IP多媒体子系统集中业务中用户终端配置业务的方法

一种IP多媒体子系统集中业务中用户终端配置业务的方法，该方法包含如下步骤：A：用户终端向eMSC发送配置业务请求消息；该消息中携带业务配置类型信息；B：eMSC根据获取的该用户终端的应用服务器地址，向对应的应用服务器发送业务请求消息；该消息中包含上述业务配置类型信息；C：接收到来上述业务请求消息后，该应用服务器根据上述业务配置类型信息进行相应的业务配置。采用本发明的方法，解决了eMSC获取签约用户终端的应用服务器地址，并使用获取的应用服务器地址实现了non-ICS UE作为实现IMS集中业务的终端自动配置业务的功能。
1. 一种 IP 多媒体子系统集中业务中用户终端配置业务的方法，其特征在于，所述用户终端不具备 IP 多媒体子系统集中业务 (ICS) 能力，该方法包含如下步骤：

A：用户终端向 eMSC 发送配置业务请求消息，该消息中携带业务配置类型信息；

B：eMSC 根据获取的该用户终端的应用服务器地址，向对应的用户服务器发送业务请求消息，该消息中包含上述业务配置类型信息；

C：接收到上述业务请求消息后，该应用服务器根据上述业务配置类型信息进行相应的业务配置。

2. 如权利要求 1 所述的方法，其特征在于，

所述 eMSC 从 HSS 或所述用户终端归属网络的 CSCF 获取所述应用服务器地址。

3. 如权利要求 2 所述的方法，其特征在于，

步骤 A 之前，eMSC 采用如下步骤获取所述应用服务器地址：

a1) 接收到所述用户终端发送的位置更新请求后，eMSC 向 HSS 发送位置更新请求；

a2) HSS 根据所述用户终端的签约信息获取对应的用户服务器地址，并将应用服务器地址包含在插入用户数据请求消息中位置更新响应消息中发送给 eMSC。

4. 如权利要求 3 所述的方法，其特征在于，

步骤 a1 中，eMSC 发送的所述位置更新请求中包含要求 HSS 返回对应用户终端的应用服务器地址的标志；

步骤 a2 中，当且仅当 eMSC 发送的所述位置更新请求中包含所述标志时，HSS 在所述插入用户数据请求消息中位置更新响应消息中添加所述应用服务器地址。

5. 如权利要求 2 所述的方法，其特征在于，

步骤 A 之前，eMSC 采用如下步骤获取所述应用服务器地址：

b1) eMSC 向所述 CSCF 发送所述用户终端的 SIP 注册请求消息；

b2) CSCF 将本地配置的，或 HSS 发起的所述用户终端的应用服务器的地址包含在 SIP 注册响应消息中发送给 eMSC。

6. 如权利要求 5 所述的方法，其特征在于，

步骤 b1 和 b2 之间还包含如下步骤：

接收到所述 SIP 注册请求消息后，CSCF 与 HSS 进行注册交互，在上述交互过程中 HSS 将所述用户终端的应用服务器的地址下发给 CSCF。

7. 如权利要求 5 所述的方法，其特征在于，

步骤 b1 中的所述 SIP 注册请求消息中包含要求 CSCF 返回对应用户终端的应用服务器地址的标志；

步骤 b2 中，当且仅当所述 SIP 注册请求消息中包含所述标志时，CSCF 在所述 SIP 注册响应消息中添加所述应用服务器地址。

8. 如权利要求 2 所述的方法，其特征在于，

步骤 A 之前，eMSC 采用如下步骤获取所述应用服务器地址：

c1) 在接收到所述 CSCF 发送的、指示所述用户终端注册成功的响应消息后，eMSC 向所述 CSCF 发送注册订阅请求，该订阅请求指示要获取所述用户终端的应用服务器地址；

c2) 所述 CSCF 向 eMSC 发送通知消息，该通知消息中携带所述用户终端的应用服务器
器地址。

9. 如权利要求 1 所述的方法，其特征在于，
步骤 A 中的配置业务请求消息中还携带所述用户终端需要配置的业务的业务类型；
步骤 B 中，eMSC 向所述用户终端的应用服务器中与所述业务类型对应的应 用服务器发送所述业务请求消息。

10. 如权利要求 1 所述的方法，其特征在于，
所述 eMSC 根据所述用户终端的国际移动用户识别码及应用服务器的命名规则设置得到所述用户终端的应用服务器地址。

