
(19) United States
US 20110172965A1

(12) Patent Application Publication (10) Pub. No.: US 2011/0172965 A1
McIntyre et al. (43) Pub. Date: Jul. 14, 2011

(54) REMOTELY MONITORING/DIAGNOSING
DISTRIBUTED COMPONENTS OF A
SUPERVISORY PROCESS CONTROLAND
MANUFACTURING INFORMATION
APPLICATION FROM A CENTRAL
LOCATION

(75) Inventors: James P. McIntyre, Aliso Viejo,
CA (US); Kevin Rowley, San
Marcos, CA (US); Derrick C.
Jones, Santa Ana, CA (US); Pankaj
H. Mody, Laguna Niguel, CA (US)

(73) Assignee: Invensys Systems, Inc., Foxboro,
MA (US)

(21) Appl. No.: 12/941,673

(22) Filed: Nov. 8, 2010

Related U.S. Application Data

(63) Continuation of application No. 1 1/439,866, filed on
May 24, 2006, now Pat. No. 7,831,410, which is a
continuation of application No. 10/974.361, filed on
Oct. 27, 2004, now Pat. No. 7,120,558, which is a
continuation of application No. 10/179,456, filed on
Jun. 24, 2002, now Pat. No. 6,813,587.

(60) Provisional application No. 60/300,363, filed on Jun.
22, 2001, provisional application No. 60/300,174,
filed on Jun. 22, 2001, provisional application No.
60/300,321, filed on Jun. 22, 2001.

Publication Classification

(51) Int. Cl.
G06F 9/00 (2011.01)

(52) U.S. Cl. .. 702/183

(57) ABSTRACT

A centralized diagnostics management tool is disclosed that
facilitates centralized monitoring of distributed components
of a Supervisory process control and manufacturing informa
tion application. The centralized diagnostics management
tool includes a diagnostics management console shell that is
customized according to a set of software modules that inter
face to data sources to populate views Supported by the con
sole shell. The console shell includes a set of view templates
including controls for manipulating graphically displayed
representations of data rendered by the distributed compo
nents. The console shell also includes an interface for
exchanging requests and data with an extensible set of Soft
ware modules that provide data links to ones of the set of
distributed components. The software modules also define
the customizable portions of the view rendered by the console
shell.

US 2011/0172965 A1 Jul. 14, 2011 Sheet 1 of 17 Patent Application Publication

Z0 ||ZOTE00 ||! OT] © | F| –

JÐAUÐSVO OdO

0 2.0 ||

Patent Application Publication Jul. 14, 2011 Sheet 2 of 17 US 2011/0172965 A1

<<abstract 2OO
WindoWS OS
(from Microsoft)

2O2 <<CoClass>>
BootstrapObject

(from Bootstrap manager)

Platform 204

(from StateDiagrams)

2O6
Engine

(from StateDiagrams)

Execute business logic
Scheduler Application Object

Patent Application Publication Jul. 14, 2011 Sheet 3 of 17 US 2011/0172965 A1

FG. 3
Common Fields)

Scripts
UDA

Alarm Mode
Based On
AttributeNames
Contained Name

300
3O2
304r
306

308

31 O
312

314

316

318

320

322

324

326

328

33O

332- -

334

336

338

340

342

344

346

348

350
352

Deployed version
Derived from

Relative Execution Order
Hierarchial Name
isTemplate
Alarm inhibit
Alarm Mode
Alarm Mode Command
Area
Container

Category
CatedOV Enum
Errors
Host
InAlarm

ScanState
ScanStateCommand
Security Group
Description
Tagname
Warnings

Patent Application Publication Jul. 14, 2011 Sheet 4 of 17 US 2011/0172965 A1

FG. 4
Platform Object Fields

400 RegisterEngine
402 StartEngine

404 StartHosted Objects
406 StopEngine
408 UnregisterEngine
41 Or. Engines
412 EngineStates

FIG 5
500
502 r N

504

506 N
508
510

512 N.

514

516 r N

External Name
internal Name

Reference Count
Objects
Startup Type
CanCoOnScan

BindReference
AutoRestart

CheckPointfailed
Alarm ThrottleLimit
EngineAlarm Rate
Alarms Throttled

ScriptExecute Timeout
522 N.

524

526 N.

528

530

532

534

536 r N

ScriptStartup Timeout
ScriptShutdown Timeout
PublisherHeartbeat
Processid

CreateAutomationObject
DeleteAutomationObject
StartHostedObjects 538

Patent Application Publication Jul. 14, 2011 Sheet 5 of 17 US 2011/0172965 A1

External Name
Internal Name

CheckpointPeriodAvg

F.G. 6 600
604
606
608

610
612

616 TimeldeMin

618 inputMsgSizeAvg
inputMsgsProcessedAvg 620

622
624
626
628
630

632

634

636

638

640

InputQueueSizeMax
TimelnputAvg
ObjectCnt
ObjectsOffScanCnt
TimeOutputAvg
StatsReset

642 ScanCyclesCnt
644 ScanOverrunsCnt

ScanOverrunsConsecutiveCnt

ScanOverrunhigh Limit
ScanOverrun Condition
SCan Period

646

648
650
652

AnalogDevice Attributes
PV.input
PV. Output

FIG. 7 CE
Analog Device 702
Application 703 Scaling

Object Fields 704 LevelAlarms
705 PV.ROC

708
PVDev
Ctrl track

Patent Application Publication Jul. 14, 2011 Sheet 6 of 17

FG. 8

US 2011/0172965 A1

Bootstrap wnPalom Scheduler Asia in

802

"start platform"

8OO

Start

Execute()
81 O

812

'start engine"

"create engine process"
804 "register"

808

'start
executing
objects"

"stop platform" 814

"stop engine"

816 "inform engine to stop"

818

"unregister
822

"shutdown

Patent Application Publication Jul. 14, 2011 Sheet 7 of 17 US 2011/0172965 A1

FG. 9

Scheduler on Application.
f Engine A Engine A Object A Engine B Scheduler on

Engine B

Application , 900
Engineer

"Start
executing

business logic" "execute
business logic"

9 O2 "remove object
A

from engine"

'scheduler
stops

executing

"add object A to engine"
912

910 "initialize
object A" 914

Fa object" "register object

916

"execute business object"

