the
performance of a system, or solving a problem. If an
operating point of the system has drifted (e.g., caused
by wear and tear) or system requirements have changed
(e.g., because of increased demand), the system model may
be adaptively updated.

The OFLN methodologies may be applied to, for
example, profiling (which is known in the information
technology art as “data mining”), to look for interesting
patterns in data and trying to explain them. The model
is typically wupdated incrementally as new data 1is
gathered, because at least some of the new data may not
be represented in the existing model.

The OFLN methodologies may be applied to wvalue
prediction. For example, an input to a FLN model may be
a recipe containing a list of ingredients and processing
conditions for producing rubber, polymers, glass, metals,
petrochemicals, food, etc., and resulting properties of
the product. The FLN model may be trained to model the
production process. The prediction model may be trained
from historical product data in a database corresponding

to product properties for each recipe. For example, a
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model trained to predict the properties of bread recipes
may receive the amounts of various ingredients and the
baking conditions as inputs, and predict the measurable
qualities of the bread product. Alternatively, the model
may be trained to specify an appropriate recipe based on
input of the desired properties. The model may be
adaptively updated to account for drift (e.g., equipment
wear and tear) or new data (e.g., as predicted recipes
are tested). Additional recipes independently discovered
may require updating the model incrementally.

The OFLN methodologies may be adapted for business
intelligence. For example, a 1local utility may be
interested in imprbving the way that they forecast the
price of electric power. Traditionally, managers decide
on a daily basis which plants are run in production, and
how much power to buy or sell on the spot market, based
on forecasts of the next day's demand and price. These
decisions also may be made on an hour-by-hour basis for
the following day, and so forecasts are desired for each
hour of the following day. A model may be trained to
predict the next day's hourly demand for electric power
based on the previous 24-hours of outdoor temperature and
actual demand. The trained model may be adaptively
updated to account for social trends (for example, change
from five-day to four-day work week, which affects demand
for each day of the week).

Additional wvariations may be apparent to one of
ordinary skill in the art from reading the following U.S.
applications, which are incorporated herein by reference:

(a) Serial No. 60/374,064, filed April 19, 2002 and
entitled “PROCESSING MIXED NUMERIC AND/OR NON-NUMERIC
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(b) Serial No. 60/374,020, filed April 19, 2002 and
entitled “AUTOMATIC NEURAL-NET MODEL GENERATION AND
MAINTENANCE”;

(c) Serial No. 60/374,024, filed April 19, 2002 and
entitled “VIEWING MULTI-DIMENSIONAL DATA THROUGH
HIERARCHICAL VISUALIZATION";

(d) Serial No. 60/374,041, filed April 19, 2002 and
entitled “METHOD AND APPARATUS FOR DISCOVERING
EVOLUTIONARY CHANGES WITHIN A SYSTEM”;

(e) Serial No. 60/373,977, filed April 19, 2002 and
entitled “AUTOMATIC MODEL MAINTENANCE THROUGH LOCAL
NETS”;

(f) Serial No. 60/373,780, filed April 19, 2002 and
entitled “USING NEURAL NETWORKS FOR DATA MINING”; and

(g) Serial No. 10/374,406, filed February 26, 2003
and entitled “AUTOMATIC NEURAL-NET MODEL GENERATION AND
MAINTENANCE” .
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What is claimed is:

1. A method of incrementally forming and adaptively
updating a neural net model, comprising:

(a) incrementally adding to the neural net model a
function approximation node; and

(b) determining function parameters for the function
approximation node and updating function parameters of
other nodes in the neural network model, by using the
function paramefers of the other nodes prior to addition
of the function approximation node to the neural network

model.

2. The method of c¢laim 1, wherein if a model
accuracy of the neural net model with the function
approximation node added thereto is below a predetermined

accuracy level, steps (a) and (b) are repeated.

3. The method of claim 1, wherein a set of sample
data patterns is used to form a 1list of function
approximation node candidates, and the function
approximation node is selected from the list of function

approximation node candidates.