11. 如权利要求 9 所述的方法，其特征在于，
eMSC 采用如下步骤设置所述应用服务器的地址：
 d1) 获取所述用户终端的国际移动用户识别码中的移动国家码 MCC 和移动网络号 MNC；
 d2) 将 AS.MCC.MNC.3GPP.org 设置为所述用户终端的应用服务器地址。
IP 多媒体子系统集中业务中用户终端配置业务的方法

技术领域
[0001] 本发明涉及 IP 多媒体子系统集中业务的实现方法，尤其涉及一种 IP 多媒体子系统集中业务中用户终端配置业务的方法。

背景技术
[0002] IP（Internet Protocol，网络互联协议）多媒体子系统（IP Multimedia Core Network Subsystem，简称 IMS）是由第三代合作伙伴计划（3rd Generation Partnership Project，简称 3GPP）提出的一种基于 IP 的网络架构，其构建了一个开放而灵活的业务环境，支持多媒体应用，并为用户提供丰富的多媒体业务。
[0004] GSM、UMTS 等移动蜂窝网络采用电路交换技术，称为电路（Circuit Switched，简称 CS）域，能够为用户提供基本的语音业务，以及基于语音业务的补充业务。从 CS 域接入 IMS 时，CS 域演变为一种接入方式，业务完全由 IMS 统一提供，这种技术称为 IMS 集中业务（IMS Centralized Service，简称 ICS）。
[0005] IMS 集中业务不但支持具有 ICS 能力的用户终端（简称 ICS UE），还支持现有的不具备 ICS 能力的用户终端（简称 non ICS UE）。
[0006] 图 1 是现有技术中 non ICS UE 接入 IMS 集中业务的增强网络的架构图，包括如下网元：
[0007] 101 用户终端（User Equipment，简称 UE）；
[0008] 102 增强移动交换中心（Enhanced Mobile Switch Center，简称 eMSC）；
[0009] 103 媒体网关（Media Gateway，简称 MGW）；
[0010] 104 呼叫会话控制功能（Call Session Control Function，简称 CSCF）；
[0011] 105 应用服务器（Application Server，简称 AS）；
[0012] 106 归属用户服务器（Home Subscriber Server，简称 HSS），用于存储 CS 域和 IMS 域的用户数据。
[0013] 其中，用户终端 101 为 non ICS UE，呼叫会话控制功能 104 和应用服务器 105 属于 IMS 网络。
[0014] 增强 MSC 服务器 102 是电路域 MSC 服务器的增强网元，除了完成 CS 用户终端的接入和移动性管理以外，还充当会话初始协议（Session Initiation Protocol，简称 SIP）用户代理，实现 CS 信令和 SIP 信令的转换，代替用户接入 IMS。
[0015] 用户终端 101 通过 CS 控制信令接入到增强 MSC 服务器 102，增强 MSC 服务器 102 充当用户代理，代替用户终端 101 接入 IMS 网络，并和远端用户建立会话连接；同时
MGW 103 完成 CS 承载上的媒体流和 IP 承载上的媒体流之间的转换，建立用户终端 101 和远端用户之间的媒体连接。

[0016] 其中，增强 MSC 服务器 102 和 IMS 网络中的 AS 105 之间的 Ut 接口采用超文本传输协议（HTTP）。

[0017] 图 2 是在 IMS 域中用户终端利用 Ut 接口主动配置业务的方法流程图，包括以下步骤：

[0018] 201，用户终端向应用服务器发起一个配置业务的 HTTP 业务请求消息，该消息携带应用服务器的地址，同时也携带用户的业务需求信息，如修改业务，或者是查询业务，或者是增加业务，或者是删除业务等；

[0019] 202，应用服务器根据用户的业务需求信息，修改、或查询、或增加，或删除用户的业务后，向用户终端回送 HTTP 业务响应消息。

[0020] 由于 non ICS UE 没有保存应用服务器的地址信息，因此在如图 1 所示的 IMS 集中业务的增强网络的架构中，还无法实现用户终端 (non ICS UE) 主动配置业务的功能。

发明内容

[0021] 本发明所要解决的技术问题是，克服现有技术的不足，提供一种 IMS 集中业务中用户终端配置业务的方法，以实现不具备 ICS 能力的用户终端主动进行业务配置的功能。