918

US 2011/0172965 A1 Jul. 14, 2011 Sheet 8 of 17 Patent Application Publication

~~~~~~…::: 

  



US 2011/0172965 A1 Jul. 14, 2011 Sheet 9 of 17 Patent Application Publication 

|ºpOWN 83.IV 

  



Patent Application Publication 

F.G. 12 

Jul. 14, 2011 Sheet 10 of 17 

FG 13 

US 2011/0172965 A1 

1200 
ProcessPlan SArea 

Rawateristore- 2O2 $Discretedevice 
ESValve 

Production 1 1204 SBSMixer Wessel.net 
e - 1210 SSSliceGate 
- 12 12 E$Conveyor 

Line2 

Area (Model) 

Distribution-12O6 
FinishedProductStore 1 1208 HBSElevator 

iSAgitator 

ESUserDefined 

ESVessel 
B$Hopper 
BSBin 

iSMixer Wessel 

BSSingleDirectionConveyor 
SBitoirectionalConveyor 

SMixerVesselAgitator 

$Mixer Wessel. Vessel 

Derivation (App. Objects) 

F.G. 14b 
SMixerWesse 

HE Inlet 
u Wessel 
thi Agitator 

Model (Compound Containment) 

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  



Patent Application Publication Jul. 14, 2011 

EProcessPlant 

Sheet 11 of 17 

FG 16 
1602 
1 

1604 
E RawMateia Store 1 

US 2011/0172965 A1 

FIG. 15 
ERawMaterialPC 
Production PC 

EConfiguration PC 

AppEngine1 

1500 swinPattom-1 
Finished ProductPC 

SEApplicationServer 1 PC 
BApplicationServer2PC 

ESApplicationEngine -- 1510 

G Line1 
B H2 
MV1 

E Production 11606 

- 
A1 (Agitator) 
M1 (Vessel) 

E V1 (Inlet) 

1600 

A2 (Agitator) EE AppEngine2 1520 
SViewEngine u- y; See) 

RawMaterialView Distribution 
ProductionView C2 N 
Finished ProductView H C3 

SPLNek C4 1608 
PC1 Ethelet 1530 D1 
PLC2Ethernet P: 

SPLCObject 

.. > 1so Finish Productstores PC2 - E. 1610 
|-E B3 

HB B4 

Physical Hardware Derivation View 

FIG. 17 1700 

C. 1702 
RawMateriaPC 
E RawMaterialView 

Production PC 
E POductionView 

1716 E. FinishedProductview-1 
5 Configuration PC 
ApplicationServer 1 PC-1708 
it AppEngine1 1718 

is PCEternet 1722 
PLC1 1724 

S ProcessPlant 1730 
-- RawMaterialStore-N 

E Production-N 1734 1732 
- E Line1-1736 

SE Line2-1738 1710 3 ApplicationServer2PC1 
E AppEngine2 1720 

E PLC2Ethernet - 1726 
- EPLC2 - 1728 

HFE Distribution - 1740 
- FinishedProductStore N 

1742 
Deployment Wiew 

Application Model View 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  



Patent Application Publication Jul. 14, 2011 Sheet 12 of 17 US 2011/0172965 A1 

F.G. 18 
18OO 

Compile List of All Software Modules 
Needed at Target Computer 

1810 

Transmit Software Module Requirements 
List to Target Computer 

1820 

Determine Software Modules That Are 
Not Currently Loaded on Target 

Computer 

1830 

Target Computer Returns List of 
Required Software Modules That Are 
Not Presently on the Target Computer 

Transmit the Missing Software Modules 
To The Target Computer 

1840 

1850 

Target Computer Loads and Registers 
the Received Software Modules 

1860 
Compare Target Computer System 
Configuration to Requirements and 

Notify Any Configuration Errors 

  

    

  

    

  

    

    

    

  



Patent Application Publication Jul. 14, 2011 Sheet 13 of 17 

1900 

1960 

F.G. 19 

Client issues Reference Request 
including Location-independent Object 

Name and Attribute 

1910 Yes 
Local Target Object? w 

1930 Message Exchange issues Bind 
Reference Request To Resolve Name 

into Location-Dependent Handle 

Locate Handle Corresponding To 
1940 Named Attribute and Return Handle to 

Message Exchange on Client's Engine 

1950 Message Exchange on Client's Engine Stores 
Handle and Reference in Reference List 

Pass Reference To Client For Future 
GetSet Attribute Requests 

Client Issues GetSet Request to Engine 
including Reference Number for Attribute 

1970 

1980 Message Exchange for Client's Engine 
Determines Handle Corresponding to Attribute 

and issues Request to Target Engine 

Request is Processed By Target Object 

1990 

App Engine for Target Object Returns 
Response to Client 

US 2011/0172965 A1 

1920 

Determine 
MxHandle 
Value for 
Named 
Attribute 

  

  

    

  

  



US 2011/0172965 A1 Jul. 14, 2011 Sheet 14 of 17 Patent Application Publication 

  

  

  

  



de 6eue W e6ex;oe) 

Jul. 14, 2011 Sheet 15 of 17 

ZO LZ 

Patent Application Publication 

    

    

    

  
  

  

  

  

    

  

  

  

  



Patent Application Publication Jul. 14, 2011 Sheet 16 of 17 US 2011/0172965 A1 

  



Patent Application Publication Jul. 14, 2011 Sheet 17 of 17 US 2011/0172965 A1 

  



US 2011/0172965 A1 

REMOTELY MONITORNG/DAGNOSING 
DISTRIBUTED COMPONENTS OF A 

SUPERVISORY PROCESS CONTROLAND 
MANUFACTURING INFORMATION 
APPLICATION FROMA CENTRAL 

LOCATION 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0001. This application claims priority of Resnick et al. 
U.S. provisional application Ser. No. 60/300,363 filed on Jun. 
22, 2001, entitled “An Object-based Architecture for Execut 
ing Supervisory Process Control and Manufacturing Appli 
cations. Rowley et al. U.S. provisional application Ser. No. 
60/300,174 filed on Jun. 22, 2001, entitled “Method for 
Installing Supervisory Process Control and Manufacturing 
Information System Software From a Remote Location and 
Dynamic Re-Binding Handles, and McIntyre et al. U.S. 
provisional application Ser. No. 60/300,321 filed on Jun. 22. 
2001, entitled “Centralized Diagnostics Ina Supervisory Pro 
cess Control and Manufacturing Information Application 
Environment.” The contents of each above identified provi 
sional application are expressly incorporated herein by refer 
ence in their entirety including the contents and teachings of 
any references contained therein. 

FIELD OF THE INVENTION 

0002 The present invention generally relates to the field of 
computerized process control networks. More particularly, 
the present invention relates to Supervisory process control 
and manufacturing information systems. Such systems gen 
erally execute above a control layer in a process control 
network to provide guidance to lower level control elements 
and/or field devices such as, by way of example, program 
mable logic controllers. 

BACKGROUND OF THE INVENTION 

0003. Significant advances in industrial process control 
technology have vastly improved all aspects of factory and 
plant operation. Before the introduction of today's modern 
industrial process control systems, industrial processes were 
operated/controlled by humans and rudimentary mechanical 
controls. As a consequence, the complexity and degree of 
control over a process was limited by the speed with which 
one or more people could ascertain a present status of various 
process state variables, compare the current status to a desired 
operating level, calculate a corrective action (if needed), and 
implement a change to a control point to affect a change to a 
state variable. 
0004 Improvements to process control technology have 
enabled vastly larger and more complex industrial processes 
to be controlled via programmed control processors. Control 
processors execute control programs that read process status 
variables, execute control algorithms based upon the status 
variable data and desired set point information to render 
output values for the control points in industrial processes. 
Such control processors and programs supporta Substantially 
self-running industrial process (once set points are estab 
lished). 
0005. Notwithstanding the ability of industrial processes 
to operate under the control of programmed process control 
lers at previously established set points without intervention, 
Supervisory control and monitoring of control processors and 

Jul. 14, 2011 

their associated processes is desirable. Such oversight is pro 
vided by both humans and higher-level control programs at an 
application/human interface layer of a multilevel process 
control network. Such oversight is generally desired to verify 
proper execution of the controlled process under the lower 
level process controllers and to configure the set points of the 
controlled process. 
0006. One of many challenges facing the designers/man 
agers of often highly complex, distributed process control 
systems is to properly load/maintain required Software onto 
each one of a plurality of supervisory-level computers execut 
ingaportion of a distributed application. A challenge faced by 
the managers of Such systems is the potentially significant 
distances between the various computer devices (e.g., per 
Sonal computers) executing the various portions of the dis 
tributed Supervisory process control application. Another 
challenge to the Software loading process is the sheer Volume 
of executables that are transferred to the distributed computer 
devices. Yet another complication is the potential existence, 
in cases where a service pack is to be deployed, of previously 
installed components on the target personal computer sys 
temS. 

0007 Keeping track of the operation of individual distrib 
uted components on an application loaded upon computers 
located throughout an industrial plant is another challenge 
faced by System administrators. Known systems provide cen 
tralized alarm capabilities that are monitored in a central 
control room. However, even when alarm conditions are not 
met, an administrator still has an interest in determining how 
installed application objects are performing on a distributed 
system, and to take remedial action if needed. 

SUMMARY OF THE INVENTION 

0008. In accordance with the invention, a centralized diag 
nostics management tool facilitates centralized monitoring of 
distributed components of a Supervisory process control and 
manufacturing information application. The centralized diag 
nostics management tool includes a diagnostics management 
console shell that is customized according to a set of software 
modules that interface to data sources to populate views Sup 
ported by the console shell. The console shell includes a set of 
view templates including controls for manipulating graphi 
cally displayed representations of data rendered by the dis 
tributed components. The console shell also includes an inter 
face for exchanging requests and data with an extensible set 
of software modules that provide data links to ones of the set 
of distributed components. The personality of the interface is 
driven by a set of software modules that submit requests to the 
distributed components to access exposed attributes corre 
sponding to the operational statuses of the components. The 
software modules also define the customizable portions of the 
view rendered by the console shell. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0009. The appended claims set forth the features of the 
present invention with particularity. The invention, together 
with its objects and advantages, may be best understood from 
the following detailed description taken in conjunction with 
the accompanying drawings of which: 
0010 FIG. 1 is a schematic diagram of an exemplary 
Supervisory process control network including a multi-lay 
ered Supervisory process control and manufacturing informa 
tion application; 



US 2011/0172965 A1 

0011 FIG. 2 depicts a multi-tiered object arrangement for 
an application; 
0012 FIG. 3 depicts a set of attributes associated with a 
common portion for the objects comprising the application; 
0013 FIG. 4 depicts a set of attributes associated with a 
platform-specific portion of a platform object; 
0014 FIG. 5 depicts a set of attributes associated with an 
engine object; 
0015 FIG. 6 depicts a set of attributes associated with a 
scheduler object; 
0016 FIG. 7 depicts a set of attributes associated with an 
exemplary application object; 
0017 FIG. 8 is a sequence diagram summarizing a set of 
steps performed to start up a multi-layered application 
embodying the present invention; 
0018 FIG. 9 is a sequence diagram summarizing a set of 
steps for moving an object to another engine in a network 
comprising multiple application engines; 
0019 FIG. 10 is a schematic diagram depicting controlled 
components of a simple plant process; 
0020 FIG. 11 is a schematic diagram depicting the simple 
plant process components logically grouped into areas. 
0021 FIG. 12 is a hierarchical tree structure depicting the 
grouping of areas in the plant arrangement of FIG. 11; 
0022 FIG. 13 is a hierarchical tree structure representing 
the derivation relationships of objects of a Supervisory pro 
cess control application associated with the plant process 
depicted in FIG. 10; 
0023 FIG. 14a is a schematic drawing of a mixer vessel 
portion of the plant process depicted in FIG. 10; 
0024 FIG. 14b is a hierarchical model view depicting the 
containment relationship of a MixerVessel compound appli 
cation object template corresponding to the mixer vessel 
depicted in FIG. 14; 
0025 FIG. 15 is a hierarchical tree structure representing 
a derivation structure for portions of the application associ 
ated with the hardware of a system (e.g., platforms, engines, 
and device integration objects); 
0026 FIG. 16 is a hierarchical tree structure presenting a 
model view of application object arrangement including the 
areas with which the application objects are associated; 
0027 FIG. 17 is a hierarchical tree structure presenting a 
deployment view of the application to a set of computer 
devices represented by identified platform objects at the top 
level of the hierarchy: 
0028 FIG. 18 is a flowchart summarizing the steps for 
deploying software components to a computer device in a set 
of computer devices carrying out a distributed Supervisory 
process control and manufacturing information application; 
0029 FIG. 19 is a flowchart summarizing the steps for 
registering a connection to a target object attribute and then 
Submitting commands to the object attribute in accordance 
with an embodiment of the present invention; and 
0030 FIG. 20 is a sequence diagram depicting a set of 
steps associated with maintaining a connection to a refer 
enced target object attribute notwithstanding it re-deploy 
ment to a new physical location in a network upon which a 
distributed application is deployed; 
0031 FIG. 21 is a block diagram depicting the primary 
components of an extensible centralized diagnostic utility for 
managing the distributed objects of an application; 
0032 FIG. 22 is a screen shot of an exemplary user inter 
face depicting platforms and their status within a distributed 
application; and 

Jul. 14, 2011 

0033 FIG. 23 is a screen shot of an exemplary user inter 
face depicting the fields of attributes for a selected object. 

DETAILED DESCRIPTION OF AN 
ILLUSTRATIVE EMBODIMENT 

0034. In view of the shortcomings of known supervisory 
process control applications with regard to adapting to 
changed process control system architectures, a Supervisory 
process control and manufacturing information system appli 
cation architecture is described that offers users the freedom 
to re-architect (e.g., augment, reconfigure, etc.) Such applica 
tions, with minimal impact on the existing, underlying, pro 
cess control system engineering. In particular, the disclosed 
system architecture, described by way of example herein, 
comprises multiple layers wherein each underlying layer 
exhibits a hosting relationship to a next higher layer. It is 
noted however, that Such hosting relationship does not extend 
to communications, and thus communications to/from a 
hosted layer need not pass through its host. In accordance 
with the disclosed layered application architecture, an appli 
cation object is hosted by an engine. The engine is hosted by 
a platform that corresponds to, for example, a personal com 
puter with infrastructure software. The intermediate engine 
layer abstracts the application object from the platform archi 
tecture. Thus, location within a physical system containing 
the application object need not be addressed by the applica 
tion object. 
0035. One aspect of the disclosed supervisory process 
control and manufacturing information application is an 
object hierarchy that frees high level application objects of 
design constraints associated with the computing system 
hardware upon which the application objects reside. In par 
ticular, the objects associated with a Supervisory process con 
trol application environment are arranged on physical com 
puting devices in a hierarchy comprising a plurality of layers. 
Application objects execute at an application layer. The appli 
cation objects are hosted by an engine objectata middle layer. 
The engine objects are hosted by a platform object that resides 
at the lowest of the three layers. Each platform object, 
launched by a bootstrap object at yet an even lower layer. The 
platform object corresponds a physical computing system 
(including an operating system) upon which application and 
engine objects execute. Thus, application objects need only 
establish a proper, standardized, relationship to a hosting 
application engine object. Aspects of the Supervisory control 
and manufacturing information system relating to physical 
computing devices and their operating systems are handled 
by the engine and platform object configuration. The physical 
topology of the system and the application's physical location 
is transparent to the operation of the application objects. 
0036. The disclosed layered hosting arrangement of object 
enables a Supervisory process control application to be mod 
eled independently of the computing hardware and Supervi 
sory control network topology, upon which the application 
executes. Isolating the application model from the physical 
deployment configuration enables migrating applications to 
new? different computing systems as the need arises and to 
keep up with underlying hardware changes over the course of 
the life of the application. Such capabilities are especially 
beneficial in the area of process control and manufacturing 
information systems where pilot installations are used to pro 
vide proof of concept and then the application grows as, and 
when, it is justified. 



US 2011/0172965 A1 

0037. The application model includes groupings of appli 
cation objects within logical containers referred to as “areas.” 
All application objects within a same area must be deployed 
upon a same application engine according to a Software 
deployment scheme. However, the layered application archi 
tecture enables binding an application model to a particular 
deployment model at a late stage in development. Thus, an 
abstract"area' need not be associated with a particular engine 
untila developer is ready to deploy and execute a Supervisory 
level system. 
0038. The security model for a supervisory control and 
manufacturing information system is independent of the 
physical hardware, and thus a Supervisory process control and 
manufacturing information system architect need not bind 
security to a particular physical system component until the 
application modules have been deployed within a physical 
system containing the physical system component. The late 
binding of security to particular components of a system 
enables a developer to determine the authorization of a par 
ticular system based upon the deployed application objects, 
and the developer binds security based upon the functionality 
of the application objects deployed upon particular comput 
ing nodes. 
0039. Furthermore, disassociating the functionality (busi 
ness logic) provided by the application objects from the com 
puter systems upon which the execute enables presenting the 
defined system/software configuration according to a plural 
ity of views/models. A “plant centric' application model 
enables a system developer to build an application model in a 
logical way. The system developer defines the individual 
devices and functions as distinct entities within a plant. All 
associated functionality is contained in each object. After 
defining the individual objects within the plant, the user con 
figures (assembles) associations between the objects. 
0040. The application model is a logical build of the plant 
relative to physical areas of the plant and the equipment and 
functions within the physical areas. The engineer configures 
the behavior and association between these plant area entities. 
The Supervisory process control and manufacturing informa 
tion system provides a configuration view of the application 
model depicting a containment hierarchy with relation to: the 
areas and equipment, and the equipment itself. 
0041. The application model Supports containing objects 
within objects, and containment can be specified in a tem 