4. The method of claim 3, wherein the 1list of
function approximation node candidates is formed by

splitting the set of sample data patterns into a
plurality of clusters in a first 1level of a cluster
hierarchy,

determining that a selected cluster in the first
level has a population exceeding a predetermined size,

and
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splitting the selected cluster into two or more
clusters and replacing the selected cluster with the two
or more clusters 1in a next level of the cluster

hierarchy.

5. The method of claim 4 further comprising sorting
the clusters on each level of the cluster hierarchy based
on cluster size, to form a sorted 1list of function

approximation node candidates.

6. The method of c¢laim 3, wherein the neural
network model 1is adaptively updated by incrementally
adding one or more additional nodes to the neural net
model, to represent new data corresponding to a data

range not represented in the set of sample data patterns.

7. The method of claim 1 further comprising:

monitoring a model accuracy of the neural net model
while the neural net model is used on-line; and

adaptively updating the neural net model, if the
model accuracy of the neural net model is below a

predetermined threshold.

8. The method of claim 7, wherein the adaptive
update includes incrementally adding one or mwore
additional nodes to the neural net model, to represent

new data.

9. The method of c¢laim 8, wherein the new data

corresponds to a change in system dynamics.
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10. The method of claim 7, wherein the adaptive
update includes updating the function parameters of the

nodes in the neural net model.

11. The method of claim 7, wherein if the adaptive
updating reaches a limit, a full retrain of the neural

net model is performed.

12. The method of c¢laim 1 further comprising
adaptively updating the neural net model by adding one or
more additional nodes to the neural net model, based on

new data patterns.

13. The method of claim 12, wherein the additional
nodes are formed by applying a clustering methodology to

the new data patterns.

14. The method of claim 13, wherein the clustering
methodology includes

clustering the new data patterns into a number of
clusters which is approximately a number of the nodes in
the neural net model;

determining that a selected cluster is far away from
positions associated with the respective nodes in the
neural net model; and

adding to the neural net model an additional node
associated with the selected cluster and a center of the

selected cluster.

15. The method of claim 12, wherein

a set of initial weights is determined for the nodes
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in the neural net model when the neural net model is
formed, and

when the additional nodes are added during adaptive
update, a set of new weights for the nodes in the neural
net model 1is computed, and the 1initial weights are
combined with the new weights for the nodes based on a

forgetting factor.:

16. The method of claim 15, wherein the forgetting
factor is determined based on a cause of model

degradation.

17. The method of c¢laim 1 further comprising
applying an orthogonal least squares methodology to

determine a set of weights for the neural net model.

18. The method of claim 17, wherein the set of
weights are adaptively updated by wusing new data

patterns.

19. The method of claim 17, wherein the set of

weights are updated to compensate for system drift.

20. The method of claim 1, wherein the function
parameters for the nodes in the neural net model are
determined by applying a hierarchical k-means clustering

methodology to a set of sample data patterns.

21. The method of claim 1, wherein the function
approximation node is a radial basis node, and a center

and radius of the radial basis node are determined
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through a hierarchical k-means clustering methodology.

22. The method of c¢laim 1, wherein the function

approximation node is a Gaussian node.

23. The method of c¢laim 1, wherein the function

approximation node is a sigmoidal basis node.

24, The method of c¢laim 1, wherein the function

approximation node is a wavelet basis node.

25. The method of claim 1, wherein the function

approximation node is non-linear.

26. A method of incrementally forming a neural net
model, comprising:

applying a hierarchical clustering methodology to a
set of sample data patterns to form a list of function
approximation node candidates; and

incrementally adding one or more function
approximation nodes to the neural net model until a model
with an accuracy at or above a predetermined accuracy
level is formed, wherein the function approximation nodes
are selected from the list of function approximation node

candidates.

27. A computer system, comprising:

a processor; and

a program storage device readable by the computer
system, tangibly embodying a program of instructions

executable by the processor to perform the method of
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28. A program storage device readable by a machine,
tangibly embodying a program of instructions executable

by the machine to perform the method of claim 26.

29. A computer data signal embodied in a
transmission medium which embodies instructions

executable by a computer to perform the method of c¢laim

26.
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