[0022] 为了解决上述问题，本发明提供一种 IP 多媒体子系统集中业务中用户终端配置业务的方法，该方法包含如下步骤：

[0023] A：用户终端向 eMSC 发送配置业务请求消息，该消息中携带业务配置类型信息；

[0024] B：eMSC 根据获取的该用户终端的应用服务器地址，向对应的服务器发送业务请求消息，该消息中包含上述业务配置类型信息；

[0025] C：接收到上述业务请求消息后，该应用服务器根上述业务配置类型信息进行相应的业务配置。

[0026] 此外，所述 eMSC 从 HSS 或所述用户终端归属网络的 CSCF 获取所述应用服务器地址。

[0027] 此外，步骤 A 之前，eMSC 采用如下步骤获取所述应用服务器地址：

[0028] a1) 接收到所述用户终端发送的位置更新请求后，eMSC 向 HSS 发送位置更新请求；

[0029] a2) HSS 根据所述用户终端的签约信息获取对应的用户终端地址，并将用户服务器地址包含在插入用户数据请求消息或位置更新响应消息中发送给 eMSC。

[0030] 此外，步骤 a1 中，eMSC 发送的所述位置更新请求中包含要求 HSS 返回对应用户终端的应用服务器地址的标记；

[0031] 步骤 b2 中，当且仅当 eMSC 发送的所述位置更新请求中包含所述标记时，HSS 在所述插入用户数据请求消息或位置更新响应消息中添加所述应用服务器地址。

[0032] 此外，步骤 A 之前，eMSC 采用如下步骤获取所述应用服务器地址：

[0033] b1) eMSC 向所述 CSCF 发送所述用户终端的 SIP 注册请求消息；
b2) CSCF 将本地配置的、或 HSS 下发的所述用户终端的应用服务器的地址包含在 SIP 注册响应消息中发送给 eMSC。

此外，步骤 b1 和 b2 之间还包含如下步骤:

接收所述 SIP 注册请求消息后，CSCF 与 HSS 进行注册交互，在上述交互过程中 HSS 将所述用户终端的应用服务器的地址下发给 CSCF。

此外，步骤 b1 中的所述 SIP 注册请求消息中包含要求 CSCF 返回对应用户终端的应用服务器地址的标记。

步骤 b2 中，当且仅当所述 SIP 注册请求消息中包含所述标记时，CSCF 在所述 SIP 注册响应消息中添加所述应用服务器地址。

此外，步骤 A 之前，eMSC 采用如下步骤获取所述应用服务器地址:

c1) 在接收到所述 CSCF 发送的、指示所述用户终端注册成功的响应消息后，eMSC 向所述 CSCF 发送注册订阅请求，该订阅请求指示要获取所述用户终端的应用服务器地址。

c2) 所述 CSCF 向 eMSC 发送通知消息，该通知消息中携带所述用户终端的应用服务器地址。

此外，步骤 A 中的配置业务请求消息中还携带所述用户终端需要配置的业务的业务类型。

步骤 B 中，eMSC 向所述用户终端的应用服务器中与所述业务类型对应的的应用服务器发送所述业务请求消息。

此外，所述 eMSC 根据所述用户终端的国际移动用户识别码及应用服务器的命名规则设置得到所述用户终端的应用服务器地址。

此外，eMSC 采用如下步骤设置所述应用服务器的地址:

d1) 获取所述用户终端的国际移动用户识别码中的移动国家码 MCC 和移动网络号 MNC；

d2) 将 AS.MCC.MNC.3GPP.org 设置为所述用户终端的应用服务器地址。

采用本发明的上述方法，解决了 eMSC 获取签约用户终端的应用服务器地址，并使用获取的应用服务器地址实现了 non ICS UE 作为实现 IMS 集中业务的终端主动配置业务的功能。