plate. Containment facilitates leveraging the work of different 
engineers at different levels of development of a supervisory 
process control and manufacturing information application. 
A particular technician can define the details for a particular 
low level device. Thereafter another engineer defines a unit or 
other device in the application that contains one or more 
instances of the particular low level device. 
0042. The application model also supports propagating 
changes through inheritance. Thus, child objects inherit 
changes to a referenced parent template definition. 
0043. After a developer specifies the functionality of a 
process control and manufacturing information application, 
the application is deployed across potentially many physical 
computing systems. In an embodiment of the invention dis 
closed herein, a second type of system view, referred to as a 
deployment model, enables a user to configure physical PCs 
and devices with regard to an application. The deployment 
model defines: PCs and engine types that run on the plat 
forms, and external device integration. A user defines the 
areas that will run on particular engines, thereby determining 

Jul. 14, 2011 

where the particular application software will be physically 
executed. The Supervisory process control and manufacturing 
information system provides a configuration view of a 
deployment model showing the hierarchy with physical PCs, 
and the areas and application objects running on the physical 
PCs. After a developer designates/confirms the deployment 
model, the application objects and engine objects are 
deployed on the physical computing devices according to the 
deployment model. 
0044. In accordance with an aspect of the disclosed 
embodiment of the present invention, Software components 
are distributed to appropriate computers from a centralized 
location via a network. This reduces the workload placed 
upon engineers/network Software maintenance personnel 
when configuring the software on the various computers that 
execute a distributed application. Furthermore, only the soft 
ware required to complete an installation is transmitted (i.e., 
previously existing components are not sent to the remotely 
loaded computers). Finally, the configuration of the remote 
computers is checked against the requirements specified to 
carry out the deployed software. 
0045. Yet another aspect of an embodiment of the present 
invention is the ability of the object communication links to 
self-heal when an object is moved to a new location in the 
network. In Such case, the name remains the same. As a 
consequence, the calling object consults a name binding 
directory service that furnishes a new self-routing communi 
cations handle for the moved object. To application objects, 
that address objects on a name basis, the move of the called 
object is transparent. 
0046 Still yet another aspect of the disclosed embodiment 
of the present invention is the use of the messaging capabili 
ties of the system to provide attribute data access via a set of 
Snap in Software modules to a central diagnostic facility 
including a graphical display interface. In an exemplary 
embodiment of the invention disclosed herein below, the 
diagnostics in the Supervisory process control and manufac 
turing information system are centralized through the use of a 
GUI-based management shell and an extensible set of Snap-in 
Software modules that retrieve diagnostic information from 
remotely located Sources of diagnostic data. Thus, a user is 
capable of gaining access to the distributed diagnostic data 
within a system by calling up a single application (e.g. a 
Systems Management Console or “SMC described herein 
below). 
0047. The GUI-based management shell hosts an exten 
sible set of Snap in Software modules relating to various 
diagnostic monitoring/management tasks. The particular 
“snap ins' search the network for applicable system objects 
and diagnostic data (attributes). The data is then presented to 
the management shell for presentation via the shell's graphi 
cal user interface. 
0048 Having summarized generally the new architecture 
for a Supervisory process control and manufacturing infor 
mation system facilitating re-configuring (re-architecting) 
the system, attention is directed to FIG. 1, comprising an 
illustrative example of a system incorporating an application 
architecture embodying the present invention. A first appli 
cation server personal computer (PC) 100 and a second appli 
cation server PC 102 collectively and cooperatively execute a 
distributed multi-layered Supervisory process control and 
manufacturing information application comprising a first 
portion 104 and second portion 106. The application portions 
104 and 106 include device integration application objects 



US 2011/0172965 A1 

PLC1Network and PLC1, and PLC2Network and PLC2, 
respectively. The PLCxNetwork device integration objects 
facilitate configuration of a data access server (e.g., OPC 
DAServers 116 and 118). The PLC1 and PLC2 device inte 
gration objects, operating as OPC clients, access data loca 
tions within the buffers of the OPC DAServers 116 and 118. 
The data access servers 116 and 118 and the device integra 
tion objects cooperatively import and buffer data from exter 
nal process control components such as PLCs or other field 
devices. The data buffers are accessed by a variety of appli 
cation objects 105 and 107 executing upon the personal com 
puters 100 and 102. Examples of application objects include, 
by way of example, discrete devices, analog devices, field 
references, etc. 
0049. In accordance with an embodiment of the present 
invention, application engines host the application objects 
(via a logical grouping object referred to herein as an “area'. 
The engines are in turn hosted by platform objects at the next 
lower level of the Supervisory process control and manufac 
turing information application. The application portions 104 
and 106 are, in turn hosted by generic bootstrap components 
108 and 110. All of the aforementioned components are 
described herein below with reference to FIG. 2. 
0050. In the exemplary system embodying the present 
invention, the multi-layered application comprising portions 
104 and 106 is communicatively linked to a controlled pro 
cess. In particular, the first application server personal com 
puter 100 is communicatively coupled to a first program 
mable logic controller 112, and the second application server 
personal computer 102 is communicatively coupled to a sec 
ond programmable logic controller 114. It is noted that the 
depicted connections from the PCs 100 and 102 to the PLCs 
112 and 114 represent logical connections. Such logical con 
nections correspond to both direct and indirect physical com 
munication links. For example, in a particular embodiment, 
the PLC 112 and PLC 114 comprise nodes on an Ethernet 
LAN to which the personal computers 100 and 104 are also 
connected. In other embodiments, the PLCs 112 and 114 are 
linked directly to physical communication ports on the PCs 
100 and 102. 

0051. In the illustrative embodiment set forth in FIG.1, the 
PCs 100 and 102 execute data access servers 116 and 118 
respectively. The data access servers 116 and 118 obtain/ 
extract process information rendered by the PLC's 112 and 
114 and provide the process information to application 
objects (e.g., PLC1Network, PLC1, PLC2Network, PLC2) of 
the application comprising portions 104 and 106. The data 
access servers 116 and 118 are, by way of example, OPC 
Servers. However, those skilled in the art will readily appre 
ciate the wide variety of custom and standardized data for 
mats/protocols that are potentially carried out by the data 
access servers 116 and 118. Furthermore, the exemplary 
application objects, through connections to the data access 
servers 116 and 118, represent a PLC network and the opera 
tion of the PLC itself. However, the application objects com 
prise a virtually limitless spectrum of classes of executable 
objects that perform desired Supervisory control and data 
acquisition/integration functions in the context of the Super 
visory process control and manufacturing information appli 
cation. 
0052. The supervisory process control and management 
information application is augmented, for example, by a con 
figuration personal computer 120 that executes a database 
(e.g., SQL) server 122 that maintains a Supervisory process 

Jul. 14, 2011 

control and management information application configura 
tion database 124 for the application objects and other related 
information including templates from which the application 
objects are rendered. The configuration database 124 also 
includes a global name table 125 that facilitates binding loca 
tion independent object names to location-derived handles 
facilitating routing messages between objects within the sys 
tem depicted in FIG. 1. The configuration PC 120 and asso 
ciated database server 122 Support: administrative monitor 
ing for a multi-user environment, revision history 
management, centralized license management, centralized 
object deployment including deployment and installation of 
new objects and their associated Software, maintenance of the 
global name table 125, and importing/exporting object tem 
plates and instances. 
0053 Actual configuration of the applications is carried 
out via an Integrated Development Environment (IDE) 127 
that communicates with the database server 122 via distrib 
uted component object model (DCOM) protocols. The IDE is 
a utility from which application objects are configured and 
deployed to the application server PCs 100 and 102. Devel 
opers of a Supervisory process control and manufacturing 
information application, through the IDE, carry out a wide 
variety of system design functions including: importing new 
object and template types, configuring new templates from 
existing templates, defining new application objects, and 
deploying the application objects to the host application 
engines (AppEngine1 or AppEngine2 in FIG. 1) on the appli 
cation server PCS 100 and 102. 

0054 The exemplary supervisory control network envi 
ronment depicted in FIG. 1, also includes a set of operator 
stations 130, 132, and 134 that provide a view into a process 
or portion thereof, monitored/controlled by the Supervisory 
process control and management information application 
installed and executing as a set of layered objects upon the 
PCs 100 and 102. A Raw Material PC 130 provides a repre 
sentative view enabling monitoring a raw materials area of a 
supervised industrial process. A ProductionPC 132 presents a 
representative view of a production portion of the supervised 
industrial process. A FinishedProductPC 134 provides a rep 
resentative view of an area of a production facility associated 
with finished product. Each one of the operator stations 130, 
132, and 134 includes a bootstrap host for each of the par 
ticular operator station platforms. Each one of the operator 
stations 130, 132, and 134 includes a view engine that process 
graphics information to render a graphical depiction of the 
observed industrial process or portion thereof. 
0055. It is noted that the system depicted in FIG. 1 and 
described hereinabove is merely an example of a multi-lay 
ered hierarchical architecture for a Supervisory process con 
trol and manufacturing information system. The present 
invention is not limited to the particular disclosed application/ 
system. For example it is contemplated that the multi-layered 
application approach is applicable, at a lower control level, to 
a distributed control system (DCS) application or a program 
mable logic controller (PLC) application. In these cases spe 
cific platform and application engine objects are developed 
for the unique computing hardware within the DCS or PLC. It 
is further noted that FIG. 1 is presented as a logical view of the 
interrelations between installed software and physical com 
puting hardware and is not intended to designate any particu 
lar network topology. Rather the present invention is suitable 
for a virtually any network topology. In fact, the present 



US 2011/0172965 A1 

invention is applicable to a control application running on a 
single computer system linked to a controlled process. 
0056 Turning now to FIG. 2, a class diagram depicts the 
hierarchical arrangement of layered Software associated with 
a computer executing at least of portion of a Supervisory 
process control and manufacturing information application. 
Each computer executes an operating system 200. Such as 
MICROSOFT's WINDOWS at a lowest level of the hierar 
chy. The operating system 200, hosts a bootstrap object 202. 
The bootstrap object 202 is loaded onto a computer and 
activated in association with startup procedures executed by 
the operating system 200. As the host of a platform class 
object 204, the bootstrap object 202 must be activated before 
initiating operation of the platform class object 204. The 
bootstrap object 202 starts and stops the platform class object. 
The bootstrap object 202 also renders services utilized by the 
platform class object 204 to start and stop one or more engine 
objects 206 hosted by the platform class object 204. 
0057 The platform class object 204 is host to one or more 
engine objects 206. In an embodiment of the invention, the 
platform class object 204 represents, to the one or more 
engine objects 206, a computer executing a particular oper 
ating system. The platform class object 204 maintains a list of 
the engine objects 206 deployed on the platform class object 
204, starts and stops the engine objects 206, and restarts the 
engine objects 206 if they crash. The platform class object 
204 monitors the running state of the engine objects 206 and 
publishes the state information to clients. The platform class 
object 204 includes a system management console diagnostic 
utility that enables performing diagnostic and administrative 
tasks on the computer system executing the platform class 
object 204. The platform class object 204 also provides 
alarms to a distributed alarm Subsystem. 
0058. The engine objects 206 host a set of application 
objects 210 that implement supervisory process control and/ 
or manufacturing information acquisition functions associ 
ated with an application. The engine objects 206 initiate star 
tup of all application objects 210. The engine objects 206 also 
schedule execution of the application objects 210 with regard 
to one another with the help of a scheduler object. Engines 
register application objects with a scheduler for execution. 
The scheduler executes the application objects relative to 
other application objects based upon the configuration speci 
fied by an engine. The engine objects 206 monitor the opera 
tion of the application objects 210 and place malfunctioning 
ones in a quarantined state. The engine objects 206 Support 
check pointing by saving/restoring changes to a runtime 
application made by automation objects to a configuration 
file. The engine objects 206 maintain a name binding service 
that bind attribute references (e.g., tank1.value.pV) to a proper 
one of the application objects 210. 
0059. The engine objects 206 ultimately control how 
execution of application objects will occur. However, once 
the engine objects 206 determine execution scheduling for 
application objects 210, the real-time scheduling of their 
execution is controlled by a scheduler 208. The scheduler 
Supports an interface containing the methods RegisterAuto 
mationObject( ) and UnregisterAutomationObject( ) 
enabling engine objects 206 to add/remove particular appli 
cation objects to/from the schedulers list of scheduled opera 
tions. 
0060. The application objects 210 include a wide variety 
of objects that execute business logic facilitating carrying out 
a particular process control operation (e.g., turning a pump 

Jul. 14, 2011 

on, actuating a valve), and/or information gathering/manage 
ment function (e.g., raising an alarm based upon a received 
field device output signal value) in the context of, for 
example, an industrial process control system. Examples of 
application objects include: analog input, discrete device, and 
PID loop. A class of application objects 210, act upon data 
Supplied by process control systems, such as PLCs, via device 
integration objects (e.g., OPC DAServer 118). The function 
of the integration objects is to provide a bridge between 
process control/manufacturing information sources and the 
Supervisory process control and manufacturing information 
application. 
0061 The application objects 210, in an exemplary 
embodiment, include an application interface accessed by 
engine objects and Schedulers. The engine objects access the 
application object interface to: initialize an application 
object, startup an application object, and shutdown an appli 
cation object. The schedulers use the application object inter 
face to initiate a scheduled execution of the application 
object. 
0062 Having described the primary components of the 
hierarchically arranged Supervisory process control and 
manufacturing information application, attention is now 
directed to FIGS. 3-7 that identify attributes of primitives that 
make up the above-described object structures. Turning first 
to FIG. 3 depicts a common object primitive definition. The 
common primitive is incorporated into all the application 
objects (i.e., platform, application engine, Scheduler, appli 
cation, etc.). A scripts attribute 300 is used to keep track of 
Scripts that are associated with an application object. The 
scripts attribute 300 includes scripts inherited from templates 
as well as Scripts created specifically for the particular object 
type. A UDA (user defined attribute) attribute 302 references 
inherited and new user defined attributes for an object. An 
alarm mode attribute 304 indicates whether an alarm is 
enabled and the extent to which it is enabled. A based on 
attribute 306 identifies a particular base template from which 
an object was derived. Attribute 308 stores a string identifying 
attribute names in an object. A contained name attribute 310 
identifies the name assigned to an object within a container. 
For example, an object may correspond to a “level contained 
within a “reactor object. A deployed version attribute 312 
stores an integer identifying a version for a deployed object. 
A derived from attribute 314 identifies the actual template 
from which an object was derived. The contents of the derived 
from attribute 314 differ from the contents of the based on 
attribute 306. The based on attribute 306 is the base template 
from which this object was derived from. The derived 
attribute 314 is the immediate template from which this object 
was created. For example for a hierarchy of templates as 
follows: 

0063 SDiscretelDevice 
(0.064 SPump 

0065 Pump001 
SDiscretelDevice is the base template from which a new tem 
plate SPump is derived. An instance Pump001 is created from 
the template SPump. The attribute "derived from for object 
Pump001 will be SPump. The attribute “based on for object 
Pump001 will be SDiscretelDevice. 
0066. A relative execution order attribute 316 identifies 
another object with which a present object has a relative 
execution order relation. In addition to identifying another 
object, attribute 316 identifies the relative order of execution 
of the objects (e.g., none, before, after, etc.). The relative 



US 2011/0172965 A1 

execution order information is utilized to schedule execution 
of application objects. A hierarchical name attribute 318 
stores a full name for an object including any of the containers 
of the object (e.g., Reactor1.level). An IsTemplate attribute 
320 indicates whether the object is a template or an object 
instantiated from a template. An Alarm Inhibit attribute 322 
within an area or container object provides cutout function 
ality to inhibit alarms for all objects within an area or con 
tainer. An alarm mode attribute 324 specifies the current 
alarm mode of an object. The mode is based upon the object's 
commanded mode if area and container are enabled. Other 
wise, the most disabled State of the container or parent area 
applies. Alarm Mode Command attribute 326 specifies the 
object's currently commanded alarm mode. 
0067. The illustrative example of the present invention 
Supports an object hierarchy. Objects specify such hierarchy 
in the context of a plant/model view in an area attribute 328 
that specifies an area to which an object belongs. A container 
attribute 330 specifies a container that contains the object. As 
previously explained, a hosting relationship exists among 
various deployed objects. In particular, a platform hosts an 
engine, and an engine (via an area) hosts application objects. 
Thus, a host attribute 338 identifies an object's host. 
0068 A category attribute 332 specifies a class of objects 
with which the object is associated, thereby facilitating orga 
nizing objects according to local associations and/or func 
tionality. The value is one of the categories named in a cat 
egory enumeration attribute 334. An error attribute 336 
identifies errors generated by the object. An InAlarm flag 340 
stores a Boolean flag indicating whether an alarm exists in an 
object. The flag is true only if a Scan State flag 342 is true (the 
object is on scan) and the object's alarms are enabled. The 
scan state of an object is changed through a Scan State Com 
mand 344 that signals whether to take the object on/off scan. 
0069. A security group 346 enables designating a particu 
lar security group for the object to limit access/use of the 
object to particular classes of users. A description attribute 
348 provides an area to store a short description of an object. 
A tag name attribute 350 specifies a unique tag for an object. 
A warnings attribute 352 lists any warnings rendered by an 
object. 
0070 Having described the common attributes of all 
objects described herein, a set of object type-specific 
attributes are described herein below beginning with 
attributes for a platform primitive with reference to FIG. 4. 
The attributes identified in FIG. 4 relate to supporting the 
object/engine/platform hosting hierarchy. While not identi 
fied in FIG. 4, a set of attributes are provided through the 
platform primitive enabling platform objects to monitor/re 
port computer device statistics. Other attributes included in 
the exemplary platform primitive, but not included in FIG. 4, 
concern detecting and reporting alarms associated with com 
puter device statistics and storing the statistics. 
0071. A RegisterEngine attribute 400 stores a command to 
register a new engine. The RegisterEngine attribute 400 is 
used at deployment time to register an engine with a host 
platform. A StartEngine attribute 402 stores a command to 
start a particular deployed engine on the platform. A 
StartHostedObjects attribute 404 stores a command passed to 
the platform to start all hosted engines that are start auto and 
start semi-auto type engines. A StopEngine attribute 406 
stores a command to stop a particular deployed engine on the 
platform. An UnRegisterEngine attribute 308 stores a com 
mand to un-deploy a previously deployed engine on the plat 

Jul. 14, 2011 

form. An Engines attribute 410 stores a list of all engines 
deployed on the platform. An EngineStates attribute 412 
stores a list of the current operational States of all engine 
objects hosted by the platform. 
0072 FIG.5 summarizes a set of attributes associated with 
an engine primitive. An external name attribute 500 stores a 
string used for external reference. An internal name attribute 
502 stores a string used for internal reference. A reference 
count attribute 504 stores the number of objects referencing 
the engine object. When the number of references reaches 
Zero, there are no clients, external to the engine, referencing 
any automation object attributes on the engine. This helps 
operators determine the impact (how many clients will be 
affected) of stopping the engine. An object attribute 506 is an 
array comprising a set of all objects hosted by the engine 
object. A startup type attribute 508 identifies how an engine 
object will be started (e.g., automatic, semi-automatic, 
manual). A CanGoConscan attribute 510 indicates whether an 
engine object can be placed on-scan. A BindReference 
attribute 512 is a command used to resolve references (e.g., 
pump O01.inlet.PV) to handles. These handles are used to 
locate objects at runtime by the messaging infrastructure. An 
AutoRestart attribute 514 stores a Boolean value indicating 
whether the engine object should be automatically restarted 
upon detection of a failure. A CheckpointFailed Alarm 
attribute 516 stores a value indicating whether a last attempt 
to checkpoint hosted objects had failed during a last attempt. 
An AlarmThrottleLimit attribute 518 stores a value, in alarms 
per second raised by an engine object before throttling of 
alarms generated by objects on the engine will occur. An 
EngineAlarm Rate attribute 520 indicates the number of 
alarms registered on an engine during a last complete scan. 
An Alarms.Throttled attribute 522 indicates that an engine 
object throttled alarms during the last Scan. 
0073. A set of attributes is provided to handle script execu 
tion. A ScriptExecuteTimout attribute 524 stores a time limit 
for a synchronous Script to complete execution before an 
alarm is raised by an engine object. A ScriptStartupTimeout 
attribute 526 stores a time limit for a synchronous script to 
startup before an alarm will be raised. A ScriptShutdownTi 
mout attribute 528 stores a time limit for a synchronous script 
to shutdown beforean alarm will be raised. A PublisherHeart 
beat attribute 530 stores a value corresponding to the number 
of seconds an engine object will wait for a heartbeat message 
from another engine object before it assumes the engine has 
failed. A Process ID 532 identifies a unique identification 
assigned to an engine process. 
0074 An engine object also contains a set of command 
attributes associated with managing application objects. A 
Create AutomationObject attribute 534 is a command 
attribute for creating an application object. A DeleteAutoma 
tionObject attribute 536 is a command attribute for deleting 
an application object. A StartHostedObjects attribute 538 is a 
command attribute for starting hosted application objects. 
0075 Turning to FIG. 6, a set of attributes is summarized 
that are contained within a scheduler primitive and are unique 
to a scheduler object. Each scheduler object includes internal 
and external name attributes 600 and 602. A Stats AvgPeriod 
604 stores a value representing the averaging period for the 
scheduler acquiring statistics stored within the attributes 
described herein below. A CheckpointPeriodAvg attribute 
606 identifies the current average of times between check 
points during the current averaging period. An Execution 
TimeAvg attribute 608 stores a value representing the amount 



US 2011/0172965 A1 

of time to execute all the objects per scan cycle. A House 
keepingTimeAvg attribute 610 stores a value corresponding 
to the average time per cycle to complete housekeeping 
operations. A TimeIdleAvg attribute 612 stores a value rep 
resenting the average idle time per period. A TimeIdleMax 
attribute 614 stores a value representing the maximum idle 
time recorded. A TimeIdleMin attribute 616 stores a value 
representing the minimum idle time recorded. An InputMsg 
SizeAvg attribute 618 stores an average input message size 
over the averaging period. An InputMsgsProcessedAvg 
attribute 620 stores a value representing the total volume of 
messages processed, in bytes, per scan cycle during the aver 
aging period. An InputMsgSQueuedAvg attribute 622 stores 
the average number of messages queued per scan cycle during 
the averaging period. An InputMsgSQueuedMax attribute 
624 stores the maximum average stored in attribute 622 since 
the last time the statistics attributes were reset. 
0076 An InputOueueSizeMax Allowed attribute 626 
stores the maximum allowed size of queued messages in a 
network message exchange input queue. An InputQueue 
SizeAvg attribute 628 stores an average size of the input 
queue in bytes during the averaging period. An InputQueue 
SizeMax attribute 630 stores the maximum average stored in 
attribute 628 since the last time the statistical attributes were 
reset. 

0077. A TimeInputAvg attribute 632 stores a value repre 
senting the average time required, during the current period, 
to process an input message. An ObjectCnt attribute 634 
stores a count value corresponding to the current number of 
application objects currently being handled by a scheduler 
object. An ObjectsOffScanCnt attribute 636 indicates the 
number of application objects that are currently off-scan. A 
TimeOutputAvg attribute 638 stores an average amount of 
time required to process output message during a cycle. A 
StatsReset attribute 640 indicates an request to reset the sta 
tistical attributes described for the scheduler that are not 
regularly reset (e.g., maximum values). A ScanCyclesCnt 
attribute 642 stores a value indicating the number of cycles 
since a last resetting of the attributes through the StatsReset 
attribute 640. A ScanCverrunsCnt attribute 644 indicates the 
number of times, since a last StatsReset, that a scan cycle 
ended without completing a scan of all objects. A ScanOver 
runsConsecutiveCount 646 stores a current number of con 
secutive cycles where an overrun occurs. A ScanOverrun 
High Limit attribute 648 stores a high alarm limit for 
consecutive overruns to trigger an alarm Stored in a 
ScanCverrunCondition attribute 650. A Scanperiod 652 
stores a value representing the cycle time for the scheduler. 
0078. It is noted that the attributes associated with particu 
lar object types are not limited to the particular object primi 
tive types. In fact, all object types comprise at least two of the 
above-described primitives. All object types utilize the com 
mon object primitive. In addition, a platform object includes 
the attributes of the scheduler, engine and platform primitives 
described above. An engine object includes the attributes of 
the scheduler, and the engine primitives. 
007.9 Turning to FIG. 7, a set of primitives is associated 
with an application object. Each type of application object has 
its own set of primitives. The primitives contain the business 
specific logic and the set of attributes that are unique to the 
function of the primitives. These primitives can be reused 
across different application object types. 
0080. An exemplary set of primitives associated with an 
analog device application object is depicted in FIG. 7. A 

Jul. 14, 2011 

primitive 700 labeled AnalogDevice attributes contains a set 
of analog device specific attributes in which clients would be 
interested. A PV. Input 701 is a primitive that reads, via a 
device integration object (e.g., PLC1), the data from a field 
device. A PVOutput 702 is a primitive that writes, via a 
device integration object, data to the field. A Scaling 703 is a 
primitive that performs linear or square root Scaling of the 
data read from the input primitive (PV. Input 701). A LevelA 
larms 704 is a primitive that generates alarms if a process 
variable in the AnalogDevice primitive 700 exceeds or is 
below configured values. A PV.RoC 705 is a primitive that 
generates alarms if a PV increases or decreases faster than a 
preset limit. A SP 706 is a primitive that clients write to when 
they want to modify the value to which the PVOutput 702 
writes. A PVDev 707 is a primitive that is used to generate an 
alarm if a value read in from a field device (via primitive 701) 
deviates from a value written to the field device (via primitive 
702) by a certain amount. A CtrlTrack 708 is a primitive that 
is used to enable the setpoint and PV primitives to track 
changes driven from the external device. Having described 
the basic building blocks of an Supervisory process control 
and manufacturing information application embodying the 
present invention, attention is directed to a set of sequence 
diagrams that Summarize methods employed to carry out 
Such an application. Turning to FIG. 8, a sequence diagram 
depicts steps for the starting and stopping an application 
embodying a hierarchical hosting relationship. During stage 
800, a bootstrap process on a computer system issues a start 
platform request to a loaded platform object. In response, 
during step 802 the platform process issues a call to the 
bootstrap interface requesting the bootstrap to start all the 
application engines hosted by the platform object. During 
stage 804, the bootstrap process creates an application engine 
object having the attributes discussed hereinabove. 
I0081. During stage 806, the application engine process 
starts all of its hosted application objects. The application 
engine also registers the hosted application objects with a 
scheduler process during stage 808. Registering an applica 
tion object adds that application object to the set of applica 
tion objects that the scheduler scans during each scan cycle. 
At stage 810, the application engine issues a command to the 
scheduler to begin executing/scanning the started and regis 
tered application objects. Thereafter, at stage 812 the sched 
uler executes the registered application objects. Such execu 
tion is performed periodically during each scan cycle. 
I0082. The scheduler continues to periodically scan the 
registered application objects in accordance with a Supervi 
sory process control and manufacturing information system 
application until receiving a shutdown command. In particu 
lar, the bootstrap process, during stage 814, issues a shutdown 
command to the platform process in response to an operating 
system shutdown command. During stage 816, the platform 
process returns a stop engine command to the bootstrap to 
commence shutting down all engines hosted by the platform 
process. In response, during stage 818 the bootstrap issues a 
request to the application engine to stop. The bootstrap will 
wait for the application engine to stop. However, after a 
period, if the application engine has not stopped, the boot 
strap will request the operating system to shut down the 
application engine process. 
0083 Under normal operating conditions, during stage 
820 the application engine issues a command to the scheduler 
to un-register the engine's hosted application objects. Fur 
thermore, in an embodiment of the invention, the engine 



US 2011/0172965 A1 

requests to its hosted application objects to shut down. How 
ever, in alternative embodiments of the invention the shut 
down request is issued by the scheduler in response to the 
un-register command. 
0084. It is noted that in the above-described exemplary 
embodiment, the engine objects and platform objects com 
municate with the bootstrap process and handle aspects of the 
Supervisory process control and manufacturing information 
application relating to physical computing device configura 
tions upon which the application executes. However, the 
application objects themselves only communicate with the 
engine and Scheduler according to a platform-independent 
interface. The one or more engine objects hosting the appli 
cation objects insulate the application objects from charac 
teristics of the computer systems upon which the application 
objects execute. Thus, the application objects execute inde 
pendently of the physical computing device configurations. 
The application objects, though constrained to execute on a 
same engine with other application objects designated within 
a same area, are not constrained by any requirement to 
execute upon a particular one of multiple capable engines 
and/or platforms within a system. Thus, moving an area com 
prising a set of application objects is performed with minimal 
interruption to the execution of other application objects run 
ning on the affected engines. 
0085 Turning to FIG.9, a sequence diagram illustrates the 
operational independence of an application object with 
regard to its engine object host, and the ability to re-deploy an 
application object upon another host engine. Beginning at 
stage 900, an engine A issues a start command to a scheduler 
A to commence periodic execution/scanning of an applica 
tion object A. During stage 902, the scheduler A periodically 
activates the application object A to perform its business logic 
in association with an application comprising multiple appli 
cation objects. 
I0086 Later, an application engineer decides to migrate the 
application object A to an engine B on a different computer 
platform. One reason to make Such a change is to reduce 
computational load on a computer device as a system grows. 
The user issues a request to the engine A to remove applica 
tion object A during stage 904. In response, during stage 906 
the engine A issues a request to the scheduler A to stop 
scanning the application object A. During stage 908, the 
engine A issues a command to the application object A to shut 
down. The operation of the engine A and scheduler A is 
otherwise unaffected by the removal of application object A. 
0087. In an embodiment of the invention, the application is 
spread across multiple computing devices, and each comput 
ing device is equipped with the platform, engine and Sched 
uler objects of the application hierarchy that facilitate execut 
ing application objects. The replication of lower-level hosting 
functionality across multiple hardware platforms provides a 
degree of platform independence that enables relocating an 
application object without affecting the operation of the 
application. Thus, during stage 910 the user adds application 
object A to engine B on a different computer. During stage 
912, the engine B initializes the newly added application 
object A. The initialization stage 912 includes, for example, 
any custom initialization performed by an application object 
before starting the application object (e.g., initialization of 
class variables, caching interfaces used by the application 
object, etc.). At stage 914, the engine B issues a start com 
mand to the application object A. At this point, the object 
assumes all of its primitives have been initialized and it can 

Jul. 14, 2011 

performany initial calculations based on the attributes main 
tained in these primitives. Engine B registers the executing 
application object A with a scheduler B on the new computing 
platform during stage 916. Thereafter, at stage 918 the sched 
uler B periodically prompts the application object A to 
execute its business logic. The results of executing applica 
tion object A are rendered both locally and over a network 
connecting the engines. Thus, re-locating application object 
A to engine B does not affect data access concerning appli 
cation object A. 

Inter-Object Communications Via Message Exchange 
I0088. In an embodiment of the present invention, the 
application objects reference other objects by logical name 
rather than physical address. Thus, communications between 
application objects within a same application, as far as the 
application objects are concerned, are insulated from the 
underlying physical configuration of a network containing 
the application object. A component of the application, 
referred to as message exchange, embedded within the plat 
form and engine objects enables application objects to 
retrieve (get) and send (set) data from/to other objects located 
anywhere within a network executing the distributed applica 
tion. Message exchange is a peer-to-peer communication 
infrastructure that enables specifying a target by logical name 
rather than physical network address. The application objects 
are thus permitted to carry out communications without 
regard to the physical location of an intended recipient of a 
data request. This also enables the application object layer of 
an application to be developed without regard to where the 
application objects are ultimately deployed. In an embodi 
ment of the invention, the message exchange is divided 
between a local message exchange (LMX) carried out by an 
application engine and a network message exchange (NMX) 
carried out by a platform to enable named requests to be 
communicated between computing devices connected over a 
network for carrying out a distributed application. In yet 
another embodiment of the invention, the LMX and NMX 
functionality is carried out by the engines. This arrangement 
avoids extra, inter-process communications required in the 
event that the platform object carries out NMX. 
I0089. The LMX incorporated into the engine objects (e.g., 
application engine objects) provides services enabling appli 
cation objects to access data maintained as attributes on other 