附图说明

图 1 是现有技术中 non ICS UE 接入 IMS 集中业务的增强网络的架构图；

图 2 是在 IMS 域中用户终端利用 Ut 接口主动配置业务的方法流程图；

图 3 为本发明实施例 non ICS UE 接入 IMS 集中业务的增强网络实现用户终端主动配置业务的方法流程图；

图 4 为本发明 eMSC 获取应用服务器地址的第一实施方式方法流程图；

图 5 为本发明 eMSC 获取应用服务器地址的第二实施方式方法流程图；

图 6 为本发明 eMSC 获取应用服务器地址的第三实施方式方法流程图；

图 7 为本发明 eMSC 获取应用服务器地址的第四实施方式方法流程图。
具体实施方式
[0056] 本发明的基本思路是，当接收到用户终端发起的业务请求时，由 eMSC 代替用户终端向应用服务器发起 HTTP 业务请求，应用服务器根据用户终端的业务配置类型（如修改业务、删除业务、增加业务或查询业务等) 配置用户的业务，并向 eMSC 回呼应消息。
[0057] 此外，本发明还提供了 eMSC 获取应用服务器地址的多种方法。
[0058] 下面将结合附图和实施例对本发明进行详细描述。
[0059] 图 3 为本发明实施例 non ICS UE 接入 IMS 集中业务的增强网络实现用户终端主动配置业务的方法流程图，具体包含如下步骤：
[0060] 步骤 301，用户终端 (non ICS UE) 向 eMSC 发送配置业务请求消息；
[0061] 该消息携带用户终端的业务配置类型，如查询业务、修改业务、增加业务、删除业务等。
[0062] 此外，该消息中还携带所需配置的业务的业务类型以及其它业务配置参考信息；例如，业务类型可以是呼叫前转，相应的业务配置参考信息可以是前转号码以及前转类型等。
[0063] 我们将上述业务类型、业务配置类型以及其它业务配置参考信息统称为业务配置信息。
[0064] 需要注意的是，对于呼叫前转等补充业务，通常由一个应用服务器负责处理，也就是说多个补充业务的业务类型可以分配给多个应用服务器。
[0065] 步骤 302，eMSC 收到配置业务请求消息后，根据获取的该用户终端对应的申请服务器地址，向业务类型对应的申请服务器（即为该用户终端提供对应业务的申请服务器）发送 HTTP 业务请求消息；
[0066] 上述 HTTP 业务请求消息携带对应的应用服务器的地址，以及上述业务配置类型信息。
[0067] eMSC 可以采用多种方法获取用户终端对应的应用服务器地址，具体的获取方法在下文中详细说明。
[0068] 步骤 303，应用服务器根据上述业务配置类型信息对用户的业务进行配置后，向 eMSC 回送 HTTP 业务响应消息；
[0069] 步骤 304，eMSC 收到上述 HTTP 业务响应消息后，向用户终端回送配置业务响应消息。
[0070] 至此，用户终端 (non ICS UE) 完成了对业务的增加/修改/删除/查询等配置工作。
[0071] 下面将详细介绍 eMSC 获取用户终端的应用服务器地址的方法。
[0072] 图 4 为本发明 eMSC 获取应用服务器地址的实施方式方法流程图，本实施方式是从插件用户数据请求消息，或位置更新响应消息中获取应用服务器地址，具体包含如下步骤：
[0073] 步骤 401，用户终端 (non ICS UE) 向 eMSC 发起位置更新请求消息，该消息为移动性管理 (Mobile Management，简称 MM) 消息；
[0074] 步骤 402，eMSC 向 HSS 发起移动应用部分 (Mobile Application Part，简称 MAP)
的位置更新请求消息；
[0075] 上述 MAP 位置更新请求消息中携带 ICS flag (ICS 标记)，用于标识 eMSC 为增强型 MSC (eMSC)，而非普通的 MSC。
[0076] 步骤 403，HSS 接收到上述 MAP 位置更新请求消息后，根据用户签约信息，向 eMSC 发送插入用户数据请求消息；
[0077] 当检测到上述 MAP 位置更新请求消息中携带 ICS 标记时，HSS 可以根据用户签约信息获知该用户终端签约的业务以及对应的应用服务器地址，并在上述插入用户数据请求消息中携带该用户终端对应的应用服务器地址。
[0078] 步骤 404，HSS 向 eMSC 回送 MAP 位置更新响应消息；
[0079] 如果步骤 403 中的插入用户数据请求消息中未携带用户终端对应的对应的应用服务器地址，则 HSS 在上述 MAP 位置更新响应消息中携带对应的对应的应用服务器地址。
[0080] 步骤 405，eMSC 保存接收到的用户终端对应的对应的应用服务器地址，供用户终端主动配置业务时使用。