objects. When using LMX services to access target data, 
application objects specify a string representing a piece of 
data associated with an object (e.g., an attribute specified in 
the form of “ObjectB.AttributeA'). With this string, LMX 
locates the data associated with the object (potentially 
requesting NMX services provided by the platform to access 
a target object located on another computing device in a 
network). LMX returns the data, associated with the object, to 
the application object that requested the data. In addition, the 
message exchange guarantees certification of message deliv 
ery. Therefore, when application objects send messages to 
other application objects they receive confirmation that the 
target of the message received or did not receive the message. 
0090 The LMX of the application engine includes, by 
way of example, a set of interfaces. The set of interfaces 
comprises: IMxSupervisoryConnection and IMxUserCon 
nection. The IMxSupervisoryConnection interface defines 
methods used by application objects to access information 
from physical devices in a plant. The methods used on this 
interface comprise: Supervisory RegisterReference, Supervi 



US 2011/0172965 A1 

soryGetAttribute, and SupervisorySetAttribute. The Supervi 
sory RegisterReference method is called by application 
objects to inform message exchange that a request to access a 
value of an attribute is forthcoming. The SupervisorySetAt 
tribute method is used by application objects to direct mes 
sage exchange to modify the value of the attribute specified in 
a previous SupervisoryRegisterReference call. The Supervi 
soryGetAttribute method is used by application objects to 
direct message exchange to retrieve the value of the attribute 
specified in a previous Supervisory RegisterReference call. 
0091. The IMxUserConnection interface defines methods 
used by applications to visualize data retrieved from physical 
devices in a plant. The methods used on this interface com 
prise: UserRegisterReference. UserGetAttribute, and 
User:SetAttribute. These methods are very similar to the 
methods of the IMxSupervisoryConnection interface 
described hereinabove. One difference is that the methods of 
the IMxUserConnection interface methods cater to user inter 
face clients by allowing data updates via a callback mecha 
nism instead of a polled mechanism utilized by the IMxSu 
pervisoryConnection. 
0092. A set of structures is utilized to carry out the func 

tionality of the message exchange. An MXReference structure 
is a MICROSOFT Component Object Model (COM) object 
that implements an interface IMxReference, identifies an 
attribute of an object whose value is to be accessed by appli 
cation objects, and is passed into the methods Superviso 
ryRegisterReference, and UserRegisterReference. The 
MXReferenceHandle (an integer value) is used by message 
exchange to provide application objects a location-transpar 
ent means of retrieving a value referred to by an MXRefer 
ence. The MXReferenceHandle is returned to application 
objects by the message exchange on Successful completion of 
a SupervisoryRegisterReference or UserRegisterReference 
call. The MXReferenceHandle is passed in, by application 
objects, to method calls for getting and setting attributes Such 
as: UserSetAttribute. UserGetAttribute, SupervisorySetAt 
tribute and SupervisoryGetAttribute. 
0093. An MxHandle structure identifies a property of an 
object's attribute. The MXHandle identifies a platform and an 
engine to which the object belongs. The MXHandle comprises 
two structures: an MxAutomationObjectHandle and an 
MxAttributeHandle. The MxAutomationObjectHandle is the 
data structure used to represent the location of the object 
within the overall system. The MxAttributeHandle data struc 
ture is used to identify the property of an attribute within the 
object. The MxAttributeHandle structure is used, internally, 
by message exchange to quickly locate an attribute of an 
object. 
0094. The MxAutomationObjectHandle data structure 
includes five fields: galaxy, platform, engine, object, and 
signature. The galaxy field identifies the general system to 
which the referenced object belongs. A platform field identi 
fies the platform object with which the referenced object is 
associated. An engine field identifies the object's engine. An 
object field identifies an object. A signature field stores a 
value derived from the object's name and prevents configu 
ration mismatches that can occur when an object is relocated. 
0095. The MXAttributeHandle data structure includes 
seven fields: primitivelD, attributeID, propertyID, index1. 
index2, index3 and signature. The primitivelD field identifies 
a primitive within an automation object. A primitive is a 
helper object that performs a specific operation in, for 
example, an application object. The attributeID identifies a 

Jul. 14, 2011 

particular attribute within an identified primitive. A proper 
tyID identifies a property of an attribute. Index fields 1, 2 and 
3 provide indexes into up to a three-dimensional array. A 
signature field stores a checksum value derived from the 
content of the MxAttributeHandle to prevent configuration 
mismatches. 

0096. It is noted that the message exchange, in an embodi 
ment of the present invention, includes additional data struc 
tures and interfaces. Such additional interfaces and structures 
will be knownto those skilled in the art. It is further noted that 
the present invention is not limited to systems that utilize 
message exchange to provide a hardware/deployment inde 
pendent messaging service for inter-object communications 
for a set of application objects within a Supervisory process 
control and manufacturing information application. 

Multiple Views/Late Binding of a Model to a Deployment 

0097 Another aspect of the proposed application archi 
tecture is the specification of associations within objects. The 
associations, discussed herein below, enable a configuration 
component, referred to herein as the Integrated Development 
Environment (IDE) to filter and display a set of related objects 
in a variety of views including at least a (logical) model view 
and a (physical computing) deployment view. The IDE. 
through its displayed views of an application configuration, 
enables a user to design and deploy an application in a com 
puter network comprising multiple computing devices. 
I0098. The application configurations are stored as “pack 
ages within the configuration database 124. A package 
framework subsystem provides an interface enabling the IDE 
to store and retrieve the objects of the packages. The package 
framework employs a relational database to store package 
data and knowledge regarding the objects associations/rela 
tionships with other objects. The IDE queries the package 
framework to deliver a list of objects based on a designated 
association with regard to an object. For example, the IDE can 
request the package framework to retrieve from a package the 
objects hosted by a named engine. 
0099. A developer builds the aforementioned associations 
(or “relationships') between objects via the IDE and package 
manager. Such associations include, by way of example, the 
following pre-defined assignment relationships: host, area, 
container, engine and platform. Each of these relationships is 
discussed herein below. 

0100. A host relationship is used at runtime to indicate 
where an object executes. Furthermore, an object may not be 
deployed unless its host is deployed. An application object is 
hosted by an area object, an area object is hosted by an engine 
object, and an engine object is hosted by a platform object. An 
area relationship establishes a logical grouping of objects and 
provides a means for collecting events and alarms raised by 
objects grouped under the area. A container relationship 
specifies a loose coupling between two objects and is only 
meaningful in the context of the application logic. Example: 
a Valve object contained inside of a Tank object. Contained 
objects are allowed to acquire hierarchical names within the 
context of the objects container. By way of example, a valve 
that acts as an inlet is assigned the alias "inlet” and receives 
the hierarchical name of “Tank. Inlet. An object's engine is 
the actual engine that executes the object. An object's plat 
form is the one and only platform object running on a com 
puter device upon which the object is deployed. An object 
may have all five of these relationships, but only one object 



US 2011/0172965 A1 

may be associated to any one of these relationships. For 
example, an application object can be assigned to one and 
only one area. 
0101. A model view depicts the application in terms of 
logical associations between plant/process equipment within 
a controlled plant process—e.g., a representation of a physi 
cal plant layout. A deployment view depicts the physical 
computer devices and assignment of instantiated objects 
identified in the model view to the computer devices and 
engines executing upon the computer devices. A derivation 
view depicts the sources (inherited property relationships 
from base template to instance) of objects instantiated from 
templates to carry out the functionality of the model view 
elements. 
0102 FIG. 1 shows, by way of example, an application 
physically deployed to two application server computers 100 
and 102. Alternatively, an application is presented to users by 
visually depicting the role of application objects in carrying 
out Supervisory process control and/or extracting manufac 
turing information according to the application. Turning now 
to FIG. 10 a plant process application is depicted, in a plant 
model, according to the roles of application objects in the 
plant process. This illustrative example is scaled down for 
purposes of illustratively depicting an exemplary embodi 
ment of the invention. As those skilled in the art will readily 
appreciate, the present invention is applicable to a wide vari 
ety of industrial/plant monitoring/control applications that 
are far more complex than this example. 
(0103) A hopper H1 1000 having a controlled outlet valve 
delivers raw product to a conveyor C1 1002 that is control 
lable to travel left, right, or be disabled. The raw product is 
dumped by the conveyor C11002 into a mixer M1 1004 and 
a mixer M2 1006. The raw product is allowed to pass into the 
mixers by opening valve V11012 and V2 1014 of mixer M1 
1004 and mixer M2 1006, respectively. The mixer M1 1004 
and mixer M2 1006 include a controllable agitator A1 1008 
and A2 1010 respectively. The mixed product drops into 
hoppers H2 1016 and H31018. The hoppers H2 1016 and H3 
1018 are selectively opened to allow the mixed product to fall 
upon a conveyor C2 1020 that either travels right or is dis 
abled. When enabled, the conveyer C2 1020 drops the mixed 
product onto an elevator E1 1022. The elevator E1 1022 
deposits the mixed product onto a conveyer C3 1024 that 
travels right. The conveyor C3 1024 deposits the material 
onto a distribution conveyor C4 1026 that is capable of trav 
eling both left and right thereby distributing the mixed prod 
uct between a first bi-state door D1 1028 and a second bi-state 
door D2 1030. The door D1 1028 is controllable to direct 
finished product into either bin B11032,or B21034. The door 
D21030 is controllable to direct finished product into either 
bin B3 1036 or bin B4 1038. 

0104. While the above-described process line depicted in 
FIG. 10 is simple, and thus relatively easy to follow, in most 
cases processes are very complex and include hundreds and 
even thousands of distinct, sensors and controlled compo 
nents. In Such instances, the application objects correspond 
ing to the sensors and controlled components are logically 
grouped within areas. The logical grouping of application 
objects is exploited during runtime to provide a uniform 
treatment of particular application objects for alarm and event 
management. For example, all alarms in a particular area can 
be disabled by a single attribute designation within the area 
object. The compatibility of the host area and hosted objects 
is determined by checking the “required host features” of the 

Jul. 14, 2011 

hosted object and the “supported features' specified by the 
hosting area object. These object attributes are established 
when the objects are built. If the “required host features” are 
met by the “supported features, then the host assignment is 
completed by assigning appropriate values to hosted objects. 
An object is placed within an area by designating the area 
name in the area attribute 328 of the common primitive of an 
application or area object. 
0105 Areas themselves can be grouped within other areas 
in a hierarchical arrangement. Assigning an area to another 
"host area is accomplished, by way of example, by desig 
nating the name of the host area in the area attribute 328 of the 
hosted area object. The relationship between areas and sub 
areas are not constrained to execute on a same engine. Thus, 
Sub-areas within an area can be assigned to different applica 
tion engines when the application objects of a Supervisory 
process control and manufacturing information application 
are deployed within a system comprising multiple platform 
objects (corresponding to multiple computer devices) and 
engine objects. However, in an embodiment of the invention, 
application objects specified within a Sub-area are restricted 
to deployment on a same application engine. This restriction 
ensures that processing of all application objects in an area 
occurs without inter-node communication delays. 
010.6 Area objects, by way of example, include the fol 
lowing attributes that facilitate the above-described function 
ality: alarm information, disable all alarms, disable the dis 
play of all alarms, Sub-area list. 
0107 Turning to FIG. 11, logical grouping of related pro 
cess components of FIG. 10 into areas is demonstrated. The 
revised process illustration depicts the system as a series of 
areas comprising logically grouped controlled process com 
ponents. A raw material store area 1100 includes the hopper 
H1 1000. A production area 1102 includes the conveyor C 
11002, a line1 area 1104 including the mixer M11004, valve 
V11012, and hopper H2 1016, and a line2 area 1106 includ 
ing the mixer M2 1006, valve V2 1014, and hopper H3 1018. 
A distribution area 1108 includes the conveyor C2 1020, the 
elevator E1 1022, the conveyer C3 1024, conveyor C4 1026, 
bi-state door D1 1028 and bi-state door D2 1030. A finished 
product store area 1110 includes bins B1 1032, B21034, B3 
1036 and bin B41038. The set of sub-areas are grouped under 
a single process plant area 1120. 
0.108 Having described an exemplary plant process and 
two alternative ways in which to view an application relating 
to the plant process (i.e., plant model and application object 
deployment views), a configuration utility interface is 
described that displays the application components according 
to these two alternative views. Turning briefly to FIG. 12, a 
partially completed model view user interface generated by a 
configuration utility depicts an area hierarchy represented in 
the form of a tree. The tree structure presents a high-level 
model view of the areas designated in a process plant depicted 
in FIG. 11. This model view is incomplete since it does not 
identify the application objects grouped within the identified 
areas and containment relationships for application objects. 
0109. With reference to the exemplary tree structure, a 
process plant node 1200 corresponding to the process plant 
area 1120 is designated at the highest level of the hierarchical 
area representation. A set of secondary nodes, corresponding 
to Sub-areas grouped within the process plant area 1120, 
branch from the process plant node 1200. Raw MaterialStore 
node 1202, Production node 1204, Distribution node 1206 
and FinishedProductStore node 1208 correspond to the raw 



US 2011/0172965 A1 

material store area 1100, the production area 1102, a distri 
bution area 1108 and a finished product store area 1110 
respectively. A line 1 node 1210 and a line 2 node 1212 
branching from Production node 1204 correspond to the line1 
area 1104 and line2 area 1106 grouped within the production 
area 1102 in FIG. 11. This view enables a technician to 
quickly identify and specify logical groupings for defining 
policies governing application objects such as alarming 
behaviors, etc. 
0110. Before describing an expanded version of the model 
view of FIG. 12 identifying application objects and com 
pounds within the identified areas, derivation of objects from 
templates is discussed. Each of the components identified in 
FIG. 10 corresponds to an application object. In an embodi 
ment of the invention, application objects are instantiated 
from object templates. A derivation view represents all the 
types of templates from which application objects specified 
by a current model for an application are derived. 
0111. The set of candidate templates from which applica 
tion objects are derived is extensible. Users are provided 
toolkits including base templates and editors to define cus 
tomized new templates from which a user builds application 
objects. Examples of base templates (where S denotes a tem 
plate) are: SDiscretelevice—a state machine that is config 
urable to create an application object representing the main 
conveyors and valves depicted in FIG. 10, and SUserDe 
fined—a simple object template that contains only the com 
mon primitive, and from which the user builds extensions 
within the configuration environment by adding scripts and 
attributes to model the application objects corresponding to 
the bins and hoppers. 
0112 Turning to FIG. 13, an exemplary derivation view 
rendered by a derivation view generated is illustratively 
depicted. With reference to FIG. 13, in the case of the example 
set forth in FIG. 10, the user derives from a SDiscretelDevice 
base template a SValve, a SSliceGate, a SAgitator, and a 
SConveyor custom application object template type. Under 
the SConveyor template, the user further defines a SSingle 
DirectionConveyor, a SBiDirectionalConveyor, and an 
SElevator template type. Under a SUserDefined base tem 
plate the user derived a SVessel application object template. 
The SVessel template is further refined to derive a SHopper 
and a SBin application object. With reference to FIG. 13, the 
base templates occupy the highest levels of the hierarchical 
derivation tree that is rendered by a configuration view gen 
erator based upon a user's designation of particular templates. 
Object templates derived from the base templates are identi 
fied by branches leading from the base template nodes. As 
depicted in FIG. 13, it is possible to derive objects from other 
derived objects. In such cases, the children inherit the desig 
nated characteristics of their parent templates. The derivation 
relationship between a child and its parent template is regis 
tered in the derived from attribute 314 of the template object. 
0113 Application object containment (specified in con 
tainer attribute 330 of an application object), and the creation 
of compound object templates from a set of previously 
defined object templates is another aspect of the template 
architecture disclosed herein. In an embodiment of the inven 
tion, containment is limited to same object types. Thus, area 
objects can only contain area objects and application objects 
can only contain other application objects. Objects contain 
ing other objects are referred to herein as “compounds.” 
Objects that exist solely to contain other objects are referred 
to as "composites.” 

Jul. 14, 2011 

0114 Turning briefly to FIGS. 14a and 14b, an example is 
provided of a compound application object template in this 
case a SMixerVessel compound object template that includes 
a valve object that is assigned the tag name "inlet, an agitator 
that continues to carry the tag name of 'agitator, and a mixer 
that has been assigned the tag name “vessel. The contained 
name attribute 310 of the templates corresponding to each of 
these three contained objects. The full hierarchical tag name 
(e.g., MixerVessel. Inlet) is stored in the hierarchical name 
attribute 318 for each of the three contained objects. The 
container attribute 330 for each contained object is assigned 
the string “MixerVessel.” FIG. 14a schematically depicts a 
portion of the process plant depicted in FIG. 10 that contains 
a mixer vessel arrangement. A model view of the compound 
template showing the containment relationship between the 
SMixerVessel application object template and its contained 
(renamed) application objects is depicted in FIG. 14b. In an 
embodiment of the invention, when instantiated within an 
actual application, all application objects contained within a 
compound application object designate a same host in 
attribute 338 (and by requirementa same area in attribute 328. 
This containment hierarchy, applicable to other objects as 
well (Subject to any deployment restrictions), assists system 
developers in developing systems by Supporting the creation 
of logical building blocks (comprising many smaller applica 
tion objects) from which applications can be built. 
0.115. A "contain' function supported by the IDE, in an 
embodiment of the present invention, facilitates establishing 
containment relationships between objects via a graphical 
user interface "drag and drop' operation. To establish a con 
tainment relationship between a source and target (container) 
application object, a developer selects the Source application 
object displayed on a user interface, drags the Source appli 
cation object on top of the target (container) object, and then 
drops the Source application object on the target application 
object. After the IDE confirms the compatibility between the 
two objects (i.e., they are both application objects), the IDE 
(through the package manager utility) sets the host, area and 
containerattributes in the Source object. In particular, the area 
attribute 328 is set to the target object’s area, the host attribute 
338 is set to the target's host, and the container attribute 330 
is set to the target object's name. At this point the contained 
name attribute 310 and the hierarchical name attribute 318 of 
the source are also filled in with names provided by the 
developer. 
0116 Returning to FIG. 13, the SMixerVessel compound 
application object template is assigned a branch under the 
SUserDefined base template node and specifies the contained 
relationships between the application object template ele 
ments of the compound. Furthermore, a SMixerVessel. Inlet 
template derived from SValve is placed under the SValve 
template node. ASMixerVessel. Vessel template derived from 
SVessel is placed under the SValve template node. A SMix 
erVessel. Agitator template derived from SAgitator is placed 
under the SAgitator template node. The containment relation 
ship is registered by specifying the SMixerVessel template 
object in the container attribute 330 in each of the compound 
elements. The containment relationship is indicated in the 
derivation view tree of FIG. 13 by a “SMixerVessel’ preamble 
in the SMixerVessel. Inlet, SMixerVessel. Agitator, and SMix 
erVessel.Vessel object template representations within the 
derivation view tree. 

0117. Attribute locking and its effect upon change propa 
gation in templates are yet other aspects of the derivation 



US 2011/0172965 A1 

architecture of the exemplary configuration utilities disclosed 
herein. The derivation architecture enables information 
within an object template to be propagated to derived objects 
or alternatively a default value is specified for a derived tem 
plate that can be overridden by a developer. In an embodiment 
of the invention, propagation is affected automatically by 
storing a reference to a parent's copy of a locked attribute. 
0118. An attribute in a template or instance can be 
unlocked, locked in parent, or locked in me. Both templates 
and instances can have unlocked attributes. An unlocked 
attribute is read-write, and the object has its own copy of the 
attribute value i.e., it is not shared by derived objects. A 
template, but not an instance can have a locked in me attribute 
status. In the case of a locked in me attribute, the value is 
read-write. Derived objects do not get their own copy of the 
attribute value, but instead share the locked value by reference 
to an ancestor where the attribute is locked. The status of the 
attribute in the children of a locked in me attribute is "locked 
in parent.” Thus, changes to the value of a locked in me 
template attribute propagate to all children. Both templates 
and instances can have a locked in parent attribute. A locked 
in parent attribute is read-only. 
0119 The interface for getting and setting a locked status 
of an attribute is exposed to configuration clients. The client 
obtains a reference to the attribute and sets its locked status. 
Whether a change to an attribute is permitted and/or propa 
gated to derived children is based upon whether a particular 
attribute in a template is locked. Locking an attribute has two 
consequences. First, a locked in parent attribute cannot be 
modified in a derived template or instance. Second, a locked 
in me attribute in a template can be changed, and the change 
is cascaded down through all templates and instances derived 
from the template containing the locked attribute. On the 
other hand, if an attribute is not locked, then the attribute 
specifies a default value that can be overridden in a derived 
template. Furthermore, if the value of a non-locked attribute 
is changed, then the change is not cascaded to derived tem 
plates. 
0120. After establishing a set of templates that are to be 
used for the application objects identified in FIG. 10, the 
application object instances are created from the templates 
according to the proposed Supervisory process control and 
manufacturing information application. Using the templates 
defined in FIG. 13 and the exemplary process plant depicted 
in FIG. 10 the following application objects are rendered: 
0121 SMixerVessel is used for Mixer M1 and M2: 
0122 SHopper is used for Hopper H1, H2 and H2: 
0123 SSingleDirectionConveyor is used for conveyors C2 
and C3; 
0.124 SBiDirectionalConveyor is used for conveyors C1 
and C4; 
0.125 SSlideGate is used for Door D1 and D2; and 
0.126 SBin is used for Bins B1, B2, B3 and B4 
0127 Turning to FIG. 15, a hardware derivation view 
depicts the sources of engine and platform objects from 
object templates. Such a view is beneficial when deciding 
where to distribute or re-locate areas that have particular 
engine and/or platform requirements. Node 1500 corre 
sponds to a WINDOWS operating system-based platform 
template. A set of platform instances, corresponding to plat 
form objects derived from the WINDOWS operating system 
based platform template, branch from node 1500 and corre 
spond to each of the personal computers identified in FIG. 1. 
Node 1510 corresponds to an application engine template. A 

Jul. 14, 2011 

set of application engine instances, derived from the applica 
tion engine template, branch from node 1510 and correspond 
to the application engines depicted in FIG. 1. Node 1520 
corresponds to a view engine template. A set of view engine 
instances branch from node 1520 and correspond to the view 
engines depicted in FIG. 1. Node 1530 corresponds to a 
PLCNetwork device integration object template. A set of 
instances branching from node 1530 correspond to device 
integration objects identified in FIG. 1 that support configur 
ing the OPC servers 116 and 118. Finally, node 1540 corre 
sponds to a PLCObject device integration object template. A 
set of instances branching from node 1540 corresponds to 
device integration objects identified in FIG. 1. 
I0128 FIG. 16 represents a model view of the process 
application depicted in FIGS. 10 and 11. The model view 
displays area hosting and containment relationships specified 
by objects (including application objects and areas). The 
model view identifies the objects that are logically grouped 
together for purposes of describing the plant layout. The 
model view enables a user to quickly designate objects that 
will be treated uniformly under a particular policy (e.g., 
alarming, etc.). The model view includes, by way of example, 
nodes corresponding to the areas designated in FIG. 11 and 
depicted in the area tree structure of FIG. 12. The leaves of the 
tree 1600 identify the application objects and their assign 
ments to the identified areas. Furthermore, the model view 
tree depicts compound containers such as a set of compound 
container objects MV1 and MV2 instantiated from the SMix 
erVessel compound template (discussed above with reference 
to FIG. 13). 
I0129. The model view is rendered by a model view gen 
erator based upon the area and container attributes of the 
objects specified under aparticular application. In an embodi 
ment of the invention, the compatibility of an area/container 
with a grouped/contained object is determined when a user 
seeks to create the association. This compatibility is deter 
mined by comparing the Support features of the parent object 
to the needs of the grouped/contained child object. Further 
more, in an embodiment of the invention all objects within a 
container are required to designate a same area. 
0.130. Areas can be hierarchical. Thus, an area can include 
an area, and a parent area collects alarm statistics for all 
objects in its sub-areas. In a model view hierarchical tree 
structure depicted in FIG. 16, starting at the highest level of 
the tree structure, if no area is designated for an area object, 
then the area object (e.g., ProcessPlant 1602) is connected 
directly to the root node (the highest level of the tree). At a 
next level, sub-areas of the ProcessPlant 1602 (i.e., RawMa 
terialStore 1604, Production 1606, Distribution 1608 and 
FinishedProductStore 1610) are connected as branches under 
the ProcessPlant 1602 node. In the exemplary application 
model tree 1600, the branches from the sub-areas contain 
application objects (i.e., hopper H1, conveyors C1-C4, doors 
D1-D2, elevator E1, and bins B1-B4), and additional sub 
areas (i.e., Line1 and Line 2 in the Production 1606 sub-area). 
The Line1 and Line2 Sub-areas both include compounds (i.e., 
mixer vessels MV1 and MV2). The leaves of the compounds 
MV1 and MV2 identify the objects contained by the com 
pound objects. In the particular example, the MixerVessel 
compound MV1 includes an agitator A1, a vessel M1 and an 
inlet valve V1. The MixerVessel compound MV2 includes an 
agitator A2, a vessel M1 and an inlet valve V1. 
I0131 FIG. 17 represents an exemplary deployment view 
of the application model's areas to the hardware and platform 



US 2011/0172965 A1 

depicted in FIG. 1. The deployment view visually depicts 
where the various objects of an application execute. A deploy 
ment view is therefore rendered based upon the hosting (at 
tribute 338) and the containment (attribute 330) relationships 
designated by objects. A child area object is not constrained to 
execute upon the same application engine as a specified par 
ent area (in attribute 328), and the area relationships desig 
nated by objects are not applied when rendering the deploy 
ment view. ApplicationObjects are Hosted (attribute 338) by 
their area, therefore the deployment view shows the Applica 
tionObject relationship to its area. Thus, the deployment view 
(and the actual deployment of nested area objects) does not 
reflect alarm/event concentration and propagation associated 
with the hierarchical area model relationships designated 
between area objects. 
0132) The application objects are not displayed in FIG. 17. 
However, a deployment view generator arranges the applica 
tion objects under appropriate areas based upon the host/ 
container designations within those objects. In an embodi 
ment of the invention, an application object's designated host 
and area are, by requirement, the same. Therefore, all appli 
cation objects referencing an area object are executed upon a 
same engine object identified in the host attribute 338 of the 
area object. This requirement ensures that alarms and data 
maintained for application objects under a particular area are 
maintained locally on a same computer device. If an applica 
tion object specifies a container (compound application 
object) in attribute 330, then the named container overrides 
the named area host when generating a deployment view tree 
(i.e., an application object within a compound (container) is 
placed under its designated compound name). However, in an 
embodiment of the inventional application objects contained 
within a compound are constrained to execute upon a same 
host (i.e., all contained application objects acquire the com 
pound/container's designated area). 
0133. The deployment view set forth in FIG. 17 is espe 
cially appropriately classified as exemplary since the areas 
and their associated objects are capable of running on any 
Suitable platform/application engine combination. The multi 
layered platform/engine/area/application object hosting 
arrangement renders the various areas (and their associated 
application objects) capable of installation at any Suitable 
hosting engine branch in the graphical representation of the 
deployment of application components depicted in FIG. 17. 
The highest level of the deployment tree hierarchy identifies 
a set of platforms corresponding to the personal computers 
depicted in FIG.1. The set of platforms represented by nodes 
include: a RawMaterialPC node 1700, a Production PC node 
1702, a FinishedProductPC node 1704, a ConfigurationPC 
node 1706, an ApplicationServer1PC node 1708, and an 
ApplicationServer2PC node 1710. 
0134. A set of engines is deployed to the platform hosts. 
The set of deployed engine object nodes corresponding to 
engine objects hosted by the indicated platform objects 
includes: a Raw MaterialView engine node 1712, a Produc 
tionView engine node 1714, a FinishedProductView engine 
node 1716, an AppEngine1 node 1718, and an AppEngine2 
node 1720. 
0135 The engines host device integration and area group 
ings of application objects that are represented in the deploy 
ment view as nodes. The set of device integration object nodes 
corresponding to deployed device integration objects 
includes PLC1Ethernet node 1722 and PLC1 node 1724, and 
PLC2Ethernet node 1726 and PLC2 node 1728. The set of 

Jul. 14, 2011 

area object nodes corresponding to deployed areas compris 
ing groups of application objects and/or other areas includes 
a ProcessPlant node 1730, a RawMaterialStore node 1732, a 
Production node 1734, a Line1 node 1736, a Line2 node 
1738, a Distribution node 1740 and a FinishedProductStore 
node 1742. The branches connecting the above-identified 
area nodes to their associated engines corresponds to the 
engines designated in the host attribute 338 in the area objects 
and their associated application objects that, for the sake of 
avoiding undue clutter, are omitted from the deployment view 
set forth in FIG. 17. 

0.136 Another aspect of the above-described application 
architecture is the task of actually distributing a configured 
application to the plurality of computer devices that execute 
the configured Supervisory process control and manufactur 
ing information application. Since each computer device 
executes a distinct portion of the application, the set of under 
lying software components/modules required on each com 
puter is likely to differ between computers to which the appli 
cation is distributed. Furthermore, in an embodiment of the 
invention, configuration information for an application is 
maintained separate from the executable Software that runs on 
a computer in association with the distributed objects (e.g., 
platform object, engine object, area object, container object, 
application object, etc.) that make up the application. The 
application software and configuration information for each 
object of an application are bundled as a set of properties into 
a structure referred to herein as a package. The software itself 
is not included in the package for an object. Instead, since 
many objects may use a same code module (e.g., an EXE of 
DLL file), a reference to the software is included in the object 
package. 
0.137. A method for deploying a configured application 
described herein below includes steps to ensure that the com 
ponents needed by a target computer to provide a sufficient 
software framework for a particular portion of the application 
are transferred from a source to the target computer. Further 
more, if needed software is already present on the target 
computer, then that software is not transferred. The computer 
Software loading operation takes place across a computer 
network via Standard network data communications proto 
cols under the guidance of a user via the IDE. 
0.138. By way of example, deployment can occur on an 
individual object instance, on a group of selected object 
instances, and on a cascade basis (based upon relationships 
between a selected instance and hierarchically related 
objects). The deployment process first checks and delivers the 
necessary Software and then transfers the object configura 
tion. 

0.139 Turning now to FIG. 18, in an embodiment of the 
invention, loading software onto a remote target computer 
progresses in the following manner. It is noted that as an 
initial matter, the computers of the network are generically 
configured with a base operating system and bootstrap layer 
that Support network communications and basic operational 
capabilities that facilitate initial loading and start-up and 
shut-down of the platform layer of the distributed application. 
Next, during step 1800, a list is compiled of all software 
referenced by an identified set of objects to be deployed to the 
target computer. As mentioned hereinabove, each object 
includes a reference to the software modules (e.g., EXE and 
DLL files) required by object. Each of these references is 
traversed and a covering set of module identifications is estab 
lished. It is noted that the objects themselves identify primi 



US 2011/0172965 A1 

tives, which in turn reference software modules. It is therefore 
necessary to cascade down through all associated Sub-com 
ponents and objects of an identified object to determine all 
needed software modules. In an embodiment of the invention, 
step 1800 is carried out by a deployment server executing on 
a computer (e.g., Configuration PC 120) that also stores a 
global set of software modules and the objects that reference 
them in the configuration database 124. Upon completing 
step 1800, a covering set of all software required to carry out 
the functionality of the identified set of objects has been 
created. However, a target computer in many instances 
already has at least a portion of the Supervisory process con 
trol application modules identified in the list compiled during 
step 1800. For example, the target computer may already have 
the required software modules associated with a platform 
upon which specialized engines execute. Therefore, the 
Source and target computers cooperatively determine the 
needed software modules that are not currently present on the 
remote computer. It is noted that the software modules are 
separate and distinct from the configuration information that 
references these software modules. 

0140. There are many ways to identify which ones of the 
needed Software modules are not currently present on the 
target computer. Such variations include executing compari 
Sons on the target computer or alternatively performing a 
comparison on a computer (e.g., Configuration PC 120) that 
executes a software deployment server. In an embodiment of 
the invention, the target computer's bootstrap Software 
includes a method for applying the list of required software 
modules compiled by the source during step 1800 to the 
Software modules presently loaded on the target computer 
system. Therefore during step 1810 the source computer 
transmits a listing of the covering set of required Software 
modules to the target computerina call to the resident method 
to determine the ones of the set of listed modules that are not 
currently present on the target computer. 
0141 Next, during step 1820, the target computer deter 
mines which ones of the referenced software modules in the 
transmitted list are not present on its system. In an embodi 
ment of the invention, determining which ones are/arent 
present is facilitated by a Software module registry main 
tained by each computer participating in the distributed appli 
cation. The called method on the target computer determines 