[0081] 步骤 406，eMSC 向用户终端回送位置更新完成消息。
[0082] 其中，步骤 405 和步骤 406 的先后顺序可以变化。
[0083] 图 5 为本发明 eMSC 获取应用服务器地址的第二实施方式方法流程图，本实施方式是从注册成功响应消息中获取用户终端对应的对应的应用服务器地址，具体包含如下步骤：
[0084] 步骤 501，用户终端 (non ICS UE) 向 eMSC 发起位置更新请求消息，该消息为 MM 消息；
[0085] 步骤 502～504，eMSC 与 HSS 交互，完成 MAP 位置更新请求、插入用户数据、以及 MAP 位置更新响应操作；
[0086] 步骤 505，eMSC 代替用户终端向该用户终端归属网络的 CSCF 发起 SIP 注册请求消息；
[0087] 上述 SIP 注册请求消息中携带标识信息，用于标识该注册请求是 eMSC 代替用户终端向 IMS 网络发起注册；
[0088] 步骤 506，CSCF 与 HSS 之间进行注册交互；
[0089] 由于 HSS 也配置了用户终端对应的对应的应用服务器地址，因此在上述注册交互的过程中，HSS 向 CSCF 下发对应的对应的应用服务器地址。
[0090] 步骤 507，CSCF 向 eMSC 回送携带用户终端对应的对应的应用服务器地址的 SIP 注册成功响应消息；
[0091] 若在上述 SIP 注册请求消息中检测到上述标识信息，CSCF 根据运营策略，可以选择 HSS 下发的用户终端对应的对应的应用服务器地址，也可以选择本地配置的用户终端对应的对应的应用服务器地址，并将应用服务器地址包含在上述 SIP 注册成功响应消息中发送给 eMSC。
[0092] 步骤 508，eMSC 保存上述应用服务器地址，供用户终端主动配置业务时使用；
[0093] 步骤 509，eMSC 向用户终端回送位置更新响应消息。
[0094] 其中，步骤 508 和步骤 509 的先后顺序可以变化。
[0095] 图 6 为本发明 eMSC 获取应用服务器地址的第三实施方式方法流程图，本实施方式是通过订阅获取应用服务器地址，具体包含如下步骤：
步骤 601 ～ 605，与步骤 501 ～ 505 相同；
步骤 606，CSCF 与 HSS 进行注册交互；
步骤 607，CSCF 向 eMSC 回送 SIP 注册成功响应消息；
步骤 608，eMSC 向用户终端（non ICS UE）回送位置更新响应消息；
步骤 609，接收到上述 SIP 注册成功响应消息（步骤 607）后，eMSC 向 CSCF 发送注册订阅请求，指示要获取所述用户终端的应用服务器地址；
步骤 610，CSCF 向 eMSC 回送注册订阅成功响应消息；
步骤 611，CSCF 向 eMSC 发送通知消息，该通知消息中携带用户终端对应的应
用服务器地址（这里 CSCF 也可以使用从 HSS 获取的用户终端对应的用户服务器地址或者使用本地配置的用户终端对应的应用服务器地址）；
步骤 612，eMSC 向 CSCF 回送 SIP 成功响应消息；
步骤 613，eMSC 保存上述应用服务器地址，供用户终端主动配置业务时使用。
其中，步骤 608 和步骤 609～611 的先后顺序可以变化。
图 7 为本发明 eMSC 获取应用服务器地址的第四实施方式方法流程图，本实施方
式是 eMSC 根据用户终端发起的业务请求的信息或者 eMSC 保存的对应用户的信息推算得出（设置）对应的应用服务器地址，具体包含如下步骤：
步骤 701，用户终端（non ICS UE）向 eMSC 发起业务请求；
上述业务请求可以是位置更新请求、呼叫请求，也可以是配置业务请求。
步骤 702，eMSC 根据业务请求的信息或者 eMSC 保存的该用户终端的用户信
息，以及应用服务器的命名规则推算出对应的应用服务器地址；
例如，用户的终端的国际移动用户识别码（International Mobile Subscriber Identifier，简称 IMSI）中包含移动国家码（MCC）和移动网络号（MNC）信息，
则可以推算出该用户终端对应的应用服务器地址为 AS.MCC.MNC.3GPP.org，其中 AS 表示应用服务器，3GPP.org 为应用服务器地址的常用后缀，eMSC 可以根据这个地址找到对应的应用服务器。
步骤 703，eMSC 保存推算出的应用服务器地址。
如果步骤 701 中的业务请求为配置业务请求，可以直接使用推算出的应用服务
器地址向对应的服务器发送 HTTP 业务请求，无需保存上述应用服务器地址。
采用本发明的上述方法，解决了 eMSC 获取签约用户终端的应用服务器地址，
并使用获取的应用服务器地址实现了 non ICS UE 作为实现 IMS 集中业务的终端主动配置业务的功能。
图 5