whether each of the received list of software modules is 
identified in the software module registry. Alternatively, in the 
event that such a registry does not exist, the target computer 
traverses the directory structure for identified software mod 
ules. The called method marks the ones in the received 
required software module list that are not presently loaded on 
the target computer. 
0142. After determining which ones of the software mod 
ules are needed by the target computer, during step 1830 the 
target computer's method generates and transmits a return 
message to the deployment server (or the caller on the method 
Supported by the target computer) identifying which ones of 
the required software modules are not present on the target 
computer. After receiving the return message, at step 1840 the 
deployment server packages the “needed Software compo 
nents identified in the return message from the target com 
puter. The deployment server then transmits the software 
module package to the target computer. 
0143. Thereafter, during step 1850 the bootstrap loads the 
received software components into appropriate directories in 
the target computer system. The loaded software is also reg 

Jul. 14, 2011 

istered within a Software component registry maintained by 
the operating system. At this point the target PC is ready to 
receive configuration information (e.g., the objects that ref 
erence the loaded software components) and start up the 
engines and application objects making up a portion of the 
application. 
0144. However, in an embodiment of the invention, before 
loading a configuration, at step 1860 (which can also be 
performed before step 1800 as a preliminary test before load 
ing any software) a procedure Supported by the bootstrap 
Software on the target computer executes a system verifica 
tion procedure that ensures that the hardware/system configu 
ration of the target platform (e.g., PC) is sufficient to Support 
the loaded modules. By way of example, a platform object 
may be arranged to execute upon a particular personal com 
puter operating system and hardware configuration. During 
step 1860 a method on the target computer queries the oper 
ating system to determine the actual system configuration of 
the target computer system. If the operating system or hard 
ware (e.g., CPU type, etc.) are incompatible with the platform 
object's requirements, then the deployment is blocked and an 
error message is rendered to the user. The breadth of such 
checks and the resulting actions are varied in accordance with 
various embodiments of the invention. In some instances, 
corrective action can be taken automatically (e.g., loading a 
communications driver). In other instances the computer 
hardware must be upgraded or replaced. In some instances a 
recommendation is issued (e.g., additional RAM recom 
mended), but the deployment and execution of the object(s) is 
not terminated/blocked. 

0145 After installing the needed software modules the 
configuration information for the objects is deployed. 
Deploying configuration information to appropriate target 
computers creates the runtime instances of the objects that 
define and govern the operations of the distributed supervi 
sory process control and manufacturing information applica 
tion. Deploying the instances includes activating them in the 
runtime environment. 
0146 Deployment is governed by the hierarchical rela 
tionships described herein above. Thus, a host for a particular 
object is deployed before any of its hosted objects. For 
example, a platform is deployed prior to deploying any 
engines on a computer, and an engine is deployed before 
associated area objects, and an area is deployed before its 
grouped application objects and other embedded areas are 
deployed. 
0147 Application objects communicate with other 
objects by specifying actions (e.g., Set and Get) upon named 
attributes within objects. The general facilitator of such 
name-based communications is message exchange. Requests 
to message exchange, by application objects, to perform 
actions on other objects include identification information 
enabling message exchange to route messages to objects. 
This identification information is represented as an 
MxHandle. An MxHandle is comprised of an MxAutoma 
tionObjectHandle and an MxAttributeHandle. The MxAuto 
mationObjectHandle handle includes fields specifying a plat 
form, an engine, and an object with which the deployed object 
is associated. The MXAttributeHandle handle includes fields 
uniquely specifying an object primitive with which the 
attribute is associated and the attribute itself. The Configura 
tion Database 124 includes a global name table 125. The 
global name table 125 contains a set of subentries for each 
object that identify each attribute of the object by name (e.g., 



US 2011/0172965 A1 

PV) and a corresponding MxAttributeHandle value. In an 
embodiment of the invention, properties are statically defined 
and therefore need not be registered in the global name table 
125 when an object performs name binding. 
0148 Local message exchange residing on each engine 
maintains a local name table listing the names and corre 
sponding handles of each object deployed on the engine. The 
local name table facilitates handling a registration request, for 
a named object on a same engine as the requestor, rather than 
going out-of-process to determine a handle. In an embodi 
ment of the invention, when an object is un-deployed, the 
entry within the name tables maintained by message 
exchange are cleared. 
0149. After a deployed objects configuration information 

is sent to the host engine, the object starts up. The startup 
procedure includes registering the application object with a 
scheduler object associated with the application object's 
application engine. In an embodiment of the invention each 
object is individually issued a scan state request setting the 
manner in which the object will be periodically handled by 
the scheduler. After completing the registration and setting 
the scan state of objects, the attributes are accessible by other 
objects. By virtue of the local and global name tables and the 
name resolution capabilities of the engines embedded mes 
sage exchange, a target object and its attributes are accessible 
by objects without regard to the target object's location on one 
of the multiple computers executing the application with 
which the target object is associated. 
0150. An exemplary sequence of steps depicted in a flow 
chart depicted in FIG. 19 demonstrates the location transpar 
ency of an object with regard to other deployed objects seek 
ing to “get and “set’ attributes on the object via message 
exchange and underlying inter-process and network commu 
nications protocols. Initially, during step 1900 a client1 (e.g., 
an application object with a dependency upon data rendered 
by another application object) issues a RegisterReference 
request that identifies a target object attribute by a location 
independent attribute name. An example of such an attribute 
name is pump1.pV. In an embodiment of the invention inter 
object requests are handled via the message exchange facility 
which exists within the same process as the engine. Thus, the 
client1 RegisterReference request is directed to the local mes 
Sage exchange on engine1. 
0151. After receiving client1's RegisterReference request 
identifying the pump1.pV attribute, message exchange on 
engine1 initiates resolving the target object attribute name to 
a message exchange handle. Thus, at step 1910 the local 
message exchange on engine1 determines whether the 
attribute name corresponds to a name in its local name table 
identifying the objects hosted by the engine1. If the attribute 
name corresponds to a local attribute, then control passes to 
step 1920 wherein the local message exchange on engine1 
determines the MXHandle value assigned to the object 
attribute name. Control then passes to step 1950. 
0152 On the other hand, if the named attribute does not 
correspond to a local object, then control passes from step 
1910 to step 1930 wherein the message exchange of engine1 
issues a BindReference request to the configuration pc plat 
form 126 that maintains the global name table 125 (in the 
configuration database 124) for the application objects within 
an application. The BindReference request includes the loca 
tion-independent name, pump1.pV that the engine1 seeks to 
resolve into a corresponding MxHandle. 

Jul. 14, 2011 

0153. Next, during step 1940 the configuration pc plat 
form 126 locates the name entry in the global name table 125 
and returns the corresponding MxHandle for the named 
pump1.pV attribute to the engine 1. 
0154 After determining the value of the MxHandle, at 
step 1950 the engine1 creates an entry in a reference table that 
includes at least a reference handle (an integer value corre 
sponding to the entry in the reference table corresponding to 
the name pump1.pv) and the MXHandle value for the named 
object attribute pump1.pV. In an embodiment of the invention, 
the attribute name is stored in the reference table entry, 
thereby allowing other objects to request a reference to 
pump1.pV, and in response determining an MXHandle with 
out consulting either of the name tables. 
0.155. In an embodiment of the invention, MxPandles are 
withheld from the application objects. Instead, during step 
1960 the engine1 returns the reference handle (MXReference 
Handle) to the client1. The reference handle corresponds to 
the reference table entry containing the MXHandle for the 
referenced object parameter (pump1.pV). In an alternative 
method, the client1 never receives the MXReferenceHandle, 
and instead includes the attribute name with each command. 
The alternative method includes alphabetically re-ordering 
the object/attribute names to facilitate quickly locating a ref 
erence entry. Alternative ways to shield the MxHandles from 
clients will be known to those skilled in the art. 
0156 After receiving the reference integer value, during 
step 1970 the client1 issues a get/set command including the 
MXReferenceHandle integer value provided during step 
1960. The command is sequentially removed from the mes 
sage exchange queue for engine 1, and during step 1980 the 
message exchange retrieves an MXHandle from an entry in 
the reference table based upon the supplied MXReference 
Handle integer value corresponding to the pump1.pV attribute 
name. The message exchange on the engine1 forwards the 
request to the object in the form of a Get/Set attribute com 
mand including the MXHandle corresponding to the pump1. 
pv attribute. The retrieved MXHandle handle provides the 
needed routing information to forward the request to a proper 
destination application object. In the case where the get/set 
attribute command refers to a local, in-process object, the 
request is handled in-process. Otherwise, the request is 
handled by a network message exchange (also within the 
engine1 process space) that processes requests involving 
objects hosted on other platforms and engines. During step 
1985, the pump1 object receives and processes the received 
get/set command. During step 1990 the pump1 object returns 
a response to engine1 that originated the request on behalf of 
the client1, and the client1 receives an appropriate response 
message based upon the request. In particular the response 
includes the original MXReferenceHandle provided by the 
client1 in its request. The response also includes by way of 
example a piece of data, a reference, a completion status, etc. 
Once the client1 establishes a reference to a named attribute 
(e.g., pump1.pV), the reference persists over Subsequent get/ 
set attribute commands. Therefore, steps 1900 through 1960 
are executed only once, and thereafter the MXReference 
Handle value for pump1.pV is utilized for Subsequent requests 
by client1. 
0157. The location transparency is particularly advanta 
geous in the context of relocating objects to other engines on 
a system. In Such case, only engines (that carry out the mes 
sage exchange functionality) need be concerned with the 
changed location of an object. The name of the object does not 



US 2011/0172965 A1 

change when an object moves, and therefore application 
objects that reference a re-deployed object need not perform 
any procedures to accommodate a location change by the 
object. The sequence of calls depicted in FIG. 20 demonstrate 
any exemplary scenario where an object executing on a first 
engine sends a sequence of GetAttribute commands to a 
second object on the first engine, the second object is relo 
cated to a second engine, and a new handle is established for 
the second object on the second engine, and the second object 
resumes receiving GetAttribute commands from the first 
object. The example assumes that object A has already estab 
lished an MXReferenceHandle to an attribute of interest 
through a RegisterReference command to message exchange 
on the first engine. The example furthermore assumes that the 
local message exchange on engine A has previously obtained 
an MXHandle for attribute A of object B on engine A. 
0158. Initially, during step 2000 a scheduler A on engine A 
activates object A to perform its business logic (programmed 
function). In this example, object A's programmed function 
requires it to retrieve (get) a parameter value maintained by 
object B and utilize the value to perform a calculation (e.g., a 
feedback loop for setting an inlet valve to establish a particu 
lar flow rate from a tank). At step 2002 the scheduler A 
activates object B to performits business logic which includes 
establishing a current value for a parameter retrieved by 
object A. 
0159. During step 2004, object A, in the course of per 
forming its business logic, issues a GetAttribute command 
including an MXReferenceHandle value corresponding to 
attribute A on object B (i.e., ObjectB.AttributeA). Local Mes 
sage Exchange (LMX) on engine A retrieves the GetAttribute 
command from its LMX queue and during step 2006 passes 
the request to object B using the previously established 
MxHandle for ObjectB.AttributeA. At step 2008 object A 
executes a calculation based upon the data retrieved from 
ObjectB.Attribute.A. 
0160 Next, engine A issues an un-register object B com 
mand to the scheduler for engine A during step 2010, and a 
shutdown object B command to object B itself during step 
2012, thereby removing the object B from the set of periodi 
cally executed objects on engine A. 
0161. At step 2014 scheduler A again activates object A to 
perform its period business logic. At step 2016 object Aagain 
issues a GetAttribute ObjectB.AttributeA command to LMX 
on engine A. During step 2018, the LMX on engine A again 
issues a GetAttribute using the old MXHandle for ObjectB. 
AttributeA—unaware that Object B has moved to Engine B. 
An error message (e.g., InvalidId) is returned to the LMX on 
engine A. LMX on engine A returns an error message to 
object A, because of this error object A can not complete the 
execution of its business logic. 
0162. Object B is relocated to Engine B and a new 
MxHandle is established in steps 2020 and 2022. The Object 
B executes under scheduler B's command during step 2024. 
LMX on engine A issues a BindReference ObjectB.At 
tribute A call to the ConfiguratonPCPlatform in step 2018. In 
response the ConfigurationPCPlatform returns the new 
MxHandle for ObjectB.AttributeA. In an embodiment of the 
invention, Object A on engine A can now re-issue its 'get' 
request Successfully without knowing that object B was relo 
cated Engine B. 
0163 At step 2026, the scheduler A executes the business 
logic of object A, and then during step 2028 object A issues a 
GetAttribute request to LMX on engine A that includes the 

Jul. 14, 2011 

MxReferenceHandle (for ObjectB.AttributeA) that was 
established prior to issuing the first GetAttribute command at 
step 2004. Thus, even though the location of object B 
changed, the MXReferenceHandle remains the same. The 
move of object B to engine B is transparent to the requesting 
object A, and object A continues to use its previously obtained 
MxReferenceHandle to submit requests to ObjectB.At 
tribute A. During step 2030 the LMX on engine A forwards 
the request to an LMX on engine B (object B's new location) 
using the new MxHandle for the moved ObjectB.Attribute.A. 
At step 2032, the LMX on engine Bretrieves the request from 
its queue and passes the request to object B. The value of 
ObjectB.Attribute A is returned to object A on engine Avia 
the LMX infrastructure, and during step 2034 object A 
executes its calculation using the retrieved attribute value. 
0164. Once the application has been distributed to the 
computers, a centralized diagnostics management tool pro 
vides an interface facilitating monitoring the distributed com 
ponents (e.g., platform, application engine, and application 
objects) of a Supervisory process control and manufacturing 
information application. Turning to FIG. 21, in an embodi 
ment of the invention, the centralized diagnostics manage 
ment tool, referred to herein as a systems management con 
sole (SMC) 2100, comprises a management console shell 
2102 such as, for example, the well known MICROSOFT 
Management Console (MMC). The SMC 2100 is the primary 
human interface for managing a running process control and 
manufacturing information application and the source of dis 
played high and low level diagnostics for the components of 
the system depicted in FIG.1. The management console shell 
2102 provides a graphical user interface comprising a variety 
of views depicting an assortment of diagnostic data and com 
mands that users are capable of asserting upon linked objects. 
A set of such views are depicted by way of example in FIGS. 
22-23. The functionality of the SMC 2100 is bi-directional in 
the sense that it gathers data and status of objects, and issues 
commands changing data or status of the linked objects. Thus, 
in addition to displaying retrieved diagnostic information, the 
SMC 2100 enables a user to select a graphically depicted 
representation of an object on one of the SMC 2100's Sup 
ported views and then specify a command or action to be 
performed upon the selected displayed object. 
0.165. The capabilities of an exemplary configuration of 
the SMC 2100 are a superset of the management capabilities 
of a runtime process view engine, and the set of extended 
capabilities is open-ended in view of the architecture built 
around an extensible management console shell. Such capa 
bilities include, for example: 

0166 Monitoring error logs generated by platform log 
ging processes. Sorting and filtering the logging is also 
Supported. 

0.167 Monitoring and tuning-up network and commu 
nication performance. 

0168 Administering platforms and engines—including 
shutting down and re-starting the platforms and engines, 
checkpoint saving, restoring, and monitoring the status 
and diagnostic data rendered by the engines and plat 
forms. 

0.169 Administering configuration and history data 
base archiving and backup. 

0170 Administering and monitoring I/O servers also 
known as Data Access Servers (DAServers). 

0171 Administering and monitoring licenses. 



US 2011/0172965 A1 

0172. Adding, deleting, and modifying users based 
upon user profile templates. 

0173 Deploying platforms, engines and application 
objects in response to failures. 

0.174. In and embodiment of the invention the SMC 2100 
is deployed with the platform object for each computer to 
ensure that all computers used within a system have access to 
the SMC 2100's functionality. In an embodiment of the inven 
tion, the SMC 2100 is not launched when the platform is 
deployed. Instead, it is started from a programs option off the 
Startmenuinan MICROSOFTWINDOWS operating system 
desktop user interface. All Snap-ins (e.g., object monitor 2106 
and diagnostics extensions 2108, described herein below) are 
deployed with the platform so that when an update to the 
SMC 2100 is available, only one re-deployment of the soft 
ware is required to complete the update. The SMC 2100, for 
runtime data, uses its platform object as the communications 
gateway to objects within the rest of the distributed system for 
purposes of sending and receiving diagnostic/remedial mes 
sages. The SMC 2100, for runtime data does not rely on the 
configuration database 124 for any of its services. Instead the 
SMC 2100 communicates directly with the various target 
objects (after their message exchange handles have been pro 
vided in response to a naming resolution request). 
(0175 For some diagnostic data the SMC 2100 utilizes 
direct interfaces provided on the source software target to 
ensure that the diagnostic data gathering does not adversely 
effect the runtime communications performance. For 
example: 

0176 Log file diagnostic messages 2115 are accessed 
via a direct set of interfaces exposed on the logger inter 
face 2114 as the volume of data would deteriorate the 
runtime performance if transferred via the attribute sub 
Scription method; 

0177 Galaxy Database Management 2118 is accessed 
utilizing direct interfaces package manager 2117. 

(0178. The SMC 2100 incorporates security to ensure that 
all monitoring/management operations are invoked by autho 
rized users. If the security permission for a menu item is not 
provided then the displayed menu item is grayed out for the 
particular user. If a runtime operation is not permitted then the 
operation is terminated and a dialog box is raised to indicate 
that the operation has been denied due to security. 
0179 The content of the views and the capabilities of a 
user to view diagnostic information and issue commands to 
(e.g., set attributes within) remotely deployed objects is deter 
mined in the SMC 2100 by an extensible set of job-specific 
snap-ins 2104. The set of job-specific snap-ins 2104 supply 
data and interface control definitions to the management con 
sole shell 2102. The management console shell 2102 then 
presents the data and functions to users via a graphical user 
interface. Thus, the management console shell 2102 is cus 
tomized/extended by modifying the set of installed Snap-ins 
2104. 

0180. In an embodiment of the invention, the set of snap 
ins 2104 are installed on the management console shell 2102 
deployed on a computer. A system/application object monitor 
2106 enables the management console shell 2102 to display 
to a user the objects installed on the system and their status. 
The information provided by the system/application object 
monitor 2106 concerns the status of the operating software of 
the system (e.g., application engines, platforms, application 
objects, etc.). The object monitor 2106 enables a user, via the 
management console shell 2102 provided interfaces, to start/ 

17 
Jul. 14, 2011 

stop/re-start any platform or engine. The object monitor 2106 
provides information to the management console shell 2102 
enabling a user to view performance statistics of platforms 
and engines. The object monitor 2106 communicates with the 
distributed Supervisory process control and manufacturing 
information application objects 2112 (e.g., platform objects, 
engine objects, etc.) via the previously described message 
exchange communication facilities 2110. The features pro 
vided by the object monitor 2106 go beyond those provided 
by a process monitor that displays the operational status of 
process variables that indicate the status of a controlled manu 
facturing process (e.g., pressures, temperatures, flow, etc.). A 
diagnostics extensions 2108 Snap-in includes a communica 
tions System (e.g., message exchange) monitor/debugger. 
Other Suitable diagnostics extensions are contemplated to 
handle virtually any monitoring/management function con 
ceivable for a Supervisory process control and manufacturing 
information system. Such extensions are readily imple 
mented through the extensible interface architecture of the 
management console shell 2102, which is, by way of example 
the MICROSOFT management console. 
0181. In an embodiment of the invention, the SMC 2100 
under the customization influence of one of the snap-ins 2104 
exhibits behaviors Similar to MICROSOFT'S WINDOWS 
2000 explorer. Turning to FIG. 22, the SMC 2100 when 
driven by the object monitor 2106 snap-in, provides a view of 
the deployed objects in the system. This view is similar to the 
deployment view available within the IDE and discussed 
herein above with reference to FIG. 17. The view layout, in 
accordance with the general MICROSOFT MANAGE 
MENT CONSOLE conventions and driven by object monitor 
2106 snap-in, exhibit the following view behaviors: 

0182 1) The left handpane 2200 displays a tree view of 
the deployment model. 

0183 2) The left hand pane 2200 uses the standard 
expand and collapse tree indicators to expand or collapse 
the left hand tree. 

0.184 3) The right hand pane 2202 indicates the status of 
a selected object. This contains: 
0185 
Name 

0186 b) Object Template Name 
0187 c) Object Status Started/Stopped/OnScan/ 
OffScan 

0188 4) Both views automatically update to changed 
data (obtained via message exchange) 
0189 a) The refresh frequency is configurable from a 
pull down menu. 

0.190 b) The default is 10 seconds and is configurable 
down to 1 Sec. 

(0191 5) On start-up: 
(0192 a) The left hand pane 2200 shows the name 

(e.g., MyApplication) of the system (also referred to 
as “Galaxy') within which the distributed application 
operates. 

0193 b) The right pane 2202 contains the platforms 
(e.g., Platform.001 and Platform 002) defined within 
the global data and the connection status (e.g., Run 
ning-OnScan). 

0194 6). By either clicking on the expand symbol for the 
galaxy name or double clicking on the galaxy name in 
the left hand pane 2200 the tree expands to show the 

a) Object Name TagName and Hierarchical 



US 2011/0172965 A1 

platforms within the left hand pane 2200. This method is 
available for all objects that have an expansion symbol 
next to them. 

0.195 7) By expanding a platform node, a tree of the 
engines is shown on the left pane 2200 and the right pane 
2202 will display the engines basic states. 

0196) 8) Selecting an Engine in the left pane 2200 or by 
double clicking in the right pane 2202 provides a view of 
all objects that are hosted by the selected engine (e.g., 
area objects and device integration objects). 

0.197 9) Areas have an expansion symbol indicating 
that they host ApplicationObjects. See, 

0198 FIG. 23, for an example of an expanded tree and 
attributes of a selected application object V101 (T001. Inlet). 
(0199. With reference to FIG. 22, in an embodiment of the 
invention a user is capable of activating a context menu 2204 
for each object displayed on the user interface rendered by the 
SMC 2100. The context menu contains a list of the operations 
that can be submitted to the selected object. The list on depen 
dent on the user's authenticated security and the object type. 
Functions that the user does not have permissions for will 
appear grayed out on the context menu 2204. By way of 
example, the context menu contains: Start/Stop Platform/ 
Engine based on the object state: OnScan/Off Scan Based 
on the Object Status; and Add to Favorites—that saves the 
object to the favorites view for later viewing. A user may thus 
designate favorite views to reduce the time involved intra 
versing the tree structure to reach a desired view of an object 
or set of objects. 
(0200 Referring now to FIG. 23, the SMC 2100 provides a 
detailed grid for viewing object attributes of a selected appli 
cation object V101 (T001. Inlet). Such objects attribute dis 
plays include in general: Name, description and any exposed 
attributes. Particular types of objects and their exposed 
attributes include: 

0201 Galaxy—Database statistics 
0202 Platform PC information such as OS version 
0203 Application Engine—Message Exchange and 
Scan statistics 

0204 View Engine Display draw and Message statis 
tics 

0205 Device Integration Network Transaction rates 
& unconnected PLC's 

0206. Device Integration Device Individual PLC 
transaction and error statistics 

0207. With continued reference to FIG. 23, control buttons 
2300 and 2302 are supplied to launch sorting and filtering 
displayed properties in the right hand pane of the display. The 
user is therefore able to control the content of the displayed 
columns as well as its order of presentation. As shown in FIG. 
23, the value property column of an attribute displays a ref 
erence string 2304 for the input/output if applicable. The 
reference string 2304 acts as a hyperlink so that the user can 
trace through objects. The C--> buttons act as in 
MICROSOFT Explorer browser traversing the latest user 
W1WS. 

0208 Furthermore, in an embodiment of the invention the 
Value property will be write-enabled (possibly via double 
click or a context action). Thereby not only allowing a user to 
diagnose a problem, but also take remedial action by speci 

18 
Jul. 14, 2011 

fying a command on an attribute. A dialog is displayed Suit 
able for the data type. The dialog allows a user (if they have 
the correct security permissions) to write to the attribute. By 
default the write privilege will be in User mode, however the 
dialog will provide the user with the capability to do both 
Supervisory and systems writes. Examples of management 
operations executable via Such write commands include: 
bringing objects onscan/offscan; start/stop engine, setting the 
alarm mode to enabled/disabled/silenced. 

0209. The SMC 2100 can be used as an effective admin 
istrative tool for performing a number of high level system 
control operations. These functions are briefly discussed 
herein below. One high level task facilitated by the SMC is to 
perform a platform recovery for a previous breakdown. An 
administrator selects the platform from the global data list 
and requests initiates the recovery. In response, the full soft 
ware re-deployment is carried out from the configuration 
database 124. If the platform chosen is the local platform then 
a message is displayed indicating that the selected platform is 
the one the user is currently logged onto. If the option is to 
continue then the SMC will be stopped and no indication is 
given of when the process has been completed. 
0210 Another administrative task is to purge all system 
log files. This task is based on a date entered by the user. All 
logs will be deleted that have a creation date prior to the 
Supplied date. The user is presented the option to back up the 
files before deleting. 
0211. The Galaxy database manager 2116 from the SMC 
2100 provides a mechanism for the user to back-up/restore a 
single distributed application from the configuration database 
124. 

0212 For Back-up they will be required to: 
0213 Enter the Galaxy Repository 
0214 Select the Galaxy within the Galaxy Repository 
0215 Enter target destination file name for the back-up 
log 

0216 Start the backup process. 
0217. The back-up once complete will contain all the con 
figuration and files required to recreate the application con 
figuration into an empty configuration database. The recovery 
process utilizes the selected backup file to overwrite or create 
a new application configuration within the configuration 
database 124. The restore process restores the whole applica 
tion configuration with the deployment state defined at the 
point that the application configuration was backed up 
0218. The SMC 2100 also supports a system software 
logging utility LogViewer 2113 that enables all system 
objects and framework Software to report operational errors, 
statistics, etc. that enable technical Support or systems engi 
neers to diagnose and remedy Software performance prob 
lems. The system Software logger is the low level logger used 
by the infrastructure and objects of the system depicted in 
FIG. 1 to report information that is required by technical 
Support or end user systems engineers attempting to diagnose 
problems with the software. The system software logger is not 
the target location for application level logging (stored in the 
historian). The log maintained by the system software logger 
is available at all times. In an embodiment of the invention the 
log is stored in binary file format to ensure that the logging 
operation has minimal impact on the runtime performance. 



US 2011/0172965 A1 

0219. The retention policy for logs is configurable. Users 
can configure the retention period for all of the software log 
files. The configured policy can be based, for example, upon 
a number of days or the amount of disk space dedicated to the 
log files. When the size of the disk space taken is changed 
form larger to Smaller the log information truncates the oldest 
information. The file format of the log is abstracted from the 

Jul. 14, 2011 

0232 Debug messages 
0233 Software debug messages used to enable 
detailed diagnostics of Magellan infrastructure. 

0234 Software debug state changes on->off and 
off son 

0235. In an embodiment of the invention, the following 
fields will be available: 

clients so that as Software technology advances the storage 0236 Platform Name PC/platform name 
format can be changed without causing ripple effects through 0237 Date/Time File time 
the rest of the architecture. 0238 Component IDE, SMC, Object Name 
0220 Table 1 below sets forth pre-defined log flags for the 0239 LogFlag Name—Debug, Information, Warning, 
logger. All log flags are in the off state except for Error, Error . . . 
Warning and Info. 0240 Message—Description 

TABLE 1. 

Error Log an error message. Error messages are used to indicate an error 

software problem that should not have occurred. 
Warning 

not be what was desired. 
Info Logan informational message. Info messages simply describe 

Successful completion of large tasks, or other things that may be of 
casual interest to the user. This should not be used for frequently 
ogging messages. 

condition from which you cannot continue. This indicates a 

Loga warning message. Warning messages are used to indicate an 
error condition from which you can continue, but the output may 

Trace Log a generic trace message. Used for detailed messages about the 
internal operations of a component. 

Start-Stop 

started or shut down. 
ThreadStart-Stop Log that a thread has started or stopped. 

Log that some component has started or stopped. These messages can 
help in showing when certain processes or objects have been 

SQL Log SQL related messages. These messages can be used for tasks 

in the Developer Studio debugger. 
Such as dumping SQL Select strings that are too long to be viewed 

RefCount Log object reference counts. This is used mainly for COM object 
ref counts but can be used for any object that manages its lifetime 
by counting its clients. 

Entry-Exit Log a function entry/exit message. These messages simply flag 
hat functions have been entered and exited. 

Connection Log a connection message. This is used mainly by communication 
components that manage there connections with clients or servers. 

Ctor-Dtor Loga Constructor Destructor message. 

0221) From an option within the SMC 2100, it will be 0241 Source is defined by the Object Model, 
possible to turn on or off the information messages and debug 0242 Message Identifier and Description are free format 
messages for a specific object or set of objects. This will 0243 In an embodiment of the invention, a logger viewer 
provide the developer the ability to provide full diagnostics, 
and turn these functions off at runtime to avoid flooding the 
logs and degrading the performance of the system. 
0222. In an embodiment of the invention, the software 
developer, for example an ApplicationObject developer, can 
generate their own log categories and “register them via the 
logger interface 2114. This provides the developera way to 
quickly isolate their specific log information via the filtering 
mechanism mentioned herein below. 

0223) In an embodiment of the invention, the log file con 
tains: 

0224 Software start-up 
0225 Software termination reports 

0226. Why the termination occurred (Planned/Fail 
ure) 

0227 Failure information if possible 
0228 Software information messages 
0229 Security login/logout 
0230 Security infractions 
0231 Connection requests from Internet clients 

2113 facilitates providing a view across all of the log files 
available on a local platform. Furthermore, the logger viewer 
functionality is extended to designated non-local platforms as 
well. The display provides a grid type view onto the log 
messages. The display refreshes when the user is viewing the 
latest page of information. If the user has moved off this page 
by using the Pagel JP. PageDown. Up Arrow. Down Ar 
row. Home Keys or using the Scroll bar then the page is not 
automatically refreshed. The display also reacts to the scroll 
wheel available with most new mice. The End key returns 
the user to the latest entry in the log, and therefore restart 
automatic refresh. The refresh frequency is set dynamically to 
the refresh frequency of the local client. The refresh fre 
quency persists across restarts of the Snap-in of the set of 
Snap-ins 2104 that is responsible for the logging functionality 
of the SMC 2100. 
0244. In an embodiment of the invention it is possible to 
create a filter on any of the available fields within the log file. 
This filter will be a simple “and” filter, for example: 
0245 Source=AppEngine1 AND LogFlagName=Name 
AND Description="Dead” The filter is provided by a fill in 
the gaps style form using where possible selection controls 



US 2011/0172965 A1 

for the well-known columns. Users select the start time to 
view or all logs entries between two specified times. 
0246 Illustrative embodiments of the present invention 
and certain variations thereof have been provided in the Fig 
ures and accompanying written description. The present 
invention is not intended to be limited to these embodiments. 
It will be appreciated by those skilled in the art that a new and 
useful method and application has been described for deploy 
ing software and a configuration for a process control and 
manufacturing information application and thereafter moni 
toring the deployed distributed application through a general 
management shell customized to support diagnostic/remedial 
operations via a set of Snap in Software modules. In view of 
the many possible environments to which the principles of 
this invention may be applied and the flexibility of designing 
and carrying out Software-based systems, it should be recog 
nized that the embodiments described herein are meant to be 
illustrative and should not be taken as limiting the scope of the 
invention. Those skilled in the art to which the present inven 
tion applies will appreciate that the illustrated embodiments 
can be modified in arrangement and detail without departing 
from the spirit of the invention. The present invention is 
intended to cover the disclosed embodiments as well as others 
falling within the scope and spirit of the invention to the 
fullest extent permitted in view of this disclosure and the 
inventions defined by the claims appended herein below. 
Therefore, the invention as described herein contemplates all 
Such embodiments as may come within the scope of the 
following claims and equivalents thereof. 

20 
Jul. 14, 2011 

What is claimed is: 
1. A centralized diagnostics management tool facilitating 

monitoring of distributed components of a Supervisory pro 
cess control and manufacturing information application, the 
centralized diagnostics management tool comprising: 

a diagnostics management console shell comprising: 
a set of view templates, the view templates including 

controls for manipulating graphically displayed rep 
resentations of data rendered by the distributed com 
ponents, and 

an interface customization Software interface for inte 
grating an extensible set of software modules provid 
ing data links to ones of the set of distributed compo 
nents; and 

a set of software modules that submit requests to the dis 
tributed components to access exposed attributes corre 
sponding to operational status of the components. 

2. The centralized diagnostics management tool of claim 1 
wherein the set of Software modules access diagnostic data 
relating to the operational status of platforms and application 
engines. 

3. The centralized diagnostics management tool of claim 2 
wherein the set of Software modules access diagnostic data 
relating to the operational status of a real time database. 

4. The centralized diagnostics management tool of claim 2 
wherein the set of Software modules access diagnostic data 
relating to the operational status of a data access server. 

c c c c c